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~— (flag, b)
* Verifier has quantum computation C device
e Multiple rounds of interaction with quantum device
* Verifier returns (flag, b) s.t. flag € {acc,rej}and b € {0,1}
* Goal: Whenever Pr(flag = acc) is non-negligible,

Pr(b=1|flag = acc) = Pr(Creturns1oninput|0®) )



An example

0y — H N+

.
b =0w.p.50%

\b =1 w.p. 50%

“description of circuit C”

“Il'got b = 0”
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Quantum Results
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An example

0y — H N+

(b =0w.p. 50%

\b =1 w.p. 50%

“description of circuit C”
‘>

“Il'got b = 0”

Really??

Repeat and collect statistics?

Run some tests?



Aside: benchmarking

0) — H |5 2 \ H X—b=1
|

o, 11,14, 1) A

Sequentially test gate by injecting well-characterized

states and collecting output statistics

* Requires access to inner workings of device

* Trusted state preparation and/or measurement
* Q@Gates are not allowed to be “malicious”,
e.g. i.i.d. behavior is generally assumed

* Ineffective at large scales



Testing guantum mechanics at scale

-« Quantum mechanics untested at large scales

/¢ Isthere a limit to the exponential

scaling of quantum devices?




Some other reasons to care

Near-term demonstration of quantum advantage

e (Can verifiability be baked in current proposals? // _ o
e Cryptographic techniques ©Google Bristlecone_
 What modes of encryption allow transversal computation?
* (Can they be combined with authentication?
* Models of computation & fault-tolerance
* Do small nodes in a quantum network create fault-tolerance bottlenecks?
 Complexity theory
 What is the expressive power of bounded-prover interactive proofs?

e Foundations

e Are there analogues of the Bell inequalities without locality assumptions?



0 ——— {TH
o) {7

= |0) xHz

» Verifier is classical polynomial-time
 Communication channel is classical

* Can it verify a quantum computation?



Prelude:
Definitions




Informal definitions

A delegation protocol for qguantum computations is:

A description of a (classical or quantum) polynomial-time verifier, that takes
as input a quantum circuit C of size |C| < n, interacts with a quantum prover,
and returns a pair (flag, b) such that:

» (Correctness) There exists a (quantum, poly-time) prover P such that

V,(C) & P returns (flag = acc,b = C|0))

» (Verifiability) For any prover P* such that Pr(flag = acc) is non-negligible,

Pr(b =1|flag =acc) = Pr(Creturns1oninput|0™) )

* (Blindness) For any prover P*, Viewp(V,,(C) < P*) does not depend on C



Formal definitions

“Stand-alone” definitions can fail! Example:

Protocol for testing if formula ¢ = (x; VX3 V x5) A (-++) is satisfiable
1. Prover sends assignment x = (xq, ..., X;;)

2. Verifier checks that x satisfies ¢

This protocol is blind (prover learns nothing about ¢) & verifiable

“Attack”: Prover sends a uniformly random assignment
* Learns information about ¢ from verifier’s accept/reject decision

* Protocol is not composable

Composable security: ideal-world/real-world paradigm



Formal definitions

Ideal functionality for verifiable & blind delegation

4 )

circuit C size T

e —> b= >
g4 bit b C(|0)) ife € {0,1}
err ife=2 trite
E — e T€
\_ /e = 0: honest behavior

e € {1,2}: dishonest behavior
Composable definition (informal):

A protocol is verifiable & blind if for each party there exists a simulator such that for any
malicious party the interaction (honest party)é>(malicious party) is indistinguishable

from the interaction (ideal functionality) ¢>(simulator) ¢€>(malicious party)

[DFPR’13] Many, but not all, of the protocols presented today are composable




Pa raim Ete 'S Input size: n = number of qubits of circuit C

|C| = number of gates

Completenes: Probability of accepting honest prover. This will always be = 1

Soundness: Max. distinguishing ability between real-world/ideal-world.

Ideally, exponentially small in n.

Verifier complexity: ldeally, classical polynomial-time.

Limited quantum capability may be acceptable.

Prover complexity:  Quantum polynomial-time. Ideally = runtime(C).

Interaction: Minimize number of rounds + total communication
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Models of computation

Circuit model Input:
|0y ——— - b

Goal:
10) —{ 1] N
0) Xz

Measurement-based Input:

e o o o S SV SN S .
Goal:

Hamiltonian model Input:

H = Hin + Herock Goal:
+Hprop + Hout

circuit = sequence of gates acting on n qubits

determine value of output qubit, on input |0)

adaptive sequence of single-qubit measurements
on resource state (e.g. “cluster state”)

determine value of output qubit

local Hamiltonian w. efficiently preparable ground state

estimate ground state energy



Models for black-box verification
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Challenge: Use minimal resources to verify

complex quantum computation




Models for black-box verification

(a)
>

[Childs’05] Blind delegation
* Verifier has constant-size quantum computer

4 )
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and can only perform single-qubit Pauli gates
 Many-round quantum interaction
e Blind but not verifiable

Where are the qubits?  Honest-but-curious model



Models for black-box verification
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[Aharonov-Ben-Or-Eban’08, Aharonov-Ben-Or-Eban-Mahadev’18]
[Broadbent-Fitzsimons-Kashefi’09,Fitzsimons-Kashefi’16]

“Prepare-and-send” protocols:
* \Verifier has ability to prepare & send O(1) qubits at a time
* Many-round classical interaction
 [ABOE] Circuit model, uses authentication codes
e [BFK] Measurement-based model, uses traps
e Both protocols are blind + verifiable

Where are the qubits?  The verifier creates them



Models for black-box verification

[Reichardt-Unger-Vazirani’12]

Two-prover protocols:

e Verifier is classical

* Many-round classical interaction with two isolated provers
* Verifier uses Bell tests to do state & process tomography

* Protocol is blind + verifiable

Where are the qubits?  Bell tests — EPR pairs — qubits




Models for black-box verification
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[Morimae-Fuji’13, Morimae-Fitzsimons’16]

“Receive & measure” protocols:

* Verifier has ability to receive & measure constant qubits
 [MF'13] Measurement-based model, protocol is blind & verifiable
 [MF’16] Hamiltonian model, protocol is verifiable but not blind

Where are the qubits?  The verifier measures them



Models for black-box verification

~\

[Mahadev’18] “Commit & Reveal” protocols:

* Verifier is classical

* Hamiltonian model: protocol is not blind

* Verifiability assumes prover does not break
post-quantum crypto

Where are the qubits?  Forced by the crypto
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Some experiments

(a) D
N

CHSH  f====== ‘\‘ I ""
# . .

L4 .
Computati on—A)- ------ ’ Alice Bob Vemmmm— Computation-Bj

(b) (c) @ (d)
Alice
[Huang et al. 2017]
v-pug Yl N Thousands of Bell tests
certify factorization of
Bob number 15
Computation t%jza mes State tomography Process tomography



Part I(a):
Prepare & Send




Blind delegated computation

[Childs’05]
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e Circuit model: verifier has circuit C, wants to determine outcome on |0)
* Encode computation in input: execute universal circuit ‘U to obtain C|0)
* Main technique is “computation on encrypted data”:

* Verifier encrypts input qubits one-by-one and sends to prover

* Prover stores qubits & applies gates over encryption

* For each gate, verifier requests qubits, “fixes encryption”, and re-sends



The quantum one-time pad

Yy > XOZP[YP)

a,b < {0,1}
al0) +Bl1)  (a=0,b=0)
al0) = Bl1)y (a=0,b=1)
al0) +Bl1) - al1) +B10)y (a=1,b=0)
all) = Blo) (a=1b=1)

 |If a, b unknown then encoded 1 « 1
20 (2 ywl(xez?) =21
a,b

qubit appears totally mixed



Computing on encrypted data

Clifford gates “commute” with one-time pad
Ex: HX%ZP|y) = XPZ2H|Y)

* Universal computation requires one additional gate

T=(p eme)  P=12=(; O)

