
CS/Ph120 Homework 6 Solutions

November 18, 2016

Problem 1: The Pretty-Good-Measurement is not Optimal

Solution: (Due to De Huang)

(a) We have

ρ =
1

3
(ρ0 + ρ1 + ρ2) =

1

2
I, ρ−

1
2 =
√

2I,

thus the pretty-good-measurement {M0,M1,M2} is give by

M0 =
1

3
ρ−

1
2ρ0ρ

− 1
2 =

2

3
|0〉〈0|, M1 =

1

3
ρ−

1
2ρ1ρ

− 1
2 =

1

3
I, M2 =

1

3
ρ−

1
2ρ2ρ

− 1
2 =

2

3
|1〉〈1|,

and the success probability using this measurement is

pgood =
1

3

(
tr(M0ρ0) + tr(M1ρ1) + tr(M2ρ2)

)
=

5

9
.

(b) Let σ∗ = 1
3
I, then it’s easy to check that

σ∗ ≥ 1

3
|0〉〈0| = p0ρ0, σ∗ ≥ 1

3
× 1

2
I = p1ρ1, σ∗ ≥ 1

3
|1〉〈1| = p2ρ2,

therefore

Pguess = inf
σ≥piρi,i=0,1,2

tr(σ) ≤ tr(σ∗) =
2

3
.

2
3

is an upper bound of the guessing probability. We will show that this is actually the
maximum of the guessing probability. Indeed, consider a POVM {M∗

0 ,M
∗
1 ,M

∗
2},

M∗
0 = |0〉〈0|, M∗

1 = 0, M∗
2 = |1〉〈1|.

We can check that this is a legal POVM, and the success probability using this POVM is

p∗succ =
1

3

(
tr(M∗

0ρ0) + tr(M∗
1ρ1) + tr(M∗

2ρ2)
)

=
2

3
.

Thus we have
2

3
≥ Pguess ≥ p∗succ =

2

3
,

which implies Pguess = 2
3
.

(c) Already done in (b).
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Problem 2: Properties of the Pretty-Good-Measurement

Solution: (Due to De Huang)

(a) Suppose ρ = p0ρ0 +p1ρ1, p0, p1 ≥ 0, p0 +p1 = 1, then the pretty-good-measurement is given
by

M0 = ρ−
1
2p0ρ0ρ

− 1
2 , M1 = ρ−

1
2p1ρ1ρ

− 1
2 .

We only need to show that

tr(M0ρ0) ≥ tr(M0ρ1), tr(M1ρ1) ≥ tr(M1ρ0).

Define
a = tr(ρ−

1
2ρ0ρ

− 1
2ρ0), b = tr(ρ−

1
2ρ1ρ

− 1
2ρ1), c = tr(ρ−

1
2ρ0ρ

− 1
2ρ1).

It’s easy to check that a, b, c ≥ 0, and we have
p0a+ p1c = tr(ρ−

1
2ρ0ρ

− 1
2p0ρ0) + tr(ρ−

1
2ρ0ρ

− 1
2p1ρ1) = tr(ρ−

1
2ρ0ρ

− 1
2ρ) = tr(ρ0) = 1,

p0c+ p1b = tr(ρ−
1
2ρ1ρ

− 1
2p0ρ0) + tr(ρ−

1
2ρ1ρ

− 1
2p1ρ1) = tr(ρ−

1
2ρ1ρ

− 1
2ρ) = tr(ρ1) = 1,

=⇒ p0(a− c) = p1(b− c).
Also using Cauchy-Schwarz inequality we have

c2 =
(
tr(ρ−

1
2ρ0ρ

− 1
2ρ1)

)2
=
(
tr(ρ−

1
4ρ0ρ

− 1
4ρ−

1
4ρ1ρ

− 1
4 )
)2

≤
(
tr(ρ−

1
4ρ0ρ

− 1
4ρ−

1
4ρ0ρ

− 1
4 )
)(
tr(ρ−

1
4ρ1ρ

− 1
4ρ−

1
4ρ1ρ

− 1
4 )
)

= tr(ρ−
1
2ρ0ρ

− 1
2ρ0)tr(ρ

− 1
2ρ1ρ

− 1
2ρ1)

= ab.

That is to say, at least one of the following is true: a ≥ c; b ≥ c. Then using p0(a − c) =
p1(b− c), we must have

p0(a− c) = p1(b− c) ≥ 0.

