CS255: Cryptography and Computer Security Winter 2000

Basic number theory fact sheet

Part II: Arithmetic modulo composites

Basic stuff

1.

We are dealing with integers N on the order of 300 digits long, (1024 bits). Unless
otherwise stated, we assume N is the product of two equal size primes, e.g. on the
order of 150 digits each (512 bits).

. For a composite N let Zy ={0,1,2,...,N — 1}.

Elements of Zy can be added and multiplied modulo N.

The inverse of © € Zy is an element y € Zx such that x -y = 1 mod N.

An element x € Zy has an inverse if and only if x and N are relatively prime. In other
words, ged(z, N) = 1.

. Elements of Zy can be efficiently inverted using Euclid’s algorithm. If ged(z, N) = 1

then using Euclid’s algorithm it is possible to efficiently construct two integers a,b € Z
such that ax + bN = 1. Reducing this relation modulo N leads to ax = 1 mod N.
Hence a = 2! mod N.

Note: this inversion algorithm also works in Z, for a prime p and is more efficient than
inverting « by computing 2?~2 mod p.

Denote by Z} the set of invertible elements in Z .

. We now have an algorithm for solving linear equations: a-x =b mod N.

Solution: 2 =b-a ! where a ! is computed using Euclid’s algorithm.

How many elements are in Z}? We denote by ¢(/N) the number of elements in Z}.
We already know that ¢(p) = p — 1 for a prime p.

One can show that if N = p$*---p&» then p(N) = N - H:L (1 _ pi)

In particular, when N = pq we have that o(N)=(p—1)(¢—1)=N—p—q+ 1.
Example: o(15) = [{1,2,4,7,8,11,13,14}| = 8 = 2 x 4.

Euler’s theorem: for any a € Z% we have that a?¥) = 1 mod N.
Note: Euler’s theorem implies that for a prime p we have a?®) = ¢?~! = 1 mod p for
all a € Z;. Hence, Euler’s theorem is a generalization of Fermat’s theorem.

Structure of Zy

1.

The Chinese Remainder Theorem (CRT): Let p, ¢ be relatively primes integers and let
N = pq. Given r; € Z, and ry € Z, there exists a unique element s € Zy such that
s =1y mod p and s = ry mod ¢. Furthermore, s can be computed efficiently.

The CRT shows that each element s € Zy can be viewed as a pair (s, s9) where
s;1 = smod p and s3 = smod g. The uniqueness guarantee shows that each pair
(s1,82) € Z, x L, corresponds to one element of Zy. For example, the pair (1,1)
corresponds to 1 € Zy.

Note that by the CRT if z = y mod p and x = y mod ¢ then x = y mod N.

. An element s € Zy is invertible if and only if s mod p in invertible in Z, and s mod ¢ is

invertible in Z,. Hence, the number of invertible elements in Z is p(N) = (p—1)(g—1).

An element s € Z} is a Q.R. if and only if s mod p is a Q.R. in Z, and s mod ¢ is a
Q.R. in Z,. Hence, the number of Q.R. in Zy is ’%1 . q%l = @.

Jacobi symbol: for v € Zy define (i) = (£> : <£>

N p q
As it turns out, there is en efficient algorithm to compute the Jacobi symbol of z € Zy

without knowing the factorization of N.

Consider the RSA function f(z) = 2° mod N. When e is odd we have that:

(%)=G)(0)=0)-()- &)

Hence, given an RSA ciphertext C' = x® mod N the Jacobi symbol of C' reveals the
Jacobi symbol of x.

Computing in Zy

1.

2.

Since N is a huge prime (e.g. 1024 bits long) it cannot be stored in a single register.

Elements of Z are stored in buckets where each bucket is 32 or 64 bits long depending
on the processor’s register size.

Adding two elements x,y € Zy can be done in linear time in the length of N.

Multiplying two elements z,y € Zx can be done in quadratic time in the length of N.
For an n bit integer N faster multiplication algorithms work in time O(n'") (rather
than O(n?)).

Inverting an element x € Zy can be done in quadratic time in the length of N using
Euclid’s algorithm.

