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Problem 
formulation



Problem formulation

©IBM quantum experience (17 qubit)

• Verifier has quantum computation 𝐶

• Multiple rounds of interaction with quantum device

• Verifier returns 𝑓𝑙𝑎𝑔, 𝑏 s.t. 𝑓𝑙𝑎𝑔 ∈ {𝑎𝑐𝑐, 𝑟𝑒𝑗} and 𝑏 ∈ {0,1}

• Goal: Whenever Pr 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 is non-negligible,

Pr 𝑏 = 1 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≈ Pr 𝐶 returns 1 on input 0𝑛 )

classical or quantum

communication 

user   /   “verifier”

device   /   “prover”
(𝒇𝒍𝒂𝒈, 𝒃)

𝑏|0〉

|0〉

|0〉



An example

H|0〉
𝑏 = 0 w.p. 50%

𝑏 = 1 w.p. 50%

“description of circuit 𝐶”

“I got 𝑏 = 0”

Really??











An example

H|0〉
𝑏 = 0 w.p. 50%

𝑏 = 1 w.p. 50%

“description of circuit 𝐶”

“I got 𝑏 = 0”

Really??

Repeat and collect statistics?

Run some tests?

© IBM



Aside: benchmarking

H|0〉 Z H 𝑏 = 1

0 , 1 , + , −

Sequentially test gate by injecting well-characterized 

states and collecting output statistics 

• Requires access to inner workings of device

• Trusted state preparation and/or measurement

• Gates are not allowed to be  “malicious”, 

e.g. i.i.d. behavior is generally assumed

• Ineffective at large scales



Testing quantum mechanics at scale

• Quantum mechanics untested at large scales

• Is there a limit to the exponential

scaling of quantum devices?

©IBM Q5©IBM Q16©Intel Tangle Lake (49Q)©Google Bristlecone (72Q)

(q)

(c)



Some other reasons to care

• Near-term demonstration of quantum advantage

• Can verifiability be baked in current proposals?

• Cryptographic techniques

• What modes of encryption allow transversal computation?

• Can they be combined with authentication?

• Models of computation & fault-tolerance

• Do small nodes in a quantum network create fault-tolerance bottlenecks?

• Complexity theory

• What is the expressive power of bounded-prover interactive proofs?

• Foundations

• Are there analogues of the Bell inequalities without locality assumptions?

©Google Bristlecone



An open question

©IBM quantum experience (17 qubit)

• Verifier is classical polynomial-time

• Communication channel is classical 

• Can it verify a quantum computation?

(c)

𝑏|0〉

|0〉

|0〉



Prelude:
Definitions



Informal definitions
A delegation protocol for quantum computations is: 

A description of a (classical or quantum) polynomial-time verifier, that takes

as input a quantum circuit 𝑪 of size 𝐶 ≤ 𝑛, interacts with a quantum prover,

and returns a pair (𝑓𝑙𝑎𝑔, 𝑏) such that:

• (Correctness) There exists a (quantum, poly-time) prover 𝑃 such that

𝑉𝑛 𝐶 ↔ 𝑃 returns (𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐, 𝑏 ≈ 𝐶|0〉)

• (Verifiability) For any prover 𝑃∗ such that Pr(𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐) is non-negligible,

Pr 𝑏 = 1 𝑓𝑙𝑎𝑔 = acc ≈ Pr 𝐶 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 1 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 0𝑛 )

• (Blindness) For any prover 𝑃∗, 𝑉𝑖𝑒𝑤𝑃(𝑉𝑛 𝐶 ↔ 𝑃∗) does not depend on 𝐶



Formal definitions
“Stand-alone” definitions can fail! Example:

Protocol for testing if formula 𝜑 = 𝑥1 ∨ 𝑥3 ∨ 𝑥5 ∧ (⋯ ) is satisfiable

1. Prover sends assignment 𝑥 = (𝑥1, … , 𝑥𝑛)

2. Verifier checks that 𝑥 satisfies 𝜑

This protocol is blind (prover learns nothing about 𝜑) & verifiable

“Attack”: Prover sends a uniformly random assignment

• Learns information about 𝜑 from verifier’s accept/reject decision

• Protocol is not composable

Composable security: ideal-world/real-world paradigm



Formal definitions
Ideal functionality for verifiable & blind delegation 

circuit 𝐶

bit 𝑏

size 𝑇

𝐶(|0〉) if 𝑒 ∈ {0,1}

𝑒𝑟𝑟 if 𝑒 = 2

𝑏 =

trit 𝑒

Composable definition (informal):

A protocol is verifiable & blind if for each party there exists a simulator such that for any

malicious party the interaction (honest party)↔(malicious party) is indistinguishable

from the interaction (ideal functionality) ↔(simulator) ↔(malicious party)

𝑒 = 0: honest behavior

𝑒 ∈ {1,2}: dishonest behavior

[DFPR’13] Many, but not all, of the protocols presented today are composable



Parameters

Completenes: Probability of accepting honest prover. This will always be ≈ 1

Soundness: Max. distinguishing ability between real-world/ideal-world.

Ideally, exponentially small in 𝑛. 

Verifier complexity: Ideally, classical polynomial-time. 

Limited quantum capability may be acceptable. 

Prover complexity: Quantum polynomial-time. Ideally  ≈ runtime(𝐶).

Interaction: Minimize number of rounds + total communication

Input size: 𝑛 = number of qubits of circuit 𝐶
|𝐶| = number of gates



Overview of 
existing approaches



𝑏|0〉

|0〉

|0〉

Models of computation 

Circuit model Input: circuit = sequence of gates acting on 𝑛 qubits

Goal: determine value of output qubit, on input 0

Measurement-based Input: adaptive sequence of single-qubit measurements 

on resource state (e.g. “cluster state”) 

Goal: determine value of output qubit

Hamiltonian model Input: local Hamiltonian w. efficiently preparable ground state

Goal: estimate ground state energy𝐻 = 𝐻𝑖𝑛 + 𝐻𝑐𝑙𝑜𝑐𝑘
+𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑜𝑢𝑡



Models for black-box verification

(c)

Challenge: Use minimal resources to verify

complex quantum computation

“where are the qubits?”

(q)



Models for black-box verification

(q)

[Childs’05] Blind delegation

• Verifier has constant-size quantum computer

and can only perform single-qubit Pauli gates

• Many-round quantum interaction

• Blind but not verifiable

Where are the qubits? Honest-but-curious model



Models for black-box verification

[Aharonov-Ben-Or-Eban’08, Aharonov-Ben-Or-Eban-Mahadev’18]

[Broadbent-Fitzsimons-Kashefi’09,Fitzsimons-Kashefi’16] 

“Prepare-and-send” protocols:

• Verifier has ability to prepare & send O(1) qubits at a time

• Many-round classical interaction

• [ABOE] Circuit model, uses authentication codes

• [BFK] Measurement-based model, uses traps

• Both protocols are blind + verifiable

prepare

(q)

(c)

Where are the qubits? The verifier creates them



Models for black-box verification

[Reichardt-Unger-Vazirani’12] 

Two-prover protocols:

• Verifier is classical

• Many-round classical interaction with two isolated provers

• Verifier uses Bell tests to do state & process tomography

• Protocol is blind + verifiable

run
Bell
tests

(c)

(c)

Where are the qubits? Bell tests →  EPR pairs →  qubits



Models for black-box verification

[Morimae-Fuji’13, Morimae-Fitzsimons’16]

“Receive & measure” protocols:

• Verifier has ability to receive & measure constant qubits

• [MF’13] Measurement-based model, protocol is blind & verifiable

• [MF’16] Hamiltonian model, protocol is verifiable but not blind

measure

(q)

Where are the qubits? The verifier measures them



Models for black-box verification

[Mahadev’18] “Commit & Reveal” protocols:

• Verifier is classical 

• Hamiltonian model: protocol is not blind

• Verifiability assumes prover does not break 

post-quantum crypto

use 
crypto

(c)

Where are the qubits? Forced by the crypto



prepare

(q)

(c)

measure

(q)
use 

crypto
(c)

run
Bell
tests

(c)

(c)

ROADMAP

(q)

authentication
+ transversal gates

Self-testing

qubit commitment
protocol



prepare

(q)

(c)

measure

(q)

run
Bell
tests

(c)

(c)

[Barz et al. 2012]
Four photonic qubits
Implement blind Bell 
test

[Greganti et al. 2016]
Four-qubit cluster state 
beamed to verifier using 
photons

Some experiments

[Huang et al. 2017]
Thousands of Bell tests 
certify factorization of 
number 15



Part I(a):
Prepare & Send



(q)

• Circuit model: verifier has circuit 𝐶, wants to determine outcome on |0〉

• Encode computation in input: execute universal circuit 𝒰 to obtain 𝐶|0〉

• Main technique is “computation on encrypted data”:

• Verifier encrypts input qubits one-by-one and sends to prover

• Prover stores qubits & applies gates over encryption

• For each gate, verifier requests qubits, “fixes encryption”, and re-sends

Blind delegated computation
[Childs’05]



The quantum one-time pad

𝜓 ↦ 𝑋𝑎𝑍𝑏|𝜓〉
𝑎, 𝑏 ←𝑅 {0,1}

𝛼 0 + 𝛽 1 ↦

𝛼 0 + 𝛽 1 (𝑎 = 0, 𝑏 = 0)

𝛼 0 − 𝛽 1 (𝑎 = 0, 𝑏 = 1)

𝛼 1 + 𝛽 0 (𝑎 = 1, 𝑏 = 0)

𝛼 1 − 𝛽 0 (𝑎 = 1, 𝑏 = 1)

• If 𝑎, 𝑏 unknown then encoded

qubit appears totally mixed

1

4
෍

𝑎,𝑏

𝑋𝑎𝑍𝑏 𝜓 〈𝜓| 𝑋𝑎𝑍𝑏
∗
=
1

2
𝕀



• Clifford gates “commute” with one-time pad

Ex: 

• Universal computation requires one additional gate

• Requires “phase correction” if 𝑐′ = 𝑐′ 𝑎′, 𝑏′, 𝑐 = 1

• Eastin Knill theorem: no quantum error-correcting code can

transversally implement a quantum universal gate set

Computing on encrypted data

𝐻𝑋𝑎𝑍𝑏 𝜓 = 𝑋𝑏𝑍𝑎𝐻 𝜓

𝑃𝑐′𝑋𝑎′𝑍𝑏′𝑃𝑐𝑇 𝜓 = 𝑋𝑎′′𝑍𝑏′′𝑇 𝜓

𝑇 =
1 0
0 𝑒𝑖𝜋/4

𝑇𝑋𝑎𝑍𝑏 𝜓 = 𝑋𝑎′𝑍𝑏′𝑃𝑐𝑇 𝜓

𝑃 = 𝑇2 =
1 0
0 𝑖



Running example

H|0〉 T H 𝑏

𝑋𝑎𝑍𝑏 0
(𝑎, 𝑏) ←𝑅 {0,1}

𝐻𝑋𝑎𝑍𝑏 0(𝑎′, 𝑏′) ←𝑅 {0,1}

𝐻𝑋𝑎𝑍𝑏 0 = 𝑋𝑏𝑍𝑎𝐻 0
↦ 𝑋𝑎′𝑍𝑏′𝐻 0

𝑋𝑎′𝑍𝑏′𝐻 0

𝑇𝑋𝑎′𝑍𝑏′𝐻 0

𝑋𝑎′𝑍𝑏′𝐻 0
↦ 𝑇𝑋𝑎′𝑍𝑏′𝐻 0

𝑋𝑎𝑍𝑏 0

𝑋𝑎𝑍𝑏 0
↦ 𝐻𝑋𝑎𝑍𝑏 0

𝑇𝑋𝑎′𝑍𝑏′𝐻 0
= 𝑋𝑎′′𝑍𝑏′′𝑃𝑐𝑇𝐻 0 𝑋𝑎′′𝑍𝑏′′𝑃𝑐𝑇𝐻 0 , 𝑐′ 𝑋𝑎′′𝑍𝑏′′𝑃𝑐𝑇𝐻 0

↦ 𝑃𝑐′𝑋𝑎′′𝑍𝑏′′𝑃𝑐𝑇𝐻 0



Authentication

𝜓 ↦ 𝜓 0 ⋯ 0 + ⋯ |+〉

𝑄 ←𝑅 (2𝑘 + 1)−qubit Clifford

• Random Clifford subsumes one-time pad: automatically blind 

• Clifford twirl: any unitary “attack” independent of 𝑄

induces a random Pauli “attack” on the trap qubits

↦ 𝑄 𝜓 0 ⋯ 0 + ⋯ |+〉)

2𝑘 “trap qubits”

1

𝐶𝑙𝑖𝑓𝑓
෍

𝐶

𝑄∗ 𝑈 𝑄 𝜌 𝑄∗ 𝑈∗ 𝑄 = 𝛼 𝜌 +
1 − 𝛼

𝑃𝑎𝑢𝑙𝑖 − 1
෍

𝑃:𝑝𝑎𝑢𝑙𝑖≠𝐼

𝑃 𝜌 𝑃∗

For any unitary 𝑈 and any density 𝜌,



Running example

H|0〉 T H 𝑏

(𝑎1, 𝑏1), (𝑎2, 𝑏2),
(𝑎3, 𝑏3) ←𝑅 {0,1}

𝑋𝑎1𝑍𝑏1 0 𝑋𝑎2 0 𝑍𝑏3|+〉

𝑋𝑎1𝑍𝑏1 0 𝑋𝑎2 0 𝑍𝑏3|+〉

decode + check traps + measure output qubit

𝑋𝑎1𝑍𝑏1 0 𝑋𝑎2 0 𝑍𝑏3|+〉
Decode
Check traps
Apply 𝐻
Re-encode 𝑋𝑎1′𝑍𝑏1′𝐻 0 𝑋𝑎2′ 0 𝑍𝑏3′|+〉

𝑋𝑎1′𝑍𝑏1′𝐻 0 𝑋𝑎2′ 0 𝑍𝑏3′|+〉

𝑋𝑎1′𝑍𝑏1′𝐻 0 𝑋𝑎2′ 0 𝑍𝑏3′|+〉



Transversal gate evaluation

• One-time pad allows transversal evaluation of Clifford gates

• Clifford authentication allows transversal evaluation of Pauli gates

𝑋𝑎𝑍𝑏 𝜓 𝑋𝑎′ 0 𝑍𝑏′|+〉

𝜓

↦

𝐻 𝜓

𝐻𝐻𝐻

↦

𝑍𝑎𝑋𝑏𝐻 𝜓 𝑍𝑎′ + 𝑋𝑏′|1〉

↦
𝐻

↦
𝐴𝑢𝑡ℎ 𝐴𝑢𝑡ℎ

𝐴𝑢𝑡ℎ(𝐻|𝜓〉)



Running example

H|0〉 T H 𝑏

(𝑎1, 𝑏1), (𝑎2, 𝑏2),
(𝑎3, 𝑏3) ←𝑅 {0,1}

(𝑎1
′ , 𝑏1′) ← (𝑏1, 𝑎1)

𝑋𝑎1𝑍𝑏1 0 𝑋𝑎2 0 𝑍𝑏3|+〉

check 𝑢3 = 𝑎3
′

𝑋𝑎1𝑍𝑏1 0 𝑋𝑎2 0 𝑍𝑏3|+〉
apply 𝐻

𝐻𝑋𝑎1𝑍𝑏1 0 𝐻𝑋𝑎2 0 𝐻𝑍𝑏3|+〉

= 𝑋𝑏1𝑍𝑎1𝐻 0 𝑍𝑎2𝐻 0 𝑋𝑏3𝐻|+〉

measure 𝑋

(𝑎2
′ , 𝑏2′) ← (𝑏2, 𝑎2)

(𝑎3
′ , 𝑏3′) ← (𝑏3, 𝑎3)

(𝑢1, 𝑢2, 𝑢3)

return 𝑢1 ⊕𝑎1
′

measure (𝑋, 𝑋, 𝑋)



Transversal gate evaluation

• One-time pad allows transversal evaluation of Clifford gates

• Clifford authentication allows transversal evaluation of Pauli gates

• Polynomial-code authentication allows Clifford transversal gates

• Non-Clifford gates require magic states + classical communication

𝑇-gate gadget: figure from [Broadbent’15] 



Verifiable blind delegated computation

(q)

• Verifier sends 𝐴𝑢𝑡ℎ𝑘1 𝐶1 ⊗⋯⊗𝐴𝑢𝑡ℎ𝑘𝑛 𝐶𝑛 and 𝐴𝑢𝑡ℎ𝑘𝑗 𝜃𝑗

• To apply a Clifford gate:

• Server applies gate transversally on authenticated qubits

• Verifier updates authentication keys

• To apply non-Clifford gate:

• Server uses authenticated magic state

• Verifier and Server engage in protocol with classical communication

• Server measures output qubit and returns (2𝑘 + 1)-bit outcome

• Verifier checks traps and decodes final outcome

[ABOE’08,BFK’09]

(c)



Verifiable blind delegated computation

(q)

• Verifier sends 𝐴𝑢𝑡ℎ𝑘1 𝐶1 ⊗⋯⊗𝐴𝑢𝑡ℎ𝑘𝑛 𝐶𝑛 and 𝐴𝑢𝑡ℎ𝑘𝑗 𝜃𝑗

• Blindness: authentication → one-time pad → perfect blindness

• Verifiability:

• Arbitrary server = honest server + deviating unitary

• Verifier’s authentication + de-authentication induce Clifford twirl

• Arbitrary attack reduced to random Pauli

• Random Pauli likely to flip some traps

• Intermediate classical communication rounds complicate analysis

[ABOE’08,BFK’09]

(c)



Prepare & Send protocols: summary 

(q)

• One-way quantum communication + many-round classical communication

• [ADSS’17] quantum homomorphic computation with verification removes 

classical communication, under computational assumption

Open: reduce interaction without making computational assumptions

• Verifier complexity:

• [ABOE’08] (Circuit-based) Verifier needs 𝑂(log1/𝜖)  qubits

• [BFK’09] (Measurement-based) Verifier needs 𝑂(1) qubits

• Protocols vulnerable to noise at the verifier

Open: prepare & send fault-tolerant delegation

(c)



Part I(b):
Two-prover delegation



prepare

(q)

(c)

run
Bell
tests

(c)

(c)

Models for black-box verification

(q)

Authentication
+ transversal gates

Self-testing



The CHSH game as a rigid self-test

• Completeness: Provers sharing an EPR pair succeed w.p. ≈ 85%

• Soundness: If provers succeed w.p. ≥ 85%− 𝜖, they must share an EPR

pair, and 𝑃1 measures in Pauli 𝑋 𝑥 = 0 or 𝑍 (𝑥 = 1) bases

• Consequence: After 𝑃1 has returned 𝑎, 𝑃2 has qubit in { 0 , 1 , + , |−〉}

which is known to V, but not to 𝑃2

𝑥, 𝑦 ←𝑅 {0,1}

Accept iff 𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦

[WS’88,MY’98,MYS’12,RUV’12]

𝑥 𝑦

𝑎 𝑏
𝑃1 𝑃2



A rigid self-test for eigenstates of Clifford observables

• Completeness: Provers sharing 𝑚 EPR pairs succeed w.p. 1

• Soundness: If provers succeed w.p. ≥ 1 − 𝜖, they must share 𝑚 EPR pairs,

and 𝑃1 measures 𝑖-th qubit using 𝐴𝑖 ∈ {𝑋, 𝑌∗, 𝑍, 𝐻∗, 𝐺∗, … }

• Consequence: After 𝑃1 returns 𝑎, 𝑃2 has 𝑚 qubits in 0 , 1 , + , − , 𝜃 ,… }

which are known to V, but not to 𝑃2

𝑥, 𝑦 ←𝑅 𝑋, 𝑌, 𝑍, 𝐻, 𝐺, … 𝑚

Accept/Reject

[…,NV’17,CGJV’18]

𝑦

𝑎 𝑏
𝑃1 𝑃2

𝑥



Two-prover verifiable delegation

• w.p. ½: verifier executes self-test with provers

• w.p. ½:

• Verifier instructs 𝑃2 to make 𝑚-qubit 

measurement in randomly chosen bases

→ Given 𝑃2’s outcomes, 𝑃1 has encrypted qubits

𝑋𝑎𝑍𝑏|𝜃〉,  𝜃 ∈ 0,1, +, −,
𝜋

4
, …

• Verifier instructs 𝑃1 to implement prepare & send

protocol using designated qubits

[RUV’12,CGJV’18]

run
Bell
tests

(c)

(c)



Running example

H|0〉 T H 𝑏

Execute self-test with
randomly chosen single-qubit
Clifford observables 



Running example

H|0〉 T H 𝑏

(𝑎1, 𝑏1)← (𝑎1, 0)
(𝑎2, 𝑏2)← (0, 𝑎2)
(𝑎3, 𝑏3)← (𝑎3, 0)

𝑋𝑎1𝑍𝑏1 0 𝑋𝑎2 0 𝑍𝑏3|+〉

decode & check traps & return output 

Execute prepare & measure
protocol on authenticated
qubits prepared by 𝑃2



Two-prover verifiable delegation

• w.p. ½: verifier executes self-test with provers

• w.p. ½:

• Verifier instructs 𝑃1 to make 𝑚-qubit 

measurement in randomly chosen bases

• Verifier instructs 𝑃2 to perform implement prepare & send

protocol using designated qubits

• Blindness follows from blindness for prepare & send, 

as long as provers do not communicate

• Verifiability follows from verifiability for prepare & send,

additional O 𝜖𝑐 error from self-testing

[RUV’12,CGJV’18]

run
Bell
tests

(c)

(c)



Two-prover protocols: summary 

• Rigid self-tests allow preparation of eigenstates 

of single-qubit Clifford observables

(partially) Open: non-Clifford eigenstates?

• Many-round classical interaction with two provers

• [Grilo’18] Single-round protocol in Hamiltonian model

Protocol is not blind

Open: single-round blind verifiable delegation protocol?

• Total communication ~linear in circuit size

Open(?): sub-linear verifier? poly-logarithmic communication?

• Protocols extend to QMA verification if prover is given copies of QMA witness   

run
Bell
tests

(c)

(c)



Part II(a):
Receive & Measure



Receive & Measure protocols

• MBQC model: 

• Prover prepares resource state (e.g. cluster state)

• Verifier either (i) checks stabilizers of resource state

(ii) implements computation

• Only needs single-qubit measurements in small number of bases

• Post-hoc model:

• Prover prepares history state of Kitaev Hamiltonian associated with circuit 

• Verifier measures randomly chosen term in Hamiltonian

• Only needs single-qubit measurements in two bases, but protocol not blind

measure

(q)



Circuit-to-Hamiltonian

• Hamiltonian can be expressed in “XX/ZZ form”: 

𝐻 is weighted sum of local terms of the form 𝑋𝑖𝑋𝑗 or 𝑍𝑖𝑍𝑗

• Gap 𝛿 scales as 1/ 𝐶 2

• Complexity of preparing ground state of 𝐻 scales as complexity of 𝐶

(but may require higher depth)

𝐻 = 𝐻𝑖𝑛 +𝐻𝑐𝑙𝑜𝑐𝑘 + 𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑜𝑢𝑡

Pr 𝐶 0 = 1) ≥ 2/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≤ 𝑎

Pr 𝐶 0 = 1) ≤ 1/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≥ 𝑎 + 𝛿

[Kitaev’99]

𝑏|0〉

|0〉

|0〉



Post-hoc verifiable delegation

• Verifier computes 𝐻 from 𝐶, sends to prover

• Prover prepares ground state of 𝐻

• Sends to verifier one qubit at a time

• Verifier secretly selects random local term ℎ𝑗 = Xj1Xj2 or ℎ𝑗 = Zj1Zj2

• Measures qubits 𝑗1 and 𝑗2 in required basis 

• Repeat 1/𝛿2 times to estimate energy

measure

(q)𝐻 = 𝐻𝑖𝑛 + 𝐻𝑐𝑙𝑜𝑐𝑘 + 𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑜𝑢𝑡

Pr 𝐶 0 = 1) ≥ 2/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≤ 𝑎

Pr 𝐶 0 = 1) ≤ 1/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≥ 𝑎 + 𝛿

[MF’16]



Running example

H|0〉 T H 𝑏

flip coin 𝑊 ∈ {𝑋, 𝑍} prepare

𝜓 =
1

2
00 + |11〉)

first qubit

Measure in basis 𝑊

second qubit

Measure in basis 𝑊

→ 𝑏1

→ 𝑏2

Check:  𝑏1𝑏2 = +1

𝐻 = −
1

2
(X⊗ 𝑋 + 𝑍⊗ 𝑍)

𝐻



Receive & Measure protocols: summary 

• One-way quantum communication 

• Hamiltonian model requires repetition for gap amplification

MBQC model requires repetition for resource state testing

Total communication at least ∼ 𝐶 3

Open: protocol with linear communication complexity 

• Blind protocols only in MBQC model

• Protocols vulnerable to noise at the verifier

[GHK’18] give fault-tolerant protocol in Hamiltonian model; not blind

Open: receive & measure fault-tolerant blind delegation

measure

(q)



Part II(b):
Two-prover delegation



Running example

Execute self-test with
randomly chosen single-qubit
Pauli observables 

𝐻 = −
1

2
(X⊗ 𝑋 + 𝑍⊗ 𝑍)