Therefore

tr(M0ρ0) = tr(ρ−
1
2p0ρ0ρ

− 1
2ρ0) = p0a ≥ p0c = tr(ρ−

1
2p0ρ0ρ

− 1
2ρ1) = tr(M0ρ1),

tr(M1ρ1) = tr(ρ−
1
2p1ρ1ρ

− 1
2ρ1) = p1b ≥ p1c = tr(ρ−

1
2p1ρ1ρ

− 1
2ρ0) = tr(M1ρ0).

(b) In this case, we have

ρ =
2

5
ρ0 +

2

5
ρ1 +

1

5
ρ2 =

1

5

(
2 0
0 3

)
, ρ−

1
2 =
√

5

(
1√
2

0

0 1√
3

)
,

and the pretty-good-measurement is given by

M0 =

(
2
3

0
0 2

9

)
, M1 =

(
1
3

0
0 4

9

)
, M2 =

(
0 0
0 1

3

)
.
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We can see check that

tr(M1ρ1) =
1

3
× (

1

3
+

8

9
) =

11

27
, tr(M1ρ2) =

4

9
=

12

27
,

tr(M1ρ1) < tr(M1ρ2),

which violates inequality (2).

Problem 3: Deterministic Extractors on Bit-Fixing Sources.

Solution: (Due to Bolton Bailey)

(a) The min entropy for X is defined

Hmin(X) = − log max px

Since each of the last n − t bits of X0 is uniformly random and independent of the other
bits, there are 2n−t equally likely outcomes for the distribution X0, so

Hmin(X0) = − log max
1

2n−t
= − log

1

2n−t
= n− t

For X1, there are 2n−1 strings of length n− 1, and for each of these, there is exactly one bit
we can append to get a string with an even number of 0s. Thus X1 has 2n−1 equally likely
outcomes.

Hmin(X0) = − log max
1

2n−1
= − log

1

2n−1
= n− 1

For X2, there are 2n/2 possiblitilites for the first half of the string, and since the first half of
the string determines the second half, there are 2n/2 equally likely outcomes.

Hmin(X0) = − log max
1

2n/2
= − log

1

2n/2
= n/2

(b) f0(X0) is not uniformly random, since this is the XOR of t 1s, so this always produces t
mod 2.

f0(X1) is uniformly random, since t < n, so the first t bits of n are uniformly random, so
their XOR is uniformly random. (Unless t = 0 in which case the output is not uniform
random, it is 0)

f0(X2) is uniformly random, since if 1 ≤ t ≤ n/2, it is the XOR of the first t bits of the
string and if n/2 ≤ t ≤ n, it is the XOR of the last n − t bits of a unform string. (Unless
t = 0 in which case the output is not uniform random, it is 0)

f1(X0) is uniformly random, since if 1 ≤ t ≤ n/2, then x1x1+n/2 is uniform random, and if
n/2 ≤ t < n, then xn/2xn is uniform random.

f1(X1) is uniformly random only if n/2 is odd. If the first half of x has at least a 0 and at
least a 1, then there is a 1/2 chance of each outcome, since if we choose the corresponding
elements of the right half last, we can get either a result of 0 or 1. (TAs comment: In other
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words, for any possible string on the other n − 4 bits, we can always make the value of
f1(X1) = 1 by choosing appropriately the bit in the second half that is multiplied with the
1, and fix the number of zeros to be even by choosing appropriately the bit in the second
half that is multiplied with 0). If the first half is all 0s, the result will be 0. If The first half
is all 1s, then the result is the parity of the second half, which is 1 only if n/2 is odd.

f1(X2) is uniformly random, since it is the XOR of a uniform random string of length n/2

f2(X0) is uniformly random, since the last bit is always uniformly random and independent
of the previous bits.

f2(X1) is not uniformly random, since if there are an even number of 0s, since n is even,
there is an even number of 1s, so the XOR is 0.

f2(X2) is not uniformly random, since the XOR of the whole string is the XOR of the first
and second halves, which have the same parity, so this always results in 0.

(c) Consider the function f defined as follows: We divide the input x into b n
t+1
c disjoint segments

each containing t+ 1 bits. There will always be enough bits to do this since

b n

t+ 1
c ≤ n

t+ 1

(t+ 1) · b n

t+ 1
c ≤ (t+ 1) · n

t+ 1
= n

If there are leftover bits we ignore them. We then define f(x) such that the ith bit of f(x) is
equal to the XOR of the ith segment (this means the outputs will have the correct number
of bits, the same as the number of segments). Moreover, since Eve has only t bits, and the
segments are t+ 1 bits, Eve never has all the bits in a segment, and the ith bit of the output
is therefore independent of Eve. Thus, the whole output is independent of Eve.

Problem 4: No Chain Rule for Conditional Min-Entropy

Solution: (Due to De Huang)
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(a)

H(Y |X) =
∑
x

Pr[X = x]H(Y |X = x)

=
∑
x

Pr[X = x]
∑
y

Pr[Y = y|X = x] log(
1

Pr[Y = y|X = x]
)

=
∑
x

Pr[X = x]
∑
y

Pr[Y = y,X = x]

Pr[X = x]
log(

Pr[X = x]

Pr[Y = y,X = x]
)

=
∑
x

∑
y

Pr[Y = y,X = x]
(

log(
1

Pr[Y = y,X = x]
)− log(

1

Pr[X = x]
)
)

=
∑
x

∑
y

Pr[Y = y,X = x] log(
1

Pr[Y = y,X = x]
)

−
∑
x

∑
y

Pr[Y = y,X = x] log(
1

Pr[X = x]
)

= H(XY )−
∑
x

Pr[X = x] log(
1

Pr[X = x]
)

= H(XY )−H(X).

(b) Given that X and Y are independent, we have

Hmin(XY ) = − logPguess(XY )

= − log(Pguess(X)Pguess(Y ))

= − logPguess(X)− logPguess(Y )

= H(X) +H(Y ),

and thus
H(Y |X) = H(Y ) = H(XY )−H(X).

(c) For i = 1,

Pguess(X1) = Pr[X1 = 0] =
5

8
, Pguess(X1Y1) = Pr[X1Y1 = 00] =

1

2
,

Pguess(Y1|X1) = Pr[X = 0]Pr[Y1 = 0|X1 = 0] + Pr[X1 = 1]Pr[Y1 = 0|X1 = 1] =
3

4
,

Hmin(X1) = − log
5

8
= 3− log 5, Hmin(X1Y1) = − log

1

2
= 1,

Hmin(Y1|X1) = − log
3

4
= 2− log 3,

Hmin(Y1|X1) > Hmin(X1Y1)−Hmin(X1).

For i = 2,

Pguess(X2) = Pr[X2 = 0] =
5

8
, Pguess(X2Y2) = Pr[X2Y2 = 00] =

3

8
,
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Pguess(Y2|X2) = Pr[X2 = 0]Pr[Y2 = 0|X2 = 0] + Pr[X = 1]Pr[Y2 = 0|X2 = 1] =
11

16
,

Hmin(X2) = − log
5

8
= 3− log 5, Hmin(X2Y2) = − log

3

8
= 3− log 3,

Hmin(Y2|X2) = − log
11

16
= 4− log 11,

Hmin(Y2|X2) < Hmin(X2Y2)−Hmin(X2).

We have encountered all cases where Hmin(Y |X) =, >,< Hmin(XY ) − Hmin(X), thus we
may conclude that there is no certain form of the chain rule for conditional min-entropy.

Problem 5: Optimal qubit strategies in the CHSH game.

Solution: (Due to Bolton Bailey)

(a) We wish to show that any observable O is of the form

O = αX + βY + γZ

Where the coefficients are real and α2 + β2 + γ2 = 1,

We first reason that since O = O†, O is of the form

O =

(
x y + zi

y − zi w

)
Where x, y, z, w are real. If we take

y = α

z = −β
x− w

2
= γ

x+ w

2
= δ

We get

O =

(
δ + γ α− βi
α + βi δ − γ

)
= αX + βY + γZ + δI

So any unitary O must be of this form. Since we also know that O2 = I, we have

O2 = (αX + βY + γZ + δI)(αX + βY + γZ + δI)

And since XY = −Y X, XZ = −ZX and Y Z = −ZY , if we expand and cancel, we get

O2 = α2X2 + β2Y 2 + γ2Z2 + δ2I2 + 2αδX + 2βδY + 2γδZ

O2 = α2I + β2I + γ2I + δ2I + 2αδX + 2βδY + 2γδZ

O2 = (α2 + β2 + γ2 + δ2)I + 2αδX + 2βδY + 2γδZ

6



And so if this equals I, either δ = 0 or α = β = γ = 0. Since we are assuming nondegeneracy,
the former is the case

O2 = (α2 + β2 + γ2)I

And so α2 + β2 + γ2 = 1. Thus, any single qubit observable can be represented in in this
form.