TXZP |y = XY ZP PET|y)
* Requires “phase correction” if ¢’ =c¢'(a’,b’,c) =1
P XY ZP'PET i) = X" ZP"T|p)
e Eastin Knill theorem: no quantum error-correcting code can

transversally implement a quantum universal gate set



Running example

0y — H T H K— b

gl (0,)) < {0,13
X XaZb|O> XaZb|0>

>
A X27P10)
(a',b") «g {0,1} ) HX%Z|0) - HX%Z"|0)
HX%ZP|0) = XPZ2H|0)
al 7br
~ X¥Z7H|0) X 7" H10)
> xvzbH|0)
TX 2P H|0) = TX“27H|0)
TXYZP"H|0) <
— Xa”Zb”PCTHl()) Xa,,Zb,,PCTHl()) Cl XCl”Zb”PCTHlO)

> b POXY 7P PeTH|0)




Authentication

2k “trap qubits”
A

)
= Q (IP0) -0} +) -+ [+))

Q «<r (2k + 1)—qubit Clifford

* Random Clifford subsumes one-time pad: automatically blind
* Clifford twirl: any unitary “attack” independent of 0

induces a random Pauli “attack” on the trap qubits

4 )
For any unitary U and any density p,

1—«a
ZQ UQpQIVQ =apt o ) P p P
P:pauli+l )

ICllffI
-




Running example
0y — H T H K— b

el (01, D1), (ay, by),

(as, b3) «g {0,1}
X4 7P1)0)X %2|0) 203 |+) N

ai7b a b
Xalzb1|O>Xa2|O>Zb3|+> X1z 1|O>X 2|O>Z 3|+>

Decode
Check traps
Apply H
Re-encode

X' ZPI H|0)X 42" |0) 273 | +)
>

X' ZP H 0)X 42" 0) 275 | +)
X' 7b1 H10)X 42" |0) 205" |+)

<€

decode + check traps + measure output qubit




Transversal gate evaluation

* One-time pad allows transversal evaluation of Clifford gates

H
1y > H|y)
Auth ] 1 Auth
HHH
XOZP XU ZY Y o ZOXPHIBZ )X )
Y
Auth(H|y))

* (lifford authentication allows transversal evaluation of Pauli gates



Running example

0y — H T H A b

el (0, b,), (a3, by),
o (03, b3) «<p {0,1}

XUZP0)X%2|0)2% |+)

X“lel|O)Xa2|O)Zb3 |+)

apply H
>
(a1, by) < (by, 1) HX% ZP1|0YHX %2|0)HZ"3 | +)
,,b Y b )
(“,2 2,)<—( 2,07) = X"1Z%H|0)Z% H|0)X": H|+)
(a3, bs’) < (b3, az)
measure X
>
check u; = a; (U, Uy, U3) measure (X, X, X)

return u; @ a;




Transversal gate evaluation

* One-time pad allows transversal evaluation of Clifford gates
* (lifford authentication allows transversal evaluation of Pauli gates
* Polynomial-code authentication allows Clifford transversal gates

* Non-Clifford gates require magic states + classical communication

XZ" ) S—1AF7
I |
. p- X447V T y)
x=adcdy » —
|+) T PY £° Xd (da e,y €Ep {01 1})

T-gate gadget: figure from [Broadbent’15]




Verifiable blind delegated computation
[ABOE’08,BFK'09]

(" )

- (q) o
(c)

* Verifier sends Authy |C;) ® --- @ Authy |Cy) and Authkj|9j) \_ )

* To apply a Clifford gate:

e Server applies gate transversally on authenticated qubits

* Verifier updates authentication keys
* To apply non-Clifford gate:

e Server uses authenticated magic state

* Verifier and Server engage in protocol with classical communication
* Server measures output qubit and returns (2k + 1)-bit outcome

» Verifier checks traps and decodes final outcome



Verifiable blind delegated computation

[ABOE’08,BFK'09]

* Verifier sends Authy |C;) ® --- @ Authy |Cy) and Authkj|9j) \_ )

(" )

- (q) o
(c)

* Blindness: authentication - one-time pad - perfect blindness

e Verifiability:

