
CS286.2 Lecture 15: Tsirelson’s characterization of XOR games

Scribe: Zeyu Guo

We first recall the notion of quantum multi-player games: a quantum k-player game involves a verifier
V and k players P1, . . . , Pk. The verifier randomly picks an index i according to some distribution π over
the set {1, . . . , Q} and sends a quantum state |ϕi〉 (the question) to the the players. Here |ϕi〉 consists of
k quantum registers, |ϕi〉 = |ϕi〉P1···Pk , but it is not necessarily a product state. Each player Pj applies a
unitary operator Uj on his register Pj, as well as his ancilla qubits, and sends part of the resulting state back
to the verifier. The verifier then performs a measurementMi = {Acci, Reji} on the answers and decides to
accept or reject according to the output.

The value w(G) of a game G is defined to be the maximum probability that the verifier accepts, ranging
over all possible strategies of players (i.e. all unitary operators Uj). Here the ancilla that each player uses is
initially set to |0〉. The entangled value w?(G) is defined in the same way, except that the players have the
freedom to use an arbitrary (and possibly entangled across all of them) initial ancilla state.

The classical PCP theorem can be interpreted as a statement that approximating w(G) within some
constant factor is NP-hard, even for 2-player games with a poly-size question set and constant-size answers.
Similarly, the game variant of the quantum PCP conjecture asks: is it QMA-hard to approximate w?(G)
within a constant factor?

However, we note that even the NP-hardness of approximating w?(G) is not obvious. This is because
the usual reduction from CSPs to games breaks down when there is entanglement, as we have seen in the
example of the Magic Square game. So we need to find another reduction.

In this lecture, we study XOR games, a simple class of games for which no such reduction exists (unless
NP = P): for XOR games, w(G) is NP-hard to approximate, but there exist polynomial time algorithms
computing w?(G)!

Definition 1 (XOR game). An XOR game is a 2-player classical game (i.e. questions and answers are all
classical) in which:

• questions are (s, t) chosen from {0, . . . , n− 1}2 according to some distribution π;

• answers are bits a, b ∈ {0, 1};

• the verifier’s predicate V(a, b|s, t) = fs,t(a⊕ b) only depends on a⊕ b, where ⊕ denotes the XOR
operation.

We will see two famous examples of XOR games. The first example, the CHSH game, is one of the
most famous games in quantum information theory.

Example 2 (CHSH game). Here n = 2 and s, t ∈ {0, 1} are independent random bits. And we let
V(a, b|s, t) = 1 iff a⊕ b = s ∧ t.

It is not hard to show that w(G) = 3/4: both players just answer zero and this is the best they can do.
However, CHSH (Clauser, Horne, Shimony, Holt) observed that w?(G) ≥ cos2(π

8 ) = 0.85 . . . , achieved
by the following strategy:
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Alice

|ψ0(0)〉 = |ψ0〉

|ψ1(0)〉 = |ψ1〉

|ψ0(
π
4 )〉|ψ1(

π
4 )〉

Bob

|ψ0(
π
8 ))〉

|ψ1(
π
8 ))〉

|ψ0(−π
8 )〉

|ψ1(−π
8 )〉

Figure 1: Alice (resp. Bob) measures using the solid arrows if s = 0 (resp. t = 0), and the dashed arrows if
s = 1 (resp. t = 1). She/he answers bit i if the outcome corresponds to |ψi(θ)〉 for the appropriate angle θ.

Consider an EPR pair |ψ〉 = 1√
2
(|0〉A|0〉B + |1〉A|1〉B). For θ ∈ [−π, π], define

|ψ0(θ)〉 = cos(θ)|0〉+ sin(θ)|1〉
|ψ1(θ)〉 = − sin(θ)|0〉+ cos(θ)|1〉.

That is, |ψ0(θ)〉 (resp. |ψ1(θ)〉) is the rotation of |0〉 (resp. |1〉) by an angle of θ in the real plane spanned
by |0〉 and |1〉.