[Grilo’18]



Running example

(𝑎1, 𝑏1)
(𝑎2, 𝑏2)

𝑋𝑎1𝑍𝑏1 ⊗𝑋𝑎2𝑍𝑏2 𝜓

Correct one-time pad and estimate energy

𝑃2: teleport |𝜓⟩ to 𝑃1
𝑃1: measure as in self-test

𝐻 = −
1

2
(X⊗ 𝑋 + 𝑍⊗ 𝑍)

𝜓 =
1

2
00 + |11〉)

[Grilo’18]



Part II(c):
Commit & Reveal



measure

(q)
use 

crypto
(c)

Models for black-box verification

qubit commitment
protocol

• Verifier “delegates” X and Z measurements to server

• Hurdle: Certify that reported measurement outcomes are obtained

from a single underlying 𝑛-qubit state

• Idea: Use cryptography to “commit” prover to fixed 𝑛-qubit state



Committing to a bit 

• Hiding: 𝑐 reveals no information about 𝑏 𝑐|𝑏=0 ≈ 𝑐|𝑏=1

• Binding: For any efficient Bob, and any 𝑐 such that Pr 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≥ 0.01, 

there is a 𝑏 such that Pr 𝑏∗ = 𝑏| 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≥ 0.95

𝑏 ∈ {0,1}𝑐 = 𝑐𝑜𝑚(𝑏, 𝑟)

𝑟 ∈𝑅 0,1 𝑛

𝑑 = 𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, 𝑟)

Return (𝑓𝑙𝑎𝑔, 𝑏∗)



Claw-free functions

𝑓0, 𝑓1: 0,1
𝑛 → 0,1 𝑛 a claw-free pair:

• Both 𝑓0 and 𝑓1 are bijections

• For every 𝑐 in the range, there is a unique claw:

a pair (𝑟0,𝑟1) such that 𝑓0 𝑟0 = 𝑓1 𝑟1 = 𝑐

• Claws are hard to find: no efficient procedure returns (𝑟0, 𝑟1, 𝑐)

• Can construct based on “Learning with Errors” (LWE) problem

• 𝑓0, 𝑓1 are noisy multiplication by matrix 𝐴:

𝑓0 𝑥 ≈ 𝐴 𝑥 + 𝑒,   𝑓1 𝑥 ≈ 𝐴 𝑥 − 𝑠 + 𝑒′ →      𝑟1 ≈ 𝑟0 − 𝑠

𝑟0

𝑟1

𝑐𝑓0

𝑓1



Committing to a bit 

• Perfectly hiding: Any 𝑐 has exactly one preimage under each function

• Computationally binding: 

If Pr 𝑏∗ = 0|𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 > 0.05 and Pr 𝑏∗ = 1|𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 > 0.05

then run Bob 100 times on 𝑐 to find a claw 

(𝑓0, 𝑓1): 0,1
𝑛 → 0,1 𝑛 a claw-free pair

𝑟0

𝑟1
𝑐

𝑏 ∈ {0,1}
𝑐 = 𝑓𝑏(𝑟)

𝑟 ∈𝑅 0,1 𝑛
𝑑 = (𝑏, 𝑟)

Check 𝑓𝑏 𝑟 = 𝑐

Return 𝑏



Committing to a qubit 

𝜓 = 𝛼 0 + 𝛽|1〉𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)

𝑅 =
1

√2𝑛
෍

𝑟∈ 0,1 𝑛

|𝑟〉

𝑑𝑍 = 𝑍−𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, |𝑅〉)

𝑑𝑋 = 𝑋−𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, |𝑅〉)

• Hiding: 𝑐 reveals no information about 𝜓

• Binding: For any efficient Bob and 𝑐 such that Pr 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≥ 0.01

there is a 𝜌 such that 𝑎𝑍 ≈ Tr(𝑍𝜌) and 𝑎𝑋 ≈ Tr(𝑋𝜌)

Return (𝑓𝑙𝑎𝑔, 𝑎𝑍)

Return (𝑓𝑙𝑎𝑔, 𝑎𝑋)



Committing to a qubit 𝜓 = 𝛼 0 + 𝛽|1〉

𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)
𝑅 =

1

√2𝑛
෍

𝑟∈ 0,1 𝑛

|𝑟〉

𝛼 0 + 𝛽|1〉) ⊗
1

2𝑛
෍

𝑟∈ 0,1 𝑛

𝑟 ⊗ |0𝑛〉

𝛼

2𝑛
෍

𝑟∈ 0,1 𝑛

0 𝑟 𝑓0 𝑟 +
𝛽

2𝑛
෍

𝑟∈ 0,1 𝑛

1 𝑟 |𝑓1 𝑟 〉

𝛼 0 𝑟0 + 𝛽 1 𝑟1 ) ⊗ |𝑐〉

𝜓 ⊗ 𝑅 ⊗ |0𝑛〉 =

→

→

CTL-𝑓

meas. last register



Committing to a qubit 𝜓 = 𝛼 0 + 𝛽|1〉

𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)
𝑅 =

1

√2𝑛
෍

𝑟∈ 0,1 𝑛

|𝑟〉

|0〉

|1〉

|𝜓〉



Committing to a qubit 𝜓 = 𝛼 0 + 𝛽|1〉

𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)
𝑅 =

1

√2𝑛
෍

𝑟∈ 0,1 𝑛

|𝑟〉

𝛼 0 + 𝛽|1〉) ⊗
1

2𝑛
෍

𝑟∈ 0,1 𝑛

𝑟 ⊗ |0𝑛〉

𝛼

2𝑛
෍

𝑟∈ 0,1 𝑛

0 𝑟 𝑓0 𝑟 +
𝛽

2𝑛
෍

𝑟∈ 0,1 𝑛

1 𝑟 |𝑓1 𝑟 〉

𝛼 0 𝑟0 + 𝛽 1 𝑟1 ) ⊗ |𝑐〉

𝜓 ⊗ 𝑅 ⊗ |0𝑛〉 =

→

→

CTL-𝑓

meas. last register

• Hiding: 𝑐 reveals no information about |𝜓〉

• 𝑍-reveal:  Bob measures in computational basis and returns

Alice checks 𝑓𝑏 𝑟𝑏 = 𝑐 and returns “decoded bit” 𝑎𝑍 = 𝑏

𝑑𝑍 = 𝑍−𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, |𝑅〉)

𝑑𝑍 = (𝑏, 𝑟𝑏)



Committing to a qubit 

• 𝑋-reveal:  Bob measures in Hadamard basis and returns

Alice returns “decoded bit” 𝑎𝑋 = 𝑢 ⊕ (𝑡 ⋅ 𝑟0 ⊕ 𝑡 ⋅ 𝑟1)

𝜓 = 𝛼 0 + 𝛽|1〉

𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)
𝑅 =

1

√2𝑛
෍

𝑟∈ 0,1 𝑛

|𝑟〉

𝑑𝑋 = X−𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, |𝑅〉)

𝑑𝑋 = (𝑢, 𝑡)

𝛼 0 𝑟0 + 𝛽 1 𝑟1 ) →
𝐼 ⊗ 𝐻⊗𝑛

1

2𝑛
෍

𝑡∈ 0,1 𝑛

𝛼 −1 𝑡⋅𝑟0 0 + 𝛽 −1 𝑡⋅𝑟1 1 ) ⊗ |𝑡〉

1

2𝑛
෍

𝑡∈ 0,1 𝑛

−1 𝑡⋅𝑟0 𝑍𝑡⋅𝑟0⊕𝑡⋅𝑟1 |𝜓〉 ⊗ |𝑡〉=



Commit & Reveal protocol

use 
crypto

(c)

• Verifier computes 𝐻 from 𝐶, sends to prover

• Prover prepares ground state of 𝐻

• Sends to verifier, one qubit at a time

• Verifier secretly selects random local term ℎ𝑗 = Xj1Xj2 (𝑍𝑗1𝑍𝑗2)

• Measures qubits 𝑗1 and 𝑗2 in required basis 

same as
post-hoc
protocol

•

• Prover individually commits to each qubit by sending 𝑐1, … , 𝑐𝑛

• Verifier secretly selects random local term ℎ𝑗 = 𝑋j1𝑋j2 (𝑍𝑗1𝑍𝑗2)

• Executes 𝑋(𝑍)-reveal phase with prover

• Records decoded outcomes 𝑎𝑋𝑗1𝑎𝑋𝑗2
(𝑎𝑍𝑗1𝑎𝑍𝑗2

)

• Repeat 1/𝛿2 times to estimate energy 

𝐻 = ෍

𝑗1,𝑗2

𝛼𝑗1𝑗2(𝑋j1𝑋j2 + 𝑍𝑗1𝑍𝑗2)

Pr 𝐶 0 = 1) ≥ 2/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≤ 𝑎

Pr 𝐶 0 = 1) ≤ 1/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≥ 𝑎 + 𝛿

[Mahadev’18]



Running example

𝐻 = −
1

2
(X⊗ 𝑋 + 𝑍⊗ 𝑍)

flip coin 𝑊 ∈ {𝑋, 𝑍}

prepare

𝜓 =
1

2
00 + |11〉)

commitments 𝑐, 𝑐′

Record  𝑏𝑏′

run commitment procedure:
1

2
0, 𝑟0〉|0, 𝑟0

′ + 1, 𝑟1 |1, 𝑟1
′〉)

𝑍-reveal? 

Measure 𝑍𝑏, 𝑟𝑏, 𝑏
′, 𝑟′𝑏′Check:  𝑓𝑏 𝑟𝑏 = 𝑐

𝑓𝑏′ 𝑟′𝑏′ = 𝑐′

𝑋-reveal? 

Measure 𝑋𝑢, 𝑡, 𝑢′, 𝑡′Set  𝑎𝑋 = 𝑢⊕ (𝑡 ⋅ 𝑟0 ⊕ 𝑡 ⋅ 𝑟1)

𝑎′𝑋 = 𝑢′ ⊕ (𝑡′ ⋅ 𝑟′0 ⊕ 𝑡 ⋅ 𝑟′1)

Record  𝑎𝑋𝑎′𝑋

Repeat 1/𝛿2 times to estimate energy

𝐻 and  𝑓0, 𝑓1 and  𝑓0
′, 𝑓1

′



Commit & Reveal protocol: summary

use 
crypto

(c)

(bounded)

• Hamiltonian model: protocol is not blind, but can be

made blind by combining with quantum FHE

Open: blind protocol in circuit or MBQC models?

• Complexity: cubic overhead due to Hamiltonian model

Crypto overhead linear in security parameter

• Soundness guarantee: there exists a state that gives computationally 

indistinguishable measurement outcomes

Open: computational assumption, information-theoretic guarantee? 

• Claw-free function instantiated from learning with errors assumption (LWE)

Open: more generic construction (e.g. quantum-secure OWF)?



Coda: 
An open question



An open question

©IBM quantum experience (17 qubit)

• Verifier is classical polynomial-time

• Communication channel is classical 

• Verifier wants to determine Pr 𝐶 0 = 1)

(c)



An open question

• Problems with efficient classical verification?

• MA = class of problems with 

efficient (probabilistic) verification

• Any problem in MA ∩ BQP has 

an efficiently verifiable solution

• Factoring, Graph Isomorphism

• IP = class of problems with

efficient (probabilistic, interactive) verification

• IP Prover may not be efficient! Needs to compute exponentially large sums

MA

BQP

IP = PSPACE

(c)(c)

Recursive Fourier
sampling



Interactive proofs for BQP

• Feynman path integral: Pr(𝐶|0〉 = 1) is (square of)

summation over exponentially many paths

• Amplitude of individual path is easy to compute

• Amplitude is multilinear polynomial in 𝑥1, … , 𝑥𝑇

෍

𝑝𝑎𝑡ℎ=(𝑥1,…,𝑥𝑇)

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝑥1, … , 𝑥𝑇)

H|0〉 Z H 𝑏 = 1

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 0,1,1,0 = 1 ⋅
1

2
⋅ −1 ⋅

1

2
= −

1

2

𝑥1 𝑥2 𝑥3 𝑥4



Interactive proofs for BQP
• Given 𝑃 ∈ 𝔽𝑞[𝑋1, … , 𝑋𝑇] multilinear, compute σ𝑥1,…,𝑥𝑇∈{0,1}

𝑃(𝑥1, … , 𝑥𝑇)

𝑆 = Σ 𝑃(𝑥1, … , 𝑥𝑇)

𝑝𝑇(𝑧) = Σ 𝑃(𝑥1, … , 𝑥𝑇−1, 𝑧)

Σ𝑧𝑝𝑇 𝑧 = 𝑆 ?

𝑝𝑇−1(𝑧) = Σ 𝑃(𝑥1, … , 𝑧, ෦𝑧𝑇)

෦𝑧𝑇 ←𝑅 𝔽𝑞
෦𝑧𝑇

Σ𝑧𝑝𝑇−1 𝑧 = 𝑝𝑇(෦𝑧𝑇) ?

෧𝑧𝑇−1 ←𝑅 𝔽𝑞
෧𝑧𝑇−1

𝑝0 = 𝑃( ෥𝑧1, … , ෦𝑧𝑇)
𝑝0 = 𝑃 ෥𝑧1, … , ෦𝑧𝑇 ?



Interactive proofs for BQP

• Any language in BQP has a classical-verifier interactive proof

• Prover needs to compute unphysical quantities

• Cannot be implemented using quantum computer 

• [AG’17] give “quantum-inspired” variant of protocol

• Open: protocol with prover less powerful than PostBQP

• Challenge: allow prover to make statistical estimation errors 

while restricting capacity to cheat

(c)(c)



Summary



Problem formulation

Ideal functionality for verifiable & blind delegation 

A protocol is verifiable & blind if no malicious party interacting with the

honest party can distinguish from an interaction with the ideal functionality

circuit 𝐶

bit 𝑏

size 𝑇

𝐶(|0〉) if 𝑒 ∈ {0,1}

𝑒𝑟𝑟 if 𝑒 = 2

𝑏 =

trit 𝑒



𝑏|0〉

|0〉

|0〉

Models of computation 

Circuit model

𝐻 = 𝐻𝑖𝑛 + 𝐻𝑐𝑙𝑜𝑐𝑘 + 𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑜𝑢𝑡

Measurement-based model

Hamiltonian model



prepare

(q)

(c)

measure

(q)
use 

crypto
(c)

(bounded)

run
Bell
tests

(c)

(local)

(c)

Protocols for verifiable delegation

(q)

authentication
+ transversal gates

Self-testing

qubit commitment
protocol



Complexity considerations

Input: Circuit 𝐶, 𝑇 gates, 𝑛 qubits. eps: distance from ideal functionality 

Protocol Computation 
model

Verifier Communication

Childs’05 Circuit O(1) O(T)

ABOE’08 Circuit O(log 1/eps) O(T log(1/eps))

BFK’09 MBQC O(1) O(T log(1/eps))

MF’13 MBQC O(1) O(T/eps^2)

MF’16 Hamiltonian O(1) O(T^3 log(1/eps))

CGJV’18 Circuit classical O(T/eps^c)

Mahadev’18 Hamiltonian classical O(T^3 log(1/eps)log(1/lambda))



Thank you

SLIDES: 
HTTP://USERS.CMS.CALTECH.EDU/~VIDICK/VERIFICATION.{PPSX,PDF}
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