Arbitrary server = honest server + deviating unitary

Verifier’s authentication + de-authentication induce Clifford twirl
Arbitrary attack reduced to random Pauli

Random Pauli likely to flip some traps

Intermediate classical communication rounds complicate analysis



Prepare & Send protocols: summary

f. .\

. (a) J o e
(c) o O
\’ .J

* One-way guantum communication + many-round classical communication
 [ADSS’17] quantum homomorphic computation with verification removes
classical communication, under computational assumption
Open: reduce interaction without making computational assumptions
* Verifier complexity:
 [ABOE’08] (Circuit-based) Verifier needs O(logl/e) qubits
 [BFK’09] (Measurement-based) Verifier needs O (1) qubits
* Protocols vulnerable to noise at the verifier

Open: prepare & send fault-tolerant delegation



Part I(b):
T'wo-prover delegation




Models for black-box verification

— )
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prepare
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(a)
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Authentication Self-testing
+ transversal gates



The CHSH game as a rigid self-test

[WS’88,MY'98,MYS'12,RUV’12]

x,y <r {0,1}
Acceptiffa@ b=xAy

 Completeness: Provers sharing an EPR pair succeed w.p. = 85%

* Soundness: If provers succeed w.p. = 85% — ¢, they must share an EPR

pair, and P; measuresin Pauli X (x = 0) or Z (x = 1) bases

« Consequence: After P; has returned a, P, has qubitin {|0), |1), |+),|—)}

which is known to V, but not to P,




A rigid self-test for eigenstates of Clifford observables
[...,NV’'17,CGIV’18]

x,y —p {X,Y,Z,H,G,..}"

Accept/Reject
 Completeness: Provers sharing m EPR pairs succeed w.p. 1
* Soundness: If provers succeed w.p. = 1 — €, they must share m EPR pairs,

and P; measures i-th qubitusing A; € {X,Y",Z, H",G", ...}

e Consequence: After P; returns a, P, has m qubits in {|0), |1), |+),|—),10), ...}

which are known to V, but not to P,




Two-prover verifiable delegation
[RUV'12,CGJV’18]

(c)

* w.p. %: verifier executes self-test with provers

*  W.p. %2
e \Verifier instructs P, to make m-qubit
measurement in randomly chosen bases

— Given P,’s outcomes, P; has encrypted qubits

Xzb|6), 6 € {0,1, +-5, }

* Verifier instructs P; to implement prepare & send

protocol using designated qubits



Running example

0) — H T

Execute self-test with
randomly chosen single-qubit
Clifford observables




Running example

0y — H T H K— b

X% 7P1]0)X %2|0) 253 |+)

(a4, b1)e (aq,0)
(ay, by)e<(0,a;)
Execute prepare & measure (a3, bs)e (as, 0)
protocol on authenticated

qubits prepared by P,

decode & check traps & return output




Two-prover verifiable delegation
[RUV'12,CGJV’18]

* w.p. %: verifier executes self-test with provers

*  W.p. %
e \Verifier instructs P; to make m-qubit
measurement in randomly chosen bases
e Verifier instructs P, to perform implement prepare & send

protocol using designated qubits

 Blindness follows from blindness for prepare & send,

as long as provers do not communicate

* Verifiability follows from verifiability for prepare & send,

additional O(e€) error from self-testing



Two-prover protocols: summary

Rigid self-tests allow preparation of eigenstates

of single-qubit Clifford observables

(partially) Open: non-Clifford eigenstates?
* Many-round classical interaction with two provers

* [Grilo’18] Single-round protocol in Hamiltonian model
Protocol is not blind

Open: single-round blind verifiable delegation protocol?

* Total communication ~linear in circuit size

Open(?): sub-linear verifier? poly-logarithmic communication?

* Protocols extend to QMA verification if prover is given copies of QMA witness



Part II(a):
Recerve & Measure




Receive & Measure protocols

)
| ) @]® ®
® o0
l o0
measure . .
—
« MBQC model: ———

* Prover prepares resource state (e.g. cluster state)
» Verifier either (i) checks stabilizers of resource state
(ii) implements computation
* Only needs single-qubit measurements in small number of bases

* Post-hoc model:

* Prover prepares history state of Kitaev Hamiltonian associated with circuit
e Verifier measures randomly chosen term in Hamiltonian

* Only needs single-qubit measurements in two bases, but protocol not blind



Circuit-to-Hamiltonian

[Kitaev'99]

|0) H—@R:-: b

|0) — ﬁg ﬂ : H = Hin + Hclock + Hprop + Hout
0 —= XHzl  Pr(Clo)=1)22/3 = Agn(H) <a

Pr(ClO)=1)<1/3 = Apm(H)Z2a+§

* Hamiltonian can be expressed in “XX/ZZ form”:
H is weighted sum of local terms of the form X;X; or Z;Z;
« Gap 6 scalesas 1/|C|?
 Complexity of preparing ground state of H scales as complexity of C

(but may require higher depth)



Post-hoc verifiable delegation

[IMF'16]
)
r ) (a) 0
H = Hiyy + Hegocre + Hprop + Hout ® j@ X o0
Pr(C|0)=1)>2/3 = A,n(H)<a 1 o 0
Pr(Cl0)=1)<1/3 = A yn(H)=a+6 meastre o0
r = 1) = min = a
—— )

e Verifier computes H from C, sends to prover

* Prover prepares ground state of H

e Sends to verifier one qubit at a time

* Verifier secretly selects random local term h; = X; X;, or h; =7Z; Z;,
* Measures qubits j; and j, in required basis

 Repeat 1/6% times to estimate energy



Running example

0y — H H_ﬂ(—m

flipcoin W € {X,Z} first qubit prepare
1

< |1/)>=\/E

Measure in basis W (100) +|11))

= by second qubit

Measure in basis W
- b2

CheCk: b1b2 = +1




Receive & Measure protocols: summary

) )
o o 0
(a)
| 1o @
* One-way quantum communication measure ® O
e : .\ . o0
 Hamiltonian model requires repetition for gap amplification ——/

MBQC model requires repetition for resource state testing
Total communication at least ~ |C|3

Open: protocol with linear communication complexity
* Blind protocols only in MBQC model

* Protocols vulnerable to noise at the verifier
[GHK’18] give fault-tolerant protocol in Hamiltonian model; not blind

Open: receive & measure fault-tolerant blind delegation



Part II(b):
T'wo-prover delegation




Running example
[Grilo’18] 1
H=--(X®X+Z®Z)

Execute self-test with
randomly chosen single-qubit
Pauli observables




Running example
[Grilo’18] 1
H=--(X®X+Z®Z)

1

X1zb1 @ X a2 zb2 )
V2

(100) + [11))

P,: teleport [Y) to P;
P;: measure as in self-test

Correct one-time pad and estimate energy




Part II(c):
Commit & Reveal




Models for black-box verification

4 ~\ - N
f l (q) e @ e O
T °° - use (c) o O
measulre ® o qubit commitment crypto o O
\_ Y L o o ) protocol i o O )

* Verifier “delegates” X and Z measurements to server
* Hurdle: Certify that reported measurement outcomes are obtained
from a single underlying n-qubit state

* |dea: Use cryptography to “commit” prover to fixed n-qubit state



Committing to a bit

c = com(b,r)

d = reveal(b,r
. (b.1)

Return (flag, b™)

* Hiding: c reveals noinformation about b Cilh—n = C|p—
|b=0 |b=1

* Binding: For any efficient Bob, and any c such that Pr(flag = acc) = 0.01,
there is a b such that Pr(b* = b| flag = acc) = 0.95



Claw-free functions

fo, f1:0,1}* - {0,1}" a claw-free pair:

Both /, and f; are bijections

For every c in the range, there is a unique claw:
a pair (1,71) such that f, (1) = f1(r) =

Claws are hard to find: no efficient procedure returns (1, 74, ¢)

