CS120, Quantum Cryptography, Fall 2016

Homework # 1 due: 10:29AM, October 11th, 2016

Ground rules:
Your homework should be submitted to the marked bins that will be by Annenberg 241.

Please format your solutions so that each problem begins on a new page, and so
that your name appears at the top of each page.

You are strongly encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on your
homework specifically which problems were a collaborative effort and with whom. You may
not search online for solutions, but if you do use research papers or other sources in your
solutions, you must cite them.

Late homework will not be accepted or graded. Extensions will not be granted, except on
the recommendation of a dean. We will grade as many problems as possible, but sometimes
one or two problems will not be graded. Your lowest homework grade of the quarter will be
dropped from your final grade.

Place all your problems in the first (top) bin in the box by Annenberg 241. Start each
problem on a new page, with your name clearly marked at the top of the page.

Problems:

1. (6 points) State discrimination.
Suppose you are given two distinct states of a single qubit, [¢)1) and |i)s).
(a) Argue that if there is a ¢ such that |1s) = € |1;) then no measurement will

distinguish between the two states: for any choice of a basis, the probabilities of
obtaining either outcome will be the same when performing the measurement on

[¢1) or on [¢)g).

Assuming [¢1) and |i5) can be distinguished, we are interested in finding the optimal
measurement to tell them apart. Here we need to make precise our notion of “optimal”.
We would like to find a basis {|b1) , |b2)} of C? such that the expression

2 2
Pr([b1) | [1)) +Pr([b) | [¢2) ) = [ (0a]wo0)|” + | (ba] ¥2)] (1)

is maximized.
(b) Show that for the purposes of this problem we can assume without loss of generality

that [¢]) = |0) and |¢)) = cos@|0) + sinfé|1), for some 6 € [0,7). That is,
given any [¢1), |1)s), determine an angle 6 such that, given a basis {|b}), |b})}
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which maximizes (1) for the pair (|1]), |[1})), lets you recover a basis {|b1) , |b2)}
which achieves the same value in (1) when (|11) ,|1)) is being measured. Say
explicitly how to determine 0 from (|1);), |t)9)) and how to recover {|by), |bs)}
from {|by) , [b5)}.

(c) Show that the optimal basis {|b]),|b5)} will always be of the form
b)) = cos|0) +sinp[l),  [by) =sing|0) —cosp|1)

for some angle ¢ € [0,27). (The reason this may not be immediate is that in
general the coefficients of |0}) and |b}) in the standard basis may involve complex
numbers.)

(d) Determine the optimal ¢ as a function of 6.

(e) Conclude: what is the maximum value of (1), as a function of the original states
|11) and [19)? What is the basis which achieves the optimum?

2. (8 points) Improving Wiesner’s quantum money.

Consider the following six single-qubit states:

10) + 1)

{1oh =100 1) = 10 Iwsb = L, fond = 1= o) = L2, gy = (22203,

V2

Suppose we create a money scheme in which each bit of a bill’s serial number is encoded
into one of these six states, chosen uniformly at random (so with probability 1/6 each)
by the bank.

(a) Consider the attack on this scheme which attempts to copy the bill in the standard
basis, using the unitary U : |0) |0) — [0)|0), U : |1)]0) — |1)|1). What is its
success probability? Recall that the success probability is defined as

6.1

Zg (unl © () U (1) ©10)) |

What if we choose U to copy in the Hadamard basis instead?

(a) Can you improve on the attack described in the previous question? Give any
attack that does better. [Bonus points: describe an attack with success probability
2/3.]

(b) Find a quantum money scheme which uses only four possible single-qubit states
but is better than Wiesner’s scheme (i.e. the scheme which uses the four states
{lr) =10}, |ib2) = |1), Jib3) = |+), |¥a) = |—)}), in the sense that the optimal
attack has success probability < 3/4. (You do not need to prove completely
formally that your scheme is better than Wiesner’s, but describe the four states
you would use, and argue why you think it would be better than Wiesner’s.) [Hint:
Think about the Bloch sphere — use all the available space!]
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3. (10 points) Quantum teleportation

In class we saw that the no-cloning theorem forbids us from copying arbitrary quantum
states, i.e. implementing a unitary U that takes |¢) |0) — |¢) |¢) for any state |¢).

(a) In general show that if there exists a unitary U taking |¥) — |®), there must exist

another unitary V' independent of |¥) and |®) that takes |®) — |¥). In other
words, no information is lost when applying a unitary to a quantum state.

(b) Suppose Alice holds a qubit in the state [)) = a|0) + b|1) and wants Bob to have

that state as well. Why doesn’t the following work? Alice measures her qubit in
some basis of her choice, then prepares another qubit in the state she obtains and
sends that to Bob. (Please answer without making explicit use of the no-cloning
theorem.)

We now introduce a scheme by which Alice can prepare [¢)) on Bob’s side without
sending him her qubit—in fact, without sending any quantum information at alll—
provided they share a Bell state. To be precise, the initial setup is as follows: Alice
holds 1) 4, and Alice and Bob each have a qubit of

1
|¢+>AB = E( |O>A |0>B + |1>A |1>B)’

so that the joint state of all three qubits is

(W) sap = [1)g @167 4p = (a|0)g +b]1)g) @ %( 100) 4+ [11) 45 ) (2)

(¢) As with a single qubit, any state of a two-qubit system can be written in terms

of an orthonormal basis, and also measured in such a basis. One example is the

computational basis {|00),|01),|10),|11)}. Find a state |[¢)~) that, together with
the following three states,

L1 1
197) = 500045 +1004p), 107) =

o L
W) = 5100 a5 + 10)ap).

(100) o = [11) 4)

Sl
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|¢p7) forms an orthonormal basis of the two-qubit space C?. This basis is called
the Bell basis.

Rewrite the joint state (2) as a linear combination of the form Y75 )¢ 4 |3i) g,
where |a) ranges over the four possible Bell states on Alice’s two qubits S and A,
and |3) is a single-qubit state on Bob’s qubit.

Suppose Alice measures her two qubits SA in the Bell basis and sends the result to
Bob. Show that for each of the four possible outcomes, Bob can use this (classical!)
information to determine a unitary, independent of [1)) 4, on his qubit that will
map it, in all cases, to the original state |¢) 5 that Alice had.



