CS/Ph120 Homework 4 Solutions

November 3, 2016

Problem 1: Robustness of GHZ and W states, part 2

Solution: (Due to Bolton Bailey)

(a)
For the GH Z state, we have

T?‘N|GHZN><GHZN| —_ (|O>®N71<O|®N71 + |1>®N71<1|®N71)

N | —

So therefore, the rank is rgpyz = 2.
For the W state, we have

(W) = \/ ¥|WN—1> ® |0) + \/LN|O>®N_1 ® 1)

So we get

N -1

1
Try|Wa)(Wi| = ——|Wy_1)(Wy_1| + —[0)V 10V
N N

And so the rank is ry = 2.

(b)

The minimum purity for a density matrix p on a d-dimensional vector space is é. To see that this
can be attained, consider

1
=-I
P 74

This matrix is positive semidefinite as a postive multiple of the identiy, and it has trace 1, since

the I; has trace d. Note that

1 1

2 2

P _ﬁﬂd_ﬁﬂd

And so ) )
2 _ _

1



To see it is impossible to have a density matrix of this dimension with a smaller purity, note that

Trt = 3 Gl

1<i<d

To see it is impossible to have a density matrix of this dimension with a smaller purity, let
p=Y pilt) (il
i

And so therefore
pQ = Zpipj|¢i><¢i|¢j><¢j|

.3

Trp* =Tr (Zpipjlwiﬂ?/fi!%)(%\)
.3
By linearity of the trace
Trp® =Yy Tr(|vs) (Wili;) (451)

.3

By invariance of trace under cyclic permutations

T7“p2 = ZpipjTT(WjWi)Win))

i,J
Trp2 = Zpipj (¢j‘¢z’><¢i|¢j>
,J
Trp2 = Zpipj|<¢i|@/’j>|2

Now, we separate the sum into the cases where ¢ = j and i # j

Trp® =3 pilwilva) [ + 3 pis | (wil)
i i#
Since (¢;]1;) = 1, we get
Trp®> = v+ vl (Wilv)[?
i i#]
Now, since the p; sum to 1, the minimum value of the sum of the p? is é by the Cauchy-Schwarz
inequality. The minimum value of [(¢;]1;)|? is 0 since the norm squared is nonnegative.

Trp2 >

As we claimed.
The maximum value of the purity of a density matrix on d dimensions is 1. To see that this can
be attained, consider

p=0){0]



Which is a pure density matrix, and satisfies
Trp* = Tr(]0){0[0)(0]) = Tr({0]0){0]0)) = 1

To see that this is maximal, recall that we have shown for arbitrary
p=_ pilti) (Wil

That
Trp* = pipjl (Wilehy)
i

And since 0 < [(¢;]1;)]* < 1, and p;, p; are positive
Trp* = Zpipj|<¢i|¢j>|2 < Zpipj <l-1=1
1] ,J

So 1 is the maximum purity.

(©)

As a state gets more entangled, we expect the purity to decrease. We think of a state being more
entangled as the partial state being more heavily correlated with the other half of the bipartite
state. Thus, if we trace out the other state, the partial state will be more mixed.

(d)

Again, we have

Try|GHZN)(GHZy| = = (J0y2VH0|#N 1 4 (1)@ 112N

N | —

And the purity of this state is

Tr (Try|GHZN)(GHZy|)?) = Tr (i (loy=N=1o[*N " + |1)®N—1<1|®N—1)2)
=Tr <

(0PN 0P et )

1

2
So in the limit as N — oo, the purity of this state is

(e)

Evaluating the purity

1
2

N -1
N

~7r ((%) Wy i+ (5) |o>®N—1<0|®N—1>

_(N-1 2+ 1)
- N N
N?2 —2N +2
:T

o (Tl Wa W) = T (S W) (Wil + 10} 01 )



So in the limit as N — oo, the purity of this state is 1. Since this value is higher than that for
the GH Z states, we can conclude the W states are more robust, as they remain mostly pure even
when a bit is traced out.

(1)

We now repeat the analysis tracing out n qubits instead of 1, which we will indicate by Trg,
Again, we have

TTB’GHZN><GHZN| — (’0>®N—n<0|®N—n + |1>®N—n<1|®N—n)

DO | —

And the purity of this state is

Tr ((Trp|lGHZN)(GHZy|)?) = Tr (}l (J0)EN= (0[N =" + |1>®N—”<1|®N—")2)
=Tr <

(0 e o))

1

2

So no matter how many bits are traced out of the GHZ density matrix, the purity is % and so in

the limit as N — oo, the purity is %

Evaluating the purity for the W density matrix

N —n
N

- ((N§ n) W Wioal + () |o>®N-“<o\®N-”>

B N —n 2+<n>2
N N N
N? —2Nn + 2n?

T (TralW) (W) = Tr (S W) (Wl + 10202

So in the limit as N — oo, the purity of this state still goes to 1 (although slower for larger N).
Since this value is higher than that for the GHZ states, we can again conclude the W states are
more robust, as they remain mostly pure even when many bits are traced out.

Problem 2: Dimension of a purifying system

Solution: (Due to De Huang)

(a) Let r be the Schmidt rank of |¥) 4p, then D > r. On the other hand, given
1
pa = 51000+ [3)(3]),
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we have
r = rank(trg|U)(V|ap) = rank(pa) = 2.

Therefore D > 2, the minimum value of D is no less than 2. In particular, if we let B be
the space of single qubit(D = 2), and take

(W) as = —=(10)4l0)5 + 3)al1) ),

1
\/5(
then we have trg|U)(¥|sp = pa. Thus the minimum of D is 2.
(b) We can rewrite p4 as
1 1 1
\/—|2> \/—|3>) 7<2!+7<3D)+g((ﬁl4> \/—!5>)(\/—<4|+E<5!))-

Notice that |1), \%(\2) +13)), \%(]4} +|5)) are orthogonal to each other, we have

2= IO+ (5 (

rank(pa) = 3.

Agian we have
D > rank(trg|¥)(V|ap) = rank(ps) = 3.

In particular, if we let B be a 3 dimensional qudit space, and take

Uhap = = [1)al0)5 + —=(12) + [3))alL)5 + —=(14) + [5))412) 5.

1
v5Hallet v
then we have trg|U)(V|sp = pa. Thus the minimum of D is 3.
(c) For a general py, let r be the rank of p4. Consider the eigenvalue decomposition of py4,
r—1
pa =Y il (ail,
=0

where |¢;), i =0,1,...,r—1, are normalized orthogonal eigen states, \; >0, i =0,1,...,7r—
Land -0\ = 1. If trB|\I/><\IJ|AB = pa, then

D > Schmidt rank(|V 4p)) = rank(trp|V)(¥|ap) = rank(pa) = 7.

In particular, let B be a r dimensional qudit space with standard baisi {|i), ¢ =0,1,...,r —
1}, and take

r—1
U)ap = Z Vildi) ali) B
=0
then we have trg|U)(V|sp = pa, and thus the minimum of D is r.

(d) Still, consider the eigenvalue decomposition of p4 with rank r,

r—1
PA = Z Ail i) (@i,
i=0



where {|¢;), i = 0,1,...,d — 1} is a orthogonal basis of the qudit space A, \; > 0, i =

0,1,....r

—1,and 30N = 1.

Also consider the eigenvalue decomposition of 45,

r'—1
TAB = Zsk“yk><‘yk‘ABa
k=0
where 1" = rank(o4p), and s >0, k=0,1,...,7 — 1.

(i)

(i)

First we find the lowest attainable rank of o4p. For each |Vy) 45, we have
rank(trg(| W) (¥r|ap)) = Schmidt rank(|¥;) a5) < m,

since the dimension of B system is m Then we have

r'—1 r'—1
rank(trgoap) = rank(ZsktrB(|\Ilk><\Ilk|AB)) < Zrank(trB(\\Iko\Ifk\AB)) <7 xm.
k=0 k=0

But since trg(cap) = pa, we have
rank(trgoap) = rank(pa) = r,

and thus we get
rxm>r, ie 1 >[—],

since ' is an integer. Let p = ||, ¢ = r — mp, then we can take

3

m—1
Sk:ZAmk-‘ri? |\Ijk>AB ?Z V mk-H ¢mk+l A| k:1727"‘7p_17
=0 =0

Sp = Z >‘mp+i7 |\PP>AB T V mp+z|¢mp+z Z B if q>0.

It’s easy to check that |[¥), £k =0,1,...,p, are orthogonal to each other, and that
tre(oap) = pa,

r’ =rank(cap) = p +sign(q) - 1=p+ [ 1= L ] = [m1
In this case the lower-bound is achieved. Thus the minimum attamable rank of o 45 is
[

Next we find the highest attainable purity of o 45, i.e. the maximum of

r'—1
2 2
tr(cag) = Zsk.
k=0
We now should find out the constraints on s = (s, So, . . ., ST)(HOtICG the we now have

no upper bound on 77/, even though there is indeed one as ' < m x r). Let € be the
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feasible set for s, and that s* be an optimal solution that achieves the maximum of
attainable purity.

The first constraints on s are

r'—1

s, >0, k=0,1,...,7, ZSk:L
k=0

since 0 4p is a density matrix. Before we go further, we give a Lemma: ifa > b > 0,¢ >
d>0, a+b=c+d=-e, a>c, then a®> +b* > ? + d>°.
Proof:

a? + 0 —(F+d*)=(a—c)(a+c)+ (b—d)(b+d)
=(a—c)la+c)+(c—a)(2e —a—c)
= (a—¢)(2a + 2¢c — 2e)

> 0.
Now we inductively definde
5= ;= k=1,2,...,7" -1
90 r?ea‘QX S0, G SEQ,Si:gZ’-}%i{O,...,k—l Sk ) &y , T )
then using the lemma, we can always make sy = g5, k=0,1,...,r — 1(it’s not a hard

proof, and we skip it here). We should find out what g; are.
Let’s assume that in the expression of 045 we give above,

r—1 m—1
(W) ap = al;|6i)ali) s,
i=0 j=0
where
r—1 m—1
Dolaf P = (W) =1, k=0,1,...,/' — 1,
i=0 j=0
r—1 m—1

Z af ol = (U|0,) =0, k#I,

=0

<
Il

0
since | W) 45 are normalized and orthogonal to each other. The condition trg(cap) = pa
gives that

r'—1 m—1
E § k |2 .

)\Z: Sk |Oél,_]|7 220,1,,7“—1
k=0 7=0

Now define matrices A, € C™™ as

(Ak)ij = \/skaf’j, k=0,1,...,7" =1,
then all the constraints above can be summarized as

Ao
r'—1 A
> AAl=A= b ,
k=0 -



tT(AkAD =5, k=0,1,...,7" —1; tT(AkAlT) =0, k#I

We first give a lemma without proof: if m < r, then

max  tr(P]MP,) = Zaz ), VM eC™,

Pl,PQEQ/

where ' = {P € C™™ : PTP =1,,}, and o;(M) denote the iy, large singular value of
M.

Assume that \g > A\ > ... > A, > 0. Then for our case, the lemma above reduces to
tr(P]AP,) >\

Consider the reduced eigenvalue decomposition of AOAO,
AgAf = Q2QT,
where @ € €, and ¥ € C™*™ is a positive diagonal matrix. Then since

r'—1

Al <N AAL =N, = T =QM4,45Q < Q'AQ,
k=0

we have

P1,PoeQ

m—1
so = tr(AgAf) = tr(2) < tr(Q'AQ) < max tr(PJAPy) =) Ay,
=0

thus g5 < >, Am. Recall that in (d)(i) we provided an example in which sy =

S s therefore we indeed have g = Zlfr;—ol .

Let p = [ -], ¢ = 7 — mp. Then similarly we can prove that

3

9 = Amk+i, K=0,1,...,p—1,

%

I
o

and if ¢ > 0, g5 = Y ; Amp+i- Now using the previous result, we can always make

qg—1
sy = :Z/\mkﬂ, =0,1,...,p—1; 5;:g;:ZAmp+i, if ¢ >0,
i=0
and therefore the hlghest attainable purity of o4p is
p—1 p—1 q—1 9
D (53)” + sign(a)(s;)” = 3 (Z M)+ sign(a) (3 M)
k=0 k=0 =0 i=0

where sign(q) =1, if ¢ > 0; sign(q) = 0, if ¢ = 0. Indeed the example in (d)(i),

1 m—1
Z /\mk+za |\Ijk: AB — ﬁ Zz: V mk+z|¢mk+z A| k= 1727 Y 2 17

q—1 q—1
1 . .
Sp = E Amp-tis ’\I]p>AB = \/8— E V /\mp+i’¢mp+i>A’Z>Bv if ¢ >0,
i=0 P i—0

achieves this maximum of attainable purity.
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Problem 3: Secret sharing among three people

Solution: (Due to Bolton Bailey)

(a) We compute the reduced density matrix pa

1 b 1 b
ﬁ(’O>A’0>B’O>C + (-1 )|1>A|1>B|1>C)E<<O|A<O|B<O|tc + (—1°) (1] a(1|(1]tc)

1
W) (V| = §(|000><000|ABC + (—1%)|000) (11| apc + (—1°)[111){000] apc + [111)(111] apc+)

(W) (W] =

)] = 51001100} {00l e+ (~1%)10) (14100311 5+ (~1%)|1) 0]a 1) {00] s+ 1) (14 1)1,

Tracl®) (2] = 5(10) (0] -+ [1)(1]) = 51

So pa is the maximally mixed state, no matter the value of b. Thus, A alone gains no
information about the secret. By the symmetry of the state ¥, we see that the other density
matrices are the same

1
Trac| U)WV = Trap|V) (V| = §]I

1
pA = pB = pc = 511
So none of the three can recover the secret on their own.

(b) We compute the two-party reduced density matrix ppc, from part (b)
1
[9) (] = 5(10){042]00)(00] 5o-+(=1%)|0) {1]4@]00) (11 so+(=1")[1) (0 a2 [11){00| s+ [1) (1] a2 [11) {11,

So
Tr a0 (8] = 5(00) (00 + [11)(11]1)

So ppc is the same mixed state, no matter the value of b. Thus, B and C' together gain
no information about the secret. By the symmetry of the state ¥, we see that the other
two-party density matrices are again the same

1
Trp|U) (V] = Tre|¥){¥| = 5(]00)(00[4 + [11)(11]4)
So these pairs also do not have any information about the secret.

(c) Consider the following LOCC protocol. Alice, Bob and Charlie all apply local Hadamard
transformations to their qubit. This yields the state

H@H@H%uoom +111) = 1100) + 1)  (10) +]1)) @ ([0) + 1)
+(=1(10) — 1)) @ (10) — [1)) @ ([0) — 1))]
- imooo) +1001) 4 [010) + [011) + [100) + [101) + [110) + |111))
+ (—=1)2(]000) — |001) — [010) -+ [011) — |100) + [101) + [110) — |111))]



So if b = 0, the state is now

1

§(|000> + |011) + |101) + [110))
And if b = 1, the state is now

%(\oow +1010) 4 [100) + [111))

Now, Alice, Bob, and Charlie measure in the standard basis. We note that these three mea-

surements are equivalent to a measurement in the computational in the product space. Thus,

if b = 0, the only possible measurements for Alice, Bob, and, Charlie are (0, 0,0), (0,1, 1), (1,0, 1), (1,1, 0)
If b = 1, the only possible measurements for Alice, Bob, and, Charlie are (0,0, 1), (0,1,0), (1,0,0), (1,1, 1)
Thus, to determine b, Bob and CHarlie send the bits from their measurements to Alice and

Alice computes the parity of the three measurements, which is then equal to b.

Problem 4: Non-local boxes

Solution: (Due to De Huang)

(a) (U) For any input (z,y) € A; x Ay, we have

1
Z p(a,b|x,y) =4 x Z =L
a,be{0,1}

(PR) If (z,y) # (1,1),

> plablz,y) = p(0,0]z,y) + p(1, 1]a,y) =
a,be{0,1}

if (z,y) = (1,1),

1 1
> pla,bla,y) = p(1,0z,y) + p(0, L]z, y) = Sty=L
a,be{0,1}
(CH) If (z,y) # (1, 1),
1 1 1 1
Z p(a,blz,y) = §C082g—|— §coszg—|— §sin2g—|— §sin2g =1,
a,be{0,1}

if (x,y) = (17 1)7

1 T 1 T 1 T 1 7
Z pla,blz,y) = = sin® — + —sin® = + —cos’ = + = cos* = = 1.
aveon) 2 8 2 8 2 8 2 8

10



(SIG) For any input (z,y) € A; x A, we have

> pla,bla,y) = ply,zlz,y) = 1.

a,be{0,1}

(b) Let
p(a, x|z, y) Z p(a,blx,y)
be{0,1}

denote the marginal probability of the first output being a given the input (z,y), and

p(*,b\x,y) = Z p(a,b|x,y)

ac{0,1}
the marginal probability of the second output being b given the input (z,y).

(U) It’s non-signaling, because

p(a, *|z,0) = p(a,*|z,1) = =, Vze€{0,1}, Va € {0,1},

N = o =

p(*,0[0,y) = p(*,b|1,y) = =, Vye{0,1}, vbe {0,1}.

(PR) It’s non-signaling, because

pla, x|z, y) = pla,a ® (x ANy)|z,y) = 5, Vz,y € {0,1}, Va € {0,1},

p(x, 0|z, y) = p(b® (x Ay),blr,y) = Vz,y € {0,1}, Vb e {0,1}.

)

NN NN

(CH) It’s non-signaling, because given any input (z,y), we always have

(A A
p<070’xay) :p(lv 1‘:67?/) = %COSZ g + %SHIQ ga

A —(x A
p(1,012,) = p(0, [z 5) = Z2Y cos? T TEAY 2 T

and thus

pla, *|z,y) = p(a,0|z,y) + p(a, 1|z, y) = Vz,y € {0,1}, Va € {0,1},

Y

Va,y € {0,1}, Vb € {0,1}.

Y

1
2
1
p(*, 0|z, y) = p(0,b|z,y) + p(1,blz,y) = 3

(SIG) It’s not non-signaling, because
p(1,%|0,0) =0, p(1,%]0,1) =p(1,0/0,1) =1,

p(1,%|0,0) # p(1, %[0, 1).

11



(c) We always have

Puoin= 3. p(%.v)( > p(a,blw,y))

z,ye{0,1} a®b=zA\y
1 1
= 7(p(0,0[0,0) +p(1,1]0,0)) + 7 (p(0,0[0, 1) + p(1,1]0, 1))
1 1

We just need to specify each probability for each cases.

(U) Everything is §, thus

1 1 1 1
win — - - 4 = —.
Puin = 3 ¥ (747 x4 =3
(PR)
1 1 1
in = -+ = 4 =1
Pwin 4X(2+2)X
(CH)
1 1 1 1 2
pmeZ><(50082g+50082g)x4:coszg:§+\/7_,
(SIG)

~ L0000y = 2
pwzn_4p Y 9 _4

(d) (U) Can. Let
L_L
PAB = 9 9
Ay =By = [0)0], Ay =By =I1)(1], A}=B]=|+)(+], A1=B=|-)-I

It’s easy to check that
a b 1
tr((As ® B))pap) = T Va,y,a,b € {0,1}.

(PR) Can not. We will prove by contradiction. For any POVM {A9, A} },, x € {0,1}, {B), B, }s, y €
{0,1}, and any density matrix pap, consider the folloing formula

(A5 — Ag) @ (By — By) + (Ag — Ay) ® (BY — By)
+ (A} = A1) @ (By — By) — (A} — A)) ® (B} — By)
= MoNy + MoNy + My Ny — My Ny,

where
M;= (Al - A)®L, N,=L®B’ —B!, ic{0,1}.
It’s easy to check that

I, <M <I,, -I,<N;<Il,, i=€{0,1},

M;N; = N;M;, i,j€{0,1}.

12



Now define
(XY) =tr(XYpap), (X?)=(XX),
the we have
(M;N;) = (N;M;), 14,5 €{0,1},
(( Z a;M; + Z BiN;)?) >0, Vag,ai, By, b
ie{0,1} je{0,1}

Then by direct calculation! , we have

tr((MoNo + MoNy + My No — MiNy)pag)
= (MoNo) + (MoNy) + (M;No) — (M1 Ny)
= 5 (08) + () + () + ()
V2 -1
8
V2 -1
8

(M) + (M?) + (N3) + (N7))

V2 -1
8
V2 -1
8

(V24 1)(My — No) + My — Ny)*) — (V2 + 1) (Mo — Ny) — My — Np)*)

(V24 1)(My — No) + My + N,)%) — (V24 1) (M + Ny) — My — No)*)

IN

IN

Sl =Sl

((]I4> + (Iy) + (L) + <H4>)

|
S

However, if there exist such a quantum strategy that can implement (PR) box, than
it’s easy to check that

tr((MoNo + MoNy + My No — M1Ny)pag)
= tr((A) — Ay) ® (BY — By))pas) + tr((Ay — Ay) @ (B — By)pap)
+tr((A) = A}) @ (BY — By)pag) — tr((A} — A}) ® (B} = B})pas)

which violates the upper bound 2v/2 we obtain above. This contradiction implies that
we can not use quantum strategy to implement (PR) box.

(CH) Can. Let
pan = |EPR)(EPF| iy
= 20)10) + [1)1)(CO10] + (11 (1].am
= SR+ DD + = l=Das

Ag=10)0], Ay =[1)(1], AV =]+)(+], A =[-){-],

11980 B.S. Cirel’son, ” Quantum generalizations of Bell’s inequality.” Letters in Mathematical Physics 4, 93-100.
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By = |¢o){(¢ol, By =|¢1){¢1], By = |vo)(o|, Bi = |vr1)(¥l,
where - - - -
|bo) = cos g\O) —|—sin§\1), lp1) = —sin§]0> + cos g\l),
) = COS%|0) . sing|1), ) = sing|0) + Cosg|1>.
It’s easy to check that

1
tr((AL ® B;)pAB) =3 cos® %, ifa®b=2xANy,

1
tr((A%® Bz)pAB) = §Sin2 g, ifa®b#xANy.

(SIG) Can not. We will show this by contradiction. Assume that there is such a strategy,
then
(A3 © B)pas) = tr((Al © Bl)pas) = 1

tr((Ag ® BY)pap) = tr((AY @ By)pap) = 1.

In my HW3 problem 2, I have shown a lemma that if X > Y, Z > 0, then tr(XZ) >
tr(YZ). We will use this lemma here again. Since {A}}, and {B/}, are POVMs for all

x, 1y, we have
I, > By >0, I>B; >0,

A) >0, A;>0, Aj+ A =1,
= AL >A)B)>0, Al >A e B) >0,
= L=LoL=AL+A L >A &B)+A)® B >0,
then using the lemma, we have

1 =tr(Iuypag) > tr((A8®Bg)+Aé®B?)pAB) = tr((AS@Bg)pAB)—l—tr((Aé@B(f)pAB) = 2.

This contradiction implies that we can not find such a quantum strategy.

(e) Consider an non-signaling extension {q(-,-,|x,y,2)} of the (PR) box. Using non-signaling

condition, we have

Z q(a7 b’ C|I7 y’ z) - Z q(a’ b7 C|x,7 y,7 Z)) VC? Z? VI7 y? I/’ y/ e {07 1}7
a,be{0,1} a,be{0,1}

therefore we can define

p'(clz) = Z q(a,b,c|0,0,2) >0, Ve,z,

a,be{0,1}

then we have

Plez)= Y qlabelr,y.z), VYrye{0,1}.
a,be{0,1}

14



Also we can check that for all z,

Zp’(c,z): Z Zq(a,b,c\(),(),z): Z p(a,bl0,0) =1,

a,be{0,1} ¢ a,be{0,1}

thus {p/(c|z)}. is a family of well defined distributions. Now using the properties of (PR)
box, we have

> (0,1, cla,y, 2) = p(0, 1z, y) =0, ¥z, if (z,y) # (1,1),

[

> (1,0, cla,y, 2) = p(1,0lz,y) =0, ¥z, if (x,y) # (1,1),

[

> 4(0,0,¢lz,y,2) = p(0,0]z,y) =0, Vz, if (z,y) = (1,1),

Cc

> a1, ¢y, 2) = p(1, 1|z, y) =0, V2. if (z,9) = (1,1),

c

Since all probabilities are non negative, we have

q(0,1, ¢z, y,z) = 0= p(0, L]z, y)p'(c|z), Ve,z, if (z,y) # (1,1),
q(1,0,clz,y,2) = 0= p(1,0[z,y)p'(c|z), Ve,z, if (z,y) # (1,1),
q(0,0, ¢z, y,z) = 0= p(0,0lz,y)p'(c|z), Ve,z, if (z,y) = (1,1),
q(1,1,clz,y,2) =0=p(1,1z,y)p'(c|z), Ve, 2z, if (z,y) = (1,1).

Then using the non-signaling condition for fixing two inputs and outputs, we have
q(0,0,¢|0,0,2) = ¢(0,0,¢|0,1,2) = ¢q(1,0,¢|1,1,2) = ¢(1,1,¢|1,0, 2) = ¢(1,1,¢[0,0, 2), Ve, z,
and since we also have

Z q(a,b,c|0,0,z) = q(0,0,c[0,0, 2) + ¢(1,1,¢|0,0, z) = p'(c|z), Ve, z,
a,be{0,1}

thus .
q(0,0,¢[0,0,2) = §p'(c|z) = p(0,0[0,0)p (¢, 2), Ve, z,

1
q(1,1,¢/|0,0,2) = §p’(c\z) = p(1,1]0,0)p(c, 2), Ve, 2.

Similarly we can also prove that
0(0,0,cl2,y,2) = 52/(cl2) = p(0, 0, y)p! (e, 2), Ve, 2, (,9) # (1,1),
1,1l 2) = 53/ (cl2) = DL U, y)pl (e, 2), Ve, 2, (,0) # (1,1),
(0,1l 2) = 53/ (el2) = pl0, L, y)pl(e,2), Ve, 2, (,9) = (1,1),

1
q(1,0,clz,y, 2) = §P,<C|Z) = p(1,0|z,y)p'(c, 2), Ve, z, if (x,y) = (1,1).

Therefore the extension {q(,-,-|z,y,2)} is in a product form.
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(f) Let c€ A3 ={0,1}, z € A3 = {0}. Let

(4(0,0,0|z,y,2) = q(1,1,0|2,y,2) = 1,

Q(()?Oa 1|l’,y, Z) = Q(l, L 1|$,y,2’) = %COS%Sng,
if (z,y) # (1,1),
q(1,0,1|z,y,2) = q(0,1,1|z,y, 2) = +sin® Z,

q(1,0,0|z,y,2) = q(0,1,0|x,y, z) = }lsin o3

[ ¢(0,0,0[x,y,2) = q(1,1,0]z,y, z) = ;sin* &,

q(0,0,1)z,y,2) = q(1,1,1|x,y,2) = isin %
if (z,y) = (1, 1).
Q(1707 1|x7ya Z) = Q(Oa L, 1|$ayaz> = %COS%aSin%7

[ (1,0,0[z,y,2) = q(0,1,0[z,y,2) = {,

It’s easy to check that this {q(-,-,|x,y,2)} defines a tripartite non local box. Also, using
the fact that

1 ™ .. T 9 T

— 4 cos — sin — = cos” —,

2 8 8 8
and noticing that z is always 0, we can check that

> qla,b,cla,y,0) = gla,b,cx,y,0), Va,z,y.Y,

be be
Z q(a, b, clz,y,0) = Z q(a,b,clz’,y,0), Vb,z,y, 2,
Zq(a, b, clz,y,0) = Z’q(a, b,cl’,y',0), Va,z,y,2',y,
b ab
Z q(a, b, clz,y,0) = Z q(a,b, clz,y',0), Va,c,z,y,y,
b b
Z q(a,b, clz,y,0) = Z q(a,b, cla’,y,0), Vb,c,x,y, 2,

therefore it’s non-signaling. Moreover, if (z,y) # (1,1) we have

1 1
Z q(0,0,clx,y, z) = 3 cong =p(0,0]z,y), Z q(1,1,clz,y, 2) = §C052g = p(1, 1|z, y),
ce{0,1} ce{0,1}

1 . .7 1 . .7
> (1,0, clw,y,2) = osin® 2 =p(1,0lz,9), > a(01,clw,y,2) = 5 sin® 2 =p(0, 1],y),
cef{0,1} ce{0,1}
if (z,y) = (1,1) we have
1 . .7 1 o
Z Q(O,O,C|l'7y,z) = _Slnz g :p(0,0|l',y), Z Q(L 1,C|I’,y,2’) = ESIDQ g = p(17 1|$ay)>

ce{0,1} 2 ce{0,1}
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271'

1 1
Z Q(17076|J;7y72) = §COS g :p(170|m7y)a Z CI(O, 1,C|l’,y, Z) = 5(3082% :p<0a ]_|ZL‘,y)
ce{0,1} ce{0,1}

Therefore this {q(-, -, |z,y, 2)} is a non-signaling extension of (CH) box.
However, if this {q(-,,|z,y, 2)} has a product form, then we have

¢(0,0,0[0,0,2z) 1
p(0,0[0,0)  2cos?Z’

q(0,0,0[0,0,2) = p(0,0[0,0)p'(0|z) = p'(0]z) =

(0,0,0[1,1,z) 1
p(0,0[1,1) 2

This contraction implies that this {q(-,, :|z,y, 2)} is a non-product, non-signaling extension
of (CH) box.

q(0,0,0[1,1,2) = p(0,0[1,1)p'(0]2) = p'(0]z) =

Given that each pair is chosen uniformly and (x,y, z) is generated uniformly, the success
probability is

1 1
Prwin: g Z g( Z p(a'7ba C|w7ya Z)+ Z p(aa bvc|xay7z>+ Z p(aa b7c|x7y7z)>
z,y,2€{0,1} adb=zAy aPe=zNz bde=yAz
1
=5 2. < > plabdry,2)+ > plabery,z)+ > plabclr,y, z))
z,y,2€{0,1} adb=zAy aPc=zN\z bbc=yAz
1
= ﬂ Z <Il(x,y,2>+12<I,y,2)+[3<$,y72)),
z,y,2€{0,1}

where I;(z,y, 2), i = 1,2, 3 denote the success probability under the condition that the input
is (z,y,z) and the iy, pair is chosen. Here the first, second and third pair means (A, B),
(A, C) and (B, C) respectively.

The following table gives occurrence number of each term p(a, b, c|z,y, z) in the summation
Il(x7 Y, Z) + 12<x7 Y, Z) + ]3(1’, Y, Z)

TYZ

000 | 100 | 010 | 001 | 011 | 101 | 110 | 111
000 | 3 3 3 3
001 | 1 1 1 1
010 | 1 1 1 1
abc | 100 | 1 1 1 1
011 | 1 1 1 1
101 | 1 1 1 1
110 | 1 1 1 1
111 ] 3 3 3 3

(NN OO NN N
NN D NN O N
O | O N NN N O N
O NN NN O
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Using this table and the condition that
Z p(a7 b’ C|'/E7 y7 Z) - 17 vx? y? Z7
a,b,c{0,1}

we can easily see that

1
Prwin = ﬁ(lQ + 2p(07 07 0‘07 07 O) + 2]9(0, OJ 0|17 07 O) + 2p(07 07 0‘07 17 0) + 2]7(0, 07 0’07 07 1)

+2p(1,1,1]0,0,0) + 2p(1,1,1|1,0,0) + 2p(1,1,1]0,1,0) + 2p(1,1,1[0,0, 1)
—2p(1,0,0]0,1,1) — 2p(0,1,0|1,0,1) — 2p(0,0, 1|1, 1,0) — 2p(0,0,0|1,1,1)
—2p(0,1,1]0,1,1) — 2p(1,0,1]1,0,1) — 2p(1,1,01,1,0) — 2p(1,1,1]1,1,1))

<

1
< ﬁ(u +2p(0,0,0]0,0,0) +2p(0,0,0[1,0,0) 4 2p(0,0,0[0, 1,0) + 2p(0,0,0/0,0, 1)

+2p(1,1,1]0,0,0) 4+ 2p(1,1,1|1,0,0) + 2p(1,1,1|0,1,0) + 2p(1,1,1[0,0, 1)
—2p(0,0,0[1,1,1) — 2p(1,1,1|1,1, 1)).

Notice that whichever pair of players is chosen, (a, b, ¢) is a valid answer to the input (z,y, 2)
if and only if (a ® 1,0 @ 1,¢® 1) is a valid answer to (z,y, z). Therefore, given a tripartite
box {p(-,-,|x,y, 2)}, if we define a new tripartite {q(-, -, |z, y, 2)} box like

1
q(a, b, clx,y, z) = i(p(a, bclr,y,z) + pla® 1,06 D 1,c® 1|z, vy, z)), Ya,b,c,x,vy, z,

then it’s easy to check that we will have

Prwin (p) = Prwin (Q) )

that is to say such transformation preserves the success probability. Also if {p(-,, |z, y,2)}
is non-signaling, then for any (a, z), we have
1
> alabelry ) =5 Y (plabca,y,2) +pla®1,b® 1 cd 1lz,y, 2))
b,ce{0,1} b,ce{0,1}
1
=5 Y (labday )+ pae 1@ 1 ed ey, )
b,c€{0,1}
= > qlabezy. ), Vyzy7,
b,ce{0,1}

and this is also true for any (b,y) or any (c, z). Also for any (a, b, x,y), we have

|
> dlabdey.z) =5 Y, (plabce,y2) +pa®lb@lcellry,z2))

66{071} CE{O,].}
1
- 5 Z (p(a,b,c|x,y, Zl) —i—p(a@ 17bEB 17069 1‘1.73/72/))
ce{0,1}
- Z q<a,b,C‘,Z‘,y’ Z/)a VZ,Z,,
ce{0,1}
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and this is true for any (a,c,z,z) or any (b,c,y,z). Therefor {q(-,-,|z,y,2)} is also non-
signaling. Thus this transformation transformation also preserves the non-signaling property.
Out of this reason, from now on we can alwasy assume that

pla,b,clz,y,z) =pla®1,0B 1,cd 1\x,y,z)), Ya,b,c,x,vy, z, (%)

otherwise we can do this transformation to {p(-,-, |z, y, 2)} to make it so.
Now we continue our task of finding the upper bound of success probability,
1

Prwin S
24

(12 + 2p(0,0,0]0,0,0) + 2p(0,0,0]1,0,0) + 2p(0,0,0[0, 1,0) + 2p(0,0,0]0,0, 1)
+2p(1,1,1]0,0,0) + 2p(1,1,1[1,0,0) + 2p(1,1,1]0,1,0) + 2p(1,1,1]0,0, 1)
—2p(0,0,0/1,1,1) — 2p(1,1,1|1,1,1))

1
= ﬂ(12 +4p(0,0,0]0,0,0) + 4p(0,0,0|1,0,0) + 4p(0,0,0|0, 1, 0) + 4p(0, 0,0]0,0,1)
—4p(0,0,0[1,1,1))
1 1
= 5 + 6(p(07 07 O|07 07 0) +p(07 Oa O|1> 07 0) +p(07 Oa O|07 17 O) +p(07 Oa O|07 07 1)
—p(0,0,0]1,1,1)),

where we have used the condition (x). Next we will have to do some painful calculation.
Using condition (x) and non-signaling condition for fixing two inputs, we can show that

p(0,0,1|0,1,1) + p(0,1,0[0,1,1) = p(0,0,1|1,1,1) 4+ p(0,1,0|1,1,1),

p(0,0,1]1,0,1) + p(1,0,0|1,0,1) = p(0,0,1[1,1,1) + p(1,0,0/1,1,1),
p(0,1,0|1,1,0) + p(1,0,0[1,1,0) = p(0,1,0[1,1,1) + p(1,0,0|1,1,1),

—  p(0,0,1]0,1,1) + p(0,1,00,1,1) + p(0,0,1[1,0,1)
+p(1,0,0]1,0,1) + p(0,1,0[1,1,0) + p(1,0,0|1, 1, 0)
= 2p(0,0,1[1,1,1) + 2p(0,1,0|1,1,1) + 2p(1,0,0/1,1,1)
=1—2p(0,0,0|1,1,1).

On the other hand, still using condition (*) and non-signaling condition for fixing two inputs,
we can check that

p(0,0,11,0,0) + p(0,1,0[1,0,0) + 2p(1,0,01,0,0)

+p(0,0,1[0,1,0) + 2p(0, 1,0|0,1,0) + p(1,0,0[0, 1,0)

+2p(0,0,1[0,0,1) + p(0,1,0]0,0,1) + p(1,0,0[0,0, 1)
= p(0,0,1]0,1,1) + p(0,1,00,1,1) + p(0,0, /1,0, 1)

+p(1,0,0[1,0,1) + p(0,1,0|1,1,0) + p(1,0,0|1, 1,0)

+2p(1,0,0]0,1,1) + 2p(0,1,0[1,0, 1) + 2p(0,0, 1|1, 1,0)
— 1—2p(0,0,0[1,1,1)

+2p(1,0,0]0,1,1) + 2p(0,1,0[1,0, 1) + 2p(0,0, 1|1, 1,0)
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Notice that condition (x) gives

2p(0,0,0[1,0,0) + 2p(0, 0,00, 1,0) + 2p(0,0,0|0, 0, 1)
+p(0,0,1|1,0,0) + p(0,1,0|1,0,0) + 2p(1,0,0[1,0,0)
+p(0,0,1]0,1,0) + 2p(0, 1,0|0,1,0) + p(1,0,0[0, 1, 0)
+2p(0,0,1]0,0,1) + p(0,1,0]0,0,1) + p(1,0,0[0,0,1) < 3,

thus
2p(0,0,0/1,0,0) + 2p(0, 0,00, 1,0) + 2p(0,0,0]0,0,1)

+1—2p(0,0,0|1,1,1)
+2p(1,0,0[0,1,1) + 2p(0,1,0|1,0,1) + 2p(0,0,1]1,1,0) < 3,

—  p(0,0,0[1,0,0) + p(0,0,0[0, 1,0) + p(0,0,0]0,0,1) — p(0,0,0|1,1,1)
< 1-p(1,0,0[0,1,1) — p(0,1,0|1,0,1) — p(0,0, 1|1, 1,0)
<1

Finally we have

1 1
Pr ., < 3 + —(p(O, 0,0/0,0,0) + p(0,0,0/1,0,0) + p(0,0,0/0,1,0) + p(0,0,0/0,0,1)

—p(0,0,0[1,1,1))

(=}

<

+

(p(0,0,0]0,0,0) +1)

1+n

<
B 2

+
D =D

~—

LN =N =

Here we have used the condition (x), so p(0,0,0/0,0,0) < %

Now we have proved that % is a upper bound of the success probability. Indeed if we take

1
p(07070|$7?/a Z) :p(17171|$7yaz) = 57 \V/I',y, 2,

and all unspecified probabilities being 0, then we can check that this {p(-,-, |z, y,2)} is a
non-signaling tripartite nonlocal box, and we have

1
Pryi, = —(12 + 2p(0,0,0/0,0,0) 4+ 2p(0,0,0[1,0,0) + 2p(0,0,0/0, 1,0) + 2p(0, 0,0/0,0, 1)

24
+2p(1,1,1]0,0,0) + 2p(1,1,1|1,0,0) + 2p(1,1,1]0,1,0) + 2p(1,1,1]0,0, 1)
—2p(0,0,0[1,1,1) — 2p(1,1,1]1,1,1))

3
=7

Therefore the optimum success probability achieved by any non-signaling tripartite box in
this game is %.
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