
CS255: Cryptography and Computer Seurity Winter 2000Basi number theory fat sheetPart II: Arithmeti modulo ompositesBasi stu�1. We are dealing with integers N on the order of 300 digits long, (1024 bits). Unlessotherwise stated, we assume N is the produt of two equal size primes, e.g. on theorder of 150 digits eah (512 bits).2. For a omposite N let ZN = f0; 1; 2; : : : ; N � 1g.Elements of ZN an be added and multiplied modulo N .3. The inverse of x 2 ZN is an element y 2 ZN suh that x � y = 1 mod N .An element x 2 ZN has an inverse if and only if x and N are relatively prime. In otherwords, gd(x;N) = 1.4. Elements of ZN an be eÆiently inverted using Eulid's algorithm. If gd(x;N) = 1then using Eulid's algorithm it is possible to eÆiently onstrut two integers a; b 2 Zsuh that ax + bN = 1. Reduing this relation modulo N leads to ax = 1 mod N .Hene a = x�1 mod N .Note: this inversion algorithm also works in Zp for a prime p and is more eÆient thaninverting x by omputing xp�2 mod p.5. Denote by Z�N the set of invertible elements in ZN .6. We now have an algorithm for solving linear equations: a � x = b mod N .Solution: x = b � a�1 where a�1 is omputed using Eulid's algorithm.7. How many elements are in Z�N? We denote by '(N) the number of elements in Z�N .We already know that '(p) = p� 1 for a prime p.8. One an show that if N = pe11 � � � pemm then '(N) = N �Qmi=1 �1� 1pi�.In partiular, when N = pq we have that '(N) = (p� 1)(q � 1) = N � p� q + 1.Example: '(15) = jf1; 2; 4; 7; 8; 11; 13; 14gj = 8 = 2 � 4.9. Euler's theorem: for any a 2 Z�N we have that a'(N) = 1 mod N .Note: Euler's theorem implies that for a prime p we have a'(p) = ap�1 = 1 mod p forall a 2 Z�p. Hene, Euler's theorem is a generalization of Fermat's theorem.
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Struture of ZN1. The Chinese Remainder Theorem (CRT): Let p; q be relatively primes integers and letN = pq. Given r1 2 Zp and r2 2 Zq there exists a unique element s 2 ZN suh thats = r1 mod p and s = r2 mod q. Furthermore, s an be omputed eÆiently.2. The CRT shows that eah element s 2 ZN an be viewed as a pair (s1; s2) wheres1 = s mod p and s2 = s mod q. The uniqueness guarantee shows that eah pair(s1; s2) 2 Zp � Zq orresponds to one element of ZN . For example, the pair (1; 1)orresponds to 1 2 ZN.3. Note that by the CRT if x = y mod p and x = y mod q then x = y mod N .4. An element s 2 ZN is invertible if and only if s mod p in invertible in Zp and s mod q isinvertible in Zq. Hene, the number of invertible elements in ZN is '(N) = (p�1)(q�1).5. An element s 2 Z�N is a Q.R. if and only if s mod p is a Q.R. in Zp and s mod q is aQ.R. in Zq. Hene, the number of Q.R. in ZN is p�12 � q�12 = '(N)4 .6. Jaobi symbol: for x 2 ZN de�ne � xN � = �xp� � �xq�.As it turns out, there is en eÆient algorithm to ompute the Jaobi symbol of x 2 ZNwithout knowing the fatorization of N .7. Consider the RSA funtion f(x) = xe mod N . When e is odd we have that:�xeN � = �xep � � �xeq � = �xp� � �xq� = � xN �Hene, given an RSA iphertext C = xe mod N the Jaobi symbol of C reveals theJaobi symbol of x.Computing in ZN1. Sine N is a huge prime (e.g. 1024 bits long) it annot be stored in a single register.2. Elements of ZN are stored in bukets where eah buket is 32 or 64 bits long dependingon the proessor's register size.3. Adding two elements x; y 2 ZN an be done in linear time in the length of N .4. Multiplying two elements x; y 2 ZN an be done in quadrati time in the length of N .For an n bit integer N faster multipliation algorithms work in time O(n1:7) (ratherthan O(n2)).5. Inverting an element x 2 ZN an be done in quadrati time in the length of N usingEulid's algorithm.6. Using the repeated squaring algorithm, xr mod N an be omputed in time (log2 r)O(n2)where N is n bits long. Note, the algorithm takes linear time in the length of r.2



