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1 Abstract

Proofs of space have been developed as a more energy-efficient alternative to

proofs of work protocols. They have applications in blockchain technology and de-

terrence of denial-of-service attacks. A proof of space protocol allows one to demon-

strate they have dedicated a significant amount of disk space to a problem. We

hope to leverage the properties of quantum information to create a quantum proof

of space, a quantum analogue to proofs of space in which use of quantum mem-

ory is demonstrated. After developing a definition for quantum proofs of space, we

developed a quantum proof of space protocol and proved its correctness and security.
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2 Introduction

In cryptography, there is a notion of a “proof of work” (PoW), an interactive

protocol between two parties which allows one party to demonstrate to the other that

they have allocated a nontrivial amount of computational resources to a problem.

These protocols have a number of uses, particularly blockchain applications and

denial of service and spam email prevention. For example, imagine anyone who

wishes to send an email must include a proof of work in the body of their message.

This would not affect legitimate users who send only several emails per day, but

might be a large burden to spammers wishing to send out millions of emails, thereby

deterring spam.

There is a related notion called a “proof of space” (PoS) [2], which demonstrates

use of storage rather than computation time. In a PoS, one party demonstrates

they are allocating a nontrivial amount of storage space over time. As each proof of

work is the result of a long, energy intensive computation, proofs of space are often

thought of as a more environmentally friendly alternative to proofs of work. More

formally, a proof of space is an interactive protocol between two parties, the prover

and the verifier, in which the prover convinces the verifier she is using a large amount

of storage.

In short, our goal was to create a quantum analogue to proofs of space, a proto-

col in which the prover demonstrates they are wasting a large amount of quantum

storage. Like the classical protocol, we additional demand succinct communication

between the prover and verifier, for example, requiring that the transmissions be-

tween the two parties are much smaller than the quantum storage used by the prover.

We hope to leverage the properties of quantum information to create quantum PoS

protocols with better security than is classically possible.

2



Conducting literature review, there is no existing work on quantum PoS. We

developed a rigorous definition for a quantum PoS, including a security definition.

Next, we presented examples of quantum PoS protocols and proved their security

and correctness.

3 Quantum Proof of Space Definition

Our first goal was to rigorously pin down what a quantum PoS ought to look like.

We came up with the following definition, analogous to the classical PoS presented

in [2]: a quantum proof of space is a two-stage interactive protocol between two

quantum Turing machines, the prover P and verifier V. The protocol consists of the

following two stages.

3.1 Stages

Initialization is an interactive protocol in which both machines receive n (an effi-

ciency parameter), γ (the security parameter), and potentially other parame-

ters. In this stage, an honest prover would generate a large quantum state and

store it until execution. Denoting the parameters prm = (n, γ, ...), execution

results in (Φ, S) = 〈V, P 〉(prm), where Φ, S are potentially quantum. Note that

V can “abort” in this phase by outputting Φ =⊥.

Execution is an interactive protocol in which P and V have access to the values

from initialization. In this stage, an honest prover would demonstrate to the

verifier that she has stored the values generated during initialization. Like the

classical protocol, P has no output, while V can accept or reject.
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({accept, reject},∅)← 〈V(Φ),P(S)〉(prm)

Note that unlike the classical protocol [2], we do not demand that the execution

phase can be repeated, since a single execution may alter the quantum state

stored by either party.

3.2 Completeness, security, and efficiency

We model the dishonest prover P̃ as follows. A N0 prover P̃’s quantum storage

is bounded by N0 after the initialization phase. We place no restriction on P̃’s

classical storage or classical computation abilities, except for those imposed by the

efficiency requirement below. Note that N0 is a function of n, and informally, the

above protocol is an N0 quantum proof of space if an honest prover is accepted and

a dishonest N0 prover P̃ is rejected.

Completeness The honest prover is accepted with near certainty, i.e.

Pr[out = accept | (Φ, S)← 〈V,P〉(prm), (out,∅)← 〈V(Φ),P(S)〉(prm)] = 1− negl(γ)

where γ is the security parameter.

Soundness Any N0 dishonest prover P̃ is accepted with negligible probability.

Pr[out = accept | (Φ, S)← 〈V, P̃〉(prm), (out,∅)← 〈V(Φ), P̃(S)〉(prm)] = negl(γ)
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Efficiency The verifier V is efficient, taking time polynomial in n. The prover

runs in time poly(N0) during initialization and execution. Informally, we would also

like for N0 to grow quickly in n, i.e. N0 = Ω(n2) or N0 = Ω(2n), but this is not

required.
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4 The Trivial Protocol

In this section, we briefly introduce the “trivial protocol” which is perhaps the

simplest example of a quantum PoS. It is nearly identical to the “Dimension test

protocol” from Chao and Reichardt [1], both of which are stated here, as well as a

reduction from the Dimension Test to the Trivial Quantum PoS protocol considered

in this paper.

Chao and Reichardt Dimension Test

Let N ≥ 1 (the “storage bound”) be an integer and α ∈ [0, 1/2).

Initialization The verifier chooses B0 ∈ {0, 1} and S ∈ {0, 1}N , both uniformly at

random. For j = 1, . . . , N , he prepares and sends the prover a qubit in state

HB0 |Sj〉, where H = 1√
2

(
1 1
1−1
)

is the Hadamard matrix.

Execution The verifier announces his basis choice B to the prover. Based on B,

the prover measures her system, and outputs a guess S ′ ∈ {0, 1}N .

The prover passes the test if and only if S and S ′ match on at least (1− α)N bits.
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Trivial Quantum PoS Protocol

Let N ≥ 1 (the “storage bound”) be an integer and α ∈ [0, 1/2).

Initialization The verifier chooses B ∈ {0, 1}N and S ∈ {0, 1}N , both uniformly at

random. For j = 1, . . . , N , he prepares and sends the prover a qubit in state

HBj |Sj〉, where H = 1√
2

(
1 1
1−1
)

is the Hadamard matrix.

Execution The verifier announces his basis choice B to the prover. Based on B,

the prover measures her system, and outputs a guess S ′ ∈ {0, 1}N .

The prover passes the test if and only if S and S ′ match on at least (1− α)N bits.

The difference between the Trivial Quantum PoS Protocol and the “Dimension

test protocol” from [1] is that the above protocol a different basis for each qubit,

while the “Dimension test protocol” chooses one basis at random and encodes all

qubits in it. Here, we argue the Trivial Protocol is at least as hard to win as the

Chao and Reichardt Dimension Test.

Theorem 4.1. Consider a prover P which succeeds in the Trivial Protocol with

probability p, i.e.

1

2N

∑
B′∈{0,1}N

Pr[succeed|B = B′] = p

Then there is a prover P′ which uses equal storage to P and succeeds in the Di-

mension Test with probability ≥ p.

Proof. For a string B′ ∈ {0, 1}n, let B
′

be the bitwise inversion of B′, i.e. if B′ =

10101, then B
′
= 01010. We can write P’s probability of success as
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1

2N−1

∑
B′∈0{0,1}N−1

[
1

2
Pr[succeed|B = B′] +

1

2
Pr[succeed|B = B

′
]

]
= p

where 0{0, 1}N−1 is the set of bit-strings of length N that begin with 0. There

must exist some B′ ∈ {0, 1}N such that

1

2
Pr[succeed|B = B′] +

1

2
Pr[succeed|B = B

′
] ≥ p

Now, imagine a prover P′ which, during the Dimension Tets, behaves nearly

identically to P, except with the following changes:

During initialization When the ith qubit is received, P′ applies HB′i before pro-

cessing it.

During execution If B0 = 0, P′ responds how P would if B = B′. If B0 = 1, P′

responds how P would if B = B
′
.

Effectively, during Initialization, the state received by P′ is coded in the bases B′ if

B0 = 0, and B
′
if B0 = 1. During execution, if B0 = 0, the prover’s chance of winning

is exactly Pr[succeed|B = B′], and likewise if B0 = 1, the prover’s chance of winning

is Pr[succeed|B = B
′
] As 1

2
Pr[succeed|B = B′] + 1

2
Pr[succeed|B = B

′
] ≥ p, P′

succeeds in the Dimension Test with probability ≥ p despite using no more quantum

storage.

