
CS255: Cryptography and Computer Se
urity Winter 2000Basi
 number theory fa
t sheetPart II: Arithmeti
 modulo 
ompositesBasi
 stu�1. We are dealing with integers N on the order of 300 digits long, (1024 bits). Unlessotherwise stated, we assume N is the produ
t of two equal size primes, e.g. on theorder of 150 digits ea
h (512 bits).2. For a 
omposite N let ZN = f0; 1; 2; : : : ; N � 1g.Elements of ZN 
an be added and multiplied modulo N .3. The inverse of x 2 ZN is an element y 2 ZN su
h that x � y = 1 mod N .An element x 2 ZN has an inverse if and only if x and N are relatively prime. In otherwords, g
d(x;N) = 1.4. Elements of ZN 
an be eÆ
iently inverted using Eu
lid's algorithm. If g
d(x;N) = 1then using Eu
lid's algorithm it is possible to eÆ
iently 
onstru
t two integers a; b 2 Zsu
h that ax + bN = 1. Redu
ing this relation modulo N leads to ax = 1 mod N .Hen
e a = x�1 mod N .Note: this inversion algorithm also works in Zp for a prime p and is more eÆ
ient thaninverting x by 
omputing xp�2 mod p.5. Denote by Z�N the set of invertible elements in ZN .6. We now have an algorithm for solving linear equations: a � x = b mod N .Solution: x = b � a�1 where a�1 is 
omputed using Eu
lid's algorithm.7. How many elements are in Z�N? We denote by '(N) the number of elements in Z�N .We already know that '(p) = p� 1 for a prime p.8. One 
an show that if N = pe11 � � � pemm then '(N) = N �Qmi=1 �1� 1pi�.In parti
ular, when N = pq we have that '(N) = (p� 1)(q � 1) = N � p� q + 1.Example: '(15) = jf1; 2; 4; 7; 8; 11; 13; 14gj = 8 = 2 � 4.9. Euler's theorem: for any a 2 Z�N we have that a'(N) = 1 mod N .Note: Euler's theorem implies that for a prime p we have a'(p) = ap�1 = 1 mod p forall a 2 Z�p. Hen
e, Euler's theorem is a generalization of Fermat's theorem.
1



Stru
ture of ZN1. The Chinese Remainder Theorem (CRT): Let p; q be relatively primes integers and letN = pq. Given r1 2 Zp and r2 2 Zq there exists a unique element s 2 ZN su
h thats = r1 mod p and s = r2 mod q. Furthermore, s 
an be 
omputed eÆ
iently.2. The CRT shows that ea
h element s 2 ZN 
an be viewed as a pair (s1; s2) wheres1 = s mod p and s2 = s mod q. The uniqueness guarantee shows that ea
h pair(s1; s2) 2 Zp � Zq 
orresponds to one element of ZN . For example, the pair (1; 1)
orresponds to 1 2 ZN.3. Note that by the CRT if x = y mod p and x = y mod q then x = y mod N .4. An element s 2 ZN is invertible if and only if s mod p in invertible in Zp and s mod q isinvertible in Zq. Hen
e, the number of invertible elements in ZN is '(N) = (p�1)(q�1).5. An element s 2 Z�N is a Q.R. if and only if s mod p is a Q.R. in Zp and s mod q is aQ.R. in Zq. Hen
e, the number of Q.R. in ZN is p�12 � q�12 = '(N)4 .6. Ja
obi symbol: for x 2 ZN de�ne � xN � = �xp� � �xq�.As it turns out, there is en eÆ
ient algorithm to 
ompute the Ja
obi symbol of x 2 ZNwithout knowing the fa
torization of N .7. Consider the RSA fun
tion f(x) = xe mod N . When e is odd we have that:�xeN � = �xep � � �xeq � = �xp� � �xq� = � xN �Hen
e, given an RSA 
iphertext C = xe mod N the Ja
obi symbol of C reveals theJa
obi symbol of x.Computing in ZN1. Sin
e N is a huge prime (e.g. 1024 bits long) it 
annot be stored in a single register.2. Elements of ZN are stored in bu
kets where ea
h bu
ket is 32 or 64 bits long dependingon the pro
essor's register size.3. Adding two elements x; y 2 ZN 
an be done in linear time in the length of N .4. Multiplying two elements x; y 2 ZN 
an be done in quadrati
 time in the length of N .For an n bit integer N faster multipli
ation algorithms work in time O(n1:7) (ratherthan O(n2)).5. Inverting an element x 2 ZN 
an be done in quadrati
 time in the length of N usingEu
lid's algorithm.6. Using the repeated squaring algorithm, xr mod N 
an be 
omputed in time (log2 r)O(n2)where N is n bits long. Note, the algorithm takes linear time in the length of r.2



7. EÆ
ient exponentiation modulo N = pq when the fa
torization of N is known: to
ompute a = xs mod N one does the following:(a) Compute a1 = xs mod p and a2 = xs mod q. Note that it suÆ
es to 
omputea1 = xs mod p�1 mod p and a2 = xs mod q�1 mod q.(b) Use the Chinese Remainder Theorem to 
onstru
t a 2 ZN su
h that a = a1 mod pand a = a2 mod q. Then a = xs mod N sin
e this relation holds modulo p andmodulo q.Sin
e p and q are half the size of N arithmeti
 modulo p and q is four times as fast(re
all, multipli
ation takes quadrati
 time). Furthermore, s mod p�1 and s mod q�1are ea
h roughly half that size of s (we are assuming s is as large as N). Hen
e,
omputing of a1 = xs mod p�1 mod p is eight times faster than 
omputing a = xs mod N .Sin
e we repeat this step twi
e, on
e for p and on
e for q, exponentiation using CRTis four times faster overall.SummaryLet N be a 1024 bit integer whi
h is a produ
t of two 512 bit primes. Easy problems in ZN :1. Generating a random element. Adding and multiplying elements.2. Computing gr mod N is easy even if r is very large.3. Inverting an element. Solving linear systems.Problems that are believed to be hard if the fa
torization of N is unknown, but be
ome easyif the fa
torization of N is known:1. Finding the prime fa
tors of N .2. Testing if an element is a QR in ZN .3. Computing the square root of a QR in ZN. This is provably as hard as fa
toring N .When the fa
torization of N = pq is known one 
omputes the square root of x 2 Z�N by�rst 
omputing the square root in Zp of x mod p and the square root in Zq of x mod qand then using the CRT to obtain the square root of x in ZN .4. Computing e'th roots modulo N when g
d(e; '(N)) = 1.5. More generally, solving polynomial equations of degree d. This is believed to be hardwhen the fa
torization of N is unknown, but 
an be done in polynomial time in dwhen the fa
torization is given. When the fa
torization of N is given one solves thepolynomial equation by �rst solving it modulo p and q and then using the CRT toobtain the roots in ZN .
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Problems that are believed to be hard in ZN :1. Let g be a generator of Z�N . Given x 2 Z�N �nd an r su
h that x = gr mod N . This isknown as the dis
rete log problem.2. Let g be a generator of Z�N . Given x; y 2 Z�N where x = gr1 and y = gr2. Find z = gr1r2 .This is known as the DiÆe-Hellman problem.One-way fun
tionsRe
all: a fun
tion f : f0; 1gn ! f0; 1gm is a (t; �) one-way fun
tion if1. There is an eÆ
ient algorithm that for any x 2 f0; 1gn outputs f(x).2. The fun
tion is hard to invert. More pre
isely, for any algorithm A whose runningtime is at most t we have Prx2f0;1gn hf(A(f(x))) = f(x)i < �In other words, when given f(x) as input algorithm A is unlikely to output a y su
hthat f(y) = f(x).Based on blo
k 
iphers If E(M; k) is a blo
k 
ipher se
ure against a 
hosen 
iphertextatta
k then f(k) = E(0; k) is a one way fun
tion. Su
h general one-way fun
tions 
anbe used for symmetri
 en
ryption, but 
annot be used for eÆ
ient key-ex
hange.Dis
rete log Fix a prime p and an element g 2 Z�p of \large" order.De�ne fDlog(x) = gx mod p.Main property: linear: Given a 2 Z and f(x); f(y) one 
an easily 
ompute f(a � x)and f(x+ y).The one-wayness of this fun
tion is essential for the se
urity of the DiÆe-Hellmanproto
ol and ElGamal publi
 key system.RSA Let N = pq be a produ
t of two large primes. Let e be an integer relatively prime to'(N). De�ne fRSA(x) = xe mod N .Main property: trapdoor. Given the fa
torization of N the fun
tion 
an be invertedeÆ
iently.The one wayness of this fun
tion is essential to the se
urity of the RSA publi
 keysystem.Rabin Let N = pq be a produ
t of two large primes. De�ne fRabin(x) = x2 mod N . Thisfun
tion is one-way if there is no eÆ
ient algorithm to fa
tor integers of the formN = pq. As in the 
ase of RSA, the fa
torization of N enables eÆ
ient inversion. Theone wayness of this fun
tion is essential to the se
urity of Rabin's signature s
heme.
4


