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Abstract

In this research project, we investigate the implementation of a protocol for remotely
preparing quantum states, with applications to blind and verifiable delegated quantum
computation. The remote-state preparation protocol relies on the use of cryptographic
primitives known as Noisy Trapdoor Claw-Free (NTCF) functions. These functions
are based on conjectured post-quantum secure problems, such as Learning with Er-
rors (LWE). The goal of the project is to implement the evaluation of such functions
in superposition on a Noisy-Intermediate Size Quantum (NISQ) Device, allowing us
to assess the potential of NISQ devices for cryptographic applications. We designed
and optimized quantum circuits for the implementation of the NTCF functions and
analyzed their performance using the quantum programming languages Q#, Qiskit,
and Cirq. We also considered different post-quantum secure problems as the basis for
these functions (such as Learning Parity with Noise, Learning with Rounding and Ring
Learning with Errors) to find circuits that are optimal in terms of depth and required
number of qubits.

1 Introduction

The purpose of this project is to delegate and verify the preparation of quantum states on
Noisy Intermediate-Size Quantum (NISQ) devices. A NISQ device is a quantum computer
having a relatively small number of qubits (on the order of 100) and whose gates are subject
to noise [1]. This means that every time a quantum operation is performed, there is some
probability that an error is introduced into the computation. While it is expected that the
detrimental effects of this noise can be mitigated using quantum error correcting codes and
protocols for fault-tolerant quantum computation, such protocols generally require large num-
bers of qubits [2] and so are not suitable for current and near-term devices. Nevertheless, as
the recent demonstration of quantum computational supremacy by the Google group showed,
it is possible to obtain significant computational advantages from using NISQ devices [3].
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But one challenge we face in using these NISQ devices is verifying the results they produce.
In other words, how can classical users that delegate computations to these NISQ devices
efficiently check that the results they obtained are correct?

This question is partially answered by a number of recent works that have proposed
protocols for certifiable randomness generation [4], remote-state preparation [5], self-testing
of a single quantum device [6] and verification of general quantum computation [7]. All
of these protocols make use of a cryptographic primitive defined in [4, 7] known as Noisy
Trapdoor Claw-Free (NTCF) functions. A trapdoor function is a type of one-way function
(a function that is easy to evaluate but hard to invert), that can be efficiently inverted given
a secret key known as a trapdoor [4]. A pair of functions f1, f2 is claw-free if there is no
efficient algorithm to find two inputs x1, x2 that satisfy the equality f1(x1) = f2(x2) [4].
Thus, a trapdoor claw-free function satisfies both of these properties.

Furthermore, the specific family of NTCF functions we are considering are conjectured
to be post-quantum secure, i.e. even a quantum algorithm should not be able to efficiently
find two inputs x1, x2 that satisfy the equality f1(x1) = f2(x2) [4, 8, 7, 5]. This can be
accomplished by defining the functions based on a problem called Learning with Errors
(LWE), first defined in [9]. Informally, the problem is to solve a system of approximate
linear equations over a finite field. More precisely, as described in [9, 10], the problem is
that given a uniformly random matrix A ∈ Zm×nq and a vector y ∈ Zmq , we want to find the
vector s ∈ Znq such that y = As + e, for e ∈ Zm. Here, the e vector, referred to as an error
vector, must be chosen according to a Gaussian distