CS286.2 Around the Quantum PCP Conjecture

Problem sheet 2

9/30/2014

Error reduction for QMA. Let *V* be a QMA verifier whose maximum acceptance probability on *n*-qubit witnesses $|\xi\rangle$ is *p*. For any integer *k* and $1 \le t \le k$ let $V_{t,k}$ be the verifier which expects a (nk)-qubit witness $|\xi'\rangle$, processes each chunk of *n* qubits of $|\xi'\rangle$ independently according to *V*, and accepts if and only if at least *t* of the *k* chunks resulted in the "accept" outcome.

- 1. Show that the maximum acceptance probability of $V_{k,k}$ is exactly p^k .
- 2. What is the maximum acceptance probability of $V_{t,k}$, for $1 \le t \le k$?
- 3. Deduce $QMA_{c,s} \subseteq QMA_{2/3,1/3}$ for any $c s = \Omega(1/\text{ poly})$. In terms of *c* and *s*, how much larger a proof does the modified verifier require?

Upper bounds on QMA.

- 1. Show that QMA \subseteq PSPACE: any language in QMA can be decided by a classical deterministic algorithm running in polynomial space (but possibly exponential time).
- 2. Improve your upper bound to QMA \subseteq PP, the class of languages decidable in probabilistic polynomial time with unbounded error (inputs in the language should be accepted with probability > 1/2, and inputs not in the language with probability < 1/2, but there need not be a separation).

A QMA verification procedure for the local Hamiltonian. In this exercise we show that $LH_{a,b} \in QMA$ for any b - a > 1/poly(n), where *n* is the number of qubits of the local Hamiltonian.

- 1. Let $X \in L(\mathbb{C}^d)$ with $0 \le X \le Id$ be given explicitly, as a $d \times d$ matrix with complex entries. Show how a two-outcome measurement with probabilities $\{\|X^{1/2}|\xi\rangle\|^2, 1 - \|X^{1/2}|\xi\rangle\|^2\}$ can be implemented on state $|\xi\rangle$ by adding a single ancilla qubit initialized in $|0\rangle$, performing a unitary (that you need to specify) on $|\xi\rangle|0\rangle$, and measuring the ancilla in the computational basis.
- Suppose H = Σ_{i=1}^m H_i given explicitly, and a quantum state |ξ⟩ accessible on a quantum register. Devise a simple randomized procedure that estimates a guess λ for ⟨ξ|H|ξ⟩ given access to a single copy of |ξ⟩. What is E[λ]? Give a simple upper bound on E[λ²]. How many copies of |ξ⟩ are required to produce a guess for 1/m ⟨ξ|H|ξ⟩ that is accurate to within ±ε?
- 3. Deduce $LH_{a,b} \in QMA_{c,s}$ for some c, s depending on a, b. Use error amplification for QMA to conclude $LH_{a,b} \in QMA_{2/3,1/3} = QMA$.

5-local Hamiltonian is QMA-complete. In class we saw that the local Hamiltonian problem with Hamiltonians acting on $O(\log n)$ qubits is QMA-hard. In this problem we improve the construction to constant locality, by showing that 5-local Hamiltonian is also QMA-hard. In order to achieve this the main idea is to represent the clock in *unary*: time $|t\rangle$ is represented as $|0 \cdots 01 \cdots 1\rangle$, with (T - t) zeroes and t ones.

- 1. Show how to modify H_{in} , H_{out} and H_{prop} so that each term is 5-local and is designed to act on the new clock.
- 2. The new construction is insufficient: check that invalid clock states, such as $|101\rangle$, have eigenvalue 0 with respect to $H_{in} + H_{out} + H_{prop}$. Design a "penalty" Hamiltonian H_{stab} such that any state of the form $|\psi\rangle|$ valid clock state \rangle has eigenvalue 0 with respect to H_{stab} , but any state of the form $|\psi\rangle|$ invalid clock state \rangle has eigenvalue at least 1. What is the locality of H_{stab} ?
- 3. Use the projection lemma to analyze the new Hamiltonian $H = J_{in}H_{in} + H_{out} + J_{prop}H_{prop} + J_{stab}H_{stab}$ and show that it has a small eigenvalue if and only if the original circuit had an accepting state (provided the weights J_{in} , J_{prop} and J_{stab} are chosen appropriately). Conclude.

The Motzkin Hamiltonian. Let $|\Phi\rangle = \frac{1}{\sqrt{2}}(|()\rangle - |00\rangle)$, $|\Psi_l\rangle = \frac{1}{\sqrt{2}}(|(0\rangle - |0(\rangle))$ and $|\Psi_r\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |00\rangle)$. The Motzkin Hamiltonian *H* is

$$H = |\rangle\rangle\langle\rangle|_{1} + |\langle\rangle\langle(|_{n} + \sum_{j=1}^{n-1} (|\Phi\rangle\langle\Phi|_{j,j+1} + |\Psi_{l}\rangle\langle\Psi_{l}|_{j,j+1} + |\Psi_{r}\rangle\langle\Psi_{r}|_{j,j+1})|$$

Let the Motzkin state $|\mathcal{M}_n\rangle$ be the uniform superposition over all well-parenthesized states $|s\rangle$ for $s \in \{(,),0\}$.

- Let S_{p,q} ⊆ {(,),0}ⁿ be the set of all strings *s* that are equivalent to a string s_{p,q} =)···)0···0(···(, where there are *p* left brackets, (*n* − (*p* + *q*)) zeros and *q* right brackets, under local transformations 00 ↔ (), (0 ↔ 0(and 0) ↔)0. Prove that the sets S_{p,q} form a partition of {(,),0}ⁿ. Show that S_{0,0} is precisely the set of Motzkin paths.
- 2. Let $\tilde{H} = \sum_{j=1}^{n-1} (|\Phi\rangle \langle \Phi|_{j,j+1} + |\Psi_l\rangle \langle \Psi_l|_{j,j+1} + |\Psi_r\rangle \langle \Psi_r|_{j,j+1})$. Prove that the eigenspace of \tilde{H} associated with eigenvalue 0 (i.e. the ground space) is spanned by the states $|S_{p,q}\rangle$ that are the uniform superposition over all strings in $S_{p,q}$.
- 3. Conclude that $|\mathcal{M}_n\rangle = |S_{0,0}\rangle$ is the unique ground state of *H*.