
CS286.2 Lecture 1: The PCP theorem, hardness of
approximation, and multiplayer games

Scribe: Thomas Vidick

The PCP theorem was proved as the result of a long, intense line of work in the 90s exploring
the power of interaction. Since then the theorem has been given a second proof, and has found
many applications, in particular to hardness of approximation. In this lecture we give three equiv-
alent formulations of the theorem. All three state that a certain problem is NP-complete.

Proof checking version
Our first formulation gives the theorem its name (PCP = Probabilistically Checkable Proof). It
states that, provided that one is willing to settle for a probabilistic decision process that errs with
small probability, all languages in NP have proofs that can be verified very efficiently: only a
constant number of symbols of the proof need to be evaluated! To state this formally we first need
the notion of a PCP verifier.

Definition 1 (PCP verifier). Let r, q : N → N and let Σ = (Σn)n∈N be a sequence of finite
sets.1 A (r, q)Σ − PCP verifier V is a probabilistic polynomial-time algorithm that takes as input
a string x ∈ {0, 1}∗ and has access to a special tape containing a proof Π ∈ Σ∗n, where n = |x|
is the length of x. The verifier flips at most r(n) random coins, makes at most q(n) queries to the
proof, and outputs a single “accept” or “reject” symbol. Given the specification of a verifier V
and x ∈ {0, 1}∗ we let ω(Vx) be the maximum acceptance probability of V, when its input is x
and the maximum is taken over all possible proofs Π ∈ Σ∗.

We define an associated complexity class:

Definition 2. Let c, s : N → [0, 1] be arbitrary (computable) functions and r, q, Σ as in Defini-
tion 1. A language L is in PCPc,s[r, q]Σ if there exists a (r, q)Σ − PCP verifier V such that, for
every x ∈ {0, 1}∗:

• (Completeness.) If x ∈ L then ω(Vx) ≥ c, i.e. there exists a proof Π such that Vx accepts
Π with probability at least c,

• (Soundness.) If x /∈ L then ω(Vx) ≤ s, i.e. for every proof Π, Vx accepts Π with probability
at most s.

1Most often we will have Σn = Σ a constant-sized set for all n.

1

When c = 1, s = 1/2 and Σ = {0, 1} we use the shorthand PCP[r, q] for PCPc,s[r, q]Σ.

The PCP theorem states that all languages in NP have very efficient verifiers, namely ones that
only read a constant number of bits from the proof:

Theorem 3 (PCP, proof-checking variant). The inclusion NP ⊆ PCP(O(log n), O(1)) holds.
Equivalently, given a (O(log n), O(1)){0,1}-PCP verifier V the problem of deciding between
ω(Vx) = 1 and ω(Vx) ≤ 1/2 is NP-hard.

Multiplayer games
We state a second variant of the PCP theorem that is closer to its origins in the study of mul-
tiprover interactive proof systems. The line of work that led to the PCP theorem (see Ryan
O’Donnell’s notes for more on the history of the theorem) was motivated by the study of the
power of interaction. Starting from NP, allowing the verifier to use randomness as well as to fol-
low a polynomial-time question/answer interaction with an infinitely powerful prover leads to the
class IP (Interactive Proofs), which was shown to equal PSPACE by Shamir (building on work
by Lund, Fortnow, Karloff and Nisan). Adding a second prover, not allowed to communicate with
the first, gives MIP (Multiprover Interactive Proofs). Building upon techniques introduced in the
proof of IP = PSPACE (most importantly, arithmetization), Babai, Fortnow and Lund proved that
MIP = NEXP — an “exponentially larger” class than the class NP from which we started from.

The discovery of the surprising power of randomization, interaction, and multiple provers even-
tually led to the proof of the PCP theorem. Here we give a statement of the theorem in the language
of multiplayer games, which provide a convenient framework in which to express “scaled-down”
variants (corresponding to interactions involving a single round of question/answers, and a poly-
nomial number of possible questions) of the MIP = NEXP result.

Definition 4. Let q be an integer. A q-player game G is specified by the following:

• Finite question sets Q1, . . . , Qq,

• A probability distribution π on Q1 × · · ·Qq,

• Finite answer sets A1, . . . , Aq,

• A decision predicate V : (A1 × · · · × Aq)× (Q1 × · · · ×Qq)→ {0, 1}.

Given a game G, the value ω(G) of G is defined as the maximum success probability of players
P1, . . . , Pq in the game, where player Pj is simply a deterministic function f j : Qj → Aj.2 Formally,

ω(G) = max
f j :Qj→Aj

∑
(q1,...,qq)∈Q1×···×Qq

π(q1, . . . , qq)V
(

f1(q1), . . . , fq(qq); q1, . . . , qq
)
.

Our second formulation of the PCP theorem is as follows.
2It is not hard to see that allowing the players to use private or even shared randomness would not improve their

chances of winning; see the exercises.

2

http://courses.cs.washington.edu/courses/cse533/05au/pcp-history.pdf
http://courses.cs.washington.edu/courses/cse533/05au/pcp-history.pdf

Theorem 5 (PCP, games variant). For any L ∈ NP there exists a polynomial-time mapping x ∈
{0, 1}∗ 7→ Gx from strings x to q-player games Gx, where q = O(1), such that x ∈ L =⇒
ω(Gx) = 1 and x /∈ L =⇒ ω(Gx) ≤ 1/2. Equivalently, there exists a constant q such that the
problem of deciding whether, given a q-player game G, ω(G) = 1 or ω(G) ≤ 1/2, is NP-hard.

Constraint satisfaction problems
Our third formulation of the PCP theorem uses the language of constraint satisfaction problems,
and is the most useful for applications to hardness of approximation.

Definition 6 (CSP). Let m, q : N → N and let Σ = (Σn) be a sequence of finite sets. A
(m, q)Σ − CSP ϕ is a collection of m constraints Cj, each acting on at most q out of a total of n
variables. If m = poly(n) and Σ = {0, 1} we refer to (m, q)Σ −CSPs as q−CSPs.

Given a CSP ϕ, its value ω(ϕ) is the maximum fraction of constraints that an assignment can
satisfy:

ω(ϕ) = max
x1,...,xn

#{j : Cj is satisfied by (xi)}
m

.

The Cook-Levin theorem states that 3-SAT is NP-complete. In other words, the problem of
deciding whether ω(ϕ) = 1 or ω(ϕ) ≤ 1− 1/m for (m, 3){0,1} − CSPs is NP-complete. The
PCP theorem shows that an a priori much easier, approximation version of this problem remains
just as hard:

Theorem 7 (PCP, CSP variant). For any L ∈ NP there exists a polynomial-time mapping x ∈
{0, 1}∗ 7→ ϕx from strings x to (m, q)−CSPs ϕx, where m = poly(n) and q = O(1), such that
x ∈ L =⇒ ω(ϕx) = 1 and x /∈ L =⇒ ω(ϕx) ≤ 1/2. Equivalently, there exists a constant
q such that given a q− CSP ϕ the problem of deciding between ω(ϕ) = 1 and ω(ϕ) ≤ 1/2 is
NP-complete.

With some more work, Hastad showed the following:

Theorem 8. Let ε > 0. Given a 3-SAT formula ϕ, it is NP-hard to distinguish between ω(ϕ) = 1
and ω(ϕ) ≤ 7/8 + ε.

The theorem is optimal in the sense that given any 3-SAT formula there always exists an assign-
ment satisfying a fraction 7/8 of the clauses. To see this, note that a randomly chosen assignment
satisfies any 3-SAT clause with probability exactly 7/8. By linearity of expectation, the expected
fraction of clauses satisfied by a random assignment is 7/8, hence there must exist an assignment
satisfying as many clauses.

Equivalence between the three versions
We show that the three versions of the PCP theorem are equivalent.

3

Theorem 3 =⇒ Theorem 7. Let L be any language in NP and x ∈ {0, 1}∗. By Theorem 3 we
know that there exists a PCP verifier V = Vx that flips r = r(|x|) random coins, makes q = q(|x|)
queries to a proof Π, and is such that, if x ∈ L then there exists a proof Π that Vx accepts with
probability 1, whereas if x /∈ L any proof Π is accepted by Vx with probability at most 1/2.

Consider the following constraint satisfaction problem ϕx. ϕx has as many variables as there
are locations in the proof Πx, which without loss of generality is at most q2r = poly(|x|). For
each possible string R ∈ {0, 1}r we introduce a constraint CR which corresponds to the check
performed by Vx on this choice of random bits. Precisely, whenever the verifier’s random bits
correspond to R, he looks up q entries of the proof Π and accepts if and only if these entries satisfy
a certain constraint. The constraint Cj is defined to evaluate to 1 if and only if the variables on
which Cj acts are assigned values that would have made the verifier Vx accept, if the entries of Π
he looks up were assigned matching values.

If x ∈ L we know that there exists a proof Π that is accepted by Vx. In other words, there is an
assignment to the variables of ϕx (the corresponding entries of Π) that satisfies all the clauses (the
verifier’s test on any possible random string). Hence ω(ϕx) = 1.

If x /∈ L then every proof Π is rejected by Vx with probability at least 1/2. Suppose for
contradiction that ω(ϕx) > 1. This means that there would exist an assignment to all variables
that satisfies strictly more than 1/2 of the constraints. We can define a corresponding proof Π that
lists all the variables’ values. By definition of ϕx from Vx the proof Π would satisfy strictly more
than 1/2 of the verifier’s possible tests, contradicting our assumption that Vx rejects any proof with
probability at least 1/2. Hence it must be that ω(ϕx) ≤ 1/2, which concludes the proof.

4

