
CS120, Quantum Cryptography, Fall 2016

Homework # 8 due: 10:29AM, November 29th, 2016

Ground rules:

Your homework should be submitted to the marked bins that will be by Annenberg 241.

Please format your solutions so that each problem begins on a new page, and so
that your name appears at the top of each page.

You are strongly encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on your
homework specifically which problems were a collaborative effort and with whom. You may
not search online for solutions, but if you do use research papers or other sources in your
solutions, you must cite them.

Some of the problems are inspired from problems available on EdX. You are not allowed to
look up the EdX problems for hints (such as the multiple answers provided). Focus on the
present pset!

Late homework will not be accepted or graded. Extensions will not be granted, except on
the recommendation of a dean. We will grade as many problems as possible, but sometimes
one or two problems will not be graded. Your lowest homework grade of the quarter will be
dropped from your final grade.

Place all your problems in the first (top) bin in the box by Annenberg 241. Start each
problem on a new page, with your name clearly marked at the top of the page.

Problems:

1. (4 points) Thinking adversarially.
Let’s imagine that we are playing the role of the eavesdropper Eve. We observe two
parties, Alice and Bob, trying to implement certain QKD protocols. Because QKD is
hard, Alice and Bob might try to cut corners in the implementation of their protocols.
Here are two suggested protocols that Alice and Bob might want to implement. For
each of them, either prove security or provide an explicit attack for Eve.

Protocol 1 :
Alice and Bob can communicate through a classical authenticated channel, and a
quantum (non-authenticated) channel.

- Alice generates bit strings x, θ ∈ {0, 1}n uniformly at random.

- Alice prepares qubits |xi〉θi for i = 1, .., n where |0〉0 = |0〉, |1〉0 = |1〉, |0〉1 = |+〉,
|1〉1 = |−〉, and sends them to Bob.

- Alice announces the basis string θ.
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- Bob measures the qubits he received according to the bases specified by the string
θ and recovers x.

Protocol 2 :

- Alice creates n EPR pairs and sends one half of each to Bob.

- She generates the string θ ∈ {0, 1} and measures her half of each pair according
to the corresponding bit of θ (standard basis for 0, Hadamard for 1)

- Bob generates a random string θ̂, and similarly measures his half of the EPR
pairs. Then Bob announces over an authenticated channel that he received and
measured his qubits.

- Alice and Bob announce θ and θ̂ over an authenticated channel.

- Alice and Bob use the measurement results they obtained for each θi = θ̂i as their
key.

2. (8 points) BB’84 fails in the device-independent setting.
Consider the purified variant of the BB’84 protocol. Suppose that Eve prepares the
state ρABE in the following form:

ρABE =
1∑

x,z=0

|xz〉 〈xz|A ⊗ |xz〉 〈xz|B ⊗ |xz〉 〈xz|E , (1)

where |xz〉 is short-hand notation for |x〉 ⊗ |z〉. Note that here each of the systems A
and B handed over to Alice and Bob respectively is made of two qubits. But suppose
that they don’t notice this - the qubits go directly into their respective measurement
device.

Now suppose each of Alice and Bob’s measurement device, instead of measuring a single
qubit in the standard or Hadamard bases, as it is supposed to do, in fact performs the
following:

• When the device is told to measure in the standard basis, it measures the first
qubit of the two-qubit system associated with the device in (1) in the standard
basis;

• When the device is told to measure in the Hadamard basis, it measures the second
qubit of the two-qubit system associated with the device in (1) in the standard
basis.

(a) Alice and Bob put blind faith in their hardware and attempt to implement BB’84.
They want to check that their state is an EPR pair, so Alice asks her box to
measure in the standard basis. The box returns a measurement outcome of 0.
Determine the post-measurement state.
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(b) After Alice’s measurement, Bob asks his box to measure in the Hadamard basis.
What measurement outcome will Bob receive? Suppose instead Bob had asked
his box to measure in the standard basis. What measurement outcome would
Bob have received?

(c) Suppose Bob did in fact the latter. Suppose that now Eve measures her first qubit
in the standard basis. What measurement outcome does she receive?

(d) Suppose Alice and Bob run the BB’84 protocol, and, as per the usual, they look
at all the rounds in which they made the same measurement as each other. They
pick a random subset of half of those rounds and test whether they received the
same output on all the rounds. What is the probability that they pass the test?

(e) Let T ′ be the set of rounds on which Alice and Bob made the same measurement
but didn’t perform a test. Let {θj}j∈T ′ be the measurements they made and
{xj}j∈T ′ and {x̂j}j∈T ′ be the results they received. The θj have been communi-
cated over the public channel. Eve wishes to learn the xj. Which measurements
should she make?

(f) Let X be the classical key generated by Alice and Bob. What is Hmin(X | E),
where E is Eve’s system?

3. (3 points) Commuting observables are compatible.
Consider X ⊗X and Z ⊗ Z. Each of these is a 4× 4 Hermitian matrix which squares
to identity, so it has ±1 eigenvalues. Moreover, since X ⊗ X and Z ⊗ Z mutually
commute, they have a simultaneous eigenbasis. It turns out that it consists of the Bell
states

|Ψ00〉 =
1√
2

(|00〉+ |11〉) ; |Ψ01〉 =
1√
2

(|00〉 − |11〉) ;

|Ψ10〉 =
1√
2

(|01〉+ |10〉) ; |Ψ11〉 =
1√
2

(|01〉 − |10〉) .

(a) Suppose we measure an arbitrary two-qubit state |φ〉 using the observable X ⊗X
and obtain the outcome −1. To which two-dimensional eigenspace does the post-
measurement state belong? (Specify the subspace using two of the Bell states
above.) Next, we measure the observable Z ⊗ Z and obtain outcome 1. What is
post-measurement state |φ′〉?

(b) Suppose that instead we performed the measurement−Y ⊗ Y = (X ⊗X)(Z ⊗ Z)
directly, and the post-measurement state had nonzero overlap with |φ′〉. What
measurement outcome would we have obtained?

(c) What do you deduce about about the relationship between the outcomes of mea-
suring commuting observables A and B with the outcome of measuring the ob-
servable AB directly?
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4. (9 points) A coherent attack on a nonlocal game.
In video 7.5-2 on EdX, you saw a nonlocal game where a coherent attack allowed the
players to do just as well when playing two parallel copies of the game as they did
when playing just one copy.

Now we’ll see another example of a game with such an attack, and we’ll prove that
this attack is the best strategy for the game even in the quantum setting.

(a) We begin by describing the single-shot game. Eve starts by generating a pair
(s, t) ∈ {(0, 0), (0, 1), (1, 0)} uniformly at random. She gives s to Alice and t to
Bob. Alice and Bob generate output bits a, b ∈ {0, 1}, respectively. They win if
a ∨ s 6= b ∨ t. As a warm-up, consider the strategy in which a = s and b = t.
What is the winning probability? Which inputs cause Alice and Bob to lose?

(b) In the two-parallel versionG(2) of the game we just described, Eve picks two strings
(s0, t0), (s1, t1) from {(0, 0), (0, 1), (1, 0)} independently and uniformly at random.
She gives (s0, s1) to Alice, (t0, t1) to Bob, and demands outputs (a0, a1), (b0, b1)
from Alice and Bob. They win if a0 ∨ s0 6= b0 ∨ t0 and a1 ∨ s1 6= b1 ∨ t1.
Describe a deterministic strategy for Alice and Bob that achieves a winning prob-
ability of 2/3.

(c) Suppose Alice and Bob have a valid strategy for the two-parallel game which
wins with probability ωc. Describe a strategy for them to win the one-shot game
with probability at least wc. This proves that the optimal success probability in
the one-shot game is an upper bound for the optimal success probability in the
two-parallel game.

(d) Now we will find an upper bound on the success probability of the one-shot game,
assuming that Alice and Bob may use shared entanglement in addition to classical
resources.

The most general strategy that Alice and Bob can take is as follows. They each
have two ±1-eigenvalue-observables A0, A1, B0, B1. They share a joint state |ψ〉.
Alice measures |ψ〉 on As, Bob measures on Bt, and they each output 0 if they
measured a 1 and 1 if they measured a −1.

In general, if X is an observable, then 〈ψ|X |ψ〉 is equal to the probability of
measuring a 1 minus the probability of measuring −1.

Let M = −1
3
A0B0 + 1

3
A0 + 1

3
B0. Prove that the probability that Alice and Bob

win the game is 1
2

+ 1
2
〈ψ|M |ψ〉.

(e) Prove that M2 = 1
3
I− 2

3
M .

(f) The answer to the last is the characteristic polynomial of M (indeed, it is the
unique monic quadratic satisfied by M). Use it to solve for the largest eigenvalue
λmax of M .

(g) Now use the facts that pwin ≤ 1
2

+ 1
2
〈ψ|M |ψ〉 and 〈ψ|M |ψ〉 ≤ λmax to find the

tightest possible upper bound on pwin.
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