Alice measures her qubit of |ψ〉 in the basis {|ψ0(0)〉, |ψ1(0)〉} if s = 0, and in {|ψ0(
π
4 )〉, |ψ1(

π
4 )〉} if

s = 1. She answers the bit i if the outcome corresponds to |ψi(0)〉 (resp. |ψi(
π
4 )〉). Bob measures his qubit

in the basis {|ψ0(
π
8 )〉, |ψ1(

π
8 )〉} if s = 0, and in {|ψ0(−π

8 )〉, |ψ1(−π
8 )〉} if s = 1. He answers the bit i if

the outcome corresponds to |ψi(
π
8 )〉 (resp. |ψi(−π

8 〉). See Figure 1 for an illustration.
Next we calculate the winning probability. We could assume that Alice measures first, as the two mea-

surements commute. Consider the case s = 0 and t = 0 where Alice and Bob are supposed to give the same
answer. Alice measures her qubit and collapses |ψ〉 to |ψ′〉A|ψ′〉B, where |ψ′〉 = c|ψi(0)〉 for some scalar
c, |c| = 1, i ∈ {0, 1}, and Alice answers bit i. Then the probability that Bob gets the correct outcome i is
|〈ψi(

π
4 )|ψ′〉|2 = |〈ψi(

π
4 )|ψi(0)〉|2 = cos2(π

8 ). It is easy to check in the same way that Alice and Bob win
with probability exactly cos2(π

8 ) as well in all the other cases. Overall the winning probability is cos2(π
8 ).

Tsirelson showed that this is indeed the best strategy, and hence w?(G) is exactly cos2(π
8 ). We will see

the proof later.
The next example is the MAXCUT game, one of the most famous games in CS.

Example 3 (MAXCUT game). Let G = G(V, E) be an undirected graph. The verifier picks (i, j) ∈ E at
random, chooses (s, t) among (i, j), (j, i), (i, i), (j, j) with equal probability 1/4, and sends s and t to Alice
and Bob respectively. The verifier accepts the answer (a, b) from Alice and Bob iff one of the following is
true:

• (s, t) is chosen to be (i, j) or (j, i), and a⊕ b = 1;

• (s, t) is chosen to be (i, i) or (j, j), and a⊕ b = 0.
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We first consider the classical game value w(G). For a = a(s), b = b(t) ∈ {0, 1}, we write xs =
(−1)a, yt = (−1)b ∈ {−1, 1} and use (xs)s∈V , (yt)t∈V to represent Alice and Bob’s strategy. Then

w(G) = max
(xs)s∈V ,(yt)t∈V

E
(i,j)∈E

[
1
4

(
1− xiyj

2
+

1− xjyi

2
+

1 + xiyi

2
+

1 + xjyj

2

)]
=

1
2
+ max

(xs)s∈V ,(yt)t∈V
E

(i,j)∈E

[
(xi − xj)(yi − yj)

8

]
≤ 1

2
+

1
2

max
(xs)s∈V

E
(i,j)∈E

[(
xi − xj

2

)2
]

(Cauchy-Schwarz)

=
1
2
+

1
2
· #MAXCUT

#EDGES
.

The last step follows by noting that
(

xi−xj
2

)2
contributes 1 if xi 6= xj, and 0 otherwise, and hence it counts

the number of edges in the cut defined by (xs)s∈V . Also note that the inequality in the second to last step is
in fact an equality. We conclude that

w(G) =
1
2
+

1
2
· #MAXCUT

#EDGES
.

But we know that MAXCUT is NP-hard. And the PCP theorem implies that even approximating MAXCUT
is NP-hard. So we have

Corollary 4. w(G) is NP-hard to approximate within a factor 1 + c for some constant c > 0.

What about w?(G)? We will see that it is easy to exactly compute w?(G) by solving semi-definite
programs! For this we need to first establish an important characterization of w?(G) for general XOR
games.

Tsirelson’s characterization of w?(G)

The quantum strategy of Alice and Bob in an XOR game can be described by

• a quantum state |ψ〉AB ∈ Cd ⊗Cd,

• for every question s sent to Alice, a POVM {A0
s , A1

s},

• for every question t sent to Bob, a POVM {B0
t , B1

t }.

Then the probability of answering (a, b) to questions (s, t) is given by 〈ψ|Aa
s ⊗ Bb

t |ψ〉.
Write As = A0

s − A1
s and Bt = B0

t − B1
t . Then

Aa
s =

I + (−1)a As

2
, Bb

t =
I + (−1)bBt

2
, a, b ∈ {0, 1}.