Can construct based on “Learning with Errors” (LWE) problem

fo, f1 are noisy multiplication by matrix A:

fox) =Ax+e, filx)=Ax—s)+e¢€ > 1 E1y—S



Committing to a bit

(fo, f1):{0,1}"* - {0,1}" a claw-free pair . c

c = fp(r)
(,
d = (b,
- (b7
Check f,(r) = ¢
Return b
e Perfectly hiding: Any c¢ has exactly one preimage under each function

e Computationally binding:

If Pr(b* = 0|flag = acc) > 0.05 and Pr(b* = 1|flag = acc) > 0.05

then run Bob 100 times on c to find a claw




Committing to a gubit

c = com([), [R)) [Y) = al0) + B|1)

1
RY=—— > )
re{0,1}"

d, = Z—reveal(b, |R))

Return (flag,a,;) <

Return (flag, ay) < dy = X—reveal(b, |R))

* Hiding: ¢ reveals no information about |)

* Binding: For any efficient Bob and ¢ such that Pr(flag = acc) = 0.01
thereisa p suchthata; = Tr(Zp) and ay = Tr(Xp)



Committing to a gubit 4y = gy + 81

: ¢ = com(|P), |R)) 1
< R)=——
\/2 re{0,1}"
/
s 1 R
V) Q@ R)® |0™) = (@0 +B8I1)® — Ir) & [0™)
@reg:l}"
CTL-f P B
- — 10} ) fo(r)) + ——= | D) f1(r)
meas. last register
K - (@|0)|ro) + BI1M 1)) & |c) j




Committing to a gubit 4y = gy + 81

c = com(|y), |R))
< R) = —

————————
~
~
~




Committing to a gubit 4y = gy + 81

¢ = com([), [R)) 1
< IR) = Jon
< d, = Z—reveal(b, |R)) 2 re{0,1}"
Cwmemer = @o+pme z no® 0y )
r€{0,1
CTL-f P B
- —— |0 fo(M) + —= | D) f1(r)
mre;}n : m?‘e;}” 1
meas. last register

K - (@|0)|ro) + BI1M 1)) & |c) /

* Hiding: c reveals no information about |y) J
» Z-reveal: Bob measures in computational basis and returns d; = (b, 13,)

Alice checks f;(1,) = ¢ and returns “decoded bit” a;, = b



Committing to a gubit 4y = gy + 81

¢ = com(|), |R))
< Ry =——

dy = X—reveal(b, |R)) re{0,1}"

4 | @ HE )

@Ol +AIDIR) > o= Y (@(=DEPI0) + FDE (1) @ 10
\/Z_te{o,ﬂn

> (DT 288 ) @ |ty

k te{0,1}n /

* X-reveal: Bob measures in Hadamard basis and returns dy = (u,t)
Alice returns “decoded bit" ay =u @ (t -1y D t - 1)

3l
S




Commit & Reveal protocol —

[Mahadev’18] ® o
use c) |®@ @
H= Z ajj, (X5, X, + 2, 2),) crypto ® o
(J1.J2) o o
Pr(Cl0)=1)>2/3 = A,m(H)<a \ )
Pr(C|0)=1)<1/3 = Ap,(H)=a+6
* Verifier computes H from C, sends to prover} >ame as
post-hoc
* Prover prepares ground state of H protocol

* Prover individually commits to each qubit by sending ¢4, ..., ¢,
* Verifier secretly selects random local term h; = X X;, (Z; Z},)

* Executes X(Z)-reveal phase with prover
* Records decoded outcomes ay. ay. (az. az. )
J1 I J1 I

 Repeat 1/6% times to estimate energy



Running example

H=—%(X®X+Z®Z)

Hand fofy and fo,fi P00
7 |Y) =ﬁ(|00>+ 111))
commitments ¢, ¢’

< run commitment procedure:

1 !/
flip coin W € {X,Z} \/_7( 10,75)[0,79) + |1, 71)[1, 7))

X-reveal?
>
SetChecke f)rgd 5 ¢Dt - 1) b, tyub, tr'y, Measure X

!/ / e
ay =@ F¢Dt-r,)
Record aha'y

Repeat 1/67 times to estimate energy




Commit & Reveal protocol: summary

)

o O

« Hamiltonian model: protocol is not blind, but can be use | (c) |®@ @

made blind by combining with quantum FHE R o o

Open: blind protocol in circuit or MBQC models? o O
—
« Complexity: cubic overhead due to Hamiltonian model (bounded)

Crypto overhead linear in security parameter

* Soundness guarantee: there exists a state that gives computationally
indistinguishable measurement outcomes
Open: computational assumption, information-theoretic guarantee?

e Claw-free function instantiated from learning with errors assumption (LWE)
Open: more generic construction (e.g. quantum-secure OWF)?



