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Problem formulation

©IBM quantum experience (17 qubit)

• Verifier has quantum computation 𝐶

• Multiple rounds of interaction with quantum device

• Verifier returns 𝑓𝑙𝑎𝑔, 𝑏 s.t. 𝑓𝑙𝑎𝑔 ∈ {𝑎𝑐𝑐, 𝑟𝑒𝑗} and 𝑏 ∈ {0,1}

• Goal: Whenever Pr 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 is non-negligible,

Pr 𝑏 = 1 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≈ Pr 𝐶 returns 1 on input 0𝑛 )

classical or quantum

communication 

user   /   “verifier”

device   /   “prover”
(𝒇𝒍𝒂𝒈, 𝒃)

𝑏|0〉

|0〉

|0〉



An example

H|0〉
𝑏 = 0 w.p. 50%

𝑏 = 1 w.p. 50%

“description of circuit 𝐶”

“I got 𝑏 = 0”

Really??











An example

H|0〉
𝑏 = 0 w.p. 50%

𝑏 = 1 w.p. 50%

“description of circuit 𝐶”

“I got 𝑏 = 0”

Really??

Repeat and collect statistics?

Run some tests?

© IBM



Aside: benchmarking

H|0〉 Z H 𝑏 = 1

0 , 1 , + , −

Sequentially test gate by injecting well-characterized 

states and collecting output statistics 

• Requires access to inner workings of device

• Trusted state preparation and/or measurement

• Gates are not allowed to be  “malicious”, 

e.g. i.i.d. behavior is generally assumed

• Ineffective at large scales



Testing quantum mechanics at scale

• Quantum mechanics untested at large scales

• Is there a limit to the exponential

scaling of quantum devices?

©IBM Q5©IBM Q16©Intel Tangle Lake (49Q)©Google Bristlecone (72Q)

(q)

(c)



Some other reasons to care

• Near-term demonstration of quantum advantage

• Can verifiability be baked in current proposals?

• Cryptographic techniques

• What modes of encryption allow transversal (homomorphic) computation?

• Can they be combined with authentication?

• Models of computation & fault-tolerance

• Do small nodes in a quantum network create fault-tolerance bottlenecks?

• Complexity theory

• What is the expressive power of bounded-prover interactive proofs?

• Foundations

• Are there analogues of the Bell inequalities without locality assumptions?

©Google Bristlecone



Prelude:
Definitions



Semi-formal definition
A delegation protocol for quantum computations is: 

A description of a (classical or quantum) polynomial-time verifier, that takes

as input a quantum circuit 𝑪 of size 𝐶 ≤ 𝑛, interacts with a quantum prover,

and returns a pair (𝑓𝑙𝑎𝑔, 𝑏) such that:

• (Completeness) There exists a (quantum, poly-time) prover 𝑃 such that

Pr 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≈ 1 𝐴𝑁𝐷 Pr 𝑏 = 1 ≈ Pr 𝐶 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 1 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 0𝑛 )

• (Soundness) For any prover 𝑃∗ such that Pr(𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐) is non-negligible,

Pr 𝑏 = 1 𝑓𝑙𝑎𝑔 = acc ≈ Pr 𝐶 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 1 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 0𝑛 )

• (Blindness) For any prover 𝑃∗, 𝑉𝑖𝑒𝑤𝑃(𝑉𝑛 𝐶 ↔ 𝑃∗) does not depend on 𝐶



Formal definition
“Stand-alone” definitions can fail! Example:

Protocol for testing if formula 𝜑 = 𝑥1 ∨ 𝑥3 ∨ 𝑥5 ∧ (⋯ ) is satisfiable

1. Prover sends assignment 𝑥 = (𝑥1, … , 𝑥𝑛)

2. Verifier checks that 𝑥 satisfies 𝜑

This protocol is blind (prover learns nothing about 𝜑) & verifiable

“Attack”: Prover sends a uniformly random assignment

• Learns information about 𝜑 from verifier’s accept/reject decision

• Protocol is not composable

Composable security: ideal-world/real-world paradigm



Parameters

Completenes: Probability of accepting honest prover. This will always be ≈ 1

Soundness: Max. distinguishing ability between real-world/ideal-world.

Ideally, exponentially small in 𝑛. 

Verifier complexity: Ideally, classical polynomial-time. 

Limited quantum capability may be acceptable. 

