CS120, Quantum Cryptography, Fall 2016

Homework # 4 due: 10:29AM, November 1st, 2016

Ground rules:
Your homework should be submitted to the marked bins that will be by Annenberg 241.

Please format your solutions so that each problem begins on a new page, and so
that your name appears at the top of each page.

You are strongly encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on your
homework specifically which problems were a collaborative effort and with whom. You may
not search online for solutions, but if you do use research papers or other sources in your
solutions, you must cite them.

Some of the problems are inspired from problems available on EdX. You are not allowed to
look up the EAX problems for hints (such as the multiple answers provided). Focus on the
present pset!

Late homework will not be accepted or graded. Extensions will not be granted, except on
the recommendation of a dean. We will grade as many problems as possible, but sometimes
one or two problems will not be graded. Your lowest homework grade of the quarter will be
dropped from your final grade.

Place all your problems in the first (top) bin in the box by Annenberg 241. Start each
problem on a new page, with your name clearly marked at the top of the page.

Problems:

1. (8 points) Robustness of GHZ and W states, part 2.
We return to the multi-qubit GHZ and W states originally introduced in HW 2 Problem
4. As a reminder:

GHZy) = %umw e,
W) = ——(|100 - - - 00) + [010- -+ 00) + - - - 4+ |000 - - - 01)).

VN

This week we learned to distinguish product states from (pure) entangled states by
calculating the Schmidt rank of A bipartite state |¥) 5, i.e. the rank of the reduced
state pa = Trp [W)(V|,5. In particular |¥) ,, is pure if and only if its Schmidt rank
is 1. In the following, we denote by Try the operation of tracing out only the last of
N qubits.



(a) What are the ranks rgpz of Try |GHZN)(GHZy| and ry of Try [Wa)(Wa|?
(Note that these are the Schmidt ranks of |GH Zy) and |Wy) if we partition each
of them between the first N — 1 qubits and the last qubit.)

Let’s now introduce a more discriminating (in fact, continuous) measure of the en-
tanglement of a state |¥) ,5: namely, the purity of the reduced state pa, defined as
Tr p%.

(b) What are the minimum and maximum values of Tr p? that can be attained by an
arbitrary density matrix p on a d-dimensional Hilbert space? For each extreme,
prove that it is indeed optimal and give an example of a state p that achieves it.

(c) Would you expect the purity of ps to increase or decrease as the full state |¥) , 5
gets “more entangled”? Give a qualitative justification for your answer. [NB: The
reduced-state purity can in fact be proven to be an entanglement monotone, i.e. it
only changes in one direction under local operations and classical communication.
The proof is beyond the scope of this problem but can be found in https://arxiv.
org/abs/quant-ph/0506181.]

(d) What is the purity of Try |GHZN)(GHZy| in the limit N — oo?

(e) What is the purity of Try [Wx)(Wy| in the limit N — oco? Comparing with part
(d), explain why we can conclude that the entanglement in the W states is more
“ robust” to the loss of a single qubit.

(f) Repeat the analysis of parts (d) and (e) for the general case of tracing out some
constant number of qubits. That is, fix constant m and compute the limits as
N — oo of the purities of the N-qubit GHZ and W states with m qubits traced
out, as functions of m.

2. (4 points) Dimension of a purifying system.
Consider the following protocol for preparing an arbitrary (possibly mixed) state
pa on a qudit A with dimension d, i.e. a system whose Hilbert space has basis

{10),|1),...,|d—1)}:

e Prepare a pure state |¥) ,5 on A and a D-dimensional ancilla qudit B (for some
integer D), satisfying Trp |[¥)(¥|,5 = pa.

e Discard the ancilla qudit B.

(a) What is the minimum value of the ancilla dimension D for which we can have
pa = 3(]0)(0] + [3)(3])? Argue explicitly that no smaller dimension will work.

(b) What is the minimum value of D for which we can have

(I +12) €21+ [2)(3] + [3)(2] + [3)(3] + [4) (4] + [4) (5] + [5)(4] + [5) (5] )?

ot —

pa =

Again argue explicitly that no smaller dimension will work.
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https://arxiv.org/abs/quant-ph/0506181
https://arxiv.org/abs/quant-ph/0506181

(c) For a general p4, explain how to find the minimum ancilla dimension D for which
there exists a pure purifying state |¥) , 5.

(d) Bonus question: Suppose in part (c) that we are somehow limited to ancilla
systems of some fixed dimension m < rank(p4). In this case it may not be possible
to find a pure |¥) , 5 such that Trg |U)(¥|,5 = pa. Suppose then we look for a
mixed state o4p such that Trp(oap) = pa. How would you go about finding
the minimum attainable rank of the joint state o457 What about the state with
the highest attainable purity Tro%z? The more thorough, generic and analytical
your explanation, the better!

3. (6 points) Secret sharing among three people.
In the EAX materials for Week 3 you learn how to share a classical secret between two
people using an entangled state. Here we will create a scheme that shares a classical
secret among three people, Alice, Bob and Charlie. We encode the secret b € {0,1} in
a GHZ-like state of the form

vy = %uom 105100 + (=) |10 1105 1))

(a) Calculate the single-party reduced density matrices pa, pg, and po. Verify that
no single one of Alice, Bob, and Charlie can recover the secret on their own.

(b) Calculate the two-party reduced densities pag, ppc, and pac. Verify that no pair
of Alice, Bob, and Charlie can recover the secret on their own.

(c) Suppose each of Alice, Bob, and Charlie is limited to the following operations:

e Local Hadamard operator on their qubit;
e Local measurement of their qubit in the computational basis {|0) , |1)};

e Sending a (classical) measurement outcome to one of the other two.

Devise a scheme by which they can together recover the secret b. (Such a scheme
is called an LOCC protocol, for “local operations and classical communication”.
You may wish to think if there exists a secret-sharing scheme such that even an
LOCC protocol would not allow colluding parties to recover the secret...)

4. (10 points) Nonlocal boxes.
Given an integer n and finite sets &7,..., &, (“inputs”) and Ay, ..., A, (“outputs”),
an n-partite non-local bozr is a family of distributions {p(:|z1,...,2,), x1,...,2, €
X X -+ X X, }, each defined on A; X -+ X A,, ie.

Z play,...,aplz1,. .. xn) =1 Vay, and play,...,apxlz1,.. . 2,) >0 YV, a;.
a; €EA;

Intuitively, a non-local box is called non-signaling if the i-th output does not provide
information about the j-th input, for ¢ # j. More formally, it is required that for each



i€{l,...,n} and all input tuples (x1,...,z,) and (24, ...,z}) such that x; = z,
Va; € A;, Z play, ..., aplz1,. .. x,) = Z play,... a2, ... x)).

aj: j7Fi aj: jFi

Similarly, the condition is required when taking marginals on more than one loca-
tion, e.g. the marginal on any pair (a;,a;) should be independent of questions z
for k ¢ {i,j} [This additional condition was missing in previous versions of
the problem. It is needed for questions (e), (f) and (g) only. If you did
the questions without the condition, explain your answer, and we will not
take out any points.] This condition implies that the marginal distribution on any
single coordinate 7 is a well-defined distribution which only depends on the input z;
associated with that coordinate.

Let’s first investigate some examples of bipartite (n = 2) nonlocal boxes. Here are four
of them. In each case X; = A; = {0, 1}, and any un-specified probability is set to 0 by
default:

(U) pla,blx,y) =1/4 Y(z,y,a,b).
(PR)  p(0,0]z,y) = p(1,1)|z,y) = 1/2 if (z,y) # (1,1),
p(1,0[z,y) = p(0,1)|z,y) = 1/2 if (z,y) = (1,1).
(CH) p(0,0lz,y) =p(1,1)|z,y) = 3 cos? /8 and
p(L,0lz,y) = p(0, V)|z,y) = 5sin’7/8 if (z,y) # (1,1),
p(0,0]x,y) = p(1,1)|z,y) = %sin2 w/8 and
p(1,0[z,y) = p(0,D)|z,y) = 3 cos® 7 /8 if (w,y) = (1,1).

(SIG) p(y,z|z,y) =1 Y(z,y).

(a) Verify that each of these indeed specifies a nonlocal box, i.e. that the probabilities
add up to 1 when they should.

(b) Among the four boxes, which are non-signaling?

(c) For each of the boxes, evaluate its success probability in the CHSH game. That
is, assuming Alice and Bob are able to generate answers distributed according to
p(a,blz,y) whenever their respective inputs are x and y, what is the probability
that they produce valid answers in the game (when the questions are chosen
uniformly at random, as usual)?

(d) For each of the four boxes, state which can be implemented using quantum me-
chanics. If it can, provide a strategy: a bipartite state pap and POVM {A%},
and {B!},, for all 2 and y, such that Tr ((A2 ® BY)pag) = p(a,blz,y) for all
(a,b, z,y). If it cannot, provide an argument justifying your answer.

Now let’s look into some tripartite (n = 3) nonlocal boxes. We say that a tripartite
box {q(-,-,-|z,y,2)} is an extension of a bipartite box {p(-,-|z,y)} if the marginals
SatiSfy Zc Q(CL, b7 C|Q?, Y, Z) = p(CL, b’$> y)u for all (CL, b7 z, y)
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(e) Show that any non-signaling tripartite extension of the (PR) box must have a
product form, i.e. g(a,b,clz,y, z) = p(a,blx,y)p’(c|z) for some family of distribu-
tions {p'(+|2)}.

(f) Show that this is not true of the (CH) box: find a non-product extension of that
box which nevertheless satisfies all non-signaling conditions.

Part (e) has a very important consequence for cryptography: it means that certain
types of bipartite correlations imply perfect privacy: any extension of the distribution
which takes into account a third system must be completely uncorrelated from the first
two (as long as it respects the basic non-signaling conditions). This phenomenon is
often referred to as a monogamy property of the bipartite (PR) box. While this is not
true of the (CH) box, the latter still provides some limited amount of secrecy, which
will be key to its use in quantum key distribution, a topic we will soon explore in class.

(g) Consider a three-player variant of the CHSH game in which each of the three
possible pairs of players is chosen uniformly at random by the referee to execute
the CHSH game (with the third player being ignored; see the notes on EdX for
a complete description). Prove either analytically or numerically (in the latter
case, include and briefly explain your code) that the optimum success probability
achieved by any non-signaling tripartite box in this game is at most 3/4. Another
manifestation of monogamy!



