CS120, Quantum Cryptography, Fall 2016

Homework # 2 due: 10:29AM, October 18th, 2016

Ground rules:
Your homework should be submitted to the marked bins that will be by Annenberg 241.

Please format your solutions so that each problem begins on a new page, and so
that your name appears at the top of each page.

You are strongly encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on your
homework specifically which problems were a collaborative effort and with whom. You may
not search online for solutions, but if you do use research papers or other sources in your
solutions, you must cite them.

Late homework will not be accepted or graded. Extensions will not be granted, except on
the recommendation of a dean. We will grade as many problems as possible, but sometimes
one or two problems will not be graded. Your lowest homework grade of the quarter will be
dropped from your final grade.

Place all your problems in the first (top) bin in the box by Annenberg 241. Start each
problem on a new page, with your name clearly marked at the top of the page.

Problems:

1. (3 points) Classical one-time pad

We meet up again with our favourite protagonists, Alice and Bob. As you’ve seen in
class, Alice and Bob have an adversary named Eve who is intent on listening in on all
the conversations Alice and Bob have. In order to protect themselves, they exchange a
classical key k = kiks ...k, which they can use to encrypt messages and hence be safe
from Eve. Alice knows that a safe way to encode messages would be to use a classical
one time pad, as seen in the lecture notes. But she feels like this uses a large amount
of key, and being a smart student she comes up with the following encoding scheme
which she claims is also secure but uses less key. Alice’s scheme goes as follows.

Alice’s message is an n-bit string m = myms ... m,. For i from 1 to n,

1) Alice flips a fair coin.
2) If the result is tails, she sets ¢; = m; ® k;.

3) If the result is heads, she sets ¢; = m; @ r, where r is a fresh random bit.

The encrypted ciphertext is ¢ = cics ... ¢,.



(a) How many bits of key will Alice use on average with the new protocol?

(b) Is this protocol correct? Is it secure? Provide a proof of security or an attack
scheme.

. (3 points) Superpositions and mixtures

Alice wants to send the state |0) to Bob. But 50% of the time, her (noisy) device
outputs the state |1) instead.

(a) Give the density matrix py describing Bob’s state.

(b) Suppose Bob measures p, in the standard basis. What is the probability that the
measurement results in [0)? |1)? What if Bob measures in the Hadamard basis?

(¢c) Now say that the machine on Alice’s side is not noisy but simply misaligned: it
consistently prepares qubits in the state |+). Again, what is the distribution of
outcomes if Bob measures in the standard basis? In the Hadamard basis?

. (2 points) Quantum one-time pad

In the lecture notes, you saw that two classical bits of key suffice to encrypt one
quantum bit. On an intuitive level, our scheme needed to use both the X and Z gates
because the X operation has no effect on the |+) state and the Z operation has no
effect on the |0) state. Alice decides to avoid this problem by using H, which fixes
neither |0) nor |[+). Explicitly, she uses the following protocol to encode a qubit |)):
Let k € {0,1} be the key bit. Encrypt |1) as H* [1).

(a) Is this protocol a correct encryption scheme?

(b) Is this protocol a secure encryption scheme? Provide either a proof of security or
an attack.

. (6 points) Unambiguous quantum state discrimination

(adapted from Nielsen and Chuang)

In this problem we explore an essential practical advantage that comes with general
POVMs rather than strictly projective measurements. Consider the following scenario:
Bob sends Alice a qubit prepared in one of the two non-orthogonal states |0) and |+).
Alice wants to perform a measurement on this qubit that distinguishes it as either |0)
or |[+) as soundly as possible, i.e. with minimum probability of mis-identifying |0) as
|+) or vice versa. Let us first restrict her to projective measurements.

(a) Suppose Alice measures in the basis {|0),|1)}. She identifies the state as |0) if
she gets the outcome |0) and as |+) if she gets the outcome |1). What is her
probability of misidentifying the state given that it is [0)? What is her probability
of misidentifying the state given that it is |+)?



(b) Suppose instead Alice measures in the basis {|+),|—)}. She identifies the state
as |+) if she gets the outcome |+) and as |0) if she gets the outcome |—). Again,
what are her probabilities of misidentifying the state in each case?

(c) Is it possible for Alice to do better than this with any projective measurement?
Assume |0) and |+) are equally likely a priori.

Now suppose we allow Alice to perform a general measurement. In particular consider
the following POVM with three elements:

V2

V2 (0) = [1))({0] — (1))
1++v2 2
Es=1—-FE —E,

Ey =

Alice identifies the state as |+) if she gets outcome 1, as |0) if she gets outcome 2, and
makes no identification if she gets outcome 3.

(d) What is her probability of mis-identifying the state? What is her probability of
failing to make an identification?

(e) Is there any POVM that gives Alice a better chance of making a correct identifi-
cation without increasing the chance of making an incorrect identification?

. (4 points) Robustness of GHZ and W States

In this problem we explore two classes of N-qubit states that are especially useful
for cryptography and communication, but behave very differently under tracing out a
single qubit. Let’s first define them for N = 3:

1
V2
(]100) + 010) + 001))

GHZ state: |GHZ3) =
1
V3
Note that both states are invariant under permutation of the three qubits, so without

loss of generality we may trace out the last one. We’ll denote this operation by Trs.
Also, we have analogous definitions in the two-qubit case: |GHZ3) = \/L§(|OO> +(11))

and |W3) = \%(\1@ +1(01)).

(]000) + [111))

W state: |W3) =

In the following we consider the overlap between N-qubit GHZ and W states with one
qubit discarded (i.e. traced out) and their (N — 1)-qubit counterparts. The overlap of
density matrices p and o is defined as Tr po, a measure of “closeness” that generalizes
the expression | (¢[1) |* for pure states.



(a) Calculate the overlaps
(i) Tr([Wa)(Wa| Trs [Ws)(Ws]).

Now we generalize to the N-qubit case. As you might expect, |GHZy) = \%(\O)@)N +
1Y) and |Wy) is an equal superposition of all N-bit strings with exactly one 1 and
N —10s.
(b) Calculate the following overlaps as functions of N.

(i) Tr(|GHZN_1)(GHZN_1| Trn |GHZN)Y(GH Zy|) and

(i) Tr(|Wxn—1)(Wn—1| Try [Wh) (W)

Conclude that W states are “more robust” against loss of a single qubit than GHZ
states.

. (6 points) Universal Cloning
In this problem we analyze a single-qubit universal cloner.
(a) Consider the map which takes as input a pure single-qubit state p = |¢) (¢|, and
returns Ty (p) = p ® 51, where 31 is the maximally mixed state of a single qubit.

(i) Show that this map is a valid quantum operation: it is CPTP. Give an in-
terpretation of this map in terms of making a random guess for the cloned
qubit.

(ii) Evaluate the success probability | (1| (1| T1(|¢) (]) [¢) [1) | of this cloner (for
any state |i0) — your answer should not depend on [))).

(b) Let’s consider a second cloning map, which acts on the qubit input state together
with two ancilla qubits as follows:

U :0)10) |0) = \/§IO> 10)10) + \/%(!@ 1) +11)10)) 1),
1) 10)[0) = \/?ID 1) + \/g( [1)10) +10) [1) ) [0).

(i) Verify that U can be extended into a valid three-qubit unitary.

The cloning map associated to U is the map T, which first initializes two qubits
to the |0) |0) state, then applies U, and then traces out the third qubit.

(ii) Evaluate the success probability of the map U on an arbitrary input pure

state p = |i) (.

(¢) Consider a third cloning map Tj defined as T3(p) = 2P, (p ® )P, where P, =
I— W) (¥_|and [W_) = (]0) [1) — [1)]0)).

(i) Verify that 75 is a CPTP map.
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(ii) Evaluate its success probability as a universal cloning map.

(iii) Is this a coincidence — is there a relationship between the three maps you
have considered?



