[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
In this assignment, we give you a minimally functional thread system. Your job is to extend the functionality of this system to gain a better understanding of synchronization problems.
You will be working primarily in the threads
directory for
this assignment, with some work in the devices
directory on the
side. Compilation should be done in the threads
directory.
Before you read the description of this project, you should read all of the following sections: 1. Introduction, C. Coding Standards, E. Debugging Tools, and F. Development Tools. You should at least skim the material from A.1 Loading through A.5 Memory Allocation, especially A.3 Synchronization. To complete this project you will also need to read B. 4.4BSD Scheduler.
The first step is to read and understand the code for the initial thread system. Pintos already implements thread creation and thread completion, a simple scheduler to switch between threads, and synchronization primitives (semaphores, locks, condition variables, and optimization barriers).
Some of this code might seem slightly mysterious. If you haven't already
compiled and run the base system, as described in the introduction
(see section 1. Introduction), you should do so now. You can read through parts
of the source code to see what's going on. If you like, you can add
calls to printf()
almost anywhere, then recompile and run to see
what happens and in what order. You can also run the kernel in a debugger
and set breakpoints at interesting spots, single-step through code and
examine data, and so on.
When a thread is created, you are creating a new context to be
scheduled. You provide a function to be run in this context as an
argument to thread_create()
. The first time the thread is
scheduled and runs, it starts from the beginning of that function
and executes in that context. When the function returns, the thread
terminates. Each thread, therefore, acts like a mini-program running
inside Pintos, with the function passed to thread_create()
acting like main()
.
At any given time, exactly one thread is running, and the rest, if any,
are inactive. The scheduler decides which thread to run next. (If no
thread is ready to run at any given time, then the special "idle" thread,
implemented in idle()
, runs.) Synchronization primitives can force
context switches when one thread needs to wait for another thread to do
something.
The mechanics of a context switch are in threads/switch.S
, which
is 80x86 assembly code. (You don't have to understand it.) It
saves the state of the currently running thread and restores the state
of the thread we're switching to.
Using the GDB debugger, slowly trace through a context switch to see what
happens (see section E.5 GDB). You can set a breakpoint on schedule()
to
start out, and then single-step from there.(1) Be sure to keep track of each
thread's address and state, and what procedures are on the call stack for
each thread. You will notice that when one thread calls switch_threads()
,
another thread starts running, and the first thing the new thread does
is to return from switch_threads()
. You will understand the thread
system once you understand why and how the switch_threads()
that
gets called is different from the switch_threads()
that returns.
See section A.2.3 Thread Switching, for more information.
Warning: In Pintos, each thread is assigned a small, fixed-size
execution stack just under 4 kB in size. The kernel tries to detect
stack overflow, but it cannot do so perfectly. You may cause bizarre
problems, such as mysterious kernel panics, if you declare large data
structures as non-static local variables, e.g. int buf[1000];
.
Alternatives to stack allocation include the page allocator and the block
allocator (see section A.5 Memory Allocation).
Here is a brief overview of the files in the threads
directory.
You will not need to modify most of this code, but the hope is that
presenting this overview will give you a start on what code to look at.
loader.S
loader.h
start()
in start.S. See section A.1.1 The Loader, for details. You should not need to look at this code or modify it.
start.S
kernel.lds.S
start.Sto be near the beginning of the kernel image. See section A.1.1 The Loader, for details. Again, you should not need to look at this code or modify it, but it's here in case you're curious.
init.c
init.h
main()
, the kernel's "main
program." You should look over main()
at least to see what
gets initialized. You might want to add your own initialization code
here. See section A.1.3 High-Level Kernel Initialization, for details.
thread.c
thread.h
thread.hdefines
struct thread
, which you are likely to modify
in all four projects. See A.2.1 struct thread
and A.2 Threads for
more information.
switch.S
switch.h
palloc.c
palloc.h
malloc.c
malloc.h
malloc()
and free()
for
the kernel. See section A.5.2 Block Allocator, for more information.
interrupt.c
interrupt.h
intr-stubs.S
intr-stubs.h
synch.c
synch.h
io.h
devicesdirectory that you won't have to touch.
vaddr.h
pte.h
flags.h
devicescode
The basic threaded kernel also includes these files in the
devices
directory:
timer.c
timer.h
vga.c
vga.h
printf()
calls into the VGA display driver for you, so there's little reason to
call this code yourself.
serial.c
serial.h
printf()
calls this code for you,
so you don't need to do so yourself.
