
CS/Ph120 Homework 3 Solutions

November 3, 2016

Problem 1: Superdense Coding

Solution: (Due to Bolton Bailey)

(a) The most general way in which Bob can try to ascertain Alice’s classical bits is by creating
a POVM with four operators, each corresponding to a single guess for Alice’s pair of qubits.
Thus, we want a POVM

{M0,M1,M+,M−}

Which maximizes the value

P (0|0) + P (1|1) + P (+|+) + P (−|−)

4

=
tr(M0|0〉〈0|) + tr(M1|1〉〈1|) + tr(M+|+〉〈+|) + tr(M−|−〉〈−|)

4

=
〈0|M0|0〉+ 〈1|M1|1〉+ 〈+|M+|+〉+ 〈−|M−|−〉

4

And we want to know this maximal value. Observe that

〈0|M0|0〉+ 〈1|M1|1〉 ≤ 〈0|M0|0〉+ 〈1|M0|1〉+ 〈0|M1|0 + 〈1|M1|1 = tr(M0 +M1)

From the positive definiteness of these matrices, and similarly

〈+|M+|+〉+ 〈−|M−|−〉 ≤ 〈+|M+|+〉+ 〈−|M+|−〉+ 〈+|M−|+ +〈−|M−|− = tr(M+ +M−)

And we therefore have

〈0|M0|0〉+ 〈1|M1|1〉+ 〈+|M+|+〉+ 〈−|M−|−〉 ≤ tr(M0 +M1) + tr(M+ +M−)

= tr(M0 +M1 +M+ +M−)

= tr(I)
= 2

And so
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P (0|0) + P (1|1) + P (+|+) + P (−|−)

4

=
tr(M0|0〉〈0|) + tr(M1|1〉〈1|) + tr(M+|+〉〈+|) + tr(M−|−〉〈−|)

4

=
〈0|M0|0〉+ 〈1|M1|1〉+ 〈+|M+|+〉+ 〈−|M−|−〉

4

≤ 2

4

=
1

2

And so 1
2

is an upper bound on the probability of success. We can attain this upper bound
with

M0 = |0〉〈0|

M1 = |1〉〈1|

M+ = 0

M− = 0

Which measures in the standard basis. Thus, 1
2

is the maximum value with which Bob can
correctly guess both of Alices two classical bits.

(b) Initially the Alice-Bob Qubit pair is maximally entangled

1√
2

(|0〉A|0〉B + |1〉A|1〉B)

Suppose Alice applies one of the four unitary transformations

{I, X, Z, ZX}

To her bit and then sends it to Bob. Now, Bob has the qubit pair state

1√
2

((Zk1Xk2|0〉A)⊗ |0〉B + (Zk1Xk2|1〉A)⊗ |1〉B)

1√
2

((Zk1Xk2|0〉A)⊗ |0〉B + (Zk1Xk2|1〉A)⊗ |1〉B)

Now, consider the possible values for this pair

|ψ〉00
1√
2

(|0〉A|0〉B + |1〉A|1〉B)

|ψ〉01
1√
2

(|1〉A|0〉B + |0〉A|1〉B)
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|ψ〉10
1√
2

(|0〉A|0〉B − |1〉A|1〉B)

|ψ〉11
1√
2

(−|1〉A|0〉B + |0〉A|1〉B)

This quadruple constitutes a basis. We can see this since all the states are normalized,
and the two pairs of states which share components in the standard basis, their inner prod-
ucts evaluate to 0. Thus, all Bob has to do is to measure his state in this basis, thereby
ascertaining which of the four states

(c) No, Eve cannot recover any information about the classical bits Alice is sharing with Bob.
To see this, we trace out Bob’s bit from the two qubit state, leaving only the intercepted
qubit. Letting UA be the unitary applied by Alice, the density matrix for Alice and Bob’s
state is

1

2
(UA|0〉A)(〈0|AU †)⊗ |0〉B〈0|B+

1

2
(UA|0〉A)(〈1|AU †)⊗ |0〉B〈1|B+

1

2
(UA|1〉A)(〈0|AU †)⊗ |1〉B〈0|B+

1

2
(UA|1〉A)(〈1|AU †)⊗ |1〉B〈1|B

And so if we trace out the second bit, we get

1

2
[(UA|0〉A)(〈0|AU †) + (UA|1〉A)(〈1|AU †)]

= UA(
1

2
(|0〉〈0|+ |1〉〈1|))U †A

= UA
I
2
U †A

Now, neither the application of X or Z change the value of the maximally mixed state I
2
, so

whatever Alice’s bits are, Eve’s state is maximally mixed, and so she learns nothing.

Problem 2: Semidefinite Programming

Solution: (Due to De Huang)

(a) We first prove a Lemma: If X, Y ∈Md(C), X ≥ 0, Y ≥ 0, then tr(XY ) ≥ 0.

Proof: Consider the eigenvalue decomposition of X,

X = QΛQ†,

where Q is unitary, and Λ is a diagonal matrix with diagonal elements λ1 ≥ λ2 ≥ . . . ≥ λd ≥
0. Then

tr(XY ) = tr(QΛQ†Y ) = tr(ΛQ†Y Q).
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Let s1, s2, . . . , sd be the diagonal elements of Q†Y Q. Since Y ≥ 0, we have Q†Y Q ≥ 0, and
thus si ≥ 0, i = 1, 2, . . . , d. Therefore

tr(XY ) = tr(ΛQ†Y Q) =
d∑
i=1

λisi ≥ 0.

Let Ω1 = {X ∈ Md(C) : X ≥ 0,Φ(X) = B}, Ω2 = {Y ∈ Md′(C) : Φ∗(Y ) ≥ A, Y = Y †).
Now given any X ∈ Ω1, Y ∈ Ω2, we have

tr(BY ) = tr(Φ(X)Y )

= tr(
k∑
i=1

KiXK
†
i Y )

= tr(
k∑
i=1

XK†i Y Ki)

= tr(XΦ∗(Y )).

Since Φ∗(Y ) ≥ A, i.e. Φ∗(Y )− A ≥ 0, using the Lemma we have

tr(X(Φ∗(Y )− A)) ≥ 0,

⇒ tr(BY ) = tr(XΦ∗(Y )) ≥ tr(XA) = tr(AX).

Since X, Y are arbitrary in Ω1,Ω2, we immediately have

β = min
Y ∈Ω2

tr(BY ) ≥ max
X∈Ω1

tr(AX) = α.

(b) Consider the eigenvalue decomposition of M ,

M = UΛU †,

where U is unitary, and and Λ is a diagonal matrix with diagonal elements λ1 ≥ λ2 ≥ . . . ≥
λd. We have

λI ≥M ⇒ λI−M ≥ 0 ⇒ U †(λI−M)U ≥ 0 ⇒ λI− Λ ≥ 0.

Notice that λI − Λ is a diagonal matrix. Thus we have λ − λi ≥ 0, i = 1, 2, . . . , d, which
means all eigenvalues of M are less than or equal to λ.

(c) We can choose that A = M ∈ Md(C), B = 1 ∈ C, and each Ki, i = 1, 2, . . . , d is a 1 × d
vector such that the ith element is 1 and the other elements are 0. Then for any X ∈Md(C)
and any y ∈ C, we have

Φ(X) =
d∑
i=1

KiXK
†
i =

d∑
i=1

Xii = tr(X),

Φ∗(y) =
d∑
i=1

K†i yKi = yI.
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Now we have tr(By) = y, and y = y† ⇒ y ∈ R. Then the dual problem is just

β = min
y∈R

y

s.t. yI ≥M.

Using the result of (b), it’s easy to see that β = λ1(M). The primal problem is

α = max
X

tr(MX)

s.t. tr(X) = 1,

X ≥ 0.

Given X ≥ 0, we can always find the root decomposition of X,

X = PP †.

Let pi denote the ith column of P , then we have

tr(MX) = tr(MPP †) = tr(P †MP ) =
d∑
i=1

p†iMpi,

and

1 = tr(X) = tr(PP †) = tr(P †P ) ⇒
d∑
i=1

‖pi‖2 = 1.

Thus the primal problem is equivalent to

α = max
pi,i=1,2,...,d

d∑
i=1

p†iMpi

s.t.
d∑
i=1

‖pi‖2 = 1.

Since given that M is Hermitian, for any feasible pi, i = 1, 2, . . . , d, we have

d∑
i=1

p†iMpi ≤
d∑
i=1

λ1(M)p†ipi = λ1(M)
d∑
i=1

‖pi‖2 = λ1(M).

Thus α ≤ λ1(M). In particular, if we choose p1 to be the normalized eigenvector of M
associated with λ1(M), and pi = 0, i = 2, 3, . . . , d, then

d∑
i=1

‖pi‖2 = 1,
d∑
i=1

p†iMpi = p†1Mp1 = λ1(M).

Therefore we have α = λ1(M) = β.
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(d) Recall that in class we have shown that

‖ρ− σ‖tr = max
E1,E2

tr(ρE1) + tr(σE2)− 1

s.t. E1 ≥ 0, E2 ≥ 0,

E1 + E2 = I,

given that ρ, σ are density matrices. Let

A =

(
ρ

σ

)
∈M2d(C), B = I ∈Md(C),

K1 =
(
I 0

)
∈Md×2d(C), K2 =

(
0 I

)
∈Md×2d(C).