Coda:
An open question




An open question

* \Verifier is classical polynomial-time
e Communication channel is classical

* Verifier wants to determine Pr(C|0) = 1)



An open question

\ A A 4

Problems with efficient classical verification?

MA = class of problems with

efficient (probabilistic) verification

IP = PSPACE

Any problem in MA N BQP has

an efficiently verifiable solution

Factoring, Graph Isomorphism

IP = class of problems with Recursive Fourier

efficient (probabilistic, interactive) verification sampling

IP Prover may not be efficient! Needs to compute exponentially large sums




Interactive proofs for BQP

* Feynman path integral: Pr(C|0) = 1) is (square of) amplitude (xy, ..., x7)

summation over exponentially many paths path=(x1,...xT)

0y —| H Z H R— b =1

W T T T

* Amplitude of individual path is easy to compute

1 1 1
amplitude(0,1,1,0) =1-—-(-1) - — = — =
plitndeQLLO) =1+ 75 (D5 = 73

* Amplitude is multilinear polynomial in x4, ..., X7



Interactive proofs for BQP

* Given P € Fy[Xy, ..., Xr] multilinear, compute 2, ec0,13 P(X1, o) X7)

S=2% P(xq,...,%x
- (e, - X1)

pT(Z) =X P(Xl, ---:xT—1;Z)

>,pr(z) =S?°
Zr

pT—l(Z) =2 P(Xl, vy Z, 2\’1:)

2.07-1(2) = pr(Z7)? <«

zr—1 <r Fy >




Interactive proofs for BQP

* Any language in BQP has a classical-verifier interactive proof
* Prover needs to compute unphysical quantities

* Cannot be implemented using quantum computer
 [AG’17] give “guantum-inspired” variant of protocol

* Open: protocol with prover less powerful than PostBQP

* Challenge: allow prover to make statistical estimation errors

while restricting capacity to cheat




Summary




Problem formulation

Ideal functionality for verifiable & blind delegation

circuit C

-

~N

size T

b =

C(]0)) ife€{0,1}
err ife=2

\§ J

trite

A protocol is verifiable & blind if no malicious party interacting with the

honest party can distinguish from an interaction with the ideal functionality




Models of computation

Circuit model Measurement-based model

0 A= S - S

— N —
10) — A H FEP P S U
10) xHzk -5 ——

Hamiltonian model

H = Hip + Hepoex + Hprop + Hpyt



Protocols for verifiable delegation

SR )
(I ®
prepare
() [® ® | @
(a)
(I o ——>() ®
C
__ ) )
authentication
+ transversal gates
r N ( )
e N () ¢ o e @
q
® « ® * mmm) e | o [®°
1 ® O | gubit commitment | CrYPIO o o
measure o O protocol o O
- Y N ) N y
(bounded)



Complexity considerations

Input: Circuit C, T gates, n qubits. eps: distance from ideal functionality

Protocol Computation | Verifier Communication
model

Childs’05 Circuit O(1)
ABOE’08 Circuit O(log 1/eps)
BFK’09 MBQC 0O(1)

MF’13 MBQC 0(1)

MF’ 16 Hamiltonian O(1)
CGJV’18 Circuit classical

Mahadev’18 Hamiltonian classical

O(T)
O(T log(1/eps))
O(T log(1/eps))

O(T/eps”2)
O(T"3 log(1/eps))

O(T/eps”c)
O(T”3 log(1/eps)log(1/lambda))



Thank you

SLIDES:
HTTP://USERS.CMS.CALTECH.EDU/~VIDICK/VERIFICATION.{PPSX,PDF}
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