

Delegating

quantum computations

- 1. Problem formulation
- 2. Overview of existing approaches
- 3. An open question

Problem formulation

- Verifier has quantum computation *C*
- Multiple rounds of interaction with quantum device
- Verifier returns (flag, b) s.t. $flag \in \{acc, rej\}$ and $b \in \{0, 1\}$
- Goal: Whenever Pr(flag = acc) is non-negligible,

 $\Pr(b = 1 | flag = acc) \approx \Pr(C \text{ returns 1 on input } | 0^n \rangle)$

🕀 Post to forum		Search for	۲	<i>a</i> Q	All Categories 🛛 👻	Quick links
						FAQ
21 comments	Submit a contr	ards Contest Program		series of prize	Software 📮 s for professors, lecturers and	Beginner's Guide
4.9k ^{views}	AN andreasf	IBM Staff Posted 10 months ago	Last comment	by yy387 10 da	ys ago	Tags
likes	IBM Q Awards	IBM QE QISKit quantum software co	npiling			Top Users (Last week) MR PI BI AV JU OG EV SI
1 comments		hex format?			Software	
9		else find the sudden change of presen e field of QI is more familiar with	ting results in he	and not bina	ry counterintuitive? I'm sure	Courses
views 1	XA xavierlin	Posted a day ago Last commen	by constantine 3 h	ours ago		

τιν		

IBM Q 5 Tenerife [ibmqx4]						
		<u>)</u> 0	Q1	Q2	Q3	Q4
	Frequency (GHz) 5	.25	5.30	5.35	5.43	5.18
		9.10	47.10	41.70	55.10	46.30
	T2 (µs) 3	0.70	16.40	27.40	13.70	12.00
Last Calibration: 2018-12-20 03:03:29	Gate error (10 ⁻³)	.69	1.37	1.37	1.97	1.89
	Readout error (10 ⁻²) 6	.70	14.00	4.30	4.10	6.30
			CX1_0	CX2_0	CX3_2	CX4_2
	MultiQubit gate error (10 ⁻²)		2.68	2.64	7.32	5.82
				CX2_1	CX3_4	
				3.99	4.35	

V IBM Q 5 Tenerife [ibmqx4]							ACTIVE: USERS
		Q0	Q1	Q2	Q3	Q4	
╞╫╤╫╴│ङ──╤──з	Frequency (GHz)	5.25	5.30	5.35	5.43	5.18	
	T1 (µs) T2 (µs)	49.10 30.70	47.10 16.40	41.70 27.40	55.10 13.70	46.30 12.00	
	Gate error (10 ⁻³)	0.60	1 20	1.37	1.97	1.89	
Last Calibration: 2018-12-20 03:03:29	Readout error (10 ⁻²)	0.69 6.70	1.37 14.00	4.30	4.10	6.30	
	MultiQubit gate error (10 ⁻³)		CX1_0 2.68	CX2_0 2.64	CX3_2 7.32	CX4_2 5.82	
				CX2_1			
				3.99	4.35		

Experiment #20181220105605

Device: ibmqx4

Quantum Results

×

Aside: benchmarking

Sequentially test gate by injecting well-characterized states and collecting output statistics

- Requires access to inner workings of device
- Trusted state preparation and/or measurement
- Gates are not allowed to be "malicious",
 e.g. i.i.d. behavior is generally assumed
- Ineffective at large scales

Testing quantum mechanics at scale

(q)

(c)

Quantum mechanics untested at large scales

CGbrdgleTBR BlackBR GABED

Is there a limit to the exponential
 scaling of quantum devices?

scaling of quantum devices?

Some other reasons to care

- Near-term demonstration of quantum advantage
 - Can verifiability be baked in current proposals?
- Cryptographic techniques

©Google Bristlecone

- What modes of encryption allow transversal (homomorphic) computation?
- Can they be combined with authentication?
- Models of computation & fault-tolerance
 - Do small nodes in a quantum network create fault-tolerance bottlenecks?
- Complexity theory
 - What is the expressive power of bounded-prover interactive proofs?
- Foundations
 - Are there analogues of the Bell inequalities without locality assumptions?

Prelude: Definitions

Semi-formal definition

A delegation protocol for quantum computations is:

A description of a (classical or quantum) polynomial-time **verifier**, that takes as input a **quantum circuit** *C* of size $|C| \le n$, interacts with a **quantum prover**, and returns a pair (*flag*, *b*) such that:

- (Completeness) There exists a (quantum, poly-time) prover P such that $Pr(flag = acc) \approx 1$ AND $Pr(b = 1) \approx Pr(C returns 1 on input |0^n)$)
- (Soundness) For any prover P^* such that $\Pr(flag = acc)$ is non-negligible, $\Pr(b = 1 | flag = acc) \approx \Pr(C returns 1 on input | 0^n \rangle)$
- (Blindness) For any prover P^* , $View_P(V_n(C) \leftrightarrow P^*)$ does not depend on C

Formal definition

"Stand-alone" definitions can fail! Example:

Protocol for testing if formula $\varphi = (x_1 \lor \overline{x_3} \lor x_5) \land (\cdots)$ is satisfiable

- 1. Prover sends assignment $x = (x_1, ..., x_n)$
- 2. Verifier checks that x satisfies φ

This protocol is blind (prover learns nothing about φ) & verifiable

"Attack": Prover sends a uniformly random assignment

- Learns information about φ from verifier's accept/reject decision
- Protocol is not composable

Composable security: ideal-world/real-world paradigm

Paramete	Input size: n = number of qubits of circuit C C = number of gates
<u>Completenes</u> :	Probability of accepting honest prover. This will always be $pprox 1$
<u>Soundness</u> :	Max. distinguishing ability between real-world/ideal-world. Ideally, exponentially small in n .
<u>Verifier complexity</u> :	Ideally, classical polynomial-time. Limited quantum capability may be acceptable.
Prover complexity:	Quantum polynomial-time. Ideally \approx runtime(C).
Interaction:	Minimize number of rounds + total communication

Overview of existing approaches

Models of computation

t: circuit = sequence of gates acting on n qubits determine value of output qubit, on input $|0\rangle$

Measurement-based Input:

- adaptive sequence of single-qubit measurements on resource state (e.g. "cluster state")
- Goal: determine value of output qubit

Hamiltonian modelInput:local Hamiltonian w. efficiently preparable ground state $H = H_{in} + H_{clock}$
 $+ H_{prop} + H_{out}$ Goal:estimate ground state energy

Challenge: Use minimal resources to verify

complex quantum computation

[Childs'05] Blind delegation

- Verifier has constant-size quantum computer • and can only perform single-qubit Pauli gates
- Many-round quantum interaction ٠
- Blind but not verifiable •

Where are the qubits? Honest-but-curious model

[Aharonov-Ben-Or-Eban'08, Aharonov-Ben-Or-Eban-Mahadev'18] [Broadbent-Fitzsimons-Kashefi'09,Fitzsimons-Kashefi'16]

"Prepare-and-send" protocols:

- Verifier has ability to prepare & send O(1) qubits at a time
- Many-round classical interaction
 - [ABOE] *Circuit model*, uses authentication codes
 - [BFK] *Measurement-based model*, uses traps
- Both protocols are blind + verifiable

Where are the qubits? The verifier authenticates them

[Reichardt-Unger-Vazirani'12]

Two-prover protocols:

- Verifier is classical
- Many-round classical interaction with two isolated provers
- Verifier uses Bell tests to do state & process tomography
- Protocol is blind + verifiable

Where are the qubits? Bell tests \rightarrow EPR pairs \rightarrow qubits

[Morimae-Fuji'13, Morimae-Fitzsimons'16]

"Receive & measure" protocols:

- Verifier has ability to receive & measure constant qubits
- [MNS'16] *Measurement-based model*, protocol is blind & verifiable
- [MF'16] Hamiltonian model, protocol is verifiable but not blind

Where are the qubits? The verifier measures them

[Mahadev'18] "Commit & Reveal" protocols:

- Verifier is classical
- Hamiltonian model: protocol is not blind ٠
- Verifiability assumes prover does not break ulletpost-quantum crypto

Where are the qubits? Encoded using the crypto

Building up

Some experiments

[Huang et al. 2017] Thousands of Bell tests certify factorization of number 15

An open question

An open question

- Verifier is classical polynomial-time
- Communication channel is classical
- Verifier wants to determine Pr(C|0) = 1)

(c)

An open question

- Problems with efficient classical verification?
- MA = class of problems with efficient (probabilistic) verification
- Any problem in MA \cap BQP has an efficiently verifiable solution
- Factoring, Graph Isomorphism

IP = class of problems with efficient (probabilistic, interactive) verification

sampling

IP Prover may not be efficient! Needs to compute exponentially large sums

Interactive proofs for BQP

• Feynman path integral: Pr(C|0) = 1) is (square of) summation over exponentially many paths $path=(x_1,...,x_n)$

$$amplitude(x_1, \dots, x_T)$$

• Amplitude of individual path is easy to compute

amplitude(0,1,1,0) =
$$1 \cdot \frac{1}{\sqrt{2}} \cdot (-1) \cdot \frac{1}{\sqrt{2}} = -\frac{1}{2}$$

• Amplitude is multilinear polynomial in x_1, \dots, x_T

Interactive proofs for BQP

• Given $P \in \mathbb{F}_q[X_1, \dots, X_T]$ multilinear, compute $\sum_{x_1, \dots, x_T \in \{0,1\}} P(x_1, \dots, x_T)$

Receive & Measure Protocols

Receive & Measure protocols

- <u>MBQC model</u>:
 - Prover prepares resource state (e.g. cluster state)
 - Verifier either (i) checks stabilizers of resource state

(ii) implements computation

- Only needs single-qubit measurements in small number of bases
- <u>Post-hoc model</u>:
 - Prover prepares history state of Kitaev Hamiltonian associated with circuit
 - Verifier measures randomly chosen term in Hamiltonian
 - Only needs single-qubit measurements in two bases, but protocol not blind

Circuit-to-Hamiltonian [Kitaev'99]

• Hamiltonian can be expressed in "XX/ZZ form":

H is weighted sum of local terms of the form $X_i X_j$ or $Z_i Z_j$

- Gap δ scales as $1/|C|^2$
- Complexity of preparing ground state of *H* scales as complexity of *C* (but may require higher depth)

Post-hoc verifiable delegation [MF'16]

 $H = H_{in} + H_{clock} + H_{prop} + H_{out}$ $\Pr(C|0\rangle = 1) \ge 2/3 \implies \lambda_{min}(H) \le a$ $\Pr(C|0\rangle = 1) \le 1/3 \implies \lambda_{min}(H) \ge a + \delta$

- Verifier computes *H* from *C*, sends to prover
- Prover prepares ground state of *H*
- Sends to verifier one qubit at a time
- Verifier secretly selects random local term $h_j = X_{j_1}X_{j_2}$ or $h_j = Z_{j_1}Z_{j_2}$
- Measures qubits j_1 and j_2 in required basis
- Repeat $1/\delta^2$ times to estimate energy

Check: $b_1 b_2 = +1$

Receive & Measure protocols: summary

(q)

- One-way quantum communication
- Hamiltonian model requires repetition for gap amplification MBQC model requires repetition for resource state testing Total communication at least ~ |C|³
 Open: protocol with linear communication complexity
- Blind protocols only in MBQC model
- Protocols vulnerable to noise at the verifier
 [GHK'18] give fault-tolerant protocol in Hamiltonian model; not blind
 Open: receive & measure fault-tolerant blind delegation

Part II(c): Commit & Reveal

Models for black-box verification

- Verifier "delegates" X and Z measurements to server
- Hurdle: Certify that reported measurement outcomes are obtained from a single underlying *n*-qubit state
- Idea: Use cryptography to "commit" prover to fixed *n*-qubit state

- <u>Hiding</u>: *c* reveals no information about *b* $c_{|b=0} \approx c_{|b=1}$
- <u>Binding</u>: For any efficient Bob, and any *c* such that $Pr(flag = acc) \ge 0.01$, there is a *b* such that $Pr(b^* = b | flag = acc) \ge 0.95$

Claw-free functions

 $f_0, f_1: \{0,1\}^n \to \{0,1\}^n$ a *claw-free* pair:

- Both f_0 and f_1 are bijections
- For every c in the range, there is a unique claw: a pair (r_0, r_1) such that $f_0(r_0) = f_1(r_1) = c$

- Claws are hard to find: no efficient procedure returns (r_0, r_1, c)
- Can construct based on "Learning with Errors" (LWE) problem
- f_0 , f_1 are noisy multiplication by matrix A:

$$f_0(x) \approx A x + e, f_1(x) \approx A(x - s) + e' \quad \Rightarrow \quad r_1 \approx r_0 - s$$

Committing to a bit

 (f_0, f_1) : $\{0,1\}^n \rightarrow \{0,1\}^n$ a *claw-free* pair

- <u>Perfectly hiding</u>: Any *c* has exactly one preimage under each function
- <u>Computationally binding</u>:

If $Pr(b^* = 0|flag = acc) > 0.05$ and $Pr(b^* = 1|flag = acc) > 0.05$

then run Bob 100 times on c to find a claw

- <u>Hiding</u>: c reveals no information about $|\psi\rangle$
- <u>Binding</u>: For any efficient Bob and c such that $Pr(flag = acc) \ge 0.01$ there is a ρ such that $a_Z \approx Tr(Z\rho)$ and $a_X \approx Tr(X\rho)$

- <u>Hiding</u>: *c* reveals no information about $|\psi\rangle$
- <u>Z-reveal</u>: Bob measures in computational basis and returns $d_Z = (b, r_b)$ Alice checks $f_b(r_b) = c$ and returns "decoded bit" $a_Z = b$

$$Committing to a qubit
$$\downarrow c = com(|\psi\rangle, |R\rangle)$$

$$\downarrow d_X = X - reveal(b, |R\rangle)$$

$$|R\rangle = \frac{1}{\sqrt{2^n}} \sum_{r \in \{0,1\}^n} |r\rangle$$

$$|R\rangle = \frac{1}{\sqrt{2^n}} \sum_{r \in \{0,1\}^n} |r\rangle$$

$$(\alpha|0\rangle|r_0\rangle + \beta|1\rangle|r_1\rangle)$$

$$I \otimes H^{\otimes n} \xrightarrow{1}{\sqrt{2^n}} \sum_{t \in \{0,1\}^n} (\alpha(-1)^{t \cdot r_0}|0\rangle + \beta(-1)^{t \cdot r_1}|1\rangle) \otimes |t\rangle$$

$$= \frac{1}{\sqrt{2^n}} \sum_{t \in \{0,1\}^n} (-1)^{t \cdot r_0} Z^{t \cdot r_0 \oplus t \cdot r_1} |\psi\rangle \otimes |t\rangle$$$$

• <u>X-reveal</u>: Bob measures in Hadamard basis and returns $d_X = (u, t)$ Alice returns "decoded bit" $a_X = u \bigoplus (t \cdot r_0 \bigoplus t \cdot r_1)$

Commit & Reveal protocol [Mahadev'18]

$$H = \sum_{(j_1, j_2)} \alpha_{j_1 j_2} (X_{j_1} X_{j_2} + Z_{j_1} Z_{j_2})$$

 $\Pr(C|0\rangle = 1) \ge 2/3 \implies \lambda_{min}(H) \le a$ $\Pr(C|0\rangle = 1) \le 1/3 \implies \lambda_{min}(H) \ge a + \delta$

- Verifier computes *H* from *C*, sends to prover Prover prepares ground state of *H*
- Prover prepares ground state of *H* •
- Prover individually commits to each qubit by sending c_1, \ldots, c_n •
- Verifier secretly selects random local term $h_j = X_{j_1}X_{j_2}$ $(Z_{j_1}Z_{j_2})$
- Executes X(Z)-reveal phase with prover •
- Records decoded outcomes $a_{X_{j_1}}a_{X_{j_2}}(a_{Z_{j_1}}a_{Z_{j_2}})$
- Repeat $1/\delta^2$ times to estimate energy

Commit & Reveal protocol: summary

- Hamiltonian model: protocol is not blind, but can be made blind by combining with quantum FHE Open: blind protocol in circuit or MBQC models?
- Complexity: cubic overhead due to Hamiltonian model
 Crypto overhead linear in security parameter
- Soundness guarantee: there *exists* a state that gives *computationally indistinguishable* measurement outcomes
 Open: computational assumption, information-theoretic guarantee?
- Claw-free function instantiated from learning with errors assumption (LWE) Open: more generic construction (e.g. quantum-secure OWF)?

(bounded)

Interactive proofs for BQP

- Any language in BQP has a classical-verifier interactive proof
- Prover needs to compute unphysical quantities
- Cannot be implemented using quantum computer
- [AG'17] give "quantum-inspired" variant of protocol
- Open: protocol with prover less powerful than PostBQP
- Challenge: allow prover to make statistical estimation errors while restricting capacity to cheat

Problem formulation

Ideal functionality for verifiable & blind delegation

A protocol is verifiable & blind if no malicious party interacting with the honest party can distinguish from an interaction with the ideal functionality

Models of computation

Circuit model

Measurement-based model

Hamiltonian model

 $H = H_{in} + H_{clock} + H_{prop} + H_{out}$

Complexity considerations

Input: Circuit *C*, *T* gates, *n* qubits. eps: distance from ideal functionality

Protocol	Computation model	Verifier	Communication
Childs'05	Circuit	O(1)	O(T)
ABOE'08	Circuit	O(log 1/eps)	O(T log(1/eps))
BFK'09	MBQC	O(1)	O(T log(1/eps))
MF'13	MBQC	O(1)	O(T/eps^2)
MF'16	Hamiltonian	O(1)	O(T^3 log(1/eps))
CGJV'18	Circuit	classical	O(T/eps^c)
Mahadev'18	Hamiltonian	classical	O(T^3 log(1/eps)log(1/lambda))

SLIDES: HTTP://USERS.CMS.CALTECH.EDU/~VIDICK/VERIFICATION.{PPSX,PDF}

References

[ADSS'17] Alagic et al. "Quantum Fully Homomorphic Encryption With Verification." arXiv:1708.09156 [AG'17] Aharonov and Green. "A Quantum inspired proof of P^{\# P}\subseteq IP." arXiv:1710.09078 [BKB+'12] Barz et al. "Demonstration of blind quantum computing." Science 335.6066 (2012): 303-308. [Broadbent'15] Broadbent. "How to verify a quantum computation." *arXiv:1509.09180* [Childs'05] Childs. "Secure assisted quantum computation." arXiv preprint quant-ph/0111046 [DFPR'13] Dunjko et al. "Composable security of delegated quantum computation." arXiv:1301.3662 [GRB+'16] Greganti et al. "Demonstration of measurement-only blind quantum computing." NJP 18.1 (2016): 013020 [Grilo'18] Grilo. "Relativistic verifiable delegation of quantum computation." arXiv:1711.09585 [GHK'18] Gheorghiu et al. "A simple protocol for fault tolerant verification of quantum computation." arXiv:1804.06105 [GKK'17] Gheorghiu et al. "Verification of quantum computation: An overview of existing approaches." arXiv:1709.06984 [HZM+'17] Huang et al. "Experimental blind quantum computing for a classical client." PRL 119.5 (2017): 050503. [Mahadev'18] Mahadev. "Classical verification of guantum computations." arXiv:1804.01082 [MNS'16] Morimae and Fujii. "Blind guantum computation protocol in which Alice only makes measurements." arXiv:1201.3966 [MF'16] Morimae, Nagai and Schuch. "Quantum proofs can be verified using only single-qubit measurements." arXiv:1510.06789 [MY'05] Mayers and Yao. "Self testing quantum apparatus." *quant-ph/0307205* [MYS'12] McKague et al. "Robust Self Testing of the Singlet." *arXiv:1203.2976*. [RUV'12] Reichardt et al. "A classical leash for a guantum system." arXiv:1209.0448. [WS'88] Summers and Werner. "Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions." Annales de l'Institut Henri Poincare Physique Theorique. Vol. 49. No. 2. 1988