(b) Referring to the result of Homework set 5, Problem 3(c), we found that the probability of
success in the CHSH game was

ps =
1

2
+

1

8
(〈u0|v0〉+ 〈u0|v1〉+ 〈u1|v0〉 − 〈u1|v1〉)

Where
〉ux = Ax ⊗ I〉ψ
〉vy = I⊗By〉ψ

From these definitions, we see

〈ux|vy〉 = 〈ψ(Ax ⊗ IB)(IA ⊗By)〉ψ
= 〈ψ(Ax ⊗By)〉ψ

And so we can rewrite the result of that problem as

ps =
1

2
+

1

8
(〈ψ(A0 ⊗B0)〉ψ + 〈ψ(A0 ⊗B1)〉ψ + 〈ψ(A1 ⊗B0)〉ψ − 〈ψ(A1 ⊗B1)〉ψ)

And by linearity

ps =
1

2
+

1

8
(〈ψB〉ψ)

Which is the correct identity.

(d) We have
B = (A0 ⊗B0) + (A0 ⊗B1) + (A1 ⊗B0)− (A1 ⊗B1)

And from the special form of Ax, By, we have

Ax ⊗By = (cos(αx)X + sin(αx)Y )⊗ (cos(βy)X + sin(βy)Y )

And so we note that ZXZ = −iZY = −X and ZY Z = iZX = −Y , and we see

(Z ⊗ I)Ax ⊗By(Z ⊗ I) = (− cos(αx)X − sin(αx)Y )⊗ (cos(βy)X + sin(βy)Y ) = −Ax ⊗By

And

(I⊗ Z)Ax ⊗By(I⊗ Z) = (cos(αx)X + sin(αx)Y )⊗ (− cos(βy)X − sin(βy)Y ) = −Ax ⊗By

And so, since B is a linear combination of Ax ⊗By, we have by linearity

(Z ⊗ I)B(Z ⊗ I) = (I⊗ Z)B(I⊗ Z) = −B
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Problem 6: Trading success probability for randomness in

the CHSH game

Solution: (Due to De Huang)

(a) Let ρAB = |ψ〉〈ψ|AB, then

ρA = TrB(ρAB) = cos2(θ)|0〉〈0|+ sin2(θ)|1〉〈1|.

Assume that
Ax = |ux0〉〈ux0 | − |ux1〉〈ux1 |, x ∈ {0, 1},

where {|ux0〉, |ux1〉} is an orthogonal basis. Then for any a ∈ {0, 1}, x ∈ {0, 1}, we have

pθ(a|x) = Tr(|uxa〉〈uxa|ρA)

= cos2(θ)|〈uxa|0〉|2 + sin2(θ)|〈uxa|1〉|2

≤ cos2(θ)|〈uxa|0〉|2 + cos2(θ)|〈uxa|1〉|2

= cos2(θ)
(
|〈uxa|0〉|2 + |〈uxa|1〉|2

)
= cos2(θ).

We have used the fact that sin2(θ) ≤ cos2(θ), ∀θ ∈ [0, π
4
]. Therefore maxa,x pθ(a|x) ≤ cos2(θ).

(b) Using the result in problem 5(g), we have

I = 8ps − 4 ≤ 8
(1

2
+

1

4

√
1 + sin2(2θ)

)
− 4 = 2

√
1 + sin2(2θ).

Since we may also assume that ps ≥ 1
2
, i.e. I ≥ 0, then we have

sin2(2θ) + 1 ≥ I2

4
,

=⇒ 2− I2

4
≥ 2− (1 + sin2(2θ)) = 1− sin2(2θ) = cos2(2θ),

=⇒
√

2− I2

4
≥ cos(2θ) = 2 cos2(θ)− 1.

Then using the result of (a), we have

max
a,x

pθ(a|x) = cos2(θ) ≤ 1

2

(
1 +

√
2− I2

4

)
,

i.e.

pθ(a|x) ≤ 1

2

(
1 +

√
2− I2

4

)
, ∀a, x ∈ {0, 1}.

(c) For any two-qubit |φ〉, consider its Schmidt decomposition

|φ〉 = cos(θ)|u0〉|v0〉+ sin(θ)|u1〉|v1〉,
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where θ ∈ [0, π
4
]. We may also assume that

|u0〉 = U |0〉, |u1〉 = U |1〉, |v0〉 = V |0〉, |v1〉 = V |1〉,

where U, V are two unitaries, that is

|φ〉 = cos(θ)(U |0〉 ⊗ V |0〉) + sin(θ)(U |1〉 ⊗ V |1〉) = (U ⊗ V )|ψθ〉.