Prover complexity: Quantum polynomial-time. Ideally  ≈ runtime(𝐶).

Interaction: Minimize number of rounds + total communication

Input size: 𝑛 = number of qubits of circuit 𝐶
|𝐶| = number of gates



Overview of 
existing approaches



𝑏|0〉

|0〉

|0〉

Models of computation 

Circuit model Input: circuit = sequence of gates acting on 𝑛 qubits

Goal: determine value of output qubit, on input 0

Measurement-based Input: adaptive sequence of single-qubit measurements 

on resource state (e.g. “cluster state”) 

Goal: determine value of output qubit

Hamiltonian model Input: local Hamiltonian w. efficiently preparable ground state

Goal: estimate ground state energy𝐻 = 𝐻𝑖𝑛 + 𝐻𝑐𝑙𝑜𝑐𝑘
+𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑜𝑢𝑡



Models for black-box verification

(c)

Challenge: Use minimal resources to verify

complex quantum computation

“where are the qubits?”

(q)



Models for black-box verification

(q)

[Childs’05] Blind delegation

• Verifier has constant-size quantum computer

and can only perform single-qubit Pauli gates

• Many-round quantum interaction

• Blind but not verifiable

Where are the qubits? Honest-but-curious model



Models for black-box verification

[Aharonov-Ben-Or-Eban’08, Aharonov-Ben-Or-Eban-Mahadev’18]

[Broadbent-Fitzsimons-Kashefi’09,Fitzsimons-Kashefi’16] 

“Prepare-and-send” protocols:

• Verifier has ability to prepare & send O(1) qubits at a time

• Many-round classical interaction

• [ABOE] Circuit model, uses authentication codes

• [BFK] Measurement-based model, uses traps

• Both protocols are blind + verifiable

prepare

(q)

(c)

Where are the qubits? The verifier authenticates them



Models for black-box verification

[Reichardt-Unger-Vazirani’12] 

Two-prover protocols:

• Verifier is classical

• Many-round classical interaction with two isolated provers

• Verifier uses Bell tests to do state & process tomography

• Protocol is blind + verifiable

run
Bell
tests

(c)

(c)

Where are the qubits? Bell tests →  EPR pairs →  qubits



Models for black-box verification

[Morimae-Fuji’13, Morimae-Fitzsimons’16]

“Receive & measure” protocols:

• Verifier has ability to receive & measure constant qubits

• [MNS’16] Measurement-based model, protocol is blind & verifiable

• [MF’16] Hamiltonian model, protocol is verifiable but not blind

measure

(q)

Where are the qubits? The verifier measures them



Models for black-box verification

[Mahadev’18] “Commit & Reveal” protocols:

• Verifier is classical 

• Hamiltonian model: protocol is not blind

• Verifiability assumes prover does not break 

post-quantum crypto

use 
crypto

(c)

Where are the qubits? Encoded using the crypto



prepare

(q)

(c)

measure

(q)
use 

crypto
(c)

run
Bell
tests

(c)

(c)

Building up

(q)

authentication
+ transversal gates

Self-testing

qubit commitment
protocol



prepare

(q)

(c)

measure

(q)

run
Bell
tests

(c)

(c)

[Barz et al. 2012]
Four photonic qubits
Implement blind Bell 
test

[Greganti et al. 2016]
Four-qubit cluster state 
beamed to verifier using 
photons

Some experiments

[Huang et al. 2017]
Thousands of Bell tests 
certify factorization of 
number 15



An open question



An open question

©IBM quantum experience (17 qubit)

• Verifier is classical polynomial-time

• Communication channel is classical 

• Verifier wants to determine Pr 𝐶 0 = 1)

(c)



An open question

• Problems with efficient classical verification?

• MA = class of problems with 

efficient (probabilistic) verification

• Any problem in MA ∩ BQP has 

an efficiently verifiable solution

• Factoring, Graph Isomorphism

• IP = class of problems with

efficient (probabilistic, interactive) verification

• IP Prover may not be efficient! Needs to compute exponentially large sums

MA

BQP

IP = PSPACE

(c)(c)

Recursive Fourier
sampling



Interactive proofs for BQP

• Feynman path integral: Pr(𝐶|0〉 = 1) is (square of)

summation over exponentially many paths

• Amplitude of individual path is easy to compute

• Amplitude is multilinear polynomial in 𝑥1, … , 𝑥𝑇



𝑝𝑎𝑡ℎ=(𝑥1,…,𝑥𝑇)