Consider the two sets Ω1 = {(E1, E2) ∈ (Md(C),Md(C)) : E1 ≥ 0, E2 ≥ 0, E1 + E2 = I},
Ω2 = {X ∈M2d(C) : X ≥ 0,Φ(X) = I}. For any matrix

X =

(
X1 X3

X†3 X2

)
∈ Ω2,

let E1 = X1, E2 = X2, then we have

tr(AX) = tr(ρE1) + tr(σE2),

and (E1, E2) ∈ Ω1, because

X ≥ 0 ⇒ E1 ≥ 0, E2 ≥ 0,

Φ(X) = B = I ⇒ K1XK
†
1 +K2XK

†
2 = E1 + E2 = I.

Conversely, for any (E1, E2) ∈ Ω1, let

X =

(
E1 0
0 E2

)
,

then we have
tr(AX) = tr(ρE1) + tr(σE2),

and X ∈ Ω2, because
E1 ≥ 0, E2 ≥ 0 ⇒ X ≥ 0,

E1 + E2 = I ⇒ Φ(X) = K1XK
†
1 +K2XK

†
2 = I = B.

Therefore if we consider the primal problem

α = max
X

tr(AX)− 1

s.t. Φ(X) = B,

X ≥ 0,

it’s easy to see that α = ‖ρ− σ‖tr = ‖M‖tr. Notice that this primal problem with a ‘−1’ in
the objective function is a little different from the original form above, but we can fix this
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by simply adding one more dimension to the problem, which would have more complicated
expressions for A,B,K1, K2. For convenience, we just stick to this modified primal problem.

Now the modified dual problem

β = min
Y

tr(BY )− 1

s.t. Φ∗(Y ) ≥ A,

Y = Y †,

is equivalent to
β = min

Y
tr(Y )− 1

s.t. Y ≥ ρ, Y ≥ σ,

Y = Y †.

which can be easily verified by substuting the explict expressions of A,B,K1, K2 into the
modified dual problem.

Next we need to prove in this case β = α = ‖ρ− σ‖tr. Since in (a) we already showed that
α ≤ β, we only need to show that there exists a feasible Y such that tr(Y )−1 = α = ‖ρ−σ‖tr.
Consider the eigenvalue decomposition of ρ− σ,

ρ− σ = QΛQ†,

where Q is unitary, and and Λ is a diagonal matrix with diagonal elements

λ1 ≥ λ2 . . . ≥ λr ≥ 0 > λr+1 ≥ . . . ≥ λd.

Since ρ, σ are density matrices, we have

‖ρ− σ‖tr =
r∑
i=1

λi =
1

2

d∑
i=1

|λi| =
1

2

r∑
i=1

λi −
1

2

d∑
i=r+1

λi.

Let qi denote the ith column of Q. Now define

si = q†iρqi, i = 1, 2, . . . , d,

ti = q†iσqi, i = 1, 2, . . . , d.

We have
si − ti = q†i (ρ− σ)qi = λi ≥ 0, i = 1, 2, . . . , r,

ti − si = −q†i (ρ− σ)qi = −λi > 0, i = r + 1, r + 2, . . . , d.

Let S, T,Σ be three diagonal matrices such that their diagonal vectors are (s1, s2, . . . , sd),
(t1, t2, . . . , td) and (s1, s2, . . . , sr, tr+1, tr+2, . . . , td) respectively. Then

Σ− S = diag(0, 0, . . . , 0, tr+1 − sr+1, . . . , td − sd) ≥ 0,

Σ− T = diag(s1 − t1, s2 − t2, . . . , sr − tr, 0, . . . , 0) ≥ 0,
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where diag(v) denotes the diagonal matrix with diagonal vactor v. Notice that S and T are
the diagonal parts of Q†ρQ and Q†σQ respectively. We should also notice that

q†i (ρ− σ)qj = 0, i 6= j,

which means the non-diagonal part of Q†ρQ and Q†σQ are the same, i.e.

Q†ρQ− S = Q†σQ− T , L.

Now we have
Q†ρQ = S + L, Q†σQ = T + L.

Let
Y = Q(Σ + L)Q†.

Obviously Y = Y †, and we have

Q†(Y − ρ)Q = Σ + L− S − L = Σ− S ≥ 0 ⇒ Y ≥ ρ,

Q†(Y − σ)Q = Σ + L− T − L = Σ− T ≥ 0 ⇒ Y ≥ σ,

thus Y is a feasible solution to the dual problem. Moreover, notice that we have

d∑
i=1

si = tr(Q†ρQ) = tr(ρ) = 1,
d∑
i=1

ti = tr(Q†σQ) = tr(σ) = 1,

therefore

tr(Y ) = tr(Σ) =
r∑
i=1

si +
d∑

i=r+1

ti =
r∑
i=1

(si − ti) +
d∑
i=1

ti =
r∑
i=1

λi + 1 = ‖ρ− σ‖tr + 1,

that is β ≤ tr(Y )− 1 = ‖ρ− σ‖tr = α. In all we have β = α = ‖ρ− σ‖tr.

(e) The success probability of distinguishing with a POVM {Mx} is

k∑
i=1

piPr(Mi

∣∣ρi) =
k∑
i=1

pitr(Miρi).

Define

A =


p1ρ1

p2ρ2

. . .

pkρk

 ∈Mkd(C), B = I ∈Md(C),

Ki = (0, . . . , 0, I, 0, . . . , 0) ∈Md×kd(C), i = 1, 2, . . . , k.

ith block

then using the similar argument in (d), we can see that solving the optimization problem

α = max
Mx

k∑
i=1

pitr(Miρi)

8



s.t. Mi ≥ 0, i = 1, 2, . . . , k,

k∑
i=1

Mi = I,

is equivalent to solving the primal problem

α = max
X

tr(AX)

s.t. Φ(X) = B,

X ≥ 0,

and given an optimal solution X∗ for the primal problem, we can recover a optimal solution
{M∗

i }1≥i≥k for the first problem by taking {M∗
i }1≥i≥k to be the diagonal blocks of X∗.

Indeed, let Ω1 and Ω2 be the feasible sets of the two problems above respectively. For any
{Mi}1≥i≥k ∈ Ω1, let

X =


M1

M2

. . .

Mk

 ,

then we have

tr(AX) =
k∑
i=1

pitr(Miρi), KiXK
†
i = Mi, i = 1, 2, . . . , k,

and X ∈ Ω2 because
k∑
i=1

Mi = I ⇒ Φ(X) = B = I,

Mi ≥ 0, i = 1, 2, . . . , k ⇒ X ≥ 0.

Conversely, for any X ∈ Ω2, let M1,M2, . . . ,Mk be the diagonal blocks of X, then we have

k∑
i=1

pitr(Miρi) = tr(AX), KiXK
†
i = Mi, i = 1, 2, . . . , k,

and {Mi}1≥i≥k ∈ Ω1 because

Φ(X) = B = I ⇒
k∑
i=1

Mi = I,

X ≥ 0 ⇒ Mi ≥ 0, i = 1, 2, . . . , k.
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Problem 3: Maximally entangled properties

Solution: (Due to Bolton Bailey)

(i) We have a maximally entangled pair of qubits

|Φ+〉 =
∑

0≤i≤d−1

1√
d
|i〉A ⊗ |i〉B

To find the reduced state on A we trace out the B system

TrB(|Φ+〉〈Φ+|) = TrB

( ∑
0≤i,j≤d−1

1

d
(|i〉A ⊗ |i〉B)(〈j|A ⊗ 〈j|B)

)

=
∑

0≤i,j≤d−1

1

d
TrB ((|i〉A ⊗ |i〉B)(〈j|A ⊗ 〈j|B))

=
∑

0≤i,j≤d−1

1

d
TrB ((|i〉A〈j|A ⊗ |i〉B〈j|B))

=
∑

0≤i≤d−1

1

d
|i〉A〈i|A

So we get the maximally mixed state on the A system.
(ii) M ⊗ I and I⊗MT are both d2 × d2 matrices, and |Φ+〉 is a vector of length d2, so M ⊗ I|Φ+〉
and I⊗MT |Φ+〉 are vectors of length d2. To see these are equal, we must show their components
are equal. That is, for each 0 ≤ k, l ≤ d− 1, we must show

(〈k| ⊗ 〈l|)M ⊗ I|Φ+〉 = (〈k| ⊗ 〈l|)I⊗MT |Φ+〉

Now see

(〈k| ⊗ 〈l|)M ⊗ I|Φ+〉 = (〈k| ⊗ 〈l|)M ⊗ I

( ∑
0≤i≤d−1

1√
d
|i〉A ⊗ |i〉B

)

=
∑

0≤i≤d−1

1√
d

(〈k| ⊗ 〈l|)M ⊗ I (|i〉A ⊗ |i〉B)

=
∑

0≤i≤d−1

1√
d
〈k|M |i〉 ⊗ 〈l|I|i〉

=
∑

0≤i≤d−1

1√
d
〈k|M |i〉 ⊗ 〈l|i〉

=
1√
d
〈k|M |l〉

=
1√
d
Mkl
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And

(〈k| ⊗ 〈l|)I⊗MT |Φ+〉 = (〈k| ⊗ 〈l|)I⊗MT

( ∑
0≤i≤d−1

1√
d
|i〉A ⊗ |i〉B

)

=
∑

0≤i≤d−1

1√
d

(〈k| ⊗ 〈l|)I⊗MT (|i〉A ⊗ |i〉B)

=
∑

0≤i≤d−1

1√
d
〈k|I|i〉 ⊗ 〈l|MT |i〉

=
∑

0≤i≤d−1

1√
d
〈k|i〉 ⊗ 〈l|MT |i〉

=
1√
d
MT

lk

=
1√
d
Mkl

So these two are indeed equal.

Problem 4: Choi’s Theorem

Solution: (Due to De Huang)

(a) Assume that (2) is true, i.e.

T (X) =
∑
s

KsXK
†
s , ∀X ∈Md(C).

For any d′′ ≥ 0 and any X ⊗ Y ∈Md(C)⊗Md′′(C) such that X ⊗ Y ≥ 0, we have

T ⊗ idd′′(X ⊗ Y ) = T (X)⊗ Y =
∑
s

KsXK
†
s ⊗ Y.

Then for any joint state

|Φ〉 =
∑

0≤i≤d−1

∑
0≤j≤d′′−1

aij|i〉 ⊗ |j〉 ∈ span{Cd ⊗ Cd′′},
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we have

〈Φ|T ⊗ idd′′(X ⊗ Y )|Φ〉 =
∑
s

〈Φ|(KsXK
†
s ⊗ Y )|Φ〉

=
∑
s

∑
i,j

∑
k,l

aijakl〈i|KsXK
†
s |k〉〈j|Y |l〉

=
∑
s

(∑
i,j

aij(〈i|Ks)⊗ 〈j|
)

(X ⊗ Y )
(∑

i,j

aij(K
†
s |i〉)⊗ |j〉

)
=
∑
s

(
〈Φ|Ks ⊗ I

)
(X ⊗ Y )

(
K†s ⊗ I|Φ〉

)
≥ 0.

Since |Φ〉 is arbitrary, we have T ⊗ idd′′(X⊗Y ) ≥ 0. And since d′′ and X⊗Y are arbitrary,
we can conclude that T is completely positive.

(b) (3)⇒(1) is trival. If T is completely positive, then by definition, in the case d′′ = d, T ⊗ idd

is positive. Since Φ+ = |Φ+〉〈Φ+| is positive semidefinite, we immediately have that

J(T ) = T ⊗ idd(Φ+)

is positive semidefinite.

(c) We may always assume that

X|j〉 =
∑

0≤j≤d−1

xij|i〉,

then we can write X as
X =

∑
0≤i,j≤d−1

xij|i〉〈j|,

and we have
T (X) =

∑
0≤i,j≤d−1

xijT (|i〉〈j|).

On the other hand, we have(
idd′ ⊗ td(J(T ))

)
(I⊗X) =

( ∑
0≤i,j≤d−1

T (|i〉〈j|)⊗ td(|i〉〈j|)
)
(I⊗X)

=
∑

0≤i,j≤d−1

(
T (|i〉〈j|)⊗ |j〉〈i|

)
(I⊗X)

=
∑

0≤i,j≤d−1

T (|i〉〈j|)⊗ (|j〉〈i|X)

=
∑

0≤i,j≤d−1

T (|i〉〈j|)⊗
(
|j〉〈i|(

∑
0≤k,l≤d−1

xkl|k〉〈l|)
)

=
∑

0≤i,j≤d−1

T (|i〉〈j|)⊗
( ∑

0≤l≤d−1

xil|j〉〈l|
)

=
∑

0≤i,j,l≤d−1

xilT (|i〉〈j|)⊗ |j〉〈l|,

12



and thus

trA

((
idd′ ⊗ td(J(T ))

)
(IB ⊗XA)

)
= trA

( ∑
0≤i,j,l≤d−1

xilT (|i〉〈j|)B ⊗ |j〉〈l|A
)

=
∑

0≤i,j≤d−1

xijT (|i〉〈j|)

= T (X).

Now we can define a bidirectional map between linear map T from Md(C) to Md′(C) and
their operator representation J(T ) in Md′(C)⊗Md(C). One direction is

T → J(T ),

and the other direction is

J(T ) → trA

((
idd′ ⊗ td(J(T ))

)
(IB ⊗ ( · )A

)
= T ( · ).

These two directions are inverse to each other, so this is a one-to-one map. Let’s define
J−1(J(T )) = T for future use. Also we can see that both J and J−1 are linear.

(d) For an arbitrary Z ∈Md′×d,

Z =
∑

0≤i≤d′−1

∑
0≤j≤d−1

aij|i〉〈j|,

we have

vec(Z) =
∑

0≤i≤d′−1

∑
0≤j≤d−1

aijvec(|i〉〈j|)

=
∑

0≤i≤d′−1

∑
0≤j≤d−1

aij|i〉 ⊗ |j〉

=
∑

0≤j≤d−1

( ∑
0≤i≤d′−1

aij|i〉
)
⊗ |j〉

=
∑

0≤j≤d−1

Z|j〉 ⊗ |j〉,

where we have used the fact that

Z|j〉 =
∑

0≤i≤d′−1

aij|i〉, 0 ≤ j ≤ d− 1.
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Therefore we have

J(T ) = T ⊗ idd(Φ+)

=
∑

0≤i,j≤d−1

T (|i〉〈j|)⊗ |i〉〈j|

=
∑

0≤i,j≤d−1

(Z|i〉〈j|Z†)⊗ |i〉〈j|

=
∑

0≤i,j≤d−1

(
(Z|i〉)⊗ |i〉

)(
(〈j|Z†)⊗ 〈j|

)
=
( ∑

0≤i≤d−1

(Z|i〉)⊗ |i〉
)( ∑

0≤i≤d−1

(〈j|Z†)⊗ 〈j|
)

= |ζ〉〈ζ|,
with |ζ〉 = vec(Z).

(e) If (1) is true, J(T ) is positive semidefinite, we should be able to write J(T ) in form of its
eigenvalue decomposition

J(T ) =
∑
s

λs|ζs〉〈ζs|,

where λs > 0 for each s, and each

|ζs〉 =
∑

0≤i≤d′−1

∑
0≤j≤d−1

csij|i〉 ⊗ |j〉 ∈ span{Cd′ ⊗ Cd}

is an normalized eigenstate of J(T ). Let’s define

Zs =
∑

0≤i≤d′−1

∑
0≤j≤d−1

csij|i〉〈j|, Ts = J−1(|ζs〉〈ζs|),

where the notation J−1 has been defined in (c). Then it’s easy to check that

vec(Zs) = |ζs〉, J(Ts) = |ζs〉〈ζs|,
and using the result of (c) and (d) we have

Ts(X) = ZsXZ
†
s , ∀X ∈Md(C).

Now we have
J(T ) =

∑
s

λs|ζs〉〈ζs| =
∑
s

λsJ(Ts),

then by linearity we have

T = J−1(J(T )) =
∑
s

λsJ
−1(J(Ts)) =

∑
s

λsTs.

Further, since λs > 0 for each s, we can define

Ks =
√
λsZs,

then we have

T (X) =
∑
s

λsTs(X) =
∑
s

λsZsXZ
†
s =

∑
s

KsXK
†
s , ∀X ∈Md(C),

which means (2) is true.
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Problem 5: A limit on quantum attacks on Wiesner’s scheme

Solution: (Due to De Huang)

(a) The success probability is

Pr(success) =
1

4

∑
x,θ∈{0,1}

tr
(
T (|x〉〈x|θ)(|x〉〈x|θ ⊗ |x〉〈x|θ)

)
.

(b) Notice that for any matrices N ∈M4(C) and M ∈M2(C), we have

tr
(
J(T )(N ⊗M)

)
=

∑
i,j∈{0,1}

tr
(
(T (|i〉〈j|)⊗ |i〉〈j|)(N ⊗M)

)
=

∑
i,j∈{0,1}

tr
(
T (|i〉〈j|)N ⊗ |i〉〈j|M

)
=

∑
i,j∈{0,1}

tr
(
T (|i〉〈j|)N

)
tr
(
|i〉〈j|M

)
=

∑
i,j∈{0,1}

tr
(
T (|i〉〈j|)N

)
mij

= tr
(
T (

∑
i,j∈{0,1}

mij|i〉〈j|)N
)

= tr
(
T (M)N

)
,

where we have use that
M =

∑
i,j∈{0,1}

mij|i〉〈j|,

mij = 〈i|M |j〉 = tr(|i〉〈j|M), i, j ∈ {0, 1}.

Then using this result by taking N = |x〉〈x|θ ⊗ |x〉〈x|θ,M = |x〉〈x|θ for each pair of (x, θ),
we have

tr(J(T )Q) =
∑

x,θ∈{0,1}

tr
(
J(T )(|x〉〈x|θ ⊗ |x〉〈x|θ ⊗ |x〉〈x|θ)

)
=

∑
x,θ∈{0,1}

tr
(
T (|x〉〈x|θ)(|x〉〈x|θ ⊗ |x〉〈x|θ)

)
= 4Pr(success),

that is

Pr(success) =
1

4
tr(J(T )Q).
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(c) If T is trace-preserving, then we have

tr1

(
J(T )

)
=

∑
0≤i,j≤d−1

tr
(
T (|i〉〈j|)

)
|i〉〈j|

=
∑

0≤i,j≤d−1

δij|i〉〈j|

=
∑

0≤i≤d−1

|i〉〈i|

= Id.

Conversely, if we have ∑
0≤i,j≤d−1

tr
(
T (|i〉〈j|)

)
|i〉〈j| = Id,

then

δij = 〈i|Id|j〉 = 〈i|
( ∑

0≤k,l≤d−1

tr
(
T (|k〉〈l|)

)
|k〉〈l|

)
|j〉 = tr

(
T (|i〉〈j|)

)
, ∀0 ≤ i, j ≤ d− 1.

Therefore for any

X =
∑

0≤i,j≤d−1

xij|i〉〈j| ∈Md(C),

we have

tr
(
T (X)

)
= tr

( ∑
0≤i,j≤d−1

xijT (|i〉〈j|)
)

=
∑

0≤i,j≤d−1

xijtr
(
T (|i〉〈j|)

)
=

∑
0≤i≤d−1

xii

= tr(X).

Since X is arbitrary, we may conclude that T is trace-preserving.

(d) Recall in (b) we have shown that

Pr(success(T )) =
1

4
tr
(
QJ(T )

)
,

so we may take A = 1
4
Q, and the variable X = J(T ). After obtaining the optimal X∗, we

may recover the optimal T ∗ as T ∗ = J−1(X∗), where J−1 is defined in problem 4 (c) as

J−1(X)( · ) = trA

((
id4 ⊗ t2(X)

)
(IB ⊗ ( · )A

)
.

Define
Kij = 〈i|〈j| ⊗ I2, i, j ∈ {0, 1},
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Φ(X) =
∑

i,j∈{0,1}

KijXK
†
ij,

then for any matrices N ∈M4(C) and M ∈M2(C) we have

Φ(N ⊗M) =
∑

i,j∈{0,1}

Kij(N ⊗M)K†ij

=
∑

i,j∈{0,1}

(〈i|〈j|N |i〉|j〉)⊗M

= tr(N)M.

Then

Φ(J(T )) =
∑

0≤i,j≤d−1

Φ
(
T (|i〉〈j|)⊗ |i〉〈j|

)
=

∑
0≤i,j≤d−1

tr
(
T (|i〉〈j|)

)
|i〉〈j| = tr1(J(T )).

Now if we take B = I2, then the condition

Φ(J(T )) = Φ(X) = B = I2

ensures that T is trace-preserving, by the result of (c). Moreover, the condition

J(T ) = X ≥ 0

ensures that T is completely positive, by the resulte of problem 4. Then finally, we can
obtain the optimal success probability of attack based on CPTP map by solving the primal
problem

α = max
X

tr(
1

4
QX)

s.t. Φ(X) = I2,

X ≥ 0,

with the optimal success probability equal to α and the optimal CPTP map T ∗ = J−1(X∗).
The dual problem is

β = min
Y

tr(Y )

s.t. Φ∗(Y ) ≥ 1

4
Q,

Y = Y †.

Notice that

Φ∗(Y ) =
∑

i,j∈{0,1}

K†ijY Kij =
∑

i,j∈{0,1}

(|i〉|j〉〈i|〈j|)⊗ Y = I4 ⊗ Y,

the dual problem can have a more explicit form

β = min
Y

tr(Y )

s.t. I4 ⊗ Y ≥
1

4
Q,

Y = Y †.
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(e) Let’s solve the primal problem in (d):

α = max
X

tr(AX)

s.t. Φ(X) = I2,

X ≥ 0.

For Wiesner’s scheme, we have

A =
1

4
Q =

1

4

(
|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ3〉〈ψ3|+ |ψ4〉〈ψ4|

)
,

where

|ψ1〉 = |0〉|0〉|0〉, |ψ2〉 = |1〉|1〉|1〉, |ψ3〉 = |+〉|+〉|+〉, |ψ2〉|−〉|−〉|−〉.

With help of matlab, we can easily find the eigenvalue decomposition of Q,

Q = UΛU †,

where U is unitary, and

Λ = diag(
3

8
,
3

8
,
1

8
,
1

8
, 0, 0, 0, 0).

That is, all eigenvalues of A are

λ1 = λ2 =
3

8
, λ3 = λ4 =

1

8
, λ5 = λ6 = λ7 = λ8 = 0.

Then we can immediately obtain a upperbound for our objective function given that X is a
feasible solution,

tr(AX) = tr(UΛU †X) = tr(ΛU †XU) ≤ λ1(A)tr(U †XU) = λ1(A)tr(X) = 2λ1(A) =
3

4
.

Therefore if we can achieve this upperbound with some feasible X, then the problem is
solved. Indeed, to make the inequality to become equality in the formula above, i.e.

tr(ΛU †XU) = λ1(A)tr(U †XU),

we need the diagonal entries of U †XU to focus on the first two entries which are associated
with λ1(A), λ2(A). Recall that tr(U †XU) = tr(X) = 2, a narutal guess would be

U †X∗U = diag(1, 1, 0, 0, 0, 0, 0, 0),

and we have

X∗ = Udiag(1, 1, 0, 0, 0, 0, 0, 0)U † =



3/4 0 0 1/4 0 1/4 1/4 0
0 1/12 1/12 0 1/12 0 0 1/12
0 1/12 1/12 0 1/12 0 0 1/12

1/4 0 0 1/12 0 1/12 1/12 0
0 1/12 1/12 0 1/12 0 0 1/12

1/4 0 0 1/12 0 1/12 1/12 0
1/4 0 0 1/12 0 1/12 1/12 0
0 1/4 1/4 0 1/4 0 0 3/4


= |ζ1〉〈ζ1|+ |ζ2〉〈ζ2|,
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where |ζ1〉, |ζ2〉 are the eigenstates of A corresponding to eigenvalues λ1, λ2,

|ζ1〉 =
1√
12

(3, 0, 0, 1, 0, 1, 1, 0)† =
1√
12

(
3|0〉|0〉|0〉+ |0〉|1〉|1〉+ |1〉|0〉|1〉+ |1〉|1〉|0〉

)
,

|ζ2〉 =
1√
12

(0, 1, 1, 0, 1, 0, 0, 3)† =
1√
12

(
|0〉|0〉|1〉+ |0〉|1〉|0〉+ |1〉|0〉|0〉+ 3|1〉|1〉|1〉

)
.

It’s easy chech that X∗ is a feasible solution, i.e.

Φ(X∗) = I2, X∗ ≥ 0,

thus we have α = 3
4
, the optimal success probability is 3

4
.

Our next mission is to recover T ∗ from X∗. Now we can make use of the useful results in
problem 4. Let

Z1 =
1√
12

(
3|0〉|0〉〈0|+ |0〉|1〉〈1|+ |1〉|0〉〈1|+ |1〉|1〉〈0|

)
,

Z2 =
1√
12

(
|0〉|0〉〈1|+ |0〉|1〉〈0|+ |1〉|0〉〈0|+ 3|1〉|1〉〈1|

)
,

then we have
vec(Z1) = |ζ1〉, vec(Z2) = |ζ2〉.

Define
T1(ρ) = Z1ρZ

†
1, ∀ρ ∈M2(C),

T2(ρ) = Z2ρZ
†
2, ∀ρ ∈M2(C).

By the result of problem 4(d), we have

J−1(|ζ1〉〈ζ1|) = T1, J−1(|ζ2〉〈ζ2|) = T2.

Finally we have

T ∗ = J−1(X∗) = J−1(|ζ1〉〈ζ1|) + J−1(|ζ2〉〈ζ2|) = T1 + T2,

that is we have
T ∗(ρ) = Z1ρZ

†
1 + Z2ρZ

†
2 ∀ρ ∈M2(C).

(f) Consider a linear map U such that

U : |0〉|0〉|0〉 −→ 1√
12

((
3|0〉|0〉+ |1〉|1〉

)
⊗ |0〉+

(
|0〉|1〉+ |1〉|0〉

)
⊗ |1〉

)
,

U : |1〉|0〉|0〉 −→ 1√
12

((
|0〉|1〉+ |1〉|0〉

)
⊗ |0〉+

(
|0〉|0〉+ 3|1〉|1〉

)
⊗ |1〉

)
.

By direct calculation, we can check that∣∣U |0〉|0〉|0〉∣∣ =
∣∣U |1〉|0〉|0〉∣∣ = 1, (U |0〉|0〉|0〉)†(U |1〉|0〉|0〉) = 0,
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therefore we can extend U to be a unitary operator for all three-qubits (use a similar argu-
ment for HW2 problem 6(b)). We still denote this extended unitary operator as U . Notice
that

Z1|0〉 =
1√
12

(
3|0〉|0〉+ |1〉|1〉

)
, Z1|1〉 =

1√
12

(
|0〉|1〉+ |1〉|0〉

)
,

Z2|0〉 =
1√
12

(
|0〉|1〉+ |1〉|0〉

)
, Z2|1〉 =

1√
12

(
|0〉|0〉+ 3|1〉|1〉

)
,

thus we have
U(|0〉|0〉|0〉) = (Z1|0〉)⊗ |0〉+ (Z2|0〉)⊗ |1〉,

U(|1〉|0〉|0〉) = (Z1|1〉)⊗ |0〉+ (Z2|1〉)⊗ |1〉.

Then for any single qubit |φ〉, by linearity, we always have

U(|φ〉|0〉|0〉) = (Z1|φ〉)⊗ |0〉+ (Z2|φ〉)⊗ |1〉.

Notice that we have

tr3(U |φ〉|0〉|0〉〈φ|〈0|〈0|U †) = tr3

(
Z1|φ〉〈φ|Z†1 ⊗ |0〉〈0|+ Z2|φ〉〈φ|Z†2 ⊗ |1〉〈1|

+ Z1|φ〉〈φ|Z†2 ⊗ |0〉〈1|+ Z2|φ〉〈φ|Z†1 ⊗ |1〉〈0|
)

= Z1|φ〉〈φ|Z†1 + Z2|φ〉〈φ|Z†2
= T ∗(|φ〉〈φ|).

Now we can clarify our optimal attack found in (e). Given a money qubit |φ〉, the attack
steps are

(i) Operation: Append |0〉|0〉 to |φ〉. Outcome: |φ〉|0〉|0〉.
(ii) Operation: Apply U to |φ〉|0〉|0〉. Outcome: (Z1|φ〉)⊗ |0〉+ (Z2|φ〉)⊗ |1〉.

(iii) Operation: Trace out the third qubit. Outcome: T ∗(|φ〉〈φ|).
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