After Step 1, the prover holds some classical-quantum state in HC ⊗HQ, where

HC is a finite dimensional Hilbert space containing the classical information and

likewise HQ contains the quantum part. Chao and Reichardt prove the following

statement about the security of the Dimension Test [1].
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Theorem 4.2 (Chao & Reichardt Dimensionality Lower Bound). If the prover passes

with probability p, then

log dimHQ ≥ N − 2H(p)− 2p logF − 2(1− p) log(2N − F )

where F =
∑αN

i=1

(
N
i

)
and H(x) = −x log x − (1 − x) log(1 − x) is the binary

entropy function.

Corollary 4.2.1. Theorem 4.2 applies to the Trivial Protocol.

Proof. Apply Theorem 4.1.

The Trivial Protocol is secure, but it is quite inefficient, as all states must be

generated by the verifier, sent to the prover, and measured by the prover. In the next

section, we will explore a more efficient variant of this protocol in which measures

for only a small subset of qubits are requested during execution.
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5 Efficient Variants of the Trivial Protocol

In this section, we will analyze the following protocol. The following notation is

used: [N ] := {1, 2, ..., N}. S is a string of bits, and we may index subsequences of S

by writing e.g. SA for A ⊆ [N ]. For example, if S = 10101 and A = {1, 3, 5}, then

SA = 111.

Efficient Quantum PoS Protocol

Let N ≥ 1 (the “storage bound”) and C ≥ 1 (the “challenge size”) be integers.

Initialization The verifier chooses B ∈ {0, 1} and S ∈ {0, 1}N , both uniformly at

random. For j = 1, . . . , N , he prepares and sends the prover a qubit in state

HB |Sj〉, where H = 1√
2

(
1 1
1−1
)

is the Hadamard matrix.

Execution The verifier randomly chooses a subset A ∈
(
[N ]
C

)
uniformly at random.

The verifier announces his basis choice B to the prover. Based on B, the prover

measures qubits with indices in A, and outputs a guess S ′ ∈ {0, 1}C .

The prover passes the test if and only if SA = S ′.

Completeness and efficiency clearly hold for this protocol. After Initialization,

the prover holds some classical-quantum state in HC ⊗ HQ, with quantum part

ρ ∈ HQ. For each A ∈
(
[N ]
C

)
, there is some corresponding POVM {MAT} (indexed

by T ∈ {0, 1}C) the prover makes on ρ to respond to the challenge. For any subset

A ∈
(
[N ]
C

)
, we define psuccA as the prover’s chance of passing when challenged on that

subset, i.e. psuccA = TrMASA
ρ.

We will give two proofs of security of this protocol under two different sets of
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assumptions.

5.1 From Strong Assumptions about the Prover

First, we will make the following assumption: the prover handles all qubits she

receives independently. Assume the prover’s quantum storage is bounded by kN

qubits for k ∈ [0, 1], and that C is a non-constant (i.e. not bounded by any constant)

function of N . The following is true:

Theorem 5.1. Let pwin be the win probability of any prover with the above limita-

tions. If k ∈ [0, 1), then pwin → 0 as N → ∞. If k = 1, the prover can pass with

probability 1.

Proof. First, note that during Initialization, each time a qubit is received, the prover

can either store it or immediately make some measurement and store classical infor-

mation. If she stores the state, she can correctly answer the query with probability

1. If not, as the states |0〉 , |1〉 , |+〉, and |−〉 are not orthogonal, they cannot be

distinguished perfectly, so she has a chance ω < 1 of answering queries correctly (the

exact value of ω is not relevant for proving the asymptotic bound).

We consider a variant of the above protocol where, when the verifier generates

the random subset A ⊆ [N ], he picks elements of [N ] with replacement and sends

only the unique picks to the prover, so the size of A may be less than C. Briefly, this

game is strictly easier for the prover to pass than the above game, because she can

easily expand any A of size < C to one of size C, drawn from the same distribution

as the original game, then employ her strategy from the original game and win with

the same probability. However, this variant is easier to analyze asymptotically.

Consider the random variable Y , the number of qubits in the random sample

which are not stored, and thus can each be answered with probability at most ω.
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The prover’s chance of winning is given by

pwin ≤
∞∑
c=0

Pr[Y = c]ωc.

To show pwin → 0, since ω < 1, we first argue that Pr[Y = c]→ 0 for any fixed c.

Pr[Y = c] ≤
(
C

c

)
(1− k)ckC ∝

(
C

c

)
kC → 0

as
(
C
c

)
is a polynomial of degree c, while kC shrinks exponentially. To show why

this is sufficient, for any ε > 0, we can pick N0 such that
∑∞

i=N0
ωi < ε/2, and by

the above observation, N1 ≥ N0 such that for all C ≥ N1,
∑N0−1

i=0 Pr[Y = c] < ε/2.

Then for all N such that C(N) ≥ N1, we have

pwin ≤
∞∑
c=0

Pr[Y = c]ωc

=

N0−1∑
c=0

Pr[Y = c]ωc +
∞∑
N0

Pr[Y = c]ωc

≤
N0−1∑
c=0

Pr[Y = c] +
∞∑
N0

ωc

≤ ε/2 + ε/2

= ε

so limN→∞ pwin = 0.

Finally, if k = 1, the prover can store all states and measure at the end to pass

with probability 1.
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5.2 From No Assumptions about the Prover

In this section, we prove security of the above protocol without assuming the

prover handles all qubits independently. This will be done using a reduction to [1].

Specifically, we will show that if the prover can correctly answer any query of C

qubits with probability p, then the prover can, by making multiple measurements,

correctly answer for many qubits in the original protocol.

Suppose the prover is challenged on the values of some subset A of size C of

qubits, i.e. A ⊂ [N ], |A| = C. Now, we assume the prover wins with probability p,

so

EA
[

TrMASA
ρ] = p

First, we will argue there exists a family of subsets B1, ..., Bm such that |
⋃
iBi|

is large, and TrMBiSBi
ρ is large for all 1 ≤ i ≤ m. This is shown via the following

probabalistic argument. Fix some integer n ≥ 1, and suppose we choose, uniformly

at random and with replacement, n subsets A1, ..., An ⊆ [N ], each of size C.

Lemma 5.2. Fix ε > 0. With probability strictly greater than 1/2, at least half of

A1, ..., An have psuccAi
≥ 1− (2 + ε)(1− p).

Proof. Applying Markov’s inequality to the random variable 1− psuccA , we get that

Pr
[
1− psuccA ≥ (2 + ε)(1− p)

]
≤ 1− p

(2 + ε)(1− p)
=

1

2 + ε
<

1

2
.

Thus, in any uniform random sample of subsets of [n], it is more likely than not

that at least half have psucc ≥ 1− (2 + ε)(1− p).

Lemma 5.3. With probability at least 1/2,
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∣∣∣⋃
i

Ai

∣∣∣ ≥ E −
√
V

where

E := N
(

1−
[
1− C

N

]n)
(5.2.1)

and

V := (N − E) +N(N − 1)P − (N − E)2 (5.2.2)

where

P :=

[
(N − C)(N − C − 1)

N(N − 1)

]n
.

Proof. Consider the random variable Y := |
⋃
iAi|. It’s enough to show the median

of Y is at least E−
√
V . Using the fact that the mean and median differ by at most

the standard deviation for a distribution with finite variance, we will show E[Y ] = E

and var[Y ] = V .

For the mean:

E[Y ] =
N∑
j=1

E[1j∈⋃i Ai
]

For each j, the probability j does not appear in randomly chosen A is 1 − C
N

.

The probability j appears in no Ai is thus (1 − C
N

)n, so E[1j∈⋃i Ai
] = 1 − (1 − C

N
)n.

Summing over j, we obtain the desired result.

For the variance: it is easier to analyze the random variable Z := N −Y , the size

of the subset not covered by Ais. Clearly var[Y ] = var[Z]. First, we compute the
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probability P that for any j 6= k, that both j, k are not included in
⋃
iAi. For each

Ai, this is
(
N−2
C

)
/
(
N
C

)
, so by independence

P :=

[(
N−2
C

)(
N
C

) ]n =

[
(N − C)(N − C − 1)

N(N − 1)

]n
Now, we can compute

var[Z] = E[Z2]− E[Z]2

=
N∑
j=1

N∑
k=1

E[1j,k 6∈⋃i Ai
]− (N − E)2

=
N∑
j=1

E[1j 6∈⋃i Ai
] +

∑
1≤j,k≤N
j 6=k

E[1j,k 6∈⋃i Ai
]− (N − E)2

= (N − E) +N(N − 1)P − (N − E)2

completing the proof of Claim 2.

Now we apply the probabilistic argument.

Lemma 5.4. Fix ε > 0. There exists a set {B1, ..., Bm} of elements of
(
[N ]
C

)
such

that

1. For all i, psuccBi
≥ 1− (2 + ε)(1− p).

2. {Bi} have large intersection, i.e.

∣∣∣⋃
i

Bi

∣∣∣ ≥ E −
√
V − nC

2

where E, V are as defined in Equations 5.2.1, 5.2.2 respectively.
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3. m ≥ n/2.

Proof. Note that the sum of probabilities of the events in Lemmas 5.2, 5.3 is strictly

greater than 1, so the intersection of these events is non-empty, giving us a set

{A1, ..., An} such that |
⋃
iAi| ≥ E −

√
V and at least half of Ai have psuccAi

≥

1 − (2 + ε)(1 − p). Discard Ai with psuccAi
< 1 − (2 + ε)(1 − p) to obtain a subset

{B1, ..., Bm} ⊆ {A1, ..., An} where all psuccBi
≥ 1− (2 + ε)(1− p) and m ≥ n/2, and

note that

∣∣∣⋃
i

Bi

∣∣∣ ≥ E −
√
V − nC

2

since at most (n−m)C elements were discarded.

Now, suppose the prover measures each of these states. Each measurement suc-

ceeds with probability at least p′ = 1−(2+ε)(1−p). We aim to bound the probability

all measurements succeed. To do so, we use the Gentle Measurement Lemma, given

as e.g. Lemma 9.4.1 in Wilde [3], stated here for convenience.

Lemma 5.5 (Gentle Measurement Lemma). Consider a density operator ρ and a

measurement operator Λ where 0 ≤ Λ ≤ I. The measurement operator could be an

element of a POVM. Suppose that the measurement operator Λ has a high probability

of detecting state ρ

Tr Λρ ≥ 1− ε,

where ε ∈ [0, 1] (the probability of detection is high if ε is close to zero). Then

the post-measurement state

ρ′ ≡
√
λρ
√
λ

Tr Λρ
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is 2
√
ε-close to the original state rho in trace distance:

|ρ− ρ′|1 ≤ 2
√
ε.

Thus, the measurement does not disturb the state ρ by much if ε is small.

We can view each measurement made by the prover as having two outcomes:

“correct” and “incorrect”, with “correct” having probability at least p′ by construc-

tion of Bi. However, making these measurements on each Bi perturbs the original

state by some amount so that subsequent measurements may not be as likely to

proceed. We will let the prover make the measurements {MB1}, {MB2}, {MB3}, ...,

and let ρi be the held quantum state after B1, ..., Bi−1 have been measured, where

ρ1 = ρ.

Lemma 5.6. Suppose that each measurements succeeds with probability at least p′.

For all 1 ≤ i ≤ m,

|ρi − ρ1|1 ≤ 2(i− 1)
√

1− p′

so pall, the probability of all measurements succeeding, is bounded below by

pall ≥ (p′ − 2(n/2− 1)
√

1− p′)n/2.

Proof. Induction on i and the Gentle Measurement Lemma. The base case, i = 1,

is clear. The notation MBi
(ρj) will mean the state which exists after measurement

{MBi
} is made on ρj.
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|ρi − ρ1|1 = |MBi
(ρi−1)− ρ1|1

= |MBi
(ρi−1)−MBi

(ρ1) +MBi
(ρ1)− ρ1|1

≤ |MBi
(ρi−1)−MBi

(ρ1)|1 + |MBi
(ρ1)− ρ1|1 (triangle inequality)

≤ |ρi−1 − ρ1|1 + |MBi
(ρ1)− ρ1|1 (contractivity of trace distance)

≤ 2(i− 2)
√

1− p′ + 2
√

1− p′

= 2(i− 1)
√

1− p′.

Thus, pall, the probability of all measurements succeeding, is given by

pall ≥
m∏
i=1

(
p′ − 2(i− 1)

√
1− p′

)
≥ (p′ − 2(m− 1)

√
1− p′)m

≥ (p′ − 2(n/2− 1)
√

1− p′)n/2

Theorem 5.7. Suppose we run the “Efficient Quantum PoS Protocol” with some

N ≥ C ≥ 1, and the prover can answer correctly with probability p, i.e.

E
A∈([N ]

C )[psuccA ] = p.

Then for any ε > 0, 0 ≤ γ < 1/2, and n ∈ Z+, the prover’s quantum storage

log dimH is bounded by

log dimHρ ≥ N − 2H(pallpgreater)− 2pallpgreater logF − 2(1− pallpgreater) log(2N − F )

where
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M = E −
√
V − nC

2

for E, V defined in Equations 5.2.1, 5.2.2, respectively, and

p′ := 1− (2 + ε)(1− p)

pall := (p′ − 2(n/2− 1)
√

1− p′)n/2

pgreater =
1

2N

(N−M)∑
j=dγ(N−M)e

(
N

j

)

α := 1− γ(N −M) +M

N

F :=
αN∑
i=1

(
N

i

)
Proof. We begin by applying Lemma 5.4 to obtain a set of measurable subsets

B1, ..., Bm where

∣∣∣⋃
i

Bi

∣∣∣ ≥ E −
√
V − nC

2
= M

and psuccBi
≥ p′ for all i. By measuring B1, ..., Bm in any order, by Lemma

5.6 we obtain correct measurements on at least M qubits with probability pall as

defined above. For the remaining N −M qubits, guessing randomly yields at least

dγ(N −M)e correct measurements with probability pgreater as defined above. Thus,

the probability of getting a fraction at least α correct is bounded below by pallpgreater.

Plugging into the bound from Theorem 2.1 from [1], we complete the reduction and

obtain the desired bound.
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6 Further Work

The “efficient” protocol presented above has a number of undesirable properties.

For one, all states must be generated by the verifier and sent to the prover, which is

inefficient, as a good quantum PoS protocol ought to involve minimal quantum work

on the part of the verifier. This section will describe a protocol based on quantum

lightning, which is defined as follows [4].

For a given security parameter λ, a quantum lightning protocol is a means of

sampling a pair (Storm,Ver), two polynomial time quantum algorithms. When run,

Storm samples a “bolt” |ψ〉, a quantum state, while Ver is an algorithm which takes

in a quantum state |ϕ〉 and checks if it is a bolt sampled using Storm. If not, it

returns ⊥, and if so, Storm returns a serial number s.

Security (“uniqueness”) for quantum lightning is stated in terms of the following

game between a challenger and any bolt generation procedure H [4]:

Quantum Lightning Security Game

1. The challenger samples a storm and verifier (Storm,Ver), and sends (Storm,Ver)

to H.

2. H generates two quantum states |B1〉 , |B2〉 and sends them to the challenger.

3. The challenger verifies each state with Ver and accepts if both states are ac-

cepted as bolts with equal serial numbers.

The quantum lightning protocol is said to be secure iff all H can win with only

probability negligible in λ, the security parameter. Informally, it’s difficult to create
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two bolts with the same serial number. This motivates the following protocol:

Quantum PoS from Quantum Lightning

Fix N , the storage bound, and λ, the security parameter.

Initialization The verifier samples a storm and verifier (Storm,Ver) and sends them

to the prover. Using Storm and Ver, the prover generates N bolts |B1〉 , ..., |BN〉,

measures their serial numbers s1, ..., sN , and commits to them using a Merkle

tree.

Execution The verifier chooses a bolt index uniformly at random and has the prover

send over that bolt. He verifies it with Ver and accepts if its serial number

is consistent with the Merkle tree commited earlier, which requires a small

amount of classical communication between the prover and verifier.

This protocol has a number of desirable qualities. For one, the verifier is entirely

classical during Initialization, and the amount of classical information exchanged

is logarithmic in the storage bound, while the amount of quantum information ex-

changed depends only on λ. Further work on quantum PoS would focus on proving

security of the above protocol, which initially appears difficult. For example, it’s

difficult to limit what a malicious prover might do with her states, and it is hard to

rule out the prover compressing all of her states to a small quantum state. Without

making assumptions such as those of Theorem 5.1, it will take much more work to

prove (or disprove) security of this protocol.
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