It handles serial input by passing it to the input layer (see below).
block.c
block.h
ide.c
ide.h
partition.c
partition.h
kbd.c
kbd.h
input.c
input.h
intq.c
intq.h
rtc.c
rtc.h
thread/init.cto choose an initial seed for the random number generator.
speaker.c
speaker.h
pit.c
pit.h
devices/timer.cand
devices/speaker.cbecause each device uses one of the PIT's output channel.
libfiles
Finally, lib
and lib/kernel
contain useful library routines.
(lib/user
will be used by user programs, starting in project 3, but
it is not part of the kernel.) Here's a few more details:
ctype.h
inttypes.h
limits.h
stdarg.h
stdbool.h
stddef.h
stdint.h
stdio.c
stdio.h
stdlib.c
stdlib.h
string.c
string.h
debug.c
debug.h
random.c
random.h
-rskernel command-line option on each run, or use a simulator other than Bochs, or specify the
-roption to
pintos
.
round.h
syscall-nr.h
kernel/list.c
kernel/list.h
kernel/bitmap.c
kernel/bitmap.h
kernel/hash.c
kernel/hash.h
kernel/console.c
kernel/console.h
kernel/stdio.h
printf()
and a few other functions.
Proper synchronization is an important part of the solutions to these problems.
Any synchronization problem can be easily solved by turning interrupts off:
while interrupts are off, there is no concurrency, so there's no possibility
for race conditions. Therefore, it's tempting to solve all synchronization
problems this way, but don't. Instead, use semaphores, locks, and
condition variables to solve the bulk of your synchronization problems. Read
the tour section on synchronization (see section A.3 Synchronization) or the comments
in threads/synch.c
if you're unsure what synchronization primitives
may be used in what situations.
In the Pintos projects, the only class of problem best solved by disabling interrupts is coordinating data shared between a kernel thread and an interrupt handler. Because interrupt handlers can't sleep, they can't acquire locks. This means that data shared between kernel threads and an interrupt handler must be protected within a kernel thread by turning off interrupts.
This project only requires accessing a little bit of thread state from interrupt handlers. For the alarm clock, the timer interrupt needs to wake up sleeping threads. In the advanced scheduler, the timer interrupt needs to access a few global and per-thread variables. When you access these variables from kernel threads, you will need to disable interrupts to prevent the timer interrupt from interfering.
When you do turn off interrupts, take care to do so for the least amount of code possible, or you can end up losing important things such as timer ticks or input events. Turning off interrupts also increases the interrupt handling latency, which can make a machine feel sluggish if taken too far.
The synchronization primitives themselves in synch.c
are implemented by
disabling interrupts. You may need to increase the amount of code that runs
with interrupts disabled here, but you should still try to keep it to a minimum.
Disabling interrupts can be useful for debugging, if you want to make sure that a section of code is not interrupted. You should remove debugging code before turning in your project. (Don't just comment it out, because that can make the code difficult to read.)
There should be no busy waiting in your submission. A tight loop that
calls thread_yield()
is one form of busy waiting.
In the past, many groups divided the assignment into pieces, then each group member worked on his or her piece until just before the deadline, at which time the group reconvened to combine their code and submit. This is a bad idea. We do not recommend this approach. Groups that do this often find that two changes conflict with each other, requiring lots of last-minute debugging. Some groups who have done this have turned in code that did not even compile or boot, much less pass any tests.
What you should do instead is to make full use of your code repository to share your work with teammates frequently, and make sure you never check in code that breaks your project. This, along with constant coordination among teammates, will ensure that any integration issues you encounter are minimized.
