
Lecture 3

Testing a qubit under spatial assumptions

(Comment: To insert a comment, use the macro “\com{·}”)

In this lecture we introduce a new assumption in addition to our overarching assumption that all parties
in a protocol can be modeled using quantum mechanics; as argued in the previous lecture additional assump-
tions are necessary to develop a test for a qubit with classical verifier. In physical terms our new assumption
consists in requiring that the device that is being tested is made of two parts that are “physically isolated,” in
the sense that no communication can take place between the two parts for the duration of the protocol. For
the case where the protocol consists of a single round of interaction (a question from the verifier and an an-
swer from the prover) one can imagine enforcing this assumption by e.g. placing the provers and verifier on
a line P1 −V − P2 and ensuring that the round-trip interaction between the verifier and either prover takes
place sufficiently fast that the verifier is confident, based on relativistic considerations (information does not
travel faster than light), that no information can be exchanged between the provers between the times when
they receive their question and have to send their answer. Mathematically, the assumption is reflected by
modeling the device’s Hilbert space H as HA ⊗HB and writing that each sub-device’s observables act on
its Hilbert space only. Following tradition we will use the symbols A and B to denote “registers” (a word
loosely used to refer to the physical substrate modeled by the mathematical Hilbert space) associated with
each device and, oftentimes personify the devices as “provers” or “players” with the lovely names of “Alice’
and “Bob” respectively.

As we will see in this lecture as well as in the last third of the course this assumption of “localization”
allows the verifier to gain much leverage over the device. Some intuition for this may be gained from
thinking about a situation where a detective (the verifier) interrogates two suspects (the provers). Clearly the
detective has more leverage over the suspects if she interrogates them in isolation and cross-examines their
answers. Be warned however that this intuition only goes so far, because it only explains why interactive
proofs with two provers may be more powerful than single-prover interactive proofs; it does not give insight
into why specifically quantum aspects of the provers may manifest themselves in this framework. The fact
that quantum mechanics allows a broader set of behavior for the provers than classical mechanics does
is evidenced in the EPR paradox [EPR35], whose authors puzzle over the “non-local” nature of quantum
mechanics. A precise framework for describing this non-locality was set in place by Bell [Bel64] who
identified simple “inequalities” that separate classical from quantum behavior in bipartite scenario. Here we
take the modern tack on Bell’s inequalities and introduce them directly through the framework of nonlocal
games.
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3.1 Nonlocal games

A non-local game is a cooperative game of imperfect information between a referee and two players. The
referee is a trusted party that executes the game by sending a question to each player, collecting answers
from them, and deciding whether the players’ answers satisfy a winning criterion. The rules of the game
(the distribution on questions used by the referee, the possible answers, the winning criterion) are public
and known to the players, who cooperate in order to maximize their chances of winning. The only source of
uncertainty is that each player is only revealed their question, but not the other’s; this point is what makes
the difference between a single-player and a multi-player game.

Remark 3.1. To make the connection with interactive proof systems of the kind that we described in the
previous lecture, somewhat informally a multi-prover interactive proof system for a language L is specified
by a collection of non-local games {Gx}x∈{0,1}∗ , one for each possibe input x. These games should have
the property that if x ∈ L then there is a strategy for the players that succeeds with high probability (this
is the completeness property) and if x /∈ L then no strategy will make them win with high probability
(the soundness property).1 In the notes we freely interchange between the terminology of non-local games,
referees and players and that of interactive proofs, verifier and prover depending on context.

One may rightfully wonder what is the benefit of associating games, or interactive proof systems, to com-
putational problems. One element that we can point out is that a game itself is a computational problem—is
the maximum winning probability high (larger than some c) or low (smaller than some s)? By providing
a different, “dynamic” perspective on e.g. a 3SAT formula the framework of games has historically been
instrumental in proving results in hardness of approximation for constraint satisfaction problems. In a com-
pletely different direction, they are a natural setting for cryptography where they were introduced in the
context of zero-knowledge proofs.

For the sake of concreteness let us see an example. Consider the language L that is the collection of
all strings x such that x represents a satisfiable 3SAT formula ϕ.2 For example, ϕ could be “y1 ∧ y2 ∧
y3 AND y2 ∧ y3 ∧ y4,” which is obviously satisfiable. Since it is in general believed to be hard to determine
satisfiability of such a formula, let’s make the provers work and design an interactive proof systems for the
hypothesis “ϕ is satisfiable”.3

Here is a first candidate, which involves a single prover:

1. The verifier sends ϕ to the prover.4

2. The prover returns a {0, 1}-valued assignment (y1, y2, . . .) to all variables in ϕ.

3. The verifier accepts if and only if the assignment satisfies ϕ.

This proof system has completeness 1 (if there is a solution, a prover that sends it will be accepted with
probability 1) and soundness 0 (if there is no solution, no prover has any chance of being accepted). Unfor-
tunately, while the verifier is more efficient than solving the formula herself (by e.g. trying out all possible

1For a formal connection between interactive proofs and games one would also have to insist that the games be “uniformly
generated” from x, and that the verifier in each game is described by a circuit of size poly(|x|).

2In the following we use the notation ϕ and x interchangeably: we think of x as a string of bits and ϕ as a formula, but we
assume fixed an efficiently computable bijection between the two.

3We emphasize that the goal of the proof system is not to find a more efficient method to solve the formula itself, as someone
—the prover— still has to do the work. The goal rather is to provide a different framework in which to think about the complexity
of the computational problem “decide if ϕ is satisfiable”.

4In the theory of interactive proof systems it is always assumed that the prover has access to the instance that is being decided,
so this step is not necessary.
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solutions) she still has to read a lot of information in order to make her decision.5 In keeping with our goal
of making verifiers more efficient, let’s see a more succinct proof system with two provers. Let ϕ consist
of equations E1, . . . , Em such that Ej has the form y

cj1
j1
∧ y

cj2
j2
∧ y

cj3
j3

with cj ∈ {0, 1} and for a variable y,
y0 = y and y1 = (1− y).

1. The verifier selects j ∈ {1, . . . , m} uniformly at random and k ∈ {1, 2, 3} uniformly at random. She
sends j to the first prover and jk to the second, where jk is the index of the k-th variable on which
clause Ej acts in some canonical ordering. (Importantly, this ordering hides k, i.e. the prover only
knows that its variable appears in some clause, but not which clause or which position the variable
appears in it.)

2. The first prover returns a triple (a1, a2, a3) ∈ {±1}. The second prover returns a value b ∈ {±1}.

3. The verifier accepts if and only if (consistency check:) ak = b and (equation check:) (a1, a2, a3)
satisfy clause Ej.

We make the following claim regarding completeness and soundness of this proof system:

Claim 3.2. The two-prover proof system described above has completeness 1 and soundness at most 1− 1
3m ,

where m is the number of clauses in the input formula.

Note that while our proof system brought us gains in terms of communication, the soundness has de-
graded quite substantially, from 0 to 1− 1

3m . It is possible to obtain improved variants of this proof system
that have roughly similar communication complexity but much better soundness, say 1

100 or even less. How-
ever, this requires much more work and is essentially the content of the PCP theorem, to which we will
return in the last part of the course.

Proof. The completeness is easy to verify. For soundness, consider an arbitrary strategy for the two provers
that succeeds with some probability p. In order to analyze this strategy we first need to accomplish the
usual modeling step: how do we represent a two-prover strategy? The most “naı̈ve” way to do so is to use
a representation of each prover as a function from questions to answers and declare that the provers’ joint
strategy is the combination (direct product) of these functions: the first prover, Alice, employs a function
fA : {1, . . . , m} → {0, 1}3 and the second prover, Bob, a function fB : {1, . . . , n} → {0, 1}; their joint
strategy is simply the function f = ( fA, fB) that goes from pairs of questions (x, y) in the protocol to pairs
of answers (a, b). If one gives a little more thought to the question then it is not at all obvious that this is
the right answer. Nevertheless, let’s postpone any further thinking for now and finish the proof of the claim
using this model for the provers.

Fix a strategy ( fA, fB) of this form for the provers. We distinguish two cases. Either the strategies
“match”, meaning that for any clause Ej it holds that

fA(j) = ( fB(j1), fB(j2), fB(j3)) , (3.1)

where yj1 , yj2 , yj3 are the three variables involved in Ej. In this case we interpret the list of values
fB(1), . . . , fB(n) as an assignment to the n variables of ϕ. Since by assumption ϕ is not satisfiable there
must exist a j such that ( fB(j1), fB(j2), fB(j3)) do not satisfy clause Ej. By (3.1), fA(j) does not satisfy Ej

5It is possible to argue that for a proof system of this form it is necessary for the prover to send a total number of bits that scales
linearly with the length of an NP (i.e. non-interactive) proof for the same statement, see e.g. [GVW01].
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either. Hence whenever the verifier sends a question of the form (j, k) for k ∈ {j1, j2, j3} the provers fail in
the equation check.

In the second case, the strategies do not match, i.e. there is a pair (j, k) ∈ {1, . . . , m} × {1, 2, 3} such
that the k-th entry of ( fA(j)) does not match fB(jk). In this case the provers fail in the consistency check
when the question (j, k) is sent.

In all cases there is at least one question on which the provers must fail one of the verifier’s checks. Since
there are 3m possible questions in total and the verifier’s distribution on them in uniform this completes the
proof of the claim.

3.2 Non-local strategies

In the proof of Claim 3.2 we were faced with the problem of modeling precisely how the assumption that
the provers do not communicate affects the class of strategies that they may employ. While we dodged
the question there, let’s turn to it more seriously now. First of all, note that the object we are trying to
represent is a family of bipartite conditional probability distributions {p(·, ·|x, y)}x,y∈X×Y over A × B,
where X ,Y and A,B are finite sets of questions and answers respectively associated with each player. The
question then is, what families of bipartite conditional distributions can be generated by non-communicating
provers? (equivalently, players, devices, etc.)

3.2.1 Classical and non-signaling correlations

Let’s examine two extremes. The first extreme is to require that each prover performs an entirely local
computation. In this case the first prover’s answer a1 to their question x1 is determined by a function
f1 : X → A, and similarly for the second prover. This is the answer that we adopted in the proof of
Claim 3.2. More generally, being familiar with randomized computation we could allow each prover to
make use of a randomized computation, in which case their respective input-output behavior can be modeled
by a family of conditional distributions {pA(·|x)}x∈X on A, and similarly for the second prover. The joint
distributions of answers that they provide to the verifier would then be required to factorize as

∀(x, y) ∈ X ×Y , ∀(a, b) ∈ A×B , p(a, b|x, y) = pA(a|x)pB(b|y) . (3.2)

Since we allowed randomness it may also be natural to allow the randomness to be shared, i.e. allow the
more general class of distributions that can be represented as

∀(x, y) ∈ X ×Y , ∀(a, b) ∈ A×B , p(a, b|x, y) =
∫

λ
pA(a|x, λ)pB(b|y, λ)dλ , (3.3)

where λ ranges over any measurable set and for each λ, {pA(·|x, λ)}x∈X is a family of conditional distribu-
tions on A, and similarly for the other prover. It is not hard to see that the proof of Claim 3.2 generalizes to
this case: briefly, this is because for a strategy of the form (3.3) to succeed with probability p in the protocol
it is necessary that the product strategy obtained by fixing λ succeeds with probability p for at least some
choice of λ.

The second extreme is to allow the most general family of bipartite conditional distributions that does
not “imply communication”. A natural formalization of the latter requirement, usually referred to as the
“non-signaling assumption” on p, is that for every a, x and y, y′,

∑
b

p(a, b|x, y) = ∑
b

p(a, b|x, y′) . (3.4)
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In words, the answer a given by the first prover should have a marginal distribution that is independent of
the question y given to the second prover. Of course, a symmetric condition should hold with the provers’
roles exchanged.

At first it may seem that these two extreme classes “ought to” be the same. Are there distributions that
satisfy (3.4) but are not of the form (3.3)? The answer is yes. Here is a simple example: let X = Y =
A = B = {0, 1}. For (x, y) 6= (1, 1) let p(·, ·|x, y) be uniform over {(0, 0), (1, 1)}. For (x, y) = (1, 1)
let p(·, ·|x, y) be uniform over {(0, 1), (1, 0)}. It is easy to see that this distribution cannot be expressed in
factorized form, or even as a convex combination of factorized forms as in (3.3). (Showing this is a good
exercise which we leave to the reader.6) However, the distribution clearly satisfies (3.4) since all marginals
are uniform. We will see another example in Section 3.3.1.

Having observed that there are at least two possible models for the “non-communicating provers,” which
one is it most appropriate? Conventionally we call the first model “classical” because it can be realized
physically using local computation only, together with possibly a source of shared randomness. The second
model is called “non-signaling” and is considered non-physical even though it does not strictly violate
the no-communication assumption, because we do not have a credible physical theory in which arbitrary
distributions in that model can be generated at locations that are space-time isolated (in other words, there
is no physical theory that allows us to describe an experiment which would be able to generate any kind of
correlation that is in principle allowed by special relativity; there are other constraints that relativity itself
does not provide a means to model). Interestingly, the kind of correlations that can be generated by quantum
provers lies strictly in-between the two extremes. Let’s explore those correlations next.

3.2.2 Quantum (tensor product) correlations

The most natural way to measure spatial isolation in non-relativistic quantum mechanics is to associate a
distinct Hilbert space with each device (or prover),HA for Alice andHB for Bob, such that the joint Hilbert
space is H = HA ⊗HB. Upon receiving a question x the first prover performs a POVM {Ax

a}a∈A on HA
to obtain an outcome a that it sends back to the verifier; similarly, the second prover performs a POVM
{By

b}b∈B to obtain its answer b. The class of correlations that can be generated in this model is all families
of bipartite conditional distributions that take the form

p(a, b|x, y) = 〈ψ|Ax
a ⊗ By

b |ψ〉 , (3.5)

where Ax
a and By

b are as above and |ψ〉 ∈ HA⊗HB is an arbitrary state. We will succinctly write (|ψ〉, A, B)
to represent a triple of a bipartite state and families of POVM measurements on each subsystem as above,
and refer to such a triple as a strategy for a given two-player game.

Definition 3.3. Given a two-player one-round7 game G with question sets X and Y and answer sets A and
B, a strategy for G is a triple (|ψ〉, A, B) where |ψ〉 ∈ HA ⊗HB is a quantum state on the tensor product
of finite-dimensional Hilbert spaces HA and HB and A = {Ax} and B = {By} are collections of POVM
{Ax

a} and {Ay
b} onHA andHB respectively, for every x ∈ X and y ∈ Y .

As a sanity check we can verify that (3.5) allows us to recover (3.3). To see this, set HA and HB to
be separable Hilbert spaces with a basis indexed by all possible values of λ,8 |ψ〉 = ∑λ∈Ω

√
pλ|λ〉A|λ〉B,

6Hint: “fix the randomness” and consider the values that each prover returns to each of their two possible questions. Show that
these four values together cannot all lie exclusively among the allowed pairs for all four possible pairs of questions.

7A non-local game, just as an interactive proof system, can in principle involve multiple rounds of interaction. Here we always
always restrict ourselves to the single-round case, that is simpler to analyze and captures everything that we need.

8Assume for simplicity that the probability space is countable.
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Ax
a = ∑λ pA(a|x, λ)|λ〉〈λ|A, and similarly for By

b . One immediately verifies that these define valid POVM
and that they lead to the desired correlation (3.3). Moreover, the POVM condition ∑b By

b = Id for all y
implies that the correlations (3.5) always satisfy the no-signaling condition (3.4). However, the model is
strictly more general than the classical model (3.3), as we show next by identifying a non-local game in
which the use of quantum correlations leads to a strictly higher winning probability than classical correla-
tions could. (It is also possible to show that it is not as general as the non-signalling model, as the example
of a non-signaling correlation given above cannot be realized in quantum mechanics.)

3.3 Binary Linear System Games

For this section we borrow some material from the lecture notes by Richard Cleve available at this url.

Binary linear system games, or BLS games for short, are a class of two-player one-round games intro-
duced in [CM14] and inspired by Mermin’s proofs of Bell’s theorem [Mer90, Mer93]. These games capture
the flavor of the “clause-vs-variable” game considered in the previous section, except that the underlying
formula involves parity constraints of the form yj1 ⊕ · · · ⊕ yj` = cj as opposed to the disjunctions we had
for the case of 3SAT.

Definition 3.4. A BLS game is specified by integers m, n ≥ 1, a matrix E ∈ {0, 1}m×n and a vector
c ∈ {±1}m. (This information is available to both the referee and the players in the game.) The game
proceeds as follows:

1. The referee samples j ∈ {1, . . . , m} uniformly at random and sends j to the first player. Let ` be
the number of nonzero entries in the j-th row of E. The referee samples k ∈ {1, . . . , `} uniformly at
random and sends the index of the k-th nonzero entry of the j-th row of E to the second player.

2. The referee expects answers (a1, . . . , a`) ∈ {±1}` from the first player and b ∈ {±1} from the
second.9

3. The referee declares that the players win if and only if both the following conditions hold: (consistency
check:) ak = b and (equation check:) ∏i ai = cj.

The class of BLS games has many interesting properties. In particular, there is a direct correspondence
between the existence of perfect strategies in different models and certain kinds of ’solutions’ to the system
of equations implied by E and c. (Precisely, for j ∈ {1, . . . , m} the j-th row of E and c can be interpreted

as a constraint y
Ej,1
1 · · · y

Ej,n
n = cj on n variables y1, . . . , yn ∈ {±1}.) For the case of classical strategies,

following the proof of Claim 3.2 we easily see that the game has a perfect strategy if and only if the system
of equations has a solution over {±1}, which in this case can be determined by Gaussian elimination. For
quantum strategies in the model introduced above (i.e. the “tensor product model” (3.5)) there is a correspon-
dence between perfect strategies and “operator solutions” to the system of equations. This correspondence
will allow us to make use of a specific BLS game called the “Magic Square game” in order to develop our
first test of a qubit that can be executed by an entirely classical verifier. We introduce the Magic Square
game in the next section.

Remark 3.5. The correspondence between strategies and (operator) solutions goes further than the classi-
cal and tensor product models. In particular one can say interesting things about quantum strategies in an
extended model called the “commuting-operator model”, but we don’t discuss this here. See for exam-
ple [CLS17] and follow-up works.

9For later convenience we adopt a multiplicative {±1} convention for the variables, instead of the more usual {0, 1} convention.
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3.3.1 An example: the Magic Square game

The Magic Square game is the following BLS game with 6 constraints on 9 variables. The constraints are
best visualized by picturing the variables arranged in the entries of a 3× 3 square, as follows:

y1 y2 y3 +1
y4 y5 y6 +1
y7 y8 y9 +1

+1 +1 −1

As indicated on the picture the 6 constraints are that the product of all variables in any given row should
equal +1 and that the product of all variables in any column should equal +1 except for the last column,
where it should equal −1.

This system of equations does not have a solution (make sure you can show this!), and so the associated
BLS game, as described in Definition 3.4, does not have a perfect classical strategy: it is not hard to see that
the maximum success probability that classical players can achieve is 17

18 , matching the bound of Claim 3.2.
A remarkable fact is that there is a perfect quantum strategy for this game (“perfect” means that the

strategy succeeds with probability 1 in the game). This is remarkable because, as we just saw, the underlying
system of equations does not have a solution! Yet quantum players are able to always give answers that are
accepted by the referee. For this to be possible these answers necessarily have to be generated “on the fly”,
freshly every time a question is asked: if this were not the case then the same proof as that of Claim 3.2
would apply. Quantum provers are able to win with certainty, yet there is no way to extract a satisfying
assignment from them. What feature of the system of equations makes this possible? Can quantum provers
win any BLS game with probability 1, irrespective of any truth value of the underlying system of equations?

To gain insight into this question let us describe an explicit quantum strategy for the players that succeeds
with probability 1. The key observation is that even though as we saw the system of equations associated
with the magic square does not have a solution with values in {±1}, it has an operator solution

I ⊗ σZ σZ ⊗ I σZ ⊗ σZ
σX ⊗ I I ⊗ σX σX ⊗ σX

σX ⊗ σZ σZ ⊗ σX σY ⊗ σY

(3.6)

where σY = iσXσZ. Observe that in each row or column the three observables always commute; moreover,
the product of the three observables in each row or column is always +I except for the last column, where
it is −I. This is what we mean by “operator solution”.

Definition 3.6. An operator solution to a BLS (E, c) is a collection of binary observables Y1, . . . , Yn on the
same Hilbert space H such that for each equation (specified by a row of E) yj1 · · · yj` = cj the observables
Yj1 , . . . , Yj` commute and their product equals cj Id.

It is not too hard to show that for any BCS, an operator solution immediately translates into a perfect
quantum strategy for it.

Lemma 3.7. Suppose given an operator solution Y1, . . . , Yn to a BLS (E, c) such that each Yj is a binary
observable on a finite-dimensional Hilbert space H. Then the following strategy succeeds with probability
1 in the BLS game:
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• The players share the maximally entangled state

|ψ〉AB =
1√
d

∑
i
|i〉A ⊗ |i〉B ∈ HA ⊗HB , (3.7)

where d is the dimension of H, each of HA and HB is a copy of H, and {|i〉} an orthonormal basis
for it.10

• On question j, Alice sequentially measures the observables Yj1 , Yj2 , . . . , Yj` on her share of |ψ〉, where
j1, . . . , j` are the indices of the nonzero entries of the j-th row of E. She obtains outcomes a1, . . . , a`
that she returns as her answer.

• On question k ∈ {1 . . . , n} Bob measures the observable YT
k on his share of |ψ〉. He obtains an

outcome b ∈ {±1} that he returns as his answer.

Proof. First we note that the strategy described in the lemma is valid: since by definition of an operator
solution the observables Yj1 , Yj2 , . . . , Yj` always commute it is possible for Alice to measure them simulta-
neously.

The following relation holds the key to the proof: for any operators A onHA and B onHB it holds that

〈ψ|A⊗ B|ψ〉 = 1
d

Tr(ABT) , (3.8)

where |ψ〉 is as in (3.7). This relation follows easily from the relation (Id⊗B)|ψ〉 = (BT ⊗ Id)|ψ〉 that
we saw in the previous lecture and the fact that the reduced density matrix of |ψ〉 on either subsystem is the
totally mixed stated d−1 Id. Using this relation it is a matter of direct calculation to verify that the prover’s
answers always satisfy the verifier’s checks in the game. In more detail,

• For the consistency check, we note that the probability that the two players return consistent answers
on question (j, k) is

1
2
+

1
2
〈ψ|Yjk ⊗YT

jk |ψ〉 =
1
2
+

1
2

1
d

Tr
(
Y2

jk

)
= 1 ,

where the first equality follows from (3.8) and the second holds since Yjk is a binary observable so
Y2

jk
= Id.

• For the equation check, we note that the probability that Alice’s answers satisfy the check for the j-th
equation is

1
2
+

cj

2
〈ψ|Yj1 · · ·Yj` ⊗ Id |ψ〉 = 1

2
+

cj

2
〈ψ|cj Id⊗ Id |ψ〉 = 1 ,

where the first equality holds since Yj1 · · ·Yj` = cj Id by definition of an operator solution.

Remark 3.8. The reader will have noticed that in Lemma 3.7 we carefully added the assumption that the
operator solution is finite-dimensional, and indeed this seems necessary for the state |ψ〉 to be well-defined.
It is possible to show that infinite-dimensional operator solutions to a BLS correspond to commuting-
operator strategies for the associated game, and conversely; this correspondence is established in [CLS17].
Commuting-operator strategies are a strict superset of tensor-product strategies

Combining Lemma 3.7 with the operator solution to the magic square given by (3.6) we obtain a perfect
strategy for the magic square game that uses two qubits per player, and two EPR pairs shared between them.
Since we saw that the magic square does not have a perfect strategy this strategy gives us another example
of a non-signaling correlation that is not classical.

10The maximally entangled state is a natural generalization of the EPR pair which can be defined on any tensor product of
(finite-dimensional) isomorphic Hilbert spaces.
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3.3.2 Characterization of optimal strategies

The following converse to Lemma 3.7 is shown in [CM14].

Lemma 3.9. Suppose given a BLS (E, c) and a strategy (|ψ〉, A, B) for the associated game that succeeds
with probability 1. Then the BLS has a finite-dimensional operator solution.

Proof. We give the proof for the special case of the Magic Square game, as the general case is similar. We
start with the modeling step: a strategy (|ψ〉, A, B) for the magic square game is given by a bipartite state
|ψ〉 ∈ HA ⊗HB for finite-dimensional HA and HB as well as the following measurements. For the first
player (Alice), for each row or column x there is a 9-outcome projective measurement {Ax

a : a ∈ {±1}3}
on HA. For the second player (Bob), for each variable (square) y there is an observable By on HB. Note
that here we assumed that the measurements made by each player are projective, which is without loss of
generality by applying Naimark’s theorem and enlarging the spacesHA andHB if necessary.

To each of Alice’s questions we can associate three observables that correspond to the three bits of her
answer. For example, for question j = 1 (first row) we can define

A1 = ∑
a1,a2,a3∈{±1}

a1 A1
a1a2a3

, A2 = ∑
a1,a2,a3∈{±1}

a2 A1
a1a2a3

, A3 = ∑
a1,a2,a3∈{±1}

a3 A1
a1a2a3

.

We can similarly proceed to define A4, . . . , A9 from the rows and A′1, . . . , A′9 from the columns. Next we
show that success with probability 1 in the consistency checks implies that

∀y ∈ {1, . . . , 9} , Ay = A′y = BT
y . (3.9)

Take for example the consistency check on question (1, 2) (first row to Alice, second entry to Bob). It is
easy to show that success in that check implies that

〈ψ|A2 ⊗ BT
2 |ψ〉 = 1 . (3.10)

We use the following claim.

Claim 3.10. Suppose that |ψ〉 is a bipartite state A, B observables such that 〈ψ|A ⊗ B|ψ〉 = 1. Let
|ψ〉 = ∑t λt|ut〉|vt〉 be the Schmidt decomposition of |ψ〉, with λt > 0 for all t and {|ut〉} and {|vt〉}
orthonormal families. Let SA = Span{|ut〉} ⊆ HA and SB = Span{|vt〉} ⊆ HB. Then SA is stable by
A and SB is stable by B. Moreover, letting AS denote the matrix of the restriction of A to SA in the basis
{|ut〉} and similarly for B, it holds that AS = BT

S .

Proof sketch. Let K = ∑t λt|ut〉〈vt|. Then the equality 〈ψ|A ⊗ B|ψ〉 = 1 is equivalent to AKBT =
K. Identifying left and right eigenspaces we see that A and B must each preserve the eigenspaces of K
associated with any given eigenvalue. Thus AKBT = K decomposes in block form ⊕λ AλBT

λ = Idλ,
where for each block we indicated with a subscript λ the restriction of each operator to the eigenspace of K
associated with eigenvalue λ. This shows the claim.

Using Claim 3.10 and the implications of the form (3.10) for the consistency checks, (3.9) follows,
where the operators and the transpose should be understood to be written with respect to the Schmidt bases
of |ψ〉. To conclude we claim that BT

1 , . . . , BT
9 (precisely, their restriction to the support of |ψ〉 on HB) are

an operator solution to the Magic Square. Commutation in each row or column follows from (3.9) and the
definition of the Ay (which by definition commute by rows) and A′y (by columns). The constraints follow
from the fact that e.g. for the first row, 〈ψ|A1A2A3 ⊗ Id |ψ〉 = +1, which using Claim 3.10 implies that
A1 A2 A3 = Id and hence BT

1 BT
2 BT

3 = Id. (Of course we could remove the transpose signs and still have a
valid solution.)
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3.4 A nonlocal test for a qubit

We now have everything that we need in order to give our first classical-verifier test for a qubit (in fact, as we
will see, for two qubits!). To motivate this, observe that the proof of Lemma 3.9 says a bit more than is stated
in the lemma itself: not only did we show that the Magic Square has an operator solution, we also exhibited
such a solution directly from the second player’s observables in the game. Let’s show the following simple
fact.

Claim 3.11. Suppose given an operator solution Y1, . . . , Y9 to the magic square. Then Y2 and Y4 anti-
commute.

Proof. We first rewrite the product Y2Y4 by rows to obtain

Y2Y4 = Y1Y3 ·Y6Y5

= Y1 ·Y9 ·Y5 ,

where the second line is by the last column constraint. Next we write the product Y4Y2 by columns:

Y4Y2 = Y1Y7 ·Y8Y5

= Y1 · (−Y9) ·Y5 ,

where the second line is by the last row constraint. Combining both equations it follows that Y2Y4 = −Y4Y2,
as claimed.

The following lemma is immediate from the proof of Lemma 3.9 and Claim 3.11. We state the lemma
using the language of “self-testing” from the previous lecture.

Lemma 3.12. Suppose that two non-communicating quantum devices A and B generate correlations

p(a, b|x, y) = 〈ψ|Ax
a ⊗ By

b |ψ〉

that perfectly satisfy the referee’s tests in the Magic Square game. Let SB denote the support of the reduced
density ρB of |ψ〉 ∈ HA ⊗HB on HB. Then the observables B1, . . . , B9 stabilize SB, and their restriction
to that space form an operator solution to the Magic Square. In particular, the device’s joint state |ψ〉AB
together with observables B2 and B4 of device B associated with inputs y = 2 and y = 4 respectively form
a qubit (|ψ〉, B2, B4).

Proof. The first part of the lemma follows from the proof of Lemma 3.9. By Claim 3.11 the observables
associated to y = 2 and y = 4 anti-commute.

The preceding lemma shows that two of device B’s observables, B2 and B4, must anti-commute. As we
saw in Lemma 1.211 this means that up to an isomorphism on the device’s space these observables must
take the form B2 ' σZ ⊗ Id and B4 ' σZ ⊗ Id, which is exactly the form that they take in the solution
given in (3.6). What about the other observables? In other words, are the constraints that underlie the Magic
Square game rigid?

11Here we can apply the “state-independent” version of the qubit lemma because Lemma 3.12 states that the observables them-
selves, or rather their restriction to the support of |ψ〉, satisfy the operator constraints.
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Lemma 3.13. Under the same assumptions as Lemma 3.12 there is a unitary U on the spaceHB associated
with device B such that the observables U†BkU for k ∈ {1, . . . , 9} take the form described in (3.6). in
particular, the dimension of (the span of the support of |ψ〉 on)HB is a multiple of 4.

Proof. The main ingredient in this proof is the qubit lemma, Lemma 1.2, together with Claim 1.6 which
allows us to argue that observables that commute with σZ and σX on a copy of C2 must act as identity on
C2.

First note that the proof of Lemma 3.12 immediately extends to show that any two observables not in
the same row or column anti-commute. Furthermore, by definition the condition that the 9 observables
B1, . . . , B9 form an operator solution to the Magic Square implies that all observables in the same row or
column must commute. Using this condition and the characterization of B2 and B4 given in Lemma 3.12 it
follows from Claim 1.6 that B1 ' Id⊗B′1 and B5 ' Id⊗B′5, for some observable B′1 and B′5 on H′ that
anti-commute. Using Lemma 1.2 again it follows that there is an isometry U′ on H′ such that as operators
on H′, B′1 ' σZ ⊗ Id and B′5 ' σX ⊗ Id, with the identity acting on some new ancilla space H′′ such that
H′ ' C2 ⊗H′′. Combining U and U′ together, we have shown that there is an isomorphism U′U under
which

B1 ' Id⊗σZ ⊗ Id B2 ' σZ ⊗ Id⊗ Id
B4 ' σX ⊗ Id⊗ Id B5 ' Id⊗σX ⊗ Id

.

The remaining entries of the table are immediately filled in from the row and column constraints, which
uniquely determine them.

As a last step we show that we can also characterize the entangled state used by any strategy. Inter-
estingly, this characterization comes as a consequence of the characterization of the observables, which we
obtained without talking much about the state. This is based on the following general lemma, that we will
often make use of.

Lemma 3.14. Let |ψ〉ABE ∈ (C2)⊗n
A ⊗ (C2)⊗n

B ⊗HE be such that for every i ∈ {1, . . . , n} it holds that(
σX,i
)

A ⊗
(
σX,i
)

B|ψ〉ABE =
(
σZ,i
)

A ⊗
(
σZ,i
)

B|ψ〉ABE = |ψ〉ABE ,

where the Pauli operators act on the i-th copy of C2 in register A and B respectively. Then |ψ〉ABE =
|φ+〉⊗n

AB ⊗ |aux〉, for some state |aux〉 onH.

Proof. Note that σX ⊗ σX and σZ ⊗ σZ commute, hence are simultaneously diagonalizable. The proof
immediately follows from the observation that the only simultaneous eigenvalue-1 eigenstate of σX ⊗ σX
and σZ ⊗ σZ is the EPR pair |φ+〉.

Exercise 3.1. Show that the conclusion of Lemma 3.14 holds under the following weaker assumption:
|ψ〉ABE ∈ (C2)⊗n

A ⊗H
⊗n
B ⊗HE withHB arbitrary, and for every i ∈ {1, . . . , n},(

σX,i
)

A ⊗
(
Xi
)

B|ψ〉ABE =
(
σZ,i
)

A ⊗
(
Zi
)

B|ψ〉ABE = |ψ〉ABE ,

with Xi and Zi arbitrary binary observables on HB (in particular, we are not assuming any a priori qubit
structure onHB). [Hint: Remember Claim 2.7]

41



3.4.1 Consequences

The characterization of perfect strategies given in Lemma 3.13 together with Lemma 3.14 have some nice
consequences. First of all, they imply that the Magic Square game tests not one, but two qubits: any perfect
strategy must have a 4-qubit entangled state, two qubits per player, and Bob’s observables specify two qubits,
e.g. B2 and B4 for the first and B1 and B5 for the second. We even have access to more: for example, we
know that when Bob is asked question 9 the observable he applies is σY ⊗ σY. Although we clearly have
some distance to go, these are first steps towards testing that Bob implements a certain computation; for
now, we are able to test that he applies specific observables.

Another consequence of the characterization has to do with the problem of randomness certification. At
this point we know that, in any perfect strategy, whenever Bob is asked question 2 he measures the first qubit
of an EPR pair in the standard basis. This has the following implications:

1. The answer reported by Bob on question 2 (and, in fact, on any question) is a uniformly random
bit. In particular, no deterministic strategy can succeed in the game! We knew this already, because
deterministic strategies are classical. As such, any game for which quantum strategies can succeed
with strictly higher probability than classical strategies can serve as a “test for randomness”.

2. More importantly, the randomness that is generated by Bob at each execution of the game is “fresh”
and “private”. What we mean by this is that Bob’s random bit is (1) independent of any information
at the verifier’s side, including Bob’s question, and (2) uncorrelated to the environment. Indeed, since
Bob’s bit is the result of a measurement of half an EPR pair, the only party that can obtain correlated
information is Alice, who holds the other half of the EPR pair. By the rigidity theorem this EPR pair
must be in control of Alice: she needs it for them to succeed in the game. Therefore the verifier has
the guarantee that the bit she obtains (1) cannot have been “planted” a priori in the devices, and (2)
cannot be learned, even partially, by any third party distinct from A and B, even if the party could a
priori have kept entanglement with the devices—this is because, using the notation of Lemma 3.14,
the third party would only at best have access to the entirety of system E, which is uncorrelated with
AB.

These observations are important for cryptography, where the use of high-quality randomness that is uncor-
related from any possible eavesdropper or adversary is an essential resource. Indeed, the observations we
just made form the basis for the so-called “device-independent” analysis of quantum cryptography protocols.

Remark 3.15. We presented the fact that the Magic Square game tests two qubits, instead of one, as a
“feature”. But what if one only cares about a single qubit, is there a simple test for this? There is such a
test, but it is not an BLS game: it is the CHSH game. The proof that this game tests a qubit was recognized
early on, see e.g. [SW87] or [MYS12] for a more modern treatment. Unfortunately the game does not
have “quantum completeness 1”, in the sense that the optimal quantum strategy for it achieves a success
probability that is greater than the optimal classical, but less than 1 (precisely, it is cos2 π/8 ≈ 0.85). This
makes it less convenient to use as a building block in larger protocols, and so here we will stick with the
Magic Square game that is the simplest value-1 game which self-tests at least one qubit that we know of.

An important drawback of our analysis so far is that it is limited to the case of perfect strategies, i.e.
strategies that succeed with probability 1 in the game. In practice one may only reasonably assume, after
multiple executions of the game, that a given strategy succeeds with some probability that is close to one,
1− ε for some ε ≥ 0 that can be made small but not 0. In the next section we discuss how the results can be
extended to that case.
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3.4.2 The approximate case

The following theorem gives the flavor of an approximate version of the lemmas from the previous section.
It is taken from [CS17], where more general statements are shown for any BLS that satisfies appropriate
conditions. (A similar result specialized to the case of the Magic Square game is shown in [WBMS16].)

Theorem 3.16. Suppose that a strategy (|ψ〉, A, B) succeeds with probability 1− ε in the Magic Square
game, for some ε ≥ 0. Then there are isometries VD : HD → C2 ⊗C2 ⊗HD′ for D ∈ {A, B} such that∥∥VA ⊗VB|ψ〉AB − |φ+〉 ⊗ |φ+〉 ⊗ |aux〉

∥∥2
= O

(√
ε
)

,

for some state |aux〉 onHA’ ⊗HB’, and∥∥ IdA⊗
(
VBB2 − (σZ ⊗ Id⊗ Id)VB

)
|ψ〉AB

∥∥2
= O(ε) ,∥∥ IdA⊗

(
VBB4 − (σX ⊗ Id⊗ Id)VB

)
|ψ〉AB

∥∥2
= O(ε) ,

and similar relations hold for the remaining seven observables on Bob’s side.

Note that the theorem only characterizes the player’s observables “up to isometry”, as opposed to “up
to isomorphism” as we were able to in the perfect case (Lemma 3.13). As discussed in the previous lecture
(Section 2.3) this is unavoidable in general.

Later we will see a general method to derive statements such as Theorem 3.16 based on the use of
approximate group representation theory. For now, we let it serve as a good illustration of the kind of
statements we aim to prove in this course. It is worth reflecting on the strength of what we have achieved:
using only classical data and a single physical assumption (our model for spatial isolation based on the use of
tensor products) we have arrived at a very simple test that can be used to fully characterize the quantum state
of a 16-dimensional system (4 qubits) as well as elementary operations performed on it. This conclusion is
much stronger than the “standard” conclusion that motivates the study of Bell inequalities in the first place:
that they require entanglement.12 There is no equivalent to this in classical theory!

12Note that the fact that the isometries VA and VB are “local”, each acting only on one half of the total Hilbert space, is important
because it means that they couldn’t have artificially create the entanglement present in |φ+〉⊗ |φ+〉: that entanglement must “exist”
even independently of the application of the isometry, which only serves to “package” it in the neat form of two EPR pairs. Of
course, the state |aux〉 may or may not contain entanglement itself.
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