Moreover, POVMs {A0
s , A1

s} and {B0
t , B1

t } exactly correspond to Hermitian As, Bt with ‖As‖, ‖Bt‖ ≤ 1.
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We have

w?(G) = sup
|ψ〉,{Aa

s},{Bb
t }

E
(s,t)∼π

∑
a,b

V(a, b|s, t)〈ψ|Aa
s ⊗ Bb

t |ψ〉

= sup
|ψ〉,{As},{Bt}
As,Bt Hermitian
‖As‖,‖Bt‖≤1

E
(s,t)∼π

∑
a,b

fs,t(a⊕ b)
〈

ψ

∣∣∣∣I + (−1)a As

2
⊗ I + (−1)bBt

2

∣∣∣∣ψ

〉

= E
(s,t)∼π

∑
a,b

fs,t(a⊕ b)
4

+
1
2

sup
|ψ〉,{As},{Bt}
As,Bt Hermitian
‖As‖,‖Bt‖≤1

E
(s,t)∼π

gs,t〈ψ|As ⊗ Bt|ψ〉

where gs,t := fs,t(0) − fs,t(1). Note that the first term in the last line is the expected value for random
answers, and does not depend on the players’ strategy. So we introduce the bias

β?(G) := sup
|ψ〉,{As},{Bt}
As,Bt Hermitian
‖As‖,‖Bt‖≤1

E
(s,t)∼π

gs,t〈ψ|As ⊗ Bt|ψ〉

as the advantage the players can possibly have over the random strategy:

w?(G) = E
(s,t)∼π

∑
a,b

fs,t(a⊕ b)
4

+
1
2

β?(G).

A further simplification: while in general As and Bt are Hermitians with norm at most one, for the best
strategy we can further assume w.l.o.g. that they are actually observables, i.e., the eigenvalues of As and Bt
are ±1, or equivalently A2

s = B2
t = I. To see this, note that for fixed |ψ〉 and Bt, the value w?(G) is linear

in the matrices As, and by convexity, the best choice can be assumed to be at an extreme point of the unit
ball of Hermitian matrices, i.e., all As (and similarly all Bt) are observables.

Example 5. In the CHSH game, Alice’s measurements are {A0
0 = |0〉〈0|, A1

0 = |1〉〈1|} and {A0
1 =

|+〉〈+|, A1
1 = |−〉〈−|}, and A0 = |0〉〈0| − |1〉〈1| and A1 = |+〉〈+| − |−〉〈−| are observables. The

case for Bob is similar.

Theorem 6 (Tsirelson). Given an n× n complex matrix C = (Cs,t), the following are equivalent:

i) there exist d ∈ N, |ψ〉 ∈ Cd ⊗ Cd, As, Bt ∈ Herm(Cd), A2
s = B2

t = I, such that Cs,t = 〈ψ|As ⊗
Bt|ψ〉;

ii) there exist real unit vectors xs, yt ∈ Rn+2 for 1 ≤ s, t ≤ n such that Cs,t = xs · yt ;

iii) the same as (i) but d ≤ 2d
n+2

2 e.

Proof. (iii) =⇒ (i): trivial.
(i) =⇒ (ii): For each s, t, define |xs〉 = (As ⊗ I)|ψ〉, |yt〉 = (I⊗ Bt)|ψ〉 ∈ Cd. Then 〈xs|yt〉 = Cs,t.

Write |xs〉 = ∑i ui|ei〉 and |yt〉 = ∑i vi|ei〉 in some fixed orthonormal basis {|ei〉} of Cd. Define real
vectors xs, yt ∈ R2d:

xs = (Re(u1), Im(u1), . . . , Re(ud), Im(ud)),
yt = (Re(v1), Im(v1), . . . , Re(vd), Im(vd)).
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Then xs · yt = Re(∑i uivi) = Re(〈xs|yt〉) = Re(Cs,t). But As, Bt being Hermitian implies that Cs,t is real.
So xs · yt = Cs,t. We also have ‖xs‖2 = Re(〈xs|xs〉) = 1, so all xs, and similarly all yt, are unit vectors.

The only problem is that the dimension is 2d rather than n + 2. But note that replacing each xs by its
orthogonal projection onto the subspace spanned by all yt does not affect any xs · yt. So we may assume all
xs and yt lie in an n-dimensional subspace. By representing xs, yt in an orthonormal basis of this subspace,
we have xs, yt ∈ Rn and xs · yt = Cs,t.

