CS120, Quantum Cryptography, Fall 2016

Homework # 6 due: 10:29AM, November 15th, 2016

Ground rules:
Your homework should be submitted to the marked bins that will be by Annenberg 241.

Please format your solutions so that each problem begins on a new page, and so
that your name appears at the top of each page.

You are strongly encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on your
homework specifically which problems were a collaborative effort and with whom. You may
not search online for solutions, but if you do use research papers or other sources in your
solutions, you must cite them.

Some of the problems are inspired from problems available on EdX. You are not allowed to
look up the EAX problems for hints (such as the multiple answers provided). Focus on the
present pset!

Late homework will not be accepted or graded. Extensions will not be granted, except on
the recommendation of a dean. We will grade as many problems as possible, but sometimes
one or two problems will not be graded. Your lowest homework grade of the quarter will be
dropped from your final grade.

Place all your problems in the first (top) bin in the box by Annenberg 241. Start each
problem on a new page, with your name clearly marked at the top of the page.

Problems:

1. (4 points) The Pretty-Good-Measurement is not Optimal.

The pretty-good-measurement is useful when we have an ensemble that we don’t un-
derstand very well and we need to distinguish the states in the ensemble with some
success probability.

(a) Suppose Alice sends Bob one of the three states po = |0)(0], pr = 3T, p2 = [1)(1]
with equal probability. Bob wants to figure out which state Alice sent. Compute
the success probability achieved by Bob if he uses the pretty-good-measurement.

(b) In Homework 5, problem 1(h), you showed the following formulation of the guess-
ing probability:
Ppuess(X | E) = inf  Tro, (1)

o:pipi <o Vi
where each p; is a density matrix which appears with a priori probability p; in the
ensemble. Use this formulation to give an upper bound on the guessing probability
for the ensemble from (a). Make the upper bound as tight as you can.

1



(c) Notice that there is a gap between the success probability calculated in parts (a)
and (b). Find a measurement whose success probability matches the bound from
part (b).

2. (3 points) Properties of the Pretty-Good-Measurement.

This problem is adapted from a StackExchange answer by Norbert Schuch.E] That post
is not an allowed resource for this problem. When we make a pretty-good measurement
to distinguish the ensemble p = ). p;p;, we associate to each p; a measurement operator
M,; = p*%pipip*%. We think of M; as being “well-fitted” to the state p;, in the sense
that when we measure II;, we conclude that p; is the most likely state. This may lead
us to believe that p; is “well-fitted” to M; in the sense that it is the state for which the
measurement is most likely to result in II;. In other words, we may like to believe the
following inequality:

Te(Mipi) = Tr(Mipr), (2)

for any ¢ and k.

(a) Prove inequality [2| for the case where the ensemble has only two states.

20 10 00
1 —1 = i -
(b) Let po = 3 ( 01 ) P1=3 ( 0 2 ), and po ( 01 ) Consider the ensem
ble p = % po + % p1+ % p2. Show that inequality |2|is not satisfied.

3. (6 points) Deterministic Extractors on Bit-Fixing Sources.
We saw in the edX lecture notes that no deterministic function can serve as an extractor
for all random sources of a given length. However, this doesn’t rule out the possibility
that a deterministic extractor can work for some restricted class of sources.

(a) Fix an even integer n and integer ¢t < n. Consider the following sources.

e X, is all 1s on the first ¢ bits and uniformly random on the last n — t bits.
e X, is uniformly random over the set of strings with an even number of Os.

e X, is uniformly random over the set of strings where the first 7 bits are the
same as the last 7 bits.

Compute the min-entropy Hp,i,(X;) for each i € {0,1,2}.
(b) Consider the following deterministic functions:
o fo(r) :=@@._, =, the XOR of the first ¢ bits of .

o fi(zx) = uxp-ap = @?ﬁ T;iTiyn, where z = (xp,zR) are the left and right
halves of .
o fo(x) =P, x; the XOR of all of the bits of x.

For which pairs (¢, 7) is fi(X;) distributed as a uniformly random bit?

1physics .stackexchange.com/questions/245274/probability-distribution-of-a-pretty-good-measurement


physics.stackexchange.com/questions/245274/probability-distribution-of-a-pretty-good-measurement

(c) Alice and Bob share a classical secret X € {0,1}" generated uniformly at random.
Alice and Bob make an error in their secure communication protocol and as
a result, Eve learns ¢ bits of X. Give, with proof, a deterministic function f
such that f(X) is uniformly random over strings of length |; +1J and f(X) is
independent of Eve.

4. (6 points) No Chain Rule for Conditional Min-Entropy.
Recall the definition of conditional Shannon entropy.

H(Y | X) = ZPr H(Y | X =) (3)

(a) Prove that conditional Shannon entropy satisfies the chain rule:
HY | X)=H(XY)—- H(X). (4)

(b) Prove that the conditional min-entropy satisfies the chain rule on X and Y if X
and Y are independent.

(c) For each of the following two distributions, compute Hyin(X;Y;), Hmin(X;), and
Huin(Y; | X;). Make a conclusion about the form of the general chain rule for
conditional min-entropy.
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5. (8 points) Optimal qubit strategies in the CHSH game.
Questions (a), (b) and (d) of this problem are worth one point each. The others are
worth zero points and are optional. You should still read the problem to its end, as the
conclusion is used in the following problem.
The goal of this problem is to evaluate the maximum success probability that can be
achieved in the CHSH game by players sharing a two-qubit entangled state of the form

[Y0) ap = €08(0) [0) 4 [0) 4 +sin(0) [1) 4 [1) 5, (5)

where 6 € [0,7/4] (other values of 6 can be reduced to this case by simple change of
basis or phase flip). Having fixed the state, what are the optimal measurements for
the players, and what is their success probability?

3
P(XaYs = 00) = 2. p(XaYy = 01) = P(XaYs = 11) =

We will assume each player makes makes a basis measurement on their qubit. Recall
that an observable O is a 2 X 2 matrix with complex entries such that O is Hermitian
(OT = O) and squares to identity (O* = ). For any single-qubit basis measurement
{|uo) , |u1)}, there is an associated observable O = |ug) (ug| — |u1) (u1|. Conversely, any
observable that is not £I has two non-degenerate eigenvalues +1 and —1, so we can
uniquely identify it with a basis.

To reduce the number of cases to consider we first make a few symmetry observations.
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(a) Let O be a single-qubit observable such that O is non-degenerate (O # =+I).
Show that there exists real numbers «, 3,7 such that o? + 32 ++% = 1 and
O =aX + BY +~vZ, with XY, Z the standard Pauli matrices.

(b) Let B = Ay® By+ A1 ® B+ Ag® By — A ® By. Show that the success probability
of the strategy in the CHSH game is p, = 3 + 5 (o] B |1g).

(c) Argue that for the purposes of computing the maximum success probability in
the CHSH game of players using state |¢g) ,5 as in we may without loss of
generality restrict our attention to observables of the form A, = cos(a,)X +
sin(a,)Y and By, = cos(8,)X + sin(8,)Y for some angles o, 8, € [0,27). [Hint:
do a rotation on the Bloch sphere.]

Based on the symmetry argument from the previous questions we have reduced our
problem to understanding the maximum value that (yy| B|iy) can take, when [iy)
is as in and B is defined from observables A,, B, as in (b). To understand this
maximum value we compute the spectral decomposition of B.

(d) Show that (Z@D)B(Z®1)=(I® Z2)B(l® Z) = —B. [Hint: use the special form
of A, and B, you obtained from question (c).]
(e) Show that B has a basis of eigenvectors of the form [¢q) = € |ab) + |ab), where

a,b€ {0,1} anda@=1—a, b=1—b. Note that up to local rotations this is the
Bell basis.

(f) Write B? as a 4 x4 matrix depending on the angles a,, (,, and show that Tr(B8%) <
16.

(g) Show that the largest success probability achievable in the CHSH game using
|1g) 45 18 at most 3 + $+/1 + sin*(20). [Hint: Decompose |1y) in the eigenbasis of
B. Use (f) and the symmetries from (d) to bound the bound the success probability
via the expression found in (b).]

(h) Give a strategy for the players which achieves this value, i.e. specify the players’
observables.

. (8 points) Trading success probability for randomness in the CHSH game.
The goal of this problem is to show that, if players succeed with higher and higher
probability in the CHSH game then Alice’s outputs in the game must contain more
and more randomness.

(a) Suppose that Alice and Bob play the CHSH game using a two-qubit entangled
state [1g) 45 as in (B)). Let py(alz) be the probability that, in this strategy, Alice
returns answer a € {0,1} to question z € {0,1}. Show that max,, pg(alz) <
cos®(6).

(b) Let p, = 3431 be the players’ success probability in CHSH, where I € [—4,4] (I =
2y/2 for the optimal quantum strategy). Using (g) from the previous problem,



deduce from (a) that

1 2
Va,z € {0,1},  pelalz) < 5(1 +q/2- Z>'

(¢) Suppose now the players use any single-qubit strategy (not necessarily using |1y)).
Prove a lower bound on the conditional min-entropy Hpy,(A|X = x), for any
x € {0,1}, that is generated in Alice’s outputs, as a function of the players’
success probability in the CHSH game.

(d) Show that the bound from (b) is tight: for any § € [0, 7/4] find a strategy for the
players using [¢g) such that max, , py(a|z) = %(1 +/2—1%/4).



