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Abstract

Nonlocal games are a convenient reformulation of Bell inequalities in quantum mechanics,
and provide a natural setting to investigate advantages provided by access to entanglement. We
study two common variants of nonlocal games, namely XOR games and linear system games,
which involve players providing (partial) solutions to systems of linear equations. The two types
of games have served different purposes: many bounds and structural results have been shown
for XOR games, while linear system games have been the setting for undecidability results and
have provided separations between classes of quantum correlations. We attempt to relate the
two models, by studying the relationships between their strategies and refutations, and try to
understand when results for one model can be transferred to the other. We also independently

investigate bounds and tractability for XOR, games.

Background

Quantum mechanics is now accepted as the basic paradigm for physics on a small scale, mainly due
to its ability to explain physical phenomena which previously resisted classical models. However,
the superiority of quantum mechanics over classical mechanics as a predictive theory has also been
more fully established through experiments designed to test directly for potential violations of
classical predictions. The most well-known such experiment was first proposed by John Bell in
[Bel64], although it was not experimentally run until years later, and similar Bell tests followed. In
a typical Bell test, two (or more) non-communicating observers make certain measurements of their
respective systems (which are spatially separated but may have previously interacted), according
to the instructions of the experimenter. If this experiment is carried out many times, each time
with identical preparation, then certain statistical properties emerge among the measured outcomes.
In particular, it can be proved that the resulting correlation, i.e. the collection of observed joint
probabilites of outcomes given the instructions, must satisfy certain constraints in any theory based
on local hidden variables (theories prior to quantum mechanics, e.g. Newtonian mechanics), but
that these constraints may be violated in a quantum mechanical world. This provides a concrete
separation between the predictions of quantum and classical theories, and in the years since Bell’s
result, experimental verifications have supported the quantum predictions [BCP*14].

Such constraints as above are known as Bell inequalities, and their relationship with the corre-

sponding Tsirelson bounds — i.e. the bounds on quantum violations of Bell inequaliites — has been



extensively studied. In particular, the difference between these two bounds attests to the power
of entanglement as a resource. In this direction, viewing entanglement as a resource, to be poten-
tially used by computers or players in a game, we reformulate Bell tests in the modern language of
nonlocal games.

A nonlocal game G (with two players, say Alice and Bob), consists of question sets Z4 and Zp
and answer sets O4 and Op, and a probability distribution 7 on Z4 x Zg, along with a {0, 1}-valued
predicate V on Oy x Op x T4 x Ip (or more generally an R-valued function on that set). In the
game, Alice and Bob are asked questions x € T4 and y € Zp, respectively, with probability 7 (x,y),
and they send back respective answers a and b. Their answers follow some conditional probability
distribution p(a, b|z,y), and we refer to the set of values {p(a, b|z,y)} as a correlation, or a strategy.
Any proper strategy for the game must be non-signalling, which effectively means that the players
cannot communicate, and this condition can be expressed as a finite set of constraints on the values
p(a,blx,y). A classical, or local, strategy is one in which the players’ answers only depend on
their respective questions, up to some shared randomness A, and are independent of each other’s

questions and answers, so we can write

p(atle,) = [ plalz. Vplbly Na(h)

for some distribution ¢(A). An entangled strategy is one in which the players have access to en-
tanglement, in that they share an entangled state on which each can perform measurements. We
can express this more concretely as follows: an entangled strategy is given by a pair of Hilbert
spaces Hy and Hp, one for each player, together with a composite state |¢)) € Hq ® Hp, and
sets of measurement operators {M7 | a € O4,2 € Ty} and {N/ | b € Op,y € Ip}. Here MY is
a projection on H, (or more generally a positive operator) such that > ., M7 = Iy, for each
x € T,, and the analogous statements hold for the operators Ng’ . The strategy corresponds to
the following physical actions in the game: upon receiving questions x, y, respectively, Alice makes
the measurement associated to x on H 4, while Bob makes the measurement associated to y on
Hp, and they answer according to the outcomes of their measurements. Explicitly, Alice and Bob
answer (a,b) with probability p(a,blz,y) = (Y|MF ® N/|¢). This is the tensor product model of
an entangled strategy. More generally, we may allow commuting-operator strategies, in which Alice
and Bob share a Hilbert space H and a state |¢)) € H, and, rather than acting on distinct tensor
factors, their measurement operators M and Ng’ (which act on H) are simply required to commute.
Similar to before, the correlation is given by p(a,blz,y) = (Y| MINY|).

Now, for a given strategy s = {p(a,b|z,y)}, we define the win probability w(s) to be the
probability that V(a,b|x,y) = 1 (where x and y are distributed according to 7, and for given = and
y, a and b are distributed according to p(a,blz,y)). A strategy s is perfect if w(s) = 1. We define
the classical value w(G) to be the supremum of w(s) over all classical strategies s, and similarly we
define the entangled values w; (G) and w}(G) to be the suprema of w(s) over all tensor-product and
commuting-operator entangled s, respectively. Note in general we have w(G) < w;(G) < wi(G).

Usually we denote w*(G) = w}(G). All of the above notions can be generalized to k players (rather



than 2) via the same definitions.

Introduction

Let’s now introduce the types of games relevant to our research. An XOR game G is usually defined
in one of two (effectively equivalent) ways. In the first, a k-XOR game is simply a nonlocal game
with k players, such that the answer set for each player is {0,1} = Fy, and the predicate V only

depends on the sum of the answers mod 2, i.e.

V(ay,...,ax|z1, ..., 25) = V(ag @ - @ agl|x1, ..., xk).
In the other formulation, each player i is assigned variables xgi), . ,azg ), and there is a finite system
of m equations of the form iL'ﬁ) O D :cy:) = b, such that each clause is chosen with probability

1/m, and from the chosen clause, each player i is asked to give a value for their associated variable
-
use the second formulation. We can represent a strategy for G as a choice of a (£1)-valued operator

x;’, and the players win if and only if the equation is satisfied by their assignment. We will usually

Ag-i) for each player i and associated variable j (together with a shared state [¢)), such that in
(4)
J

composite space H; ® -+ ® Hj, and in the commuting operator model, A

)

the tensor product model, A} acts only on the tensor factor H; (corresponding to player i) of the

(4) )
J
corresponds to the answer 0,

commutes with Ag.f/

whenever i # /. Here the projection to the (41)-eigenspace of Ag-i

while the projection to the (—1)-eigenspace coresponds to the answer 1. Note that with this, when
(1)

the players are asked for solutions for the equation T, DD ac;]:) = b, the probability that they

answer correctly is

1
5 (1+ (P wlAR - A1)

In particular, the strategy is perfect if and only if for each equation we have <1/J|A§-}) e A§’:)|w) =
(~1)°, or equivalently A'D .- A% |y = (~1)?|).

A linear system game is defined somewhat differently. There are several similar formulations,
but here is the usual one: here we have a finite set of variables x1,...,x,, and a finite set of m
equations of the form z;, @ --- @ xj, = b. Each equation is chosen with some probability (usually
1/m), and Alice is given the equation, while Bob is given a randomly selected variable from the
equation. Alice answers with an assignment of all variables in the equation, while Bob answers with
an assignment of his given variable. The players win if Alice’s assignment satisfies the equation,
and Alice’s and Bob’s assignments agree at the variable given to Bob.

Both of these types of games ask about solutions of systems of linear equations. This is most
direct in the classical case: for a given XOR game or linear system game GG, G has a perfect classical
strategy, i.e. w = 1, if and only if there is an assignment of all of the variables in the system which
satisfies all equations of the system simultaneously. Thus G has a perfect classical strategy if and
only if the linear system has a solution. It is somewhat harder to specify the conditions under which

we have w*(G) =1 (in both the XOR and linear system game cases).



In particular, it is known that for a 2-player XOR game, w* = 1 if and only if w = 1 [CHTWO04].
This is not the case for XOR games with 3 or more players, as well as for linear system games. For
example, the Mermin-Peres Magic Square game is a linear system game with w* =1 but w < 1
[CM14], while the GHZ game [WHKN18] is a 3-player XOR game with the same property. For linear
system games, the condition that w* = 1 is characterized by the existence of quantum satisfying
assignments. For a system of equations of the form x;, @ ---® z;, = b, define a quantum satisfying
assignment to be a Hilbert space H together with a (£1)-operator A; on H (i.e. a Hermitian
operator with eigenvalues A = £1) for each variable x;, such that A; and A; commute whenever
xj and xj appear in the same equation, and such that for each equation of the above form, we have
Aj, -+ Aj, = (=1)°1. Such an assignment is said to be finite-dimensional if H is finite-dimensional.
It was shown in [CM14] that w;(G) = 1 if and only if the system of G has a finite-dimensional
quantum satisfying assignment, and it was shown in [CLS17] that w}(G) = 1 if and only if the
system has any quantum satisfying assignment. There is also an equivalent formulation in [CLS17]
based on solution groups. For G an XOR game, an equivalent condition to w* = 1 was found in
[WHKN18]|, via the hierarchy of semidefinite programs from [NPAOS]|. The condition depends on
the notion of a refutation of an XOR game.

The situation is also divided for the computation and approximation of w*, as well as for the
hardness/tractibility of determining whether w* = 1. It was shown in [Slo16], [Slo17] that the
problem of determining whether w* = 1 for a given linear system game is undecidable. No analogous
results are known for XOR games, though it was shown in [Vid13] that it is NP-hard to approximate
w* for 3-XOR games. From the results in [WHKN18], there is a polynomial-time algorithm to
determine if w* =1 for symmetric XOR games.

Because of the disparity between these results, despite the alignment in the classical case, it
is natural to ask whether we can relate the properties of a linear system, considered as an XOR
game G, to the same system considered as a linear system game G’. More broadly, it would be
clarifying to find some relationship between XOR games and linear system games which preserves
some quality, e.g. a mapping from XOR games to linear system games (or in the other direction)
which preserves the property that w* = 1, or which simply increases the value of w*. Such mappings
are desirable because they could potentially allow results which apply to one type of game to be
extended to apply to the other. For example, given that determining whether w* = 1 is undecidable
for linear system games, an appropriate mapping from linear system games to XOR games (i.e. a
reduction) could prove that the same problem is undecidable for XOR games.

We will show that the direct reduction from XOR games to linear system games does not
preserve any of these properties. Given this result, it remains possible that a less direct reduction
exists in either direction, but given the differences between the models, it seems difficult to find
one. In lieu of a reduction, we conjecture separately that deciding whether w* = 1 for XOR games
is undecidable, and study a combinatorial reformulation of this question, giving preliminary results

that seem to provide evidence for the conjecture.



Results

At first it seemed that the direct reduction, by simply considering the linear system game G’ on the
system of equations of an XOR game G, would satisfy the above desired properties. In particular,
we had “proofs” of these properties relating w*(G) and w*(G’), and proof approaches for other

properties. For example, a “proof” that w*(G) < w*(G'): consider a strategy for G given by a set of

operators {A(-i)} where A(-i) is the measurement corresponding to the j-th variable of player i. We
can then construct a corresponding strategy for G’: when she receives the equation x( )EB @x(k)

i)

b, Alice measures A( for each i (which is possible because they commute) and responds with the

g), he measures Ag-i)

responds with the result. This strategy seems to succeed with the same probability as the original

sequence of measured values, while when Bob receives the variable x and
strategy for G, since Alice’s and Bob’s measurements will always agree at Bob’s variable, so they
win precisely when Alice’s measurements give a satisfying assignment. Unfortunately, this is not in
general a proper entangled strategy, since Alice’s and Bob’s measurements must commute, i.e. all

Ag.i) must commute, meaning the original strategy is in fact classical (so we have only proved the

obvious w(G) < w*(G")).

Similarly, we seemed to have a proof that if w*(G’) = 1, then w*(G) = 1. The idea was that if
w*(G') = 1, then by the result in [CLS17], there must be some quantum satisfying assignment {A(i) }
of the system, such that Aﬂ) e Ay:) (—1)® for each equation x( )@ EB:U( ) = b. From here, takmg
|1)) to be any element of the associated Hilbert space, we would have A( A(k [) = (—1)°|y)
for each equation, hence a perfect strategy for the XOR game G. There is again a problem, in that
this is in general not a proper strategy for the XOR game, since we must have that Agi) commutes
with Agf/) whenever ¢ # ¢/, but this is only guaranteed to be true if l‘g-i) and :Uy;/) appear together in
the same equation.

Assuming the proofs for these two claims had been successful, this would have shown w*(G) = 1
if and only if w*(G’) = 1, which would have been significant, though this is not the desired reduction
to prove undecidability of checking w* = 1 for XOR games, since the reduction would have to go
in the opposite direction, i.e. from linear system games to XOR games. At the time, we also found
flawed approaches to prove the stronger claims that w’(G) < w;(G’) and w*(G’) < w*(G), but the
faults with these were much easier to identify. It now seems less likely to find a reduction in either
direction, since it is unclear how to transfer strategies between the two types of games, because of
the distinct types of commutativity requirements imposed by the different formulatinos.

However, we have disproved our earlier claims about the direct reduction from XOR games
to linear system games. In particular, we will now construct XOR games G; and G2 such that
w*(G1) < 1, yet w*(G)) = 1, and w*(G2) = 1, yet w*(G5) < 1. This shows that there are no
inequalities between w*(G) and w*(G’), and more generally, that there are no implications between
the conditions w*(G) = 1 and w*(G’') = 1. We give the examples below, but first mention some
relevant properties of XOR games and linear system games (some of the definitions below are ours).

Let G be an XOR game with m equations of the form xﬁ) G- P x(k) = b. We refer to the



left-hand side as a query, and we refer to (—1)® as the sign of the query. Define the Zy-free group
Fy,(ai1,...,a,) on the generators ay,...,a, to be the free group on the same generators, modulo

the relations a? = 1 for all 4. Then define the (multiplicative) group
S(G) = FZQ(Vvl) X oo X FZQ(Vk) X {:l:l}

where V; is the set of variables of player i. There is no loss of generality for our purposes in assuming
that V; = {1,...,n} for each i, so we have S(G) = (Fz,(1,...,n))* x {£1}. We will write elements
of S(G) as column vectors, in the form

wq

Wk

s
where each wj; is an element of Fy,(1,...,n), i.e. a word in the symbols 1,...,n (possibly empty),
and s € {£1}. In particular, we can associate to each equation (Egi) PP a:glz) = b of G an element
of S(G), namely

and we will call such an element a relation. We define a refutation to be an expression of the element

-1

(where rows 1 through k contain the empty word) as a product of relations. It is not hard to show
that if G has such a refutation, then it has no perfect strategy, and the authors of [WHKN18] go
further, proving that if G has a refutation of length ¢, then w*(G) < 1 — #232. They also prove
an inverse result: if G has no refutation, then w*(G) = 1, which follows from an argument using
the hierarchy of semidefinite programs found in [NPA08]. Thus w*(G) = 1 if and only if G has no
refutation. Note that there is a refutation if and only if J is in the subgroup of S(G) generated by
the relations of G.

Some parallel results to the above are known for linear system games. Consider a linear system
game G’, with equations of the form xj @ --- @ z;, =b. We can define the solution group S’(G’)
(as defined in [CLS17]) to be the group with generators x; (one for each variable of G’) and the
additional generator J (representing the scalar operator —1) and the following relations: J? = 1 and

:1:12 =1 for all 4, J commutes with all x;, and x; and z;; commute whenever they appear in the same



equation, and xj, ---x;, = Jb for each equation xj, @ - ®xy, =0b. It was shown in [CLS17] that
G’ has a perfect strategy if and only if J # 1 in the solution group S’(G’). We can reformulate this
condition as saying that J is in the normal subgroup generated by the relations. In particular, since
the normal subgroup generated by the relations is just the subgroup generated by all conjugates
of the relations, we can define a refutation for G’ as an expression of J as a product of conjugates
of the relations. Equivalently, taking all relations except those drawn from the equations of G’ to
hold (commutativity, squaring to the identity), a refutation is an expression of J as a product of
conjugates of elements of the form w;, - --x;, J°. Thus G’ has a perfect strategy if and only if it
has no refutations. Since the set of commuting quantum correlations is closed [Fril2], it follows in
particular that any game has w* = 1 if and only if it has a perfect strategy, so we can rephrase this
as w*(G’) =1 if and only if G’ has no refutations.

Now we have notions of refutations for both the XOR and linear system game formulations,
and each reflects the same idea: a combination of the equations of the game which seems to result
in a contradiction. The ways they differ reflect the different structures of the two games, in that
a refutation for an XOR game assumes that elements corresponding to variables associated to
different players commute, while a refutation for a linear system game only assumes that variables
which appear in the same equation commute. Moreover, refutations for linear system games allow
conjugation, since a perfect strategy for a linear system game necessarily extends to a “global”
perfect strategy, i.e. a quantum satisfying assignment, by the result in [CLS17], while refutations
for XOR games do not, since such extensions are not always possible for perfect strategies for XOR
games. Note that this gives further evidence that we may not be a reduction with the desired
properties: the two conditions that w* = 1 are significantly different for the two types of groups
associated to these games.

Now we define our examples. The 3-XOR game G is based on the Small 123 game found
in [WHKN18], and is similar to the Mermin-Peres Magic Square game found in [CHTWO04] and

[CM14]. Consider the matrix containing the nine variables

ar b1 ¢
bQ Co Qa2
c3 az bz

Then G has six equations given by the following constraints: the sum of the variables in each row
is 0, while the sum of the variables in each column is 1 (addition is mod 2). Here Alice is associated
with the variables a;, Bob is associated with the variables b;, and Charlie is associated with the

variables ¢;. By writing these equations as relations and ordering them appropriately, we see there



is a refutation of G; given by

3
-1

—_ = = =
=W W W
=N NN

|HC&O[\’)
—_

|
—_

-1

hence w*(G1) < 1 (and in fact w*(G1) <1 — %). However, we have a finite-dimensional quantum
satisfying assignment for this system, inspired by the perfect strategy for the Magic Square game,

by setting the operators corresponding to the variables in the above matrix to

XY Y®X ZZ
Y®Z ZY XX
X X®Z YQRY

where X, Y, Z are the Pauli spin operators (and our Hilbert space is the space on two qubits). Thus
w*(G)) = 1.
For the second example, let the 3-XOR game Gy be the GHZ game as defined in [WHKN18§],

with two variables per player and four equations, namely

ar @by ®cr =0
ag @by ey =1
ay®by D=1
a1 @by D=1

As shown in [WHKN18], this has a perfect XOR strategy, so w*(G2) = 1, but the linear system

game (G2 has a refutation, since we have the following conjugated product of relations
(alblcl)(CLQbQCl J)bQ (azblcQJ)bg (aleCgJ)

which evaluates to J via the commuting and squaring relations. Thus G has no perfect commuting-
operator strategy, hence w*(G%) < 1.

From here we have tried to find other reductions between XOR games and linear system games,
but we have focused more on directly proving that results which apply for one type of game also hold
for the other. In particular, we have considered the problem (let’s call it XOR-REF) of determining
whether w* = 1 for XOR games. From the combinatorial reformulation of the condition that
w* =1 in terms of refutations, it now seems likely that the problem is undecidable. Our approach
has mostly involved attempting to find a reduction from a standard undecidable problem. Because
of the combinatorial nature of XOR-REF, which involves checking whether a constraint can be
satisfied among different rows by concatenating pairs of “tiles”, we first tried to reduce from the

Post Correspondence Problem, denoted PCP, a well-known undecidable problem frequently used



for reductions. The input to PCP is a finite set of “2 x 1 tiles” (uy,v1),..., (un,v,), where each
u; and v; is a word on a finite alphabet, say {a,b}, and problem is to determine if we can find a

sequence iy,...,% with each i; € [n] such that u;, ---u;, = v;; - - - v;,. Equivalently, the problem is

4
to determine if we can concatenate tiles in a way such that the word on the top row is the same as
the word on the bottom row.

This problem seems somewhat difficult to reduce from, since it deals strictly with words and does
not allow cancellation, in contrast to XOR-REF. A similar, but possibly more appropriate problem,
recently proved to be undecidable in [BP09], is the Identity Correspondence Problem (ICP), which
takes input of the same form as PCP, except all the u; and v; are elements of the free group F'(a,b)
rather than simply being words on {a,b}, and the condition for acceptance is instead that there
is a sequence i1,...,% such that u; ---u;, = v;, ---v;, = 1. This accounts for the cancellation
appearing in XOR-REF, but not for the fact that all the letters (words of length 1) have order 2.
The latter condition is not so hard to add: note that we can define an injective homomorphism
F(a,b) — Fz,(z,y,z,w) into the Zy-free group on 4 generators via a — zy, b — zw. Then if we
define the problem ZoICP to be the same as ICP, except where the elements are instead taken
from Fy,(x,y,z,w), this homomorphism gives a reduction to ZoICP, showing that Z;ICP is also
undecidable. We believe that from here, there may exist a technical, gadget-based reduction from

ZoICP to XOR-REF, but we have not yet found such a reduction.

Conclusions

The results above suggest that there may not be a simple reduction between XOR games and linear
system games, and that the two types of games may have fundamentally different properties, their
values and strategies reflecting different qualities of a linear system. This is supported by our result
that the direct reduction from XOR games to linear system games fails. The same conclusion is
also supported by the two respective conditions given for w* = 1, which do not seem compatible,
as they are associated with different parts of the two associated solution groups. It remains open
whether determining if w* = 1 is undecidable for XOR games, though the resemblance to other

undecidable problems suggests a path to finding a reduction.
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