Using the repeated squaring algorithm, 2" mod N can be computed in time (log, r)O(n?)
where IV is n bits long. Note, the algorithm takes linear time in the length of r.

2

7.

Efficient exponentiation modulo N = pg when the factorization of N is known: to
compute a = z° mod N one does the following:

(a) Compute a; = z° mod p and ay = 2* mod gq. Note that it suffices to compute
a; = 2° ™47~ mod p and ay = 2*™°49~ mod q.

(b) Use the Chinese Remainder Theorem to construct a € Zy such that a = a; mod p
and @ = a; mod ¢q. Then a = 2° mod N since this relation holds modulo p and
modulo gq.

Since p and ¢ are half the size of N arithmetic modulo p and ¢ is four times as fast
(recall, multiplication takes quadratic time). Furthermore, s mod p—1 and s mod ¢—1
are each roughly half that size of s (we are assuming s is as large as N). Hence,
computing of a; = 2°* ™°4P~! mod p is eight times faster than computing a = 2° mod V.
Since we repeat this step twice, once for p and once for ¢, exponentiation using CRT
is four times faster overall.

Summary

Let N be a 1024 bit integer which is a product of two 512 bit primes. Easy problems in Zy:

1.
2.

3.

Generating a random element. Adding and multiplying elements.
Computing ¢" mod N is easy even if 7 is very large.

Inverting an element. Solving linear systems.

Problems that are believed to be hard if the factorization of /N is unknown, but become easy
if the factorization of N is known:

1.

2.

Finding the prime factors of N.
Testing if an element is a QR in Zy.

Computing the square root of a QR in Zy. This is provably as hard as factoring N.
When the factorization of N = pq is known one computes the square root of z € Z3 by
first computing the square root in Z, of # mod p and the square root in Z, of x mod ¢
and then using the CRT to obtain the square root of x in Zy.

. Computing e’th roots modulo N when ged(e, ¢(N)) = 1.

More generally, solving polynomial equations of degree d. This is believed to be hard
when the factorization of N is unknown, but can be done in polynomial time in d
when the factorization is given. When the factorization of N is given one solves the
polynomial equation by first solving it modulo p and ¢ and then using the CRT to
obtain the roots in Zy.

Problems that are believed to be hard in Zy:

1. Let g be a generator of Z},. Given x € Z) find an r such that + = ¢" mod N. This is
known as the discrete log problem.

2. Let g be a generator of Z},. Given x,y € Z}, where v = g"* and y = ¢"*. Find z = ¢"'">.
This is known as the Diffie-Hellman problem.

One-way functions
Recall: a function f: {0,1}" — {0,1}™ is a (¢, €) one-way function if
1. There is an efficient algorithm that for any = € {0,1}" outputs f(z).

2. The function is hard to invert. More precisely, for any algorithm A whose running
time is at most ¢ we have

Pr 1 f(A(f(2) = fz)| <e

ze€{0,1}"

In other words, when given f(z) as input algorithm A4 is unlikely to output a y such

that f(y) = f().

Based on block ciphers If E(M, k) is a block cipher secure against a chosen ciphertext
attack then f(k) = E(0,k) is a one way function. Such general one-way functions can
be used for symmetric encryption, but cannot be used for efficient key-exchange.

Discrete log Fix a prime p and an element g € Z; of “large” order.
Define fpioq(x) = g* mod p.
Main property: linear: Given a € Z and f(x), f(y) one can easily compute f(a - x)
and f(z +y).
The one-wayness of this function is essential for the security of the Diffie-Hellman
protocol and ElGamal public key system.

RSA Let N = pq be a product of two large primes. Let e be an integer relatively prime to
©(N). Define frga(z) = 2 mod N.
Main property: trapdoor. Given the factorization of N the function can be inverted
efficiently.
The one wayness of this function is essential to the security of the RSA public key
system.

Rabin Let N = pq be a product of two large primes. Define frapin(z) = * mod N. This
function is one-way if there is no efficient algorithm to factor integers of the form
N = pq. As in the case of RSA, the factorization of N enables efficient inversion. The
one wayness of this function is essential to the security of Rabin’s signature scheme.