7. EÆient exponentiation modulo N = pq when the fatorization of N is known: toompute a = xs mod N one does the following:(a) Compute a1 = xs mod p and a2 = xs mod q. Note that it suÆes to omputea1 = xs mod p�1 mod p and a2 = xs mod q�1 mod q.(b) Use the Chinese Remainder Theorem to onstrut a 2 ZN suh that a = a1 mod pand a = a2 mod q. Then a = xs mod N sine this relation holds modulo p andmodulo q.Sine p and q are half the size of N arithmeti modulo p and q is four times as fast(reall, multipliation takes quadrati time). Furthermore, s mod p�1 and s mod q�1are eah roughly half that size of s (we are assuming s is as large as N). Hene,omputing of a1 = xs mod p�1 mod p is eight times faster than omputing a = xs mod N .Sine we repeat this step twie, one for p and one for q, exponentiation using CRTis four times faster overall.SummaryLet N be a 1024 bit integer whih is a produt of two 512 bit primes. Easy problems in ZN :1. Generating a random element. Adding and multiplying elements.2. Computing gr mod N is easy even if r is very large.3. Inverting an element. Solving linear systems.Problems that are believed to be hard if the fatorization of N is unknown, but beome easyif the fatorization of N is known:1. Finding the prime fators of N .2. Testing if an element is a QR in ZN .3. Computing the square root of a QR in ZN. This is provably as hard as fatoring N .When the fatorization of N = pq is known one omputes the square root of x 2 Z�N by�rst omputing the square root in Zp of x mod p and the square root in Zq of x mod qand then using the CRT to obtain the square root of x in ZN .4. Computing e'th roots modulo N when gd(e; '(N)) = 1.5. More generally, solving polynomial equations of degree d. This is believed to be hardwhen the fatorization of N is unknown, but an be done in polynomial time in dwhen the fatorization is given. When the fatorization of N is given one solves thepolynomial equation by �rst solving it modulo p and q and then using the CRT toobtain the roots in ZN .
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Problems that are believed to be hard in ZN :1. Let g be a generator of Z�N . Given x 2 Z�N �nd an r suh that x = gr mod N . This isknown as the disrete log problem.2. Let g be a generator of Z�N . Given x; y 2 Z�N where x = gr1 and y = gr2. Find z = gr1r2 .This is known as the DiÆe-Hellman problem.One-way funtionsReall: a funtion f : f0; 1gn ! f0; 1gm is a (t; �) one-way funtion if1. There is an eÆient algorithm that for any x 2 f0; 1gn outputs f(x).2. The funtion is hard to invert. More preisely, for any algorithm A whose runningtime is at most t we have Prx2f0;1gn hf(A(f(x))) = f(x)i < �In other words, when given f(x) as input algorithm A is unlikely to output a y suhthat f(y) = f(x).Based on blok iphers If E(M; k) is a blok ipher seure against a hosen iphertextattak then f(k) = E(0; k) is a one way funtion. Suh general one-way funtions anbe used for symmetri enryption, but annot be used for eÆient key-exhange.Disrete log Fix a prime p and an element g 2 Z�p of \large" order.De�ne fDlog(x) = gx mod p.Main property: linear: Given a 2 Z and f(x); f(y) one an easily ompute f(a � x)and f(x+ y).The one-wayness of this funtion is essential for the seurity of the DiÆe-Hellmanprotool and ElGamal publi key system.RSA Let N = pq be a produt of two large primes. Let e be an integer relatively prime to'(N). De�ne fRSA(x) = xe mod N .Main property: trapdoor. Given the fatorization of N the funtion an be invertedeÆiently.The one wayness of this funtion is essential to the seurity of the RSA publi keysystem.Rabin Let N = pq be a produt of two large primes. De�ne fRabin(x) = x2 mod N . Thisfuntion is one-way if there is no eÆient algorithm to fator integers of the formN = pq. As in the ase of RSA, the fatorization of N enables eÆient inversion. Theone wayness of this funtion is essential to the seurity of Rabin's signature sheme.
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