Now assume that we use a strategy A0, A1, B0, B1 to play CHSH game with state |φ〉, and
have a probability distribution {p(a, b|x, y), a, b, x, y ∈ {0, 1}}. Let

Ãx = U †AxU, x ∈ {0, 1},

B̃y = U †ByU, y ∈ {0, 1}.

It’s easy to check that Ã0, Ã1, B̃0, B̃1 are still non-degenerate observables. Then we can check
that

p(a, b|x, y) = 〈φ|(Ax ⊗By)|φ〉
= 〈ψθ|(U † ⊗ V †)(Ax ⊗By)(U ⊗ V )|ψθ〉
= 〈ψθ|(Ãx ⊗ B̃y)|ψθ〉
= p̃θ(a, b|x, y),

where {p̃θ(a, b|x, y), a, b, x, y ∈ {0, 1}} is the probability distribution when we use the ob-

servables Ã0, Ã1, B̃0, B̃1 to play CHSH game with the state |ψθ〉. In partitcular, we have

ps = p̃s =
1

2
+

1

8
I,

p(a|x) = p̃θ(a|x) ≤ 1

2

(
1 +

√
2− I2

4

)
, ∀a, x ∈ {0, 1},

where we have used the result of (b). That is

p(a|x) ≤ 1

2

(
1 +

√
2− I2

4

)
=

1

2

(
1 +

√
2− 4(2ps − 1)2

)
, ∀a, x ∈ {0, 1}.

Then for any x ∈ {0, 1},

Hmin(A|X = x) = − log
(

max
a∈{0,1}

p(a|x)
)

≥ − log
(1

2

(
1 +

√
2− 4(2ps − 1)2

))
= 1− log

(
1 +

√
2− 4(2ps − 1)2

)
.

(d) Let
A0 = Z, A1 = X, B0 = cos(t)Z + sin(t)X, B1 = cos(t)Z − sin(t)X,
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where cos(t) = 1√
1+sin2(2θ)

, sin(t) = sin(2θ)√
1+sin2(2θ)

. It’s easy to check that A0, A1, B0, B1 are

non-degenerate observables. Then we have

B = A0 ⊗B0 + A1 ⊗B0 + A0 ⊗B1 − A1 ⊗B1

= 2 cos(t)Z ⊗ Z + 2 sin(t)X ⊗X,

and

〈ψθ|B|ψθ〉 = 2 cos(t)〈ψθ|Z ⊗ Z|ψθ〉+ 2 sin(t)〈ψθ|X ⊗X|ψθ〉
= 2 cos(t) + 2 sin(t) sin(2θ)

= 2
1√

1 + sin2(2θ)
+ 2

sin2(2θ)√
1 + sin2(2θ)

= 2
√

1 + sin2(2θ).

Recall that ps = 1
2

+ 1
8
〈ψθ|B|ψθ〉 = 1

2
+ 1

8
I, thus

I = 〈ψθ|B|ψθ〉 = 2
√

1 + sin2(2θ),

1

2

(
1 +

√
2− I2

4

)
=

1

2

(
1 +

√
1− sin2(2θ)

)
=

1

2
(1 + cos(2θ)) = cos2(θ).

On the other hand, since ∀x ∈ {0, 1},

p(0|x)− p(1|x) = Tr(AxρA), p(0|x) + p(1|x) = 1,

we have

p(0|x) =
1

2

(
1 + Tr(AxρA)

)
, p(1|x) =

1

2

(
1−Tr(AxρA)

)
.

Then now we have
ρA = cos2(θ)|0〉〈0|+ sin2(θ)|1〉〈1|,

p(0|0) =
1

2

(
1 + Tr(A0ρA)

)
=

1

2

(
1 + cos2(θ)− sin2(θ)

)
= cos2(θ),

p(1|0) =
1

2

(
1−Tr(A0ρA)

)
=

1

2

(
1− cos2(θ) + sin2(θ)

)
= sin2(θ),

p(0|1) =
1

2

(
1 + Tr(A1ρA)

)
=

1

2
,

p(1|1) =
1

2

(
1−Tr(A1ρA)

)
=

1

2
.

Since θ ∈ [0, π
4
], we have cos2(θ) ≥ 1

2
≥ sin2(θ), thus

max
a,x

p(a|x) = cos2(θ) =
1

2

(
1 +

√
2− I2

4

)
.

The bound is tight.
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