CS/Ph120 Homework 5 Solutions

November 11, 2016

Problem 1: A dual formulation for the conditional min-
entropy

Solution: (Due to De Huang)

(a) For any |¥)xp € Hx @ H, say

V)xp = Z aijli) x|7)
Y]

we have
(V]xp(lz){z| ® No) W) xp = ZZ@IxUIE(IwMﬂfl ® No)|k)x|D) e
= ZZ ilz) (2 |k)x (3| N:|1) &

= <Z<z'|x><x|k>x)(_Z<j|Nm|Z>E)
(el 105)) ()N S 1)
0

J

v

Thus |z) (x| ® N, > 0, Yz € X, and consequently

Z =Y |z){x|® N, >0.

reX



By definition we have

2(2)= Y (| @ 1) Z(|2') © Ir)

' exX

= Y (@@ Ip)(a)(al @ No)(lo') @ L)

z,x'€X

= ) (@la){ala’) N,

r,x'eX

tr(Zpxp) = tr( ) (Jx){zla’){a'l) ® (Nopyh))

r,x'eX

= 3 tr(J)ala’) (@) i (Nop)

z,x'€X

= > tr(Neph)

reX

(c) For any |¢)r € Hp, we have

(DleNz|0)p = (9lp((2| ® 1) Z(|2) @ Ip)|0) e = (2| ® (¢|g) Z(|2) @ |$)r) = 0,

thus N, > 0, Vo € X. Also we have

SN, = (el © 1) Z(2) © 1) = () = L.

TEX reX

Therefore {N,}, is a valid POVM over Hg.

(d) By the previous resluts, the constraint that {M,}, is a POVM can be translated into the
conditions

for some Z satisfying
Z>0, ®2)=Ig,

where

®(2) =) ({e|®1p)Z(|z) ® Lp).

reX

And the objective function can rewrite as

reX



Therefore the primal problem that gives Pjess is
Puess(X|E) =sup tr(Zpxe)
Z

st. ®(Z) =1,

In the language of HW3 Problem 2, we are using A = pxg, B = Ig.

(e) Since
®(2) =Y (o] ®1p)Z(jx) @ 1g) VZ,

zekX

we have

(V) = Y (Jz) @ Ip)Ye((z| @ Ip)

= > (o) (e[ ® V)
= (D la)al) © Ve
~Ix®Yp VY

(f) Recall that the dual problem is
inf tr(BY)
Y
st. ®(Y)> A,
Y=Y
Since we are using we are using A = pxg, B = Ig, thus the dual problem becomes

11}}f tr(Y)

st. Ix®Y > pxg,
y =YT.

Moreover, if [x ® Y > pxpg, given any |¢)g € Hp, we have

(Dle(Y — D)) e = (9lY[0) e — (Blept|0)E
= ((z[(d|e)(Ix @Y )(|7)|d)E) — (<$|<¢|E)(Z |2) (2’| @ pL)(|2)|d) k)

= ((zl(¢|p)(Ix @ Y)(|2)|9) ) — (x(d]p)px E(|2)|9) &)

= (z[(¢lp)(Ix ®Y — px)(|2)|9)5)
> Oa

thus Y > pZ Va € X. Conversely, if Y > pf Vo € X, then

Ix®Y =) |o)z|®Y 2 ) |o)(z] @ oy = pxp.

TeEX rzeX



Therefore we have
Ix®Y > pxp YprE,\VII‘GX,

the dual problem is more explicitly as
H}}f tr(Y)
st. Y >p,, Ve eX,
Yy =Yt

(g) Since the primal SDP problem is strictly feasible and the objective function is bounded above
by 1, the problem has strong duality. That is, the supremum of the primal probelm and the
infimum of the dual problem are the same, i.e. we have

Pess(X|E) = ir}}f tr(Y)
st. Y >p,, Ve X,
Yy =YT,
which is what we want to conclude.

(h) Given that o > p,, Vo € X, we have

Puess(X|E) = sup Z tr(Myp,) < sup Z tr(M,o) = sup tr((z M,)o) = tr(Igo) = tr(o).

My 2CX Mz zEX M zeX

(i) Suppose that

TX1Ex = Z |I><SC| ®TxEl7

TEX]
then
PXE = T?fEl
= Z ((Jz1){21] @ T2 @ (|22 (wa| @ TE) @ -+ - @ (|w) (] @ 7))
T1,%2,...,Ln EX
B Z (lzize. . 2a){zazs . za]) @ (1) @750 @ - @ 7))
T1,2,...,Ln EX
= > [&) (| @ ok,
xeX
where

X =A{x=(v1,29,...,2,) 0, € X, i1 =1,2,...,n},
pf:7£1®7£1®---®731, Ve e X.

Using the previous results, we have

Pyuess(Xq|Ey) = sup Z tr(M,75) = inf tr(o),

{MCL‘}GPI zEX, Ute
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(Ma}eP 2%
where
= {{M}} : {M}} is a POVM over Hp, },
={o:0>71" Ve i},
P={{M,}: {M,}is a POVM over Hg},
Q={o: o>pl Vxc X}
Define

P={{M,}={M, ® My, @--- @M, }o: {My,}€P,i=12....n

ﬁz{azol®02®~--®an: o, €, 1=1,2,...,n},

then it’s easy to check that B B
PCcP QcCQ,

and thus we have

Puess(X|E) = sup Ztr =P2) > sup Ztr(Mmpf),

{Ma}eP oy {Mm}e? TEX

Phuess(X|E) = inf tr(e) < inf tr(o).

o) o

But on the other hand, we have

sup Ztr(]\/[mpf) = sup z:tr((]\[r1 QM @ ® ]\/_/gcn)(Tﬁ1 ®TxE21 ® -

{My}eP xreX {Mz}eP xreX

= sup Z Htr Mxlel
{Mz}eP gex i=1

= sup H( Z tT’(MxLTfl)>
{Mo}eP =1 zex

— H( sup Z tr(M,, 7))

i=1 Mz }ePr oy

= (Pguess(Xl‘El))na

inf tr(o)= inf tric; o ® -+ ®0a,)

oeN oe

= inf || tr(o;)
S Y

= inf ;
=1 (0—3291 tr(UZ))

Pguess X1|E1 ) .



Thus we come to

Puess(X|E) = sup Z tr(Mgpy) > sup Z tr(Mapy) = (Pgu€SS(X1|E1))nv
{Mz}eP =y {Mz}eP zex

Phuess(X|E) = inf tr(o) < inf tr(o) = (PgueSS(X1|E1))n,

o) o
— Pguess(X|E) 2 (Pguess(Xl‘El))n Z Pguess(X’E)a
- Pguess(X’E) = (Pguess(X1|E1))n>

and therefore

Hoin(X|E), = —10g Pyuess(X|E)
= —log (Pguess<X1|El>)n
= —nlog Pyuess(X1|Er)
nHpin(X1|E1)+

Problem 2: Computing the min-entropy
Solution: (Due to Mandy Huo)

(a) By definition Hpin(X | £) = —10g Pyuess(X | £) and Hpyin(X) = —log max, p, = — 10g Pyyess(X)
so we want to show —10g Pyuess(X | £) > —10g Pyyess(X) — log |E| = —log(Pauess(X)| E|).
Since —log  is monotonically decreasing, we need to show Pyuess(X | E) < Payess(X)|E].

(b) Let A >0, B> 0. We write the eigendecomposition B = >, X\;(B)|u;){u;|. Then using the
linearity of trace we have

Tr (AB (AZA )|z vl) Z)\ Tr (Alu;) (u,])

Amas( ZTr (Afus) (wi)

Amax( (AZ i) u)

= )\maX(B) (A ’ ]I)
= Amax(B)Tr (4)

where the inequality step is because Tr (A|u;)(u;]) = (w;|Alu;) > 0 since A > 0.

(c) Let {M,} be a POVM and p% be a quantum state. Then M, > 0 and since pZ is a density
matrix, we have pZ > 0s0 \i(pF) > 0s0 3, Mi(pf) = Tr (pF) =1 = Anax(py) < 1. Then
applying part (b) gives

Tr (M.py) < Amax(py)Tr (M) < Tr (M,) .



(d) Since p, > 0, applying part (c),

> paTr (Mopg) <) p.Tr (M) < (maxp, ) ) Tr(M,)

Then we have

Pouess(X | E) = o Lr (M, 7)< < x) E|.
wuess(X | ) {rﬁgﬁ;p (Mepy) < (maxp,) B
Since — log x is monotonically decreasing, we have

Hmin(X | E) = _logpguess(X | E) Z —IOg ((maxp$> |E|) - _1Og <maxpm) - log |E|
= Hpin(X) — log|E|.

Problem 3: Bounding the winning probability in the CHSH
game

Solution: (Due to De Huang)
(a) Since {A% Al} is a valid POVM, we have
0<AY<I,, 0<AL<Iy,
= Iy <A, =A) - AL <1,

— (4, <1,

where r(A,) denotes the spectral radius of A,. Since A% Al are Hermitian, A, is also
Hermitian, thus the largest singular value of A, equals to r(A,). Therefore

[Az]| = r(4:) < 1.
The same argument also work for B, i.e. ||B,| < 1.
(b) Suppose that A, is diagonalized in a basis {|¢;)}, i.e.
Agldi) = Nil i), i=0,1,...,d, — 1,

<¢’i|¢j>:5i,j7 i,j:O,l,...,da—l,

where d, is the dimension of H 4, and A\;, ¢ =0,1,...,d, — 1, are all eigencalues of A,. Then

M< AP <1, i=01,...,d,— 1

Y
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since A, is Hermitian. We can always write |¢) 4 as

da—1dp—1

Vap = Y > aijléali)s

i=0 j=0

Then we have

) [1* = {uafuz)

= (Y]|ap(Az ® 1) (A @ 1p)|Y) an
= @il A2k alill) s

ij kil
= ZZ@Oék,l%)\k<wiwk>x4<j‘l>3

1,7 k,l

=) loa?A?
i

<) eyl
i

= |[¥) al
—1,

that is |||uy,)|| < 1. Similarly we can also prove that |||v,)| < 1.

(c¢) By direct calculation, we have

(uglvy) = (Ylap(Az ® Ip)(Ia @ By)|[Y) ap
= (Y|ap(Az ® By)[¢) an
= <¢|AB(A2 ® BS)WMB - <¢|AB(A;1E ® BS)W)AB
— (¥]aB(A] @ B))|¢)ap + (¥]ap(A, © By)|Y) ap

Then for (z,y) # (1,1),

(uglvy) = 2(|ap(Ay @ BY)|Y) ap + 2(|ap(A; @ By)[Y) an
— (Y|ap(A2 ® Bg(/))W))AB — (Y]ap(AL ® BS)WMB
— (V]aB(A) @ B))|¢)ap — (¥]as(A, ® B,)|Y) s
= 2Tr (A% ® BY)|W)(¥]ap) + 2Tr (AL ® BY))(W]a5)
— (Wap((A2 + A} ® (BS + B;)) V) AB
= 2p(0,0]z,y) + 2p(1, Lz, y) — (¥[ap(la @ Ip)|¢) an
= 2p(0,0[z,y) + 2p(1, 1|z, y) — 1,

1



for (z,y) = (1,1),

(uglvy) = (V]ap(AL @ B)) W)y ap + (¥]ap(A; @ B))|Y)ap
+ (lap(A) @ B)|[W)ap + (| ap(A; @ B))|Y) ap
— 2(¢|aB(AL @ B) W) ap — 2(tp|ap(A) ® B)) ) ap
= (¥]aB((A) + A)) ® (B, + B)))[¥) as
—2Tr ((AL ® B)[¢) (¥]ap) — 2T ((A) @ B,)|1) (Y] a5)
= (Y[ap(la ®Ip)[1) ap — 2p(1,0]z,y) — 2p(0, 1|z, y)
= 1=2p(1, 0]z, y) + 2p(0, 1|z, y),

1
p(l,O\x,y) +p(0> 1\x,y) = 5(1 o <u$’vy>)
Finally we have
Psuce = Z p(%y) Z p(a7 b|$,y)
z,y€{0,1} a®b=xAy
1
+p(0,0[0,1) + p(1,1/0,1) + p(1,0|1,1) + p(0,1]1,1))

((u0|vo> + 1+ (ui|ve) + 14 (uglvy) + 1+ 1 — (u1|v1>)

+ %(Wo\m) + (u1|vo) + (uolvr) — <u1|vl)).

l\')lHOOI»—t

(d) Let ¢ = max{]{[ro)[l, [[lr) [l so} I, [ls1} ]|} Notice that

ro) + [r) I + ro) — [r)lI? = ((rol + (r1])(Iro) + [r1)) 4+ ((rol — (r1])(Iro) — Ir1))
= 2(ro|ro) + 2(ro|ro)
= 2||[ro)[” + 2/llr1)[1?
< 4c,

thus

1
7o) + [ro) [l + lllro) — |r) || < ﬂ(!ll?”o) + )P+ [[lro) — |7’1>||2> < 2V2c.
Then we have

‘(ro\s(ﬁ + (r1]s0) + (ro|s1) — (r1|s1) | < ‘ (rolso) + (r1]so) |+‘ (rols1) — <r1\51>|
= ‘ {rol + (r1])[s0) ‘4" (ro| — <T1|>’51>‘

< [lfro) + [ro)l[llso) | + l[lro) — [r) Hl[s1)
clllro) + [ro)ll + cll[ro) — [r1)l

2v/2¢%,

I/\ I/\



(e)

Using the result of (b), we have

¢ = max{][[u)[|, [fun) [, [Ilso)[I; [ls) ][} < 1.

Then using the result of (d), we have
|(uolvo) + (ualvo) + (uolvr) — (wifvr)] < 2v2¢* < 2v/2.

Finally using the result of (c), we have

1 1
Psuce = 5 + §(<U0|Uo> + (ur|vo) + (uolvr) — (ur|vy))
1 1
< 5 + §|<u0]v0> + (u|vo) + (uolvr) — (us|v1)|
1 V2
< . X-
-2 * 4
— 02T
= COS 8

Problem 4: A guessing game

Solution: (Due to Mandy Huo, adapted by the TAs)

()

If Eve knows both # and Uy then she can guess perfectly in all cases by applying Ug = U 4,
the element-wise complex conjugation of U4, and measuring in the same basis as Alice. This
is because, from Homework 4, we know that U @ [|¢p") =T ® UT|¢T), and to undo UT Eve

just applies (UT)T =U
Alice should use the following strategy:

1. If & = 0 then Alice applies I with probability 1/2, X with probability 1/2, or Z with
probability zero before measuring.

2. If & = 1 then Alice applies I with probability 1/2, Z with probability 1/2, or X with
probability zero before measuring.

With this strategy, when 6 = 0, the shared state is either \%(\OO} + |11)) or \%(|01> + [10)),
each with probability 1/2. So if x = 0, since Eve does not know which unitary Alice applied,
Eve has the state £]0)(0] + 1|1)(1|, and if z = 1, Eve has the state £|1)(1] + 3|0)(0]. Then
Eve cannot distinguish between the two outcomes so at best she can guess randomly.

Similarly, when 6§ = 1 the shared state is either \%(|00) +[11)) = \/Liﬂ +4+)+|——)) or
\/Li(|+—)+|—+)), each with probability 1/2. Soif z = 0, Eve has the state 1|+)(+[+35|—){(—|,
and if z = 1, Eve has the state 5|—)(—|+ [+)(+|. Hence in both cases Eve’s best strategy is
to guess randomly so she will guess correctly with probability 1/2. Since the worst strategy
Eve can use is a random guess, this strategy makes Eve’s guessing probability the lowest
possible.
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(c) Alice should, for all 4, first apply either T or Y = X Z each with probability 1/2. We will
show that this achieves the same probability as in part (b).

With this strategy, when 6 = 0, the shared state is either \/ii(|00> +1]11)) or \/ii(—|01> +110)),

each with probability 1/2. Then if z = 0, since Eve does not know which unitary Alice used,
Eve has the state £]0)(0 + 3|1)(1|, and if z = 1, Eve has the state £]1)(1] + 3|0)(0]. Then
Eve cannot distinguish between the two so at best she can guess randomly.

Similarly, when 6 = 1 the shared state is either \/L§(|OO) +|11)) = \/L§(| ++)+]|——)) or
\/Li(|—|——)—|——|—>), each with probability 1/2. Soif z = 0, Eve has the state 1[+)(+[+3|—) (-,
and if z = 1, Eve has the state §|—)(—|+ 3|+)(+|. Hence in both cases Eve’s best strategy
is to guess randomly so she will guess correctly with probability 1/2.

Problem 5: Decoherence

Solution: (Due to Mandy Huo)
We have |V)|E) — «|0)|Eo) + B|1)|E4) so

()| @ |E)E| = |af*|0)(0] @ | Eo)(Eo| + aB*|0)(1] @ | Eg)(Ei|
+a”BI1){0] @ | Er)(Eo| + |BI*[1)(1] @ | Ev)(Exl.

Assuming (FEy|Ey) is real, we have (Ey|Ey) = (E1|Ey). Since |E), |Ey), and |E;) are normalized,
tracing out the environment gives

[W)(P| @ Tr (|E)E]) = |a|*|0)(0] + (Eo| E1)(a3"|0) (1] + " B[1)(0]) + [B*1)(1]

Define p = % We will show later that p is in fact a valid probability. Note that Z|¥) =
a|0) — B|1). Then we have

[U)(¥| @ Tx (|E)(E]) = |al?0)(0] + (1 — 2p)(aB*|0)(1] + o B|1)(0]) + | B][1)(1]
= (1 =p) (le?0)(0] + aB*|0) (1] + a*BI1) (0] + |B][1)(1])
+p (laf?0)(0] — aB*|0)(1| — a*BI1) (0] + |B]*[1)(1])
= (1 = p)[O)(¥| + pZ[¥)(¥|Z
So W) (U] — (1 —p)| V) (| + pZ|W)(V|Z.

Note that |E;){(E;| > 0 since (u|E;)(E;|u) = |(u|E;)|> > 0 for any |u) and A\pax(|E;) (E;]) < 1 since
YN ED(E]) = Tr (|E)(Ei]) =1 and A\;(]E;)(E;|) > 0. Then by problem 2(b) we have

[{Eo| En)|* = T (| Eo)(Eo| Er)(Er|) < Amax(|E1) (1) Tr (| Eo) (Eo|) < 1.

Then we have |(Ep|F1)| < 1 which implies 0 < p < 1 so p is a valid probability.
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