
CS120, Quantum Cryptography, Fall 2016

Homework # 7 due: 10:29AM, November 22nd, 2016

Ground rules:

Your homework should be submitted to the marked bins that will be by Annenberg 241.

Please format your solutions so that each problem begins on a new page, and so
that your name appears at the top of each page.

You are strongly encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on your
homework specifically which problems were a collaborative effort and with whom. You may
not search online for solutions, but if you do use research papers or other sources in your
solutions, you must cite them.

Some of the problems are inspired from problems available on EdX. You are not allowed to
look up the EdX problems for hints (such as the multiple answers provided). Focus on the
present pset!

Late homework will not be accepted or graded. Extensions will not be granted, except on
the recommendation of a dean. We will grade as many problems as possible, but sometimes
one or two problems will not be graded. Your lowest homework grade of the quarter will be
dropped from your final grade.

Place all your problems in the first (top) bin in the box by Annenberg 241. Start each
problem on a new page, with your name clearly marked at the top of the page.

Problems:

1. (4 points) Establishing keys in the presence of a limited eavesdropper
Assume that Alice and Bob are connected by a classical authenticated channel. Your
goal is to devise ways in which Alice and Bob can obtain a key in any of the situations
below.

(a) Suppose that Alice and Bob are connected by a classical channel such that Eve
learns each bit with probability q, where we only know that 1/3 ≤ q ≤ 1/2. Give
a protocol that allows Alice and Bob to create an ε-secure key, where ε = 10−5.
Explain why your protocol is secure. How many uses of the channel are required
per bit of key produced?

(b) Suppose now that Alice and Bob are connected by a classical channel on which
Eve can intercept bits arbitrarily. However, Eve’s memory is limited to k = 1024
bits. Give a protocol that allows Alice and Bob to create an ε-secure key where
ε = 10−10. Explain why your protocol is secure.
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2. [Optional] Recursive information reconciliation
Suppose that Alice and Bob have n-bit strings X, Y ∈ {0, 1}n respectively such that
for each i ∈ {1, . . . , n}, Pr(Xi = Yi) = p = 1− δ ∈ [1/3, 2/3].

(a) Let S ⊆ {1, . . . , n} be a set of coordinates of size |S| = k. Evaluate Pr(xS = yS)
and Pr(⊕i∈Sxi = ⊕i∈Syi), as a function of δ.

(b) Using the previous question, find a lower bound on k which guarantees that
Pr(xS = yS| ⊕i∈S xi = ⊕i∈Syi) ≥ 1− δ/2.

(c) Explain how this idea can be used to implement an iterative scheme for informa-
tion reconciliation [Hint: use larger and larger alphabets].

(d) How efficient is your scheme? For some small ε > 0 (much smaller than δ),
estimate the number of bits that Alice and Bob have to exchange before they find
a subset T such that Pr(xT = yT ) ≥ 1− ε. How large is T?

3. (5 points) Generating a key using an anonymous message board

(a) Alice and Bob’s conversation takes place on an anonymous message board. That
is, Eve can see the whole transcript but doesn’t know which message came from
which person. Find a protocol in which Alice and Bob exchange a total of two
messages, which succeeds with probability at least one half, and when it succeeds,
Alice and Bob share one bit of key which is uniformly random from the perspective
of Alice.

(b) Give an anonymous-message-board protocol to generate an n-bit private key which
takes a linear number of rounds and has exponentially small failure rate. (Hint:
You’ll need a Chernoff bound to control the error rate.)

(c) Eve sees the entire transcript of Alice and Bob’s conversation, but in the lecture
notes it is argued that key generation is impossible against an adversary who can
overhear all communication. Why does that argument fail to apply here?

4. (4 points) Information reconciliation via linear codes

(a) Suppose Alice and Bob have access to the the binary symmetric channel with
error p: Bob receives each bit that Alice sends correctly with probability (1− p).
Consider the linear code generated by the parity check matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Using the information reconciliation scheme defined in the edX videos, with what
probability does Alice and Bob succeed at distributing their key?
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(b) What is the probability that a 7-bit message is transmitted correctly with no
reconciliation? Compare this to the success probability of the previous part and
to the success probability of the 3-bit scheme generated by the parity check matrix

H =

(
1 1 0
0 1 1

)
.

