
CS120, Quantum Cryptography, Fall 2016

Homework # 3 due: 10:29AM, October 25th, 2016

Ground rules:

Your homework should be submitted to the marked bins that will be by Annenberg 241.

Please format your solutions so that each problem begins on a new page, and so
that your name appears at the top of each page.

You are strongly encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on your
homework specifically which problems were a collaborative effort and with whom. You may
not search online for solutions, but if you do use research papers or other sources in your
solutions, you must cite them.

Late homework will not be accepted or graded. Extensions will not be granted, except on
the recommendation of a dean. We will grade as many problems as possible, but sometimes
one or two problems will not be graded. Your lowest homework grade of the quarter will be
dropped from your final grade.

Place all your problems in the first (top) bin in the box by Annenberg 241. Start each
problem on a new page, with your name clearly marked at the top of the page.

Problems:

1. (6 points) Superdense Coding.
In Homework 1, you were introduced to the idea of “quantum teleportation”. By send-
ing just two bits of classical information, Alice was able to “teleport” her single-qubit
quantum state to Bob, provided they shared a pair of maximally entangled qubits to
begin with.
In this problem, Alice instead wants to share two classical bits with Bob, but she only
has a quantum channel at her disposal, and she is only allowed to use it once (i.e. send
only one single-qubit state). Can she succeed?

(a) The first idea she has is to encode her two classical bits into her preparation of
one of four states in {|0〉 , |1〉 , |+〉 , |−〉}, and then send this qubit to Bob.
Suppose that the a priori distribution of Alice’s two classical bits is uniform. What
is the maximum probability with which Bob can correctly guess both of Alice’s
two classical bits?
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(b) Suppose that Alice and Bob share a maximally entangled pair of qubits. Alice
thinks that it is a good idea to start by performing one of four unitary transfor-
mations on the qubit in her possession depending on the value of the two classical
bits that she wishes to communicate and send her qubit to Bob. What next? Help
Alice (and Bob) devise a scheme that achieves the desired task with certainty.

(c) After all the thought that Alice and Bob put into coming up with a working
scheme, they finally decide to employ it.
Unfortunately, the tireless eavesdropper Eve has heard of their new scheme, and
as soon as Alice and Bob use it, she intercepts the qubit as it’s sent from Alice to
Bob. Can Eve recover information about the two confidential classical bits that
Alice intended to share with Bob?

2. (10 points) Semidefinite programming.
A semidefinite program (SDP) is a triple (Φ, A,B), where

• Φ : Md(C) → Md′(C) is a linear map of the form Φ(X) =
∑k

i=1KiXK
†
i , for Ki

arbitrary d′ × d matrices with complex entries, and

• A ∈Md(C), B ∈Md′(C) are Hermitian matrices.

Let Φ∗(Y ) =
∑k

i=1K
†
i Y Ki be the adjoint map to Φ. We associate with the triple

(Φ, A,B) two optimization problems, called the primal and dual problems, as follows:

Primal problem

α := max
X

Tr(AX)

s.t. Φ(X) = B,

X ≥ 0.

Dual problem

β := min
Y

Tr(BY )

s.t. Φ∗(Y ) ≥ A,

Y = Y †.

(a) Show that it is always the case that α ≤ β. This condition is called weak duality.

(b) Remember that the inequality M ≥ N , for M,N Hermitian d × d matrices, is
always taken to mean M − N ≥ 0, or equivalently all eigenvalues of (M − N)
are non-negative. What does the condition M ≤ λI, for some fixed Hermitian
M ∈Md(C) and λ ∈ R, mean on the eigenvalues of M?

(c) Express the problem of computing the largest eigenvalue λ1(M) of a given d× d
Hermitian matrix M in the form of a dual problem as above. That is, specify the
map Φ (via the matrices Ki) and the matrices A and B such that β = λ1(M).
Write the primal problem. Show that, in this case, its optimum α = β.

(d) Suppose given a Hermitian matrix M that is the difference of two density matrices,
M = ρ − σ. Express the problem of computing ‖M‖tr = 1

2
‖M‖1 in the form of
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a primal problem as above. That is, specify the map Φ and the matrices A and
B such that α = ‖M‖tr. [Hint: recall the operational interpretation of the trace
distance as optimal distinguishing probability.] Write the dual problem. Show
that, in this case, its optimum β = α.

(e) Suppose you are given one of k possible density matrices, ρ1, . . . , ρk, each with a
priori probability p1, . . . , pk respectively. Your goal is to find the optimal guessing
measurement: this is the k-outcome POVM which maximizes your chances of
producing the index j ∈ {1, . . . , k}, given one copy of ρj (which is assumed
to occur with probability pj). First write a formula that expresses the success
probability of distinguishing with a POVM {Mx}. Show that the problem of
optimizing this quantity can be expressed as a semidefinite program in primal or
dual form (whichever you find most convenient).

It turns out that in many cases (essentially all “well-behaved” cases) the optimum of
the primal problem of a semidefinite program equals the optimum of the dual problem.
This is useful for several reasons. First of all, note how the primal is a maximization
problem, while the dual is a minimization problem. Therefore any feasible solution
(a candidate solution that satisfies all the constraints) to the primal provides a lower
bound on the optimum, while a feasible solution to the dual provides an upper bound.
The fact that they are equal shows that one can get tight bounds in this way. In
addition, formulating a problem in, say, primal form, and then looking at the dual
formulation, can provide useful insights on the problem. We will see examples of this
later on in the course, when we discuss the relation between “guessing probability”
and “conditional min-entropy”.

3. (4 points) Maximally entangled properties.
LetA andB be quantum systems of the same dimension d. Let |φ+〉 = 1√

d

∑
0≤i≤d−1 |i〉A⊗

|i〉B. This is referred to as a maximally entangled pair of qudits.

(i) What is the reduced state on subsystem A?

(ii) Let M ∈Md(C). Show that M ⊗ I |φ+〉 = I⊗MT |φ+〉.

4. Choi’s theorem. [This problem is optional, and you may use its results to solve the
following problem.]
A linear map T : Md(C) → Md′(C) is said to be completely positive if for any d′′ ≥ 0
the map T ⊗ idd′′ : Md(C) ⊗Md′′(C) → Md′(C) ⊗Md′′(C) is positive, where idd′′ :
Md′′(C)→Md′′(C) is the identity map. (Recall that a positive map is one which maps
positive semidefinite matrices to positive semidefinite matrices. Not every positive map
is completely positive: a good example is the transpose map on 2× 2 matrices.)
Let |Φ+〉 =

∑
0≤i≤d−1 |i〉 ⊗ |i〉 (this is just

√
d times the maximally entangled state

defined in the previous question), and define Φ+ := |Φ+〉 〈Φ+|. Define the Choi-
Jamiolkowski representation J(T ) ∈ Md′(C) ⊗Md(C) of a linear map T : Md(C) →
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Md′(C) as follows:

J(T ) = T ⊗ idd (Φ+) =
∑

0≤i,j≤d−1

T (|i〉 〈j|)⊗ |i〉 〈j| . (1)

In this problem, you will show that, letting J(T ) be the Choi-Jamiolkowski represen-
tation of a linear map T : Md(C)→Md′(C), the following are equivalent:

(1) J(T ) is positive semidefinite.
(2) There is a set of matrices {Kj ∈Md′×d(C)} such that T (X) =

∑
jKjXK

†
j for

X ∈Md(C).
(3) T is completely positive.

(a) Show that (2) ⇒ (3), i.e. that if T is such that T (X) =
∑

jKjXK
†
j for X ∈

Md(C), then T is completely positive.

(b) Explain why (3)⇒ (1).

(c) Let td : Md(C) → Md(C) be the linear map defined by X 7→ XT . td transposes
the matrix but we take care to define it in this way as we could be taking the
transpose just on a single subsystem. Show that the action of T on X ∈ Md(C)
can be written in terms of its Choi-Jamiolkowski representation J(T ) as

T (X) = TrA[(idd′ ⊗ td(J(T )))(IB ⊗XA)], (2)

and deduce that there is a one-to-one correspondence between linear maps from
Md(C) to Md′(C) and their operator representations in Md′(C)⊗Md(C).

(d) Define the linear map vec : Md′×d(C) → Md′(C) ⊗Md(C) by its action on the
standard basis, vec : |i〉 〈j| 7→ |i〉 ⊗ |j〉 for 0 ≤ i ≤ d′ and 0 ≤ j ≤ d. Let
Z ∈ Md′×d(C). Show that a map of the form T : XA 7→ ZXAZ

† has Choi-
Jamiolkowski representation |ζ〉〈ζ| where |ζ〉 = vec(Z).

(e) Show that (1) ⇒ (2), i.e. suppose that a map T : Md(C) → Md′(C) has a
positive semidefinite Choi-Jamiolkowski representation. Construct a set of maps
{Kj ∈Md′×d(C)} such that T (X) =

∑
jKjXK

†
j for any X ∈Md(C).

[Hint: You might find calculations from part (d) helpful.]

5. (10 points) A limit on quantum attacks on Wiesner’s scheme.
Consider Wiesner’s quantum money scheme for the case of a single qubit. Recall that
an attack on this scheme is a CPTP map T which maps a single qubit to two qubits,
and is such that the probability that the two-qubit density matrix T (|x〉 〈x|θ) succeeds
in the bank’s verification procedure twice in sequence is maximized, when x, θ ∈ {0, 1}
are chosen uniformly at random.

(a) Write out the formula which expresses the success probability of an attack speci-
fied by a CPTP map T .
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(b) Let J(T ) =
∑

i,j∈{0,1} T (|i〉 〈j|)⊗ |i〉 〈j| be the Choi-Jamiolkowski representation

of the map T . Consider the matrix Q =
∑

x,θ∈{0,1} |x〉 〈x|θ ⊗ |x〉 〈x|θ ⊗ |x〉 〈x|θ.
Write the success probability of the map T as a simple expression involving J(T )
and Q.

(c) Show that the condition that the CP map T is trace-preserving can be expressed
as the condition that its Choi-Jamiolkowski representation J(T ) satisfies

Tr1
(
J(T )

)
=

∑
0≤i,j≤d−1

Tr
(
T (|i〉 〈j|)

)
|i〉 〈j| = Id.

(d) Find a semidefinite program in primal form (see problem 2.) whose optimum is
the success probability of an arbitrary attack on the single-qubit Wiesner quantum
money scheme. [Hint: recall the characterization of CP maps from their Choi-
Jamiolkowski representation given in the previous problem, and use the previous
question as well] Write down the dual semidefinite program.

(e) Solve the semidefinite program! That is, give an explicit matrix which achieves
the optimum, together with the value of the optimum. [Hint: I will allow you to
google — but if you do so, state your source. Serious bonus points for solving the
problem yourself, either by hand (explain your reasoning) or using Matlab or any
other program (print out your code).]

(f) Give an explicit representation of the attack you found in (e) as a sequence of three
operations: (i) appending some auxiliary qubits in state |0〉; (ii) applying a unitary
transformation on all qubits; (iii) performing a partial trace or measurement map
on some of the qubits. [If you weren’t able to solve (e), you can ignore this
question. It will only count for 1 point.]
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