Finally, note that projecting xs and yt shrinks their norms. But we can fix it by enlarging the dimension
by two. For each xs we add two coordinates (

√
1− ‖xs‖2, 0). And for each yt the new coordinates are

(0,
√

1− ‖yt‖2). It does not affect xs · yt and hence all properties are satisfied.
(ii) =⇒ (iii): Choose d = 2d

n+2
2 e and consider the maximal entangled state |ψ〉 = 1√

d ∑d
i=1 |i〉|i〉. This

state has the property that for any A = (Aij), B = (Bij),

〈ψ|A⊗ B|ψ〉 = 1
d ∑

i,j
〈i|A|j〉〈i|B|j〉 = 1

d ∑
i,j

AijB
ᵀ
ji =

1
d ∑

i
(ABᵀ)ii =

1
d

Tr(ABᵀ).

Next we need a construction of anti-commuting matrices. This is a “representation of the Clifford
algebra”. Recall the Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 i
−i 0

)
, Z =

(
1 0
0 −1

)
.

They anti-commute and all square to the identity. For 1 ≤ i ≤
⌈ n+2

2

⌉
, define the d× d matrices

T2i−1 = I⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗X⊗Y⊗ · · · ⊗Y︸ ︷︷ ︸
d n+2

2 e−i

,

T2i = I⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗Z⊗Y⊗ · · · ⊗Y︸ ︷︷ ︸
d n+2

2 e−i

.

All of them are Hermitian, square to the identity, and mutually anti-commute.
For 1 ≤ s, t ≤ n, define As = ∑n+2

i=1 (xs)iTi and Bt = ∑n+2
i=1 (yt)iT

ᵀ
i . Then for all 1 ≤ s ≤ n,

A2
s = ∑

i
(xs)

2
i T2

i + ∑
i<j

(xs)i(xs)j(TiTj + TjTi︸ ︷︷ ︸
=0

) = ∑
i
(xs)

2
i T2

i = ‖xs‖2 · I = I.

Similarly B2
t = I for all 1 ≤ t ≤ n. Finally,

〈ψ|As ⊗ Bt|ψ〉 =
1
d

Tr(AsBᵀ
t ) =

1
d ∑

i,j
(xs)i(yt)jTr(TiTj)

=
1
d ∑

i
(xs)i(yt)iTr(T2

i ) +
1
d ∑

i<j
(xs)i(yt)jTr(TiTj + TjTi︸ ︷︷ ︸

=0

)

=
1
d ∑

i
(xs)i(yt)iTr(I)

= xs · yt

which equals Cs,t, as desired.
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This theorem is very powerful. From (i) ⇐⇒ (ii), we have an alternative characterization of the bias
β?(G):

β?(G) = sup
xs,yt∈Rn+2,‖xs‖=‖yt‖=1

E
(s,t)∼π

gs,txs · yt. (∗)

Note that the supremum is now over a compact set of bounded dimension n + 2, and hence is actually a
maximum. And from (i)⇐⇒ (iii), we have a bound 2d

n+2
2 e for the dimension of an optimal strategy |ψ〉.

Moreover, the characterization (∗) is a semi-definite program for which polynomial-time algorithms
exist. So we could compute β?(G), and hence w?(G), in polynomial time.

Example 7. In the CHSH game, we can check by hand that β?(G) ≤
√

2
2 :

β?(G) = sup
xs,yt

1
4
(x0 · y0 + x0 · y1 + x1 · y0 − x1 · y1)

= sup
xs,yt

1
4
(x0 · (y0 + y1) + x1 · (y0 − y1))

≤ sup
xs,yt

1
4
(‖x0‖‖y0 + y1‖+ ‖x1‖‖y0 − y1‖)

≤ sup
xs,yt

1
4
(‖y0 + y1‖+ ‖y0 − y1‖)

≤ sup
xs,yt

√
2

4

√
‖y0 + y1‖2 + ‖y0 − y1‖2

= sup
xs,yt

√
2

4

√
2‖y0‖2 + 2‖y1‖2

=

√
2

2
.

So w?(G) ≤ 1
2 +

√
2

4 = cos2(π
8 ): The strategy we have seen before is optimal!
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