(The three-bit scheme is analyzed in the edX lecture videos; you may quote those
results.) Which schemes have success probabilities with the best leading order
behavior? For p ∈

(
0, 1

2

)
, which scheme is best?

5. (6 points) Cloning attacks
In previous problems, we studied the ability of Alice and Bob to generate a key over a
classical channel given some strict limitations on Eve’s ability. Now we aim to analyze
BB84 in the context of a limited Eve. In particular, Eve will be limited to intercepting
Alice’s message and attempting to copy it with one of the maps from HW2, problem
6.

Recall that in the BB84 protocol Alice first generates random xj, θj ∈ {0, 1}, and then
sends N single-qubit states |xj〉θj , for j ∈ {1, . . . , N}, to Bob.

Now suppose the eavesdropper Eve intercepts each of the states sent by Alice, and
does the following:

(i) With probability 1−p, she applies the cloning map T1 from Problem 6(a) in HW2.
She keeps the second qubit and forwards the first qubit to Bob.

(ii) With probability p, she applies the cloning map T2 from Problem 6(b) in HW2.
She keeps the second qubit, traces out (i.e. ignores) the third qubit, and forwards
the first qubit to Bob.

For simplicity, assume N = 1. Based on the results of HW2 Problem 6 (you may
consult the solution available online), evaluate the following. (In the solutions to HW2
it is proven that the map T2 is equivalent to the map T3; you should use whichever
form you find most convenient.)

(a) Suppose Bob correctly guesses θ = θ1 and measures his qubit in the corresponding
basis. What is the probability that his measurement outcome is equal to x = x1?
First compute this for the case p = 0. Next compute the probability for p = 1;
call this value qB for future reference. Finally, extend this to give the success
probability as a function of the probability p.

(b) Suppose Eve does the same, guessing θ correctly and measuring in the correspond-
ing basis. As in part (a), compute her probability of success when p = 0, p = 1,
and for general p. For future reference, let qE be the value when p = 1.

(c) What is the probability that Bob and Eve’s outcomes agree with each other and
are correct? Give your answer as a function of p. (Hint: This is related to the
success probabilities of T1 and T2 as cloning maps.)
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6. (6 points) BB84 against a cloning attack.
Let’s continue the previous problem with the BB84 protocol. Alice and Bob know that
Eve will implement a cloning attack, but they do not know p ahead of time. They
will try to generate a key independent from Eve which is as long as possible. We will
informally estimate the length of the key produced. (It is possible but more difficult
to show that with high probability, Alice and Bob produce a key which is mostly
independent from Eve and has almost our estimated length.)

We now consider a number of rounds N = 4n. Suppose that in 2n of the rounds
(exactly), Bob happens to make the right basis choice; call these the agreement rounds,
R ⊆ {1, . . . , N}. They select exactly n of these rounds for testing; call these rounds
the testing rounds, T ⊆ R. You may assume all rounds behave the same.

(a) We say that Bob succeeds in round j if his measurement outcome against |xj〉θj
is equal to xj. If Bob does not succeed, we say there is an error. What is the
expected number of errors that Alice and Bob will notice in the testing rounds T ,
as a function of qB and p?

(b) Now suppose that Alice and Bob detect δn errors in the testing rounds. They
should expect to also see approximately δn errors in the untested agreement
rounds R \ T . They perform information reconciliation on Alice’s bits {xj} and
Bob’s measurement outcomes to generate a common key kA = kB. How many
bits do they need to exchange in order to perform the reconciliation, as a function
of δ and n? (You may assume there are indeed at most δn errors.)

(c) Now we’ll invert the bound from (a). What is Alice and Bob’s best guess p̂ for p,
as a function of qB and δ?

(d) Suppose Alice and Bob make a guess p̂ for p based on the method from the
previous question. Deduce a bound on the min-entropy Hmin(A|E) per round
that they could estimate for the rounds in K = R\T . Give their estimate as a
function of qE, qB, δ.

(e) Finally Alice and Bob apply privacy amplification to their reconciled string. They
start with the min-entropy guarantee computed in (d) and leak as many bits as
computed in (b) to Eve. Using the best privacy amplification method you know
(e.g. as seen in class), how much private key can they extract? Express your
answer as a function of δ, qE, qB, n.

(f) Estimate δ in terms of p as in part (a). Using your values of qE and qB from
problem 5, how much key can they expect to extract as a function of p and n?
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