You should expect to run into bugs that you simply don't understand while working on this and subsequent projects. When you do, reread the appendix on debugging tools, which is filled with useful debugging tips that should help you to get back up to speed (see section E. Debugging Tools). Be sure to read the section on backtraces (see section E.4 Backtraces), which will help you to get the most out of every kernel panic or assertion failure.
Additionally, keep in mind that the only real way to effectively fix bugs in concurrent systems like Pintos is to fully understand everything that could be happening at any given point in time. In other words, what can possibly interrupt what. Once you understand the potential scenarios that might occur in your code, you will be much better equipped to understand how to solve the odd bugs you will encounter.
Before you turn in your project, you must copy the
project 2 design document template into your source tree under the name
pintos/src/threads/DESIGNDOC
and fill it in. We recommend that you
read the design document template before you start working on the project.
See section D. Project Documentation, for a sample design document that goes along
with a fictitious project.
Reimplement timer_sleep()
, defined in devices/timer.c
. Although
a working implementation is provided, it "busy waits," that is, it spins
in a loop checking the current time and calling thread_yield()
until
enough time has gone by. Reimplement it to avoid busy waiting.
timer_sleep()
is useful for threads that operate in real-time,
e.g. for blinking the cursor once per second.
The argument to timer_sleep()
is expressed in timer ticks, not in
milliseconds or any another unit. There are TIMER_FREQ
timer ticks per
second, where TIMER_FREQ
is a macro defined in devices/timer.h
.
The default value is 100. We don't recommend changing this value, because any
change is likely to cause many of the tests to fail.
Separate functions timer_msleep()
, timer_usleep()
, and
timer_nsleep()
do exist for sleeping a specific number of
milliseconds, microseconds, or nanoseconds, respectively, but these will
call timer_sleep()
automatically when necessary. You do not need
to modify them.
If your delays seem too short or too long, reread the explanation of the
-r
option to pintos
(see section 1.1.4 Debugging versus Testing).
The alarm clock implementation is not needed for later projects, although it could be useful for project 5.
Implement priority scheduling in Pintos. When a thread is added to the ready list that has a higher priority than the currently running thread, the current thread should immediately yield the processor to the new thread. Similarly, when threads are waiting for a lock, semaphore, or condition variable, the highest priority waiting thread should be awakened first. A thread may raise or lower its own priority at any time, but lowering its priority such that it no longer has the highest priority must cause it to immediately yield the CPU.
Thread priorities range from PRI_MIN
(0) to PRI_MAX
(63).
Lower numbers correspond to lower priorities, so that priority 0 is the lowest
priority and priority 63 is the highest. The initial thread priority is
passed as an argument to thread_create()
. If there's no reason to choose
another priority, use PRI_DEFAULT
(31). The PRI_
macros are
defined in threads/thread.h
, and you should not change their values.
One issue with priority scheduling is "priority inversion". Consider high, medium, and low priority threads H, M, and L, respectively. If H needs to wait for L (for instance, for a lock held by L), and M is on the ready list, then H will never get the CPU because the low priority thread will not get any CPU time. A partial fix for this problem is for H to "donate" its priority to L while L is holding the lock, then recall the donation once L releases (and thus H acquires) the lock.
Implement priority donation. You will need to account for all different situations in which priority donation is required. Be sure to handle multiple donations, in which multiple priorities are donated to a single thread. You must also handle nested donation: if H is waiting on a lock that M holds and M is waiting on a lock that L holds, then both M and L should be boosted to H's priority. If necessary, you may impose a reasonable limit on depth of nested priority donation, such as 8 levels.
You must implement priority donation for locks. You need not implement priority donation for the other Pintos synchronization constructs. You do need to implement priority scheduling in all cases.
Finally, implement the following functions that allow a thread to examine and
modify its own priority. Skeletons for these functions are provided in
threads/thread.c
.
You need not provide any interface to allow a thread to directly modify other threads' priorities.
The priority scheduler is not used in any later project.
Implement a multilevel feedback queue scheduler similar to the 4.4BSD scheduler to reduce the average response time for running jobs on your system. See section B. 4.4BSD Scheduler, for detailed requirements.
Like the priority scheduler, the advanced scheduler chooses the thread to run based on priorities. However, the advanced scheduler does not do priority donation. Thus, we recommend that you have the priority scheduler working, except possibly for priority donation, before you start work on the advanced scheduler.
You must write your code to allow us to choose a scheduling algorithm policy at
Pintos startup time. By default, the priority scheduler must be active, but we
must be able to choose the 4.4BSD scheduler with the -mlfqs
kernel option. Passing this option sets thread_mlfqs
, declared in
threads/thread.h
, to true when the options are parsed by
parse_options()
, which happens early in main()
.
When the 4.4BSD scheduler is enabled, threads no longer
directly control their own priorities. The priority argument to
thread_create()
should be ignored, as well as any calls to
thread_set_priority()
, and thread_get_priority()
should return
the thread's current priority as set by the scheduler.
The advanced scheduler is not used in any later project.
Here's a summary of our reference solution, produced by the
diffstat
program. The final row gives total lines inserted
and deleted; a changed line counts as both an insertion and a deletion.
The reference solution represents just one possible solution. Many other solutions are also possible and many of those differ greatly from the reference solution. Some excellent solutions may not modify all the files modified by the reference solution, and some may modify files not modified by the reference solution.
devices/timer.c | 42 +++++- threads/fixed-point.h | 120 ++++++++++++++++++ threads/synch.c | 88 ++++++++++++- threads/thread.c | 196 ++++++++++++++++++++++++++---- threads/thread.h | 23 +++ 5 files changed, 440 insertions(+), 29 deletions(-) |
fixed-point.h
is a new file added by the reference solution.
Makefiles when I add a new source file?
To add a .c
file, edit the top-level Makefile.build
. Add the new
file to variable dir_SRC
, where dir is the directory where
you added the file. For this project, that means you should add it to
threads_SRC
or devices_SRC
. Then run make
. If your new
file doesn't get compiled, run make clean
and then try again.
When you modify the top-level Makefile.build
and re-run make
,
the modified version should be automatically copied to
threads/build/Makefile
. The converse is not true, so any changes will
be lost the next time you run make clean
from the threads
directory. Unless your changes are truly temporary, you should prefer to edit
Makefile.build
.
A new .h
file does not require editing the Makefile
s.
warning: no previous prototype for `func'
mean?
It means that you defined a non-static
function without preceding it by
a prototype. Because non-static
functions are intended for use by other
.c
files, for safety they should be prototyped in a header file included
before their definition. To fix the problem, add a prototype in a header file
that you include, or, if the function isn't actually used by other .c
files, make it static
.
Timer interrupts occur TIMER_FREQ
times per second. You can adjust this
value by editing devices/timer.h
. The default is 100 Hz.
We don't recommend changing this value, because any changes are likely to cause many of the tests to fail.
There are TIME_SLICE
ticks per time slice. This macro is
declared in threads/thread.c
. The default is 4 ticks.
We don't recommend changing this value, because any changes are likely to cause many of the tests to fail.
See section 1.2.1 Testing.
pass()
?
You are probably looking at a backtrace that looks something like this:
0xc0108810: debug_panic (lib/kernel/debug.c:32) 0xc010a99f: pass (tests/threads/tests.c:93) 0xc010bdd3: test_mlfqs_load_1 (...threads/mlfqs-load-1.c:33) 0xc010a8cf: run_test (tests/threads/tests.c:51) 0xc0100452: run_task (threads/init.c:283) 0xc0100536: run_actions (threads/init.c:333) 0xc01000bb: main (threads/init.c:137) |
This is just confusing output from the backtrace
program. It does
not actually mean that pass()
called debug_panic()
. In fact,
fail()
called debug_panic()
(via the PANIC()
macro). GCC knows
that debug_panic()
does not return, because it is declared NO_RETURN
(see section E.3 Function and Parameter Attributes), so it doesn't include any code in
fail()
to take control when debug_panic()
returns. This means that
the return address on the stack looks like it is at the beginning of the
function that happens to follow fail()
in memory, which in this case
happens to be pass()
.
See section E.4 Backtraces, for more information.
schedule()
?
Every path into schedule()
disables interrupts. They eventually get
re-enabled by the next thread to be scheduled. Consider the possibilities:
the new thread is running in switch_thread()
(but see below), which is
called by schedule()
, which is called by one of a few possible functions:
thread_exit()
, but we'll never switch back into such a thread, so
it's uninteresting.
thread_yield()
, which immediately restores the interrupt level upon
return from schedule()
.
thread_block()
, which is called from multiple places:
sema_down()
, which restores the interrupt level before returning.
idle()
, which enables interrupts with an explicit assembly STI
instruction.
wait()
in devices/intq.c, whose callers are responsible for re-enabling interrupts.
There is a special case when a newly created thread runs for the first
time. Such a thread calls intr_enable()
as the first action in
kernel_thread()
, which is at the bottom of the call stack for every
kernel thread but the first.
Don't worry about the possibility of timer values overflowing. Timer values are expressed as signed 64-bit numbers, which at 100 ticks per second should be good for almost 2,924,712,087 years. By then, we expect Pintos to have been phased out of the CS124 curriculum.
Yes, strict priority scheduling can lead to starvation because a thread will not run if any higher-priority thread is runnable. The advanced scheduler introduces a mechanism for dynamically changing thread priorities.
Strict priority scheduling is valuable in real-time systems because it offers the programmer more control over which jobs get processing time. High priorities are generally reserved for time-critical tasks. It's not "fair," but it addresses other concerns not applicable to a general-purpose operating system.
When a lock is released, the highest priority thread waiting for that lock should be unblocked and put on the list of ready threads. The scheduler should then run the highest priority thread on the ready list.
Yes. If there is a single highest-priority thread, it continues running until
it blocks or finishes, even if it calls thread_yield()
. If multiple
threads have the same highest priority, thread_yield()
should switch among
them in "round robin" order.
Priority donation only changes the priority of the donee thread. The donor thread's priority is unchanged. Priority donation is not additive: if thread A (with priority 5) donates to thread B (with priority 3), then B's new priority is 5, not 8.
Yes. Consider a ready, low-priority thread L that holds a lock. High-priority thread H attempts to acquire the lock and blocks, thereby donating its priority to ready thread L.
Yes. While a thread that has acquired lock L is blocked for any reason,
its priority can increase by priority donation if a higher-priority thread
attempts to acquire L. This case is checked by the
priority-donate-sema
test.
Yes. If a thread added to the ready list has higher priority than the running thread, the correct behavior is to immediately yield the processor. It is not acceptable to wait for the next timer interrupt. The highest priority thread should run as soon as it is runnable, preempting whatever thread is currently running.
thread_set_priority()
affect a thread receiving donations?
It sets the thread's base priority. The thread's effective priority becomes
the higher of the newly set priority or the highest donated priority. When the
donations are released, the thread's priority becomes the one set through the
function call. This behavior is checked by the priority-donate-lower
test.
Suppose you are seeing output in which some test names are doubled, like this:
(alarm-priority) begin (alarm-priority) (alarm-priority) Thread priority 30 woke up. Thread priority 29 woke up. (alarm-priority) Thread priority 28 woke up. |
What is happening is that output from two threads is being interleaved. That is,
one thread is printing "(alarm-priority) Thread priority 29 woke up.\n"
and another thread is printing "(alarm-priority) Thread priority 30 woke up.\n"
,
but the first thread is being preempted by the second in the middle of its output.
This problem indicates a bug in your priority scheduler. After all, a thread with priority 29 should not be able to run while a thread with priority 30 has work to do.
Normally, the implementation of the printf()
function in the Pintos
kernel attempts to prevent such interleaved output by acquiring a console lock
during the duration of the printf
call and releasing it afterwards.
However, the output of the test name, e.g., (alarm-priority)
, and the
message following it is output using two calls to printf
, resulting in
the console lock being acquired and released twice.
It doesn't have to. We won't test priority donation and the advanced scheduler at the same time.
Yes. In general, your implementation may differ from the description, as long as its behavior is the same.
If your implementation mysteriously fails some of the advanced scheduler tests, try the following:
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |