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October 25, 2016

Problem 1: Classical one-time pad

Solution: (Due to Daniel Gu)

1. Let X be the random variable which is the number of bits that Alice uses in total, and Xi

be the number of bits that Alice uses at step i in the protocol. Then X =
∑n

i=1Xi and so
by linearity of expectation

E[X] = E[
n∑
i=1

Xi] =
n∑
i=1

E[Xi] =
n

2

2. The scheme is certainly not correct: since Alice doesn’t send her random choices (random
bits) to Bob but only the ciphertext c, Bob has no idea which bits got XOR’d with the
key and which got XOR’d with a random bit. No deterministic algorithm can decrypt the
ciphertext accurately, since once we fix the ciphertext, key, and DEC(k, c), we can choose
our random bits such that our message does not match our decryption algorithm’s answer.

However, the scheme is secure. The probability that the ith bit of the message is 0 (over the
random choices made by Alice and a uniformly random key distribution) given that the ith
bit of the ciphertext is b is 1/2, since with probability 1/2 we XOR b with the ith bit of the
key, which without knowledge of the key is equally likely to be 0 or 1, so it has a 1/2 chance
of being b and producing 0, and with probability 1/2 we XOR it with a uniformly random
bit, which is also has a 1/2 chance of being b. So given the ciphertext, the distribution of
possible messages is the uniform distribution over all n bit messages, so the scheme is secure.

Problem 2: Superpositions and mixtures

Solution: (Due to Alex Meiburg)

(a)
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| =

[
1/2 0
0 1/2

]
(b) Note that ρ0 = 1

2
I. The probability for any given state is given by

〈ψ|ρ0|ψ|ψ|ρ0|ψ〉 =

〈
ψ|1

2
I|ψ
∣∣∣∣ψ|12I|ψ

〉
=

1

2
〈ψ|ψ|ψ|ψ〉 =

1

2

1



So that each measurement of a state gives a 50% probability of that occuring.
(c)

ρ0 = |+〉 〈+| =
[
1/2 1/2
1/2 1/2

]
〈0|ρ0|0|0|ρ0|0〉 =

1

2
, 〈1|ρ0|1|1|ρ0|1〉 =

1

2

〈+|ρ0|+|+|ρ0|+〉 = 〈+|+|+|+〉 〈+|+|+|+〉 = 1, 〈−|ρ0|−|−|ρ0|−〉 = 〈−|+|−|+〉 〈+|−|+|−〉 = 0

So that in the standard basis it is completely random, while in the Hadamard basis it is guaranteed
|+〉.

Problem 3: Quantum one-time pad

Solution: (Due to Anish Thilagar)

1. This protocol is correct. Bob will receive the state Hk |ψ〉. He can then apply Hk again, to
get the qubit H2k |ψ〉 = |ψ〉 because H2k = (H2)k = Ik = I. Therefore, he can correctly
extract the message from Alice.

2. This protocol is not secure. Take the state |ψ〉 = 1√
2
(|0〉+ |+〉). Under the action of H, this

is an eigenvector with eigenvalue 1, so it will remain unchanged. Therefore, the ciphertext c
will be equal to the message m = |ψ〉, so p(|ψ〉 |c) = 1 6= p(|ψ〉) < 1. Therefore, this protocol
is not secure.

Problem 4: Unambiguous quantum state discrimination

Solution: (Due to Mandy Huo)

(a) If Alice measures in the standard basis then given that the state is |0〉 she will always get
|0〉 so she will never misidentify it and given that the state is |+〉 she will get |0〉 half the
time so she will misidentify it probability 1/2.

(b) If Alice measures in the Hadamard basis then given that the state is |+〉 she will always get
|+〉 so she will never misidentify it. Given that the state is |0〉 she will get |+〉 half the time
so she will misidentify it probability 1/2.

(c) Assuming both states are equally likely a priori, Alice can do better overall if she measures
in the basis {|b1〉, |b2〉} where |b1〉 = sin 3π

8
|0〉 − cos 3π

8
|1〉 and |b2〉 = cos 3π

8
|0〉+ sin 3π

8
|1〉, and

identifies |0〉 when she gets the outcome |b1〉 and |+〉 when she gets the outcome |b2〉. Then
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the total probability of misidentifying is

1

2
|〈b2|0〉|2 +

1

2
|〈b1|+〉|2 =

1

2
cos2

3π

8
+

1

2

1

2

(
sin2 3π

8
+ cos2

3π

8
− 2 sin

3π

8
cos

3π

8

)
=

1

2
cos2

3π

8
+

1

2

1

2

(
1− sin

3π

4

)
=

1

2
cos2

3π

8
+

1

2

1

2

(
1 + cos

3π

4

)
= cos2

3π

8
= 0.15

which is less than 1
2
1
2

= 1
4

in parts (a) and (b).

(d) If the state is |+〉 then Alice will get outcomes 2 and 3 with probabilities

tr{E2|+〉〈+|} = tr

{( √
2

1 +
√

2
|−〉〈−|

)
|+〉〈+|

}
= 0,

tr{E3|+〉〈+|} = 1− tr{E1|+〉〈+|} − tr{E2|+〉〈+|} = 1− 1√
2(1 +

√
2)

=
1√
2
.

So given that the state is |+〉, Alice will never misidentify the state and will fail to make an
identification with probability 1/

√
2.

If the state is |0〉 then Alice will get outcomes 1 and 3 with probabilities

tr{E1|0〉〈0|} = 0,

tr{E3|0〉〈0|} = 1− tr{E1|0〉〈0|} − tr{E2|0〉〈0|} = 1−
√

2

2(1 +
√

2)
=

1√
2
.

So given that the state is |+〉, Alice will never misidentify the state and will fail to make an
identification with probability 1/

√
2.

(e) There is no POVM that increases the chances of making a correct identification without
increasing the chance of making an incorrect identification.

First we will show that any POVM such that the probability of mis-identification is zero
must have the form E1 = α|1〉〈1| and E2 = β|−〉〈−|, α, β > 0. Since we must have
tr{E1|0〉〈0|} = 〈0|E1|0〉 = 0 for zero chance of mis-identification in the |0〉 case, we have
that either |0〉 is in the nullspace of E1 or E1 projects |0〉 onto |1〉. In the second case, we
would have E1 = α|1〉〈0|, which is not Hermitian and thus not positive so E1 must map |0〉 to
the zero vector. Then E1 has rank 1 so it has the form E1 = α|b〉〈1|. Then since E1 must be
positive (and thus Hermitian) we have E1 = α|1〉〈1|, α > 0 (note if E1 = 0 then Alice will al-
ways fail to make an identification in the |+〉 case.) Similarly, tr{E2|+〉〈+|} = 〈+|E2|+〉 = 0
implies that |+〉 is either in the nullspace of E2 or is projected onto |−〉, but the second case
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results in E2 not positive semidefinite so we must have E2 = β|−〉〈−|, β > 0.

Then E3 = I − E1 − E2 as before so that
∑

iEi = I. What is left to check is whether E3 is
positive semidefinite. Since E3 is given by∣∣∣∣(1− λ)− β/2 β/2

β/2 (1− λ)− a− β/2

∣∣∣∣ = λ2 + (α + β − 2)λ−
(
α + β − αβ

2
− 1

)
= 0

so the eigenvalues are

λ =
−(α + β − 2)±

√
(α + β − 2)2 + 4

(
α + β − αβ

2
− 1
)

2
=
−(α + β − 2)±

√
α2 + β2

2
.

Since we want a POVM that fails to make an identification with smaller probability, we need
tr{E3|0〉〈0|} = 1− β

2
< 1√

2
and tr{E3|+〉〈+|} = 1− α

2
< 1√

2
, that is,

α > 2

(√
2− 1√

2

)
, β > 2

(√
2− 1√

2

)
.

Then we have

−(α + β − 2) < 2− 4

√
2− 1√

2
= −2 +

4√
2

= 2(
√

2− 2 = 2
(√

2− 1
)

√
a2 + b2 >

√√√√2

(
2

√
2− 1√

2

)2

= 2(
√

2− 2 = 2
(√

2− 1
)
> 0

so
√
a2 + b2 > −(α + β − 2) and so E3 will have one negative eigenvalue and thus is not

positive. Hence there is no POVM that gives Alice a better chance of making a correct
identification without increasing the change of making an incorrect identification.

Problem 5: Robustness of GHZ and W states

Solution: (Due to Mandy Huo)

(a) (i) Since Tr(|i〉〈j|) = 〈j|i〉 is 0 for i 6= j and 1 for i = j, we have Tr3(|GHZ3〉〈GHZ3|) =
1
2
(|00〉〈00|+ |11〉〈11|), and so

Tr(|GHZ2〉〈GHZ2|Tr3(|GHZ3〉〈GHZ3|)) =
1

4
Tr[(|00〉+ |11〉)(〈00|+ 〈11|)(|00〉〈00|+ |11〉〈11|)]

=
1

4
Tr[(|00〉+ |11〉)(〈00|+ 〈11|)]

=
1

2
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(ii) Note that Tr3(|W3〉〈W3|) = 1
3
(|10〉〈10|+ |01〉〈01|+ |00〉〈00|+ |10〉〈01|+ |01〉〈10|) so we

have

Tr(|W2〉〈W2|Tr3(|W3〉〈W3|)) =
1

6
Tr[(|10〉+ |01〉)(2〈10|+ 2〈01|)]

=
2

3

(b) (i) We have Tr3(|GHZN〉〈GHZN |) = 1
2
(|0〉⊗N−1〈0|⊗N−1 + |1〉⊗N−1〈1|⊗N−1) so

〈GHZN − 1|TrN(|GHZN〉〈GHZN |) =
1

2
〈GHZN − 1|

and thus

Tr(|GHZN−1〉〈GHZN−1|Tr3(|GHZN〉〈GHZN |))

=
1

4
Tr(|0〉⊗N−1 + |1〉⊗N−1)(〈0|⊗N−1 + 〈1|⊗N−1)

=
1

2

(ii) We have 〈WN−1|TrN(|WN〉〈WN |) = N−1
N
〈WN−1| so

Tr(|WN−1〉〈WN−1|Tr3(|WN〉〈WN |))

=
1

N
Tr(|10 . . . 0〉+ |010 . . . 0〉+ · · ·+ |0 . . . 01〉)(〈10 . . . 0|+ 〈010 . . . 0|+ · · ·+ 〈0 . . . 01|)

=
N − 1

N
.

Since
N − 1

N
>

1

2
for N > 2 the overlap between the N -qubit W states is greater

than between the N -qubit GHZ states so we can conclude that the W states are more
“robust” to tracing out a qubit.

Problem 6: Universal Cloning

Solution: (Due to De Huang)
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(a) (i) We can see ρ and T1(ρ) as matrices in C2×2 and C4×4. Then we have

T1(ρ) = ρ⊗ I
2

=
1

2


ρ11 0
0 ρ11

ρ12 0
0 ρ12

ρ21 0
0 ρ21

ρ22 0
0 ρ22



=
1

2


1 0
0 0
0 1
0 0

( ρ11 ρ12
ρ21 ρ22

)(
1 0
0 0

0 0
1 0

)

+
1

2


0 0
1 0
0 0
0 1

( ρ11 ρ12
ρ21 ρ22

)(
0 1
0 0

0 0
0 1

)

= A1ρA
†
1 + A2ρA

†
2,

where

A1 =
1√
2


1 0
0 0
0 1
0 0

 , A2 =
1√
2


0 0
1 0
0 0
0 1

 .

It’s easy to check that
A†1A1 + A†2A2 = I.

Therefore T1 is CPTP.

Indeed we can check that for any single qubit |ψ〉,

A1|ψ〉 =
1√
2
|ψ〉 ⊗ |0〉, A2|ψ〉 =

1√
2
|ψ〉 ⊗ |1〉,

A†1(|ψ〉 ⊗ |0〉) =
1√
2
|ψ〉, A†2(|ψ〉 ⊗ |1〉) =

1√
2
|ψ〉,

therefore

A1|ψ〉〈ψ|A†1 + A2|ψ〉〈ψ|A†2 =
1

2
|ψ〉〈ψ| ⊗ |0〉〈0|+ 1

2
|ψ〉〈ψ| ⊗ |1〉〈1|

= |ψ〉〈ψ| ⊗ 1

2
(|0〉〈0|+ |1〉〈1|)

= |ψ〉〈ψ| ⊗ I
2

= T1(|ψ〉〈ψ|),

and

(A†1A1 + A†2A2)|ψ〉 =
1√
2
A†1(|ψ〉 ⊗ |0〉) +

1√
2
A†2(|ψ〉 ⊗ |1〉) = |ψ〉,
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which again verifies our proof of CPTP.

The cloned qubit has density matrix I
2
, which actually carries no information. No

matter what basis we use to measure the cloned qubit, we always get fair probability 1
2

on both results. In the meanwhile, the first qubit is still in state |ψ〉.
(ii) Since T1(|ψ〉〈ψ|) ≥ 0, we have∣∣〈ψ|〈ψ|T1(|ψ〉〈ψ|)|ψ〉|ψ〉∣∣ = 〈ψ|〈ψ|T1(|ψ〉〈ψ|)|ψ〉|ψ〉

= 〈ψ|〈ψ|
(
|ψ〉〈ψ| ⊗ I

2

)
|ψ〉|ψ〉

= 〈ψ||ψ〉〈ψ||ψ〉 × 〈ψ| I
2
|ψ〉

=
1

2
.

(b) (i) Since |0〉|0〉|0〉 and |1〉|0〉|0〉 are orthogonal, we only need to verify that U |0〉|0〉|0〉 and
U |1〉|0〉|0〉 are orthogonal.

Indeed, note that |0〉|0〉|0〉, |0〉|0〉|1〉, |0〉|1〉|0〉, |0〉|1〉|1〉, |1〉|0〉|0〉, |1〉|0〉|1〉, |1〉|1〉|0〉, |1〉|1〉|1〉
are orthogonal to each other, since

U |1〉|0〉|0〉 =

√
2

3
|1〉|1〉|1〉+

√
1

6
|1〉|0〉|0〉+

√
1

6
|0〉|1〉|0〉,

we have

〈0|〈0|〈0|U |1〉|0〉|0〉 = 〈0|〈1|〈1|U |1〉|0〉|0〉 = 〈1|〈0|〈1|U |1〉|0〉|0〉 = 0.

And since

U |0〉|0〉|0〉 =

√
2

3
|0〉|0〉|0〉+

√
1

6
|0〉|1〉|1〉+

√
1

6
|1〉|0〉|1〉,

we immediately have that U |0〉|0〉|0〉 and U |1〉|0〉|0〉 are orthogonal.

Now we may extend {|0〉|0〉|0〉, |1〉|0〉|0〉} to

{|0〉|0〉|0〉, |1〉|0〉|0〉, φ3, φ4, · · · , φ8}

as an orthogonal basis of all three-qubits, and also extend {U |0〉|0〉|0〉, U |1〉|0〉|0〉} to

{U |0〉|0〉|0〉, U |1〉|0〉|0〉, ψ3, ψ4, · · · , ψ8}

as another orthogonal basis of all three-qubits. Then one example of extending U to a
valid three-qubit unitary Ũ would be

Ũ : |0〉|0〉|0〉 → U |0〉|0〉|0〉, Ũ : |1〉|0〉|0〉 → U |1〉|0〉|0〉,

Ũ : φi → ψi, i = 3, 4, · · · , 8.

It’s easy to check that Ũ is a valid three-qubit unitary because it linearly transforms
an orthogonal basis to another orthogonal basis.
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(ii) Let’s define

|Ψ+〉 =
1√
2

(|0〉|1〉+ |1〉|0〉).

For an arbitrary state |ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1, we have

U |ψ〉|0〉|0〉 = αU |0〉|0〉|0〉+ βU |1〉|0〉|0〉

= α
(√2

3
|0〉|0〉|0〉+

√
1

6
(|0〉|1〉+ |1〉|0〉)|1〉

)
+ β

(√2

3
|1〉|1〉|1〉+

√
1

6
(|1〉|0〉+ |0〉|1〉)|0〉

)
= α

(√2

3
|0〉|0〉|0〉+

√
1

3
|Ψ+〉|1〉

)
+ β

(√2

3
|1〉|1〉|1〉+

√
1

3
|Ψ+〉|0〉

)
=
(
α

√
2

3
|0〉|0〉+ β

√
1

3
|Ψ+〉

)
|0〉+

(
β

√
2

3
|1〉|1〉+ α

√
1

3
|Ψ+〉

)
|1〉,

U |ψ〉|0〉|0〉〈0〈0〈ψ|U † =
(
α

√
2

3
|0〉|0〉+ β

√
1

3
|Ψ+〉

)(
ᾱ

√
2

3
〈0|〈0|+ β̄

√
1

3
〈Ψ+|

)
⊗ |0〉〈0|

+
(
β

√
2

3
|1〉|1〉+ α

√
1

3
|Ψ+〉

)(
β̄

√
2

3
〈1|〈1|+ ᾱ

√
1

3
〈Ψ+|

)
⊗ |1〉〈1|

+
(
α

√
2

3
|0〉|0〉+ β

√
1

3
|Ψ+〉

)(
β̄

√
2

3
〈1|〈1|+ ᾱ

√
1

3
〈Ψ+|

)
⊗ |0〉〈1|

+
(
β

√
2

3
|1〉|1〉+ α

√
1

3
|Ψ+〉

)(
ᾱ

√
2

3
〈0|〈0|+ β̄

√
1

3
〈Ψ+|

)
⊗ |1〉〈0|,

T2(|ψ〉〈ψ|) = tr3(U |ψ〉|0〉|0〉〈0〈0〈ψ|U †)

=
(
α

√
2

3
|0〉|0〉+ β

√
1

3
|Ψ+〉

)(
ᾱ

√
2

3
〈0|〈0|+ β̄

√
1

3
〈Ψ+|

)
+
(
β

√
2

3
|1〉|1〉+ α

√
1

3
|Ψ+〉

)(
β̄

√
2

3
〈1|〈1|+ ᾱ

√
1

3
〈Ψ+|

)
.
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Then the success probability is∣∣〈ψ|〈ψ|T2(|ψ〉〈ψ|)|ψ〉|ψ〉∣∣ =
∣∣∣〈ψ|〈ψ|(α√2

3
|0〉|0〉+ β

√
1

3
|Ψ+〉

)(
ᾱ

√
2

3
〈0|〈0|+ β̄

√
1

3
〈Ψ+|

)
|ψ〉|ψ〉

+ 〈ψ|〈ψ|
(
β

√
2

3
|1〉|1〉+ α

√
1

3
|Ψ+〉

)(
β̄

√
2

3
〈1|〈1|+ ᾱ

√
1

3
〈Ψ+|

)
|ψ〉|ψ〉

∣∣∣
=
∣∣〈ψ|〈ψ|(α√2

3
|0〉|0〉+ β

√
1

3
|Ψ+〉

)∣∣2
+
∣∣〈ψ|〈ψ|(β√2

3
|1〉|1〉+ α

√
1

3
|Ψ+〉

)∣∣2
=
∣∣|α|2ᾱ√2

3
+ |β|2ᾱ

√
2

3

∣∣2 +
∣∣|β|2β̄√2

3
+ |α|2β̄

√
2

3

∣∣2
=

2

3
|α|2 +

2

3
|β|2

=
2

3
.

(c) (i) Note that
P †+ = I† − (|Ψ−〉〈Ψ−|)† = I− |Ψ−〉〈Ψ−| = P+,

P+P+ = (I− |Ψ−〉〈Ψ−|)(I− |Ψ−〉〈Ψ−|)
= I− 2|Ψ−〉〈Ψ−|+ |Ψ−〉〈Ψ−||Ψ−〉〈Ψ−|
= I− |Ψ−〉〈Ψ−|
= P+.

Then using the result of (a)(i), we have

T3(ρ) =
2

3
P+(ρ⊗ I)P+

=
4

3
P+T2(ρ)P+

=
4

3
P+(A1ρA

†
1 + A2ρA

†
2)P

†
+

= (
2√
3
P+A1)ρ(

2√
3
P+A1)

† + (
2√
3
P+A2)ρ(

2√
3
P+A2)

†

= V1ρV
†
1 + V2ρV

†
2 ,

where A1, A2 are defined in (a)(i), and

V1 =
2√
3
P+A1, V1 =

2√
3
P+A2.

If we see P+ = I− |Ψ−〉〈Ψ−| as a matrix in C4×4, then

P+ =


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

 .
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By direct calculation, we can check that

V †1 V1 + V †2 V2 =
4

3
A†1P

†
+P+A1 +

4

3
A†2P

†
+P+A2

=
4

3
A†1P+A1 +

4

3
A†2P+A2

= I.

Therefore T3 is CPTP.

(ii) For any single-state |ψ〉, we have

〈ψ|〈ψ||Ψ−〉 =
1√
2

(〈ψ|0〉〈ψ|1〉 − 〈ψ|1〉〈ψ|0〉) = 0,

〈ψ|〈ψ|P+ = 〈ψ|〈ψ| − 〈ψ|〈ψ||Ψ−〉〈|Ψ−| = 〈ψ|〈ψ|,
P+|ψ〉|ψ〉 = |ψ〉|ψ〉 − |Ψ−〉〈|Ψ−||ψ〉|ψ〉 = |ψ〉|ψ〉,

thus the success probability of T3 is∣∣〈ψ|〈ψ|T3(|ψ〉〈ψ|)|ψ〉|ψ〉∣∣ =
2

3

∣∣〈ψ|〈ψ|P+(|ψ〉〈ψ| ⊗ I)P+|ψ〉|ψ〉
∣∣

=
2

3

∣∣∣〈ψ|〈ψ|(|ψ〉〈ψ| ⊗ I))|ψ〉|ψ〉
∣∣∣

=
2

3
(〈ψ||ψ〉〈ψ||ψ〉)(〈ψ|I|ψ〉)

=
2

3
.

(iii) We can see that for any single-state |ψ〉,∣∣〈ψ|〈ψ|T2(|ψ〉〈ψ|)|ψ〉|ψ〉∣∣ =
∣∣〈ψ|〈ψ|T3(|ψ〉〈ψ|)|ψ〉|ψ〉∣∣ =

2

3
,

that is, the map T2 and T3 have the same success probability. The essential reason for
this result is that we actually have

T2(|ψ〉〈ψ|) = T3(|ψ〉〈ψ|)

for any single-state |ψ〉. To see this, we first rewrite U |ψ〉|0〉|0〉 as

U |ψ〉|0〉|0〉 = αU |0〉|0〉|0〉+ βU |1〉|0〉|0〉

= α
(√2

3
|0〉|0〉|0〉+

√
1

6
(|0〉|1〉+ |1〉|0〉)|1〉

)
+ β

(√2

3
|1〉|1〉|1〉+

√
1

6
(|1〉|0〉+ |0〉|1〉)|0〉

)
=

1√
3
|Φ+〉(α|0〉+ β|1〉) +

1√
3
|Φ−〉(α|0〉 − β|1〉) +

1√
3
|Ψ+〉(α|1〉+ β|0〉)

=
1√
3
|Φ+〉|ψ〉+

1√
3
|Φ−〉(Z|ψ〉) +

1√
3
|Ψ+〉(X|ψ〉).
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Here |Φ+〉, |Φ−〉, |Ψ+〉 together with |Ψ−〉 are the Bell basis, i.e.

|Φ+〉 =
1√
2

(|0〉|0〉+ |1〉|1〉), |Φ−〉 =
1√
2

(|0〉|0〉 − |1〉|1〉),

|Ψ+〉 =
1√
2

(|0〉|1〉+ |1〉|0〉), |Ψ−〉 =
1√
2

(|0〉|1〉 − |1〉|0〉).

Then we have

T2(|ψ〉〈ψ|) = tr3(U |ψ〉|0〉|0〉〈0〈0〈ψ|U †)

=
1

3

(
tr(|ψ〉〈ψ|)|Φ+〉〈Φ+|+ tr(Z|ψ〉〈ψ|Z)|Φ−〉〈Φ−|+ tr(X|ψ〉〈ψ|X)|Ψ+〉〈Ψ+|

+ tr(|ψ〉〈ψ|Z)|Φ+〉〈Φ−|+ tr(|ψ〉〈ψ|X)|Φ+〉〈Ψ+|+ tr(Z|ψ〉〈ψ|)|Φ−〉〈Φ+|

+ tr(Z|ψ〉〈ψ|X)|Φ−〉〈Ψ+|+ tr(X|ψ〉〈ψ|)|Ψ+〉〈Φ+|+ tr(X|ψ〉〈ψ|Z)|Ψ+〉〈Φ−|
)

=
1

3

(
〈ψ|ψ〉|Φ+〉〈Φ+|+ 〈ψ|ψ〉|Φ−〉〈Φ−|+ 〈ψ|ψ〉|Ψ+〉〈Ψ+|

+ 〈ψ|Z|ψ〉|Φ+〉〈Φ−|+ 〈ψ|X|ψ〉|Φ+〉〈Ψ+|+ 〈ψ|Z|ψ〉|Φ−〉〈Φ+|

+ 〈ψ|XZ|ψ〉|Φ−〉〈Ψ+|+ 〈ψ|X|ψ〉|Ψ+〉〈Φ+|+ 〈ψ|ZX|ψ〉|Ψ+〉〈Φ−|
)

On the other hand, since

|Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−| = I,

we have
I− |Ψ−〉〈Ψ−| = |Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|.

Thus

T3(|ψ〉〈ψ|)

=
2

3
(I− |Ψ−〉〈Ψ−|)(|ψ〉〈ψ| ⊗ I)(I− |Ψ−〉〈Ψ−|)

=
2

3

(
|Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|

)
(|ψ〉〈ψ| ⊗ I)

(
|Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|

)
=

2

3

(
|Φ+〉〈Φ+|(|ψ〉〈ψ| ⊗ I)|Φ+〉〈Φ+|+ |Φ+〉〈Φ+|(|ψ〉〈ψ| ⊗ I)|Φ−〉〈Φ−|

+ |Φ+〉〈Φ+|(|ψ〉〈ψ| ⊗ I)|Ψ+〉〈Ψ+|+ |Φ−〉〈Φ−|(|ψ〉〈ψ| ⊗ I)|Φ+〉〈Φ+|
+ |Φ−〉〈Φ−|(|ψ〉〈ψ| ⊗ I)|Φ−〉〈Φ−|+ |Φ−〉〈Φ−|(|ψ〉〈ψ| ⊗ I)|Ψ+〉〈Ψ+|
+ |Ψ+〉〈Ψ+|(|ψ〉〈ψ| ⊗ I)|Φ+〉〈Φ+|+ |Ψ+〉〈Ψ+|(|ψ〉〈ψ| ⊗ I)|Φ−〉〈Φ−|

+ |Ψ+〉〈Ψ+|(|ψ〉〈ψ| ⊗ I)|Ψ+〉〈Ψ+|
)
.

Note that

〈Φ+|(|ψ〉〈ψ| ⊗ I)|Φ+〉 =
1

2
〈ψ|(|0〉〈0|+ |1〉〈1|)|ψ〉 =

1

2
〈ψ|ψ〉,

11



〈Φ−|(|ψ〉〈ψ| ⊗ I)|Φ−〉 =
1

2
〈ψ|(|0〉〈0|+ |1〉〈1|)|ψ〉 =

1

2
〈ψ|ψ〉,

〈Ψ+|(|ψ〉〈ψ| ⊗ I)|Ψ+〉 =
1

2
〈ψ|(|0〉〈0|+ |1〉〈1|)|ψ〉 =

1

2
〈ψ|ψ〉,

〈Φ+|(|ψ〉〈ψ| ⊗ I)|Φ−〉 =
1

2
〈ψ|(|0〉〈0| − |1〉〈1|)|ψ〉 =

1

2
〈ψ|Z|ψ〉,

〈Φ+|(|ψ〉〈ψ| ⊗ I)|Ψ+〉 =
1

2
〈ψ|(|0〉〈1|+ |1〉〈0|)|ψ〉 =

1

2
〈ψ|X|ψ〉,

〈Φ−|(|ψ〉〈ψ| ⊗ I)|Ψ+〉 =
1

2
〈ψ|(|1〉〈0| − |0〉〈1|)|ψ〉 =

1

2
〈ψ|XZ|ψ〉.

Therefore

T3(|ψ〉〈ψ|) =
1

3

(
〈ψ|ψ〉|Φ+〉〈Φ+|+ 〈ψ|ψ〉|Φ−〉〈Φ−|+ 〈ψ|ψ〉|Ψ+〉〈Ψ+|

+ 〈ψ|Z|ψ〉|Φ+〉〈Φ−|+ 〈ψ|X|ψ〉|Φ+〉〈Ψ+|+ 〈ψ|Z|ψ〉|Φ−〉〈Φ+|

+ 〈ψ|XZ|ψ〉|Φ−〉〈Ψ+|+ 〈ψ|X|ψ〉|Ψ+〉〈Φ+|+ 〈ψ|ZX|ψ〉|Ψ+〉〈Φ−|
)

= T2(|ψ〉〈ψ|)

It’s done.
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