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝑥1, … , 𝑥𝑇)

H|0〉 Z H 𝑏 = 1

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 0,1,1,0 = 1 ⋅
1

2
⋅ −1 ⋅

1

2
= −

1

2

𝑥1 𝑥2 𝑥3 𝑥4



Interactive proofs for BQP
• Given 𝑃 ∈ 𝔽𝑞[𝑋1, … , 𝑋𝑇] multilinear, compute σ𝑥1,…,𝑥𝑇∈{0,1}

𝑃(𝑥1, … , 𝑥𝑇)

𝑆 = Σ 𝑃(𝑥1, … , 𝑥𝑇)

𝑝𝑇(𝑧) = Σ 𝑃(𝑥1, … , 𝑥𝑇−1, 𝑧)

Σ𝑧𝑝𝑇 𝑧 = 𝑆 ?

𝑝𝑇−1(𝑧) = Σ 𝑃(𝑥1, … , 𝑧, ෦𝑧𝑇)

෦𝑧𝑇 ←𝑅 𝔽𝑞
෦𝑧𝑇

Σ𝑧𝑝𝑇−1 𝑧 = 𝑝𝑇(෦𝑧𝑇) ?

෧𝑧𝑇−1 ←𝑅 𝔽𝑞
෧𝑧𝑇−1

𝑝0 = 𝑃( 𝑧1, … , ෦𝑧𝑇)
𝑝0 = 𝑃 𝑧1, … , ෦𝑧𝑇 ?



Receive & Measure 
Protocols



Receive & Measure protocols

• MBQC model: 

• Prover prepares resource state (e.g. cluster state)

• Verifier either (i) checks stabilizers of resource state

(ii) implements computation

• Only needs single-qubit measurements in small number of bases

• Post-hoc model:

• Prover prepares history state of Kitaev Hamiltonian associated with circuit 

• Verifier measures randomly chosen term in Hamiltonian

• Only needs single-qubit measurements in two bases, but protocol not blind

measure

(q)



Circuit-to-Hamiltonian

• Hamiltonian can be expressed in “XX/ZZ form”: 

𝐻 is weighted sum of local terms of the form 𝑋𝑖𝑋𝑗 or 𝑍𝑖𝑍𝑗

• Gap 𝛿 scales as 1/ 𝐶 2

• Complexity of preparing ground state of 𝐻 scales as complexity of 𝐶

(but may require higher depth)

𝐻 = 𝐻𝑖𝑛 +𝐻𝑐𝑙𝑜𝑐𝑘 + 𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑜𝑢𝑡

Pr 𝐶 0 = 1) ≥ 2/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≤ 𝑎

Pr 𝐶 0 = 1) ≤ 1/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≥ 𝑎 + 𝛿

[Kitaev’99]

𝑏|0〉

|0〉

|0〉



Post-hoc verifiable delegation

• Verifier computes 𝐻 from 𝐶, sends to prover

• Prover prepares ground state of 𝐻

• Sends to verifier one qubit at a time

• Verifier secretly selects random local term ℎ𝑗 = Xj1Xj2 or ℎ𝑗 = Zj1Zj2

• Measures qubits 𝑗1 and 𝑗2 in required basis 

• Repeat 1/𝛿2 times to estimate energy

measure

(q)𝐻 = 𝐻𝑖𝑛 + 𝐻𝑐𝑙𝑜𝑐𝑘 + 𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑜𝑢𝑡

Pr 𝐶 0 = 1) ≥ 2/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≤ 𝑎

Pr 𝐶 0 = 1) ≤ 1/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≥ 𝑎 + 𝛿

[MF’16]



Running example

H|0〉 T H 𝑏

flip coin 𝑊 ∈ {𝑋, 𝑍} prepare

𝜓 =
1

2
00 + |11〉)

first qubit

Measure in basis 𝑊

second qubit

Measure in basis 𝑊

→ 𝑏1

→ 𝑏2

Check:  𝑏1𝑏2 = +1

𝐻 = −
1

2
(X⊗ 𝑋 + 𝑍⊗ 𝑍)

𝐻



Receive & Measure protocols: summary 

• One-way quantum communication 

• Hamiltonian model requires repetition for gap amplification

MBQC model requires repetition for resource state testing

Total communication at least ∼ 𝐶 3

Open: protocol with linear communication complexity 

• Blind protocols only in MBQC model

• Protocols vulnerable to noise at the verifier

[GHK’18] give fault-tolerant protocol in Hamiltonian model; not blind

Open: receive & measure fault-tolerant blind delegation

measure

(q)



Part II(c):
Commit & Reveal



measure

(q)
use 

crypto
(c)

Models for black-box verification

qubit commitment
protocol

• Verifier “delegates” X and Z measurements to server

• Hurdle: Certify that reported measurement outcomes are obtained

from a single underlying 𝑛-qubit state

• Idea: Use cryptography to “commit” prover to fixed 𝑛-qubit state



Committing to a bit 

• Hiding: 𝑐 reveals no information about 𝑏 𝑐|𝑏=0 ≈ 𝑐|𝑏=1

• Binding: For any efficient Bob, and any 𝑐 such that Pr 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≥ 0.01, 

there is a 𝑏 such that Pr 𝑏∗ = 𝑏| 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≥ 0.95

𝑏 ∈ {0,1}𝑐 = 𝑐𝑜𝑚(𝑏, 𝑟)

𝑟 ∈𝑅 0,1 𝑛

𝑑 = 𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, 𝑟)

Return (𝑓𝑙𝑎𝑔, 𝑏∗)



Claw-free functions

𝑓0, 𝑓1: 0,1
𝑛 → 0,1 𝑛 a claw-free pair:

• Both 𝑓0 and 𝑓1 are bijections

• For every 𝑐 in the range, there is a unique claw:

a pair (𝑟0,𝑟1) such that 𝑓0 𝑟0 = 𝑓1 𝑟1 = 𝑐

• Claws are hard to find: no efficient procedure returns (𝑟0, 𝑟1, 𝑐)

• Can construct based on “Learning with Errors” (LWE) problem

• 𝑓0, 𝑓1 are noisy multiplication by matrix 𝐴:

𝑓0 𝑥 ≈ 𝐴 𝑥 + 𝑒,   𝑓1 𝑥 ≈ 𝐴 𝑥 − 𝑠 + 𝑒′ →      𝑟1 ≈ 𝑟0 − 𝑠

𝑟0

𝑟1

𝑐𝑓0

𝑓1



Committing to a bit 

• Perfectly hiding: Any 𝑐 has exactly one preimage under each function

• Computationally binding: 

If Pr 𝑏∗ = 0|𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 > 0.05 and Pr 𝑏∗ = 1|𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 > 0.05

then run Bob 100 times on 𝑐 to find a claw 

(𝑓0, 𝑓1): 0,1
𝑛 → 0,1 𝑛 a claw-free pair

𝑟0

𝑟1
𝑐

𝑏 ∈ {0,1}
𝑐 = 𝑓𝑏(𝑟)

𝑟 ∈𝑅 0,1 𝑛
𝑑 = (𝑏, 𝑟)

Check 𝑓𝑏 𝑟 = 𝑐

Return 𝑏



Committing to a qubit 

𝜓 = 𝛼 0 + 𝛽|1〉𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)

𝑅 =
1

√2𝑛


𝑟∈ 0,1 𝑛

|𝑟〉

𝑑𝑍 = 𝑍−𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, |𝑅〉)

𝑑𝑋 = 𝑋−𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, |𝑅〉)

• Hiding: 𝑐 reveals no information about 𝜓

• Binding: For any efficient Bob and 𝑐 such that Pr 𝑓𝑙𝑎𝑔 = 𝑎𝑐𝑐 ≥ 0.01

there is a 𝜌 such that 𝑎𝑍 ≈ Tr(𝑍𝜌) and 𝑎𝑋 ≈ Tr(𝑋𝜌)

Return (𝑓𝑙𝑎𝑔, 𝑎𝑍)

Return (𝑓𝑙𝑎𝑔, 𝑎𝑋)



Committing to a qubit 𝜓 = 𝛼 0 + 𝛽|1〉

𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)
𝑅 =

1

√2𝑛


𝑟∈ 0,1 𝑛

|𝑟〉

𝛼 0 + 𝛽|1〉) ⊗
1

2𝑛


𝑟∈ 0,1 𝑛

𝑟 ⊗ |0𝑛〉

𝛼

2𝑛


𝑟∈ 0,1 𝑛

0 𝑟 𝑓0 𝑟 +
𝛽

2𝑛


𝑟∈ 0,1 𝑛

1 𝑟 |𝑓1 𝑟 〉

𝛼 0 𝑟0 + 𝛽 1 𝑟1 ) ⊗ |𝑐〉

𝜓 ⊗ 𝑅 ⊗ |0𝑛〉 =

→

→

CTL-𝑓

meas. last register



Committing to a qubit 𝜓 = 𝛼 0 + 𝛽|1〉

𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)
𝑅 =

1

√2𝑛


𝑟∈ 0,1 𝑛

|𝑟〉

|0〉

|1〉

|𝜓〉



Committing to a qubit 𝜓 = 𝛼 0 + 𝛽|1〉

𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)
𝑅 =

1

√2𝑛


𝑟∈ 0,1 𝑛

|𝑟〉

𝛼 0 + 𝛽|1〉) ⊗
1

2𝑛


𝑟∈ 0,1 𝑛

𝑟 ⊗ |0𝑛〉

𝛼

2𝑛


𝑟∈ 0,1 𝑛

0 𝑟 𝑓0 𝑟 +
𝛽

2𝑛


𝑟∈ 0,1 𝑛

1 𝑟 |𝑓1 𝑟 〉

𝛼 0 𝑟0 + 𝛽 1 𝑟1 ) ⊗ |𝑐〉

𝜓 ⊗ 𝑅 ⊗ |0𝑛〉 =

→

→

CTL-𝑓

meas. last register

• Hiding: 𝑐 reveals no information about |𝜓〉

• 𝑍-reveal:  Bob measures in computational basis and returns

Alice checks 𝑓𝑏 𝑟𝑏 = 𝑐 and returns “decoded bit” 𝑎𝑍 = 𝑏

𝑑𝑍 = 𝑍−𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, |𝑅〉)

𝑑𝑍 = (𝑏, 𝑟𝑏)



Committing to a qubit 

• 𝑋-reveal:  Bob measures in Hadamard basis and returns

Alice returns “decoded bit” 𝑎𝑋 = 𝑢 ⊕ (𝑡 ⋅ 𝑟0 ⊕ 𝑡 ⋅ 𝑟1)

𝜓 = 𝛼 0 + 𝛽|1〉

𝑐 = 𝑐𝑜𝑚(|𝜓〉, |𝑅〉)
𝑅 =

1

√2𝑛


𝑟∈ 0,1 𝑛

|𝑟〉

𝑑𝑋 = X−𝑟𝑒𝑣𝑒𝑎𝑙(𝑏, |𝑅〉)

𝑑𝑋 = (𝑢, 𝑡)

𝛼 0 𝑟0 + 𝛽 1 𝑟1 ) →
𝐼 ⊗ 𝐻⊗𝑛

1

2𝑛


𝑡∈ 0,1 𝑛

𝛼 −1 𝑡⋅𝑟0 0 + 𝛽 −1 𝑡⋅𝑟1 1 ) ⊗ |𝑡〉

1

2𝑛


𝑡∈ 0,1 𝑛

−1 𝑡⋅𝑟0 𝑍𝑡⋅𝑟0⊕𝑡⋅𝑟1 |𝜓〉 ⊗ |𝑡〉=



Commit & Reveal protocol

use 
crypto

(c)

• Verifier computes 𝐻 from 𝐶, sends to prover

• Prover prepares ground state of 𝐻

• Sends to verifier, one qubit at a time

• Verifier secretly selects random local term ℎ𝑗 = Xj1Xj2 (𝑍𝑗1𝑍𝑗2)

• Measures qubits 𝑗1 and 𝑗2 in required basis 

same as
post-hoc
protocol

•

• Prover individually commits to each qubit by sending 𝑐1, … , 𝑐𝑛

• Verifier secretly selects random local term ℎ𝑗 = 𝑋j1𝑋j2 (𝑍𝑗1𝑍𝑗2)

• Executes 𝑋(𝑍)-reveal phase with prover

• Records decoded outcomes 𝑎𝑋𝑗1𝑎𝑋𝑗2
(𝑎𝑍𝑗1𝑎𝑍𝑗2

)

• Repeat 1/𝛿2 times to estimate energy 

𝐻 = 

𝑗1,𝑗2

𝛼𝑗1𝑗2(𝑋j1𝑋j2 + 𝑍𝑗1𝑍𝑗2)

Pr 𝐶 0 = 1) ≥ 2/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≤ 𝑎

Pr 𝐶 0 = 1) ≤ 1/3 ⟹ 𝜆𝑚𝑖𝑛 𝐻 ≥ 𝑎 + 𝛿

[Mahadev’18]



Running example

𝐻 = −
1

2
(X⊗ 𝑋 + 𝑍⊗ 𝑍)

flip coin 𝑊 ∈ {𝑋, 𝑍}

prepare

𝜓 =
1

2
00 + |11〉)

commitments 𝑐, 𝑐′

Record  𝑏𝑏′

run commitment procedure:
1

2
0, 𝑟0〉|0, 𝑟0

′ + 1, 𝑟1 |1, 𝑟1
′〉)

𝑍-reveal? 

Measure 𝑍𝑏, 𝑟𝑏, 𝑏
′, 𝑟′𝑏′Check:  𝑓𝑏 𝑟𝑏 = 𝑐

𝑓𝑏′ 𝑟′𝑏′ = 𝑐′

𝑋-reveal? 

Measure 𝑋𝑢, 𝑡, 𝑢′, 𝑡′Set  𝑎𝑋 = 𝑢⊕ (𝑡 ⋅ 𝑟0 ⊕ 𝑡 ⋅ 𝑟1)

𝑎′𝑋 = 𝑢′ ⊕ (𝑡′ ⋅ 𝑟′0 ⊕ 𝑡 ⋅ 𝑟′1)

Record  𝑎𝑋𝑎′𝑋

Repeat 1/𝛿2 times to estimate energy

𝐻 and  𝑓0, 𝑓1 and  𝑓0
′, 𝑓1

′



Commit & Reveal protocol: summary

use 
crypto

(c)

(bounded)

• Hamiltonian model: protocol is not blind, but can be

made blind by combining with quantum FHE

Open: blind protocol in circuit or MBQC models?

• Complexity: cubic overhead due to Hamiltonian model

Crypto overhead linear in security parameter

• Soundness guarantee: there exists a state that gives computationally 

indistinguishable measurement outcomes

Open: computational assumption, information-theoretic guarantee? 

• Claw-free function instantiated from learning with errors assumption (LWE)

Open: more generic construction (e.g. quantum-secure OWF)?



Interactive proofs for BQP

• Any language in BQP has a classical-verifier interactive proof

• Prover needs to compute unphysical quantities

• Cannot be implemented using quantum computer 

• [AG’17] give “quantum-inspired” variant of protocol

• Open: protocol with prover less powerful than PostBQP

• Challenge: allow prover to make statistical estimation errors 

while restricting capacity to cheat

(c)(c)



Summary



Problem formulation

Ideal functionality for verifiable & blind delegation 

A protocol is verifiable & blind if no malicious party interacting with the

honest party can distinguish from an interaction with the ideal functionality

circuit 𝐶

bit 𝑏

size 𝑇

𝐶(|0〉) if 𝑒 ∈ {0,1}

𝑒𝑟𝑟 if 𝑒 = 2

𝑏 =

trit 𝑒



𝑏|0〉

|0〉

|0〉

Models of computation 

Circuit model

𝐻 = 𝐻𝑖𝑛 + 𝐻𝑐𝑙𝑜𝑐𝑘 + 𝐻𝑝𝑟𝑜𝑝 + 𝐻𝑜𝑢𝑡

Measurement-based model

Hamiltonian model



prepare

(q)

(c)

measure

(q)
use 

crypto
(c)

(bounded)

run
Bell
tests

(c)

(local)

(c)

Protocols for verifiable delegation

(q)

authentication
+ transversal gates

Self-testing

qubit commitment
protocol



Complexity considerations

Input: Circuit 𝐶, 𝑇 gates, 𝑛 qubits. eps: distance from ideal functionality 

Protocol Computation 
model

Verifier Communication

Childs’05 Circuit O(1) O(T)

ABOE’08 Circuit O(log 1/eps) O(T log(1/eps))

BFK’09 MBQC O(1) O(T log(1/eps))

MF’13 MBQC O(1) O(T/eps^2)

MF’16 Hamiltonian O(1) O(T^3 log(1/eps))

CGJV’18 Circuit classical O(T/eps^c)

Mahadev’18 Hamiltonian classical O(T^3 log(1/eps)log(1/lambda))



Thank you

SLIDES: 
HTTP://USERS.CMS.CALTECH.EDU/~VIDICK/VERIFICATION.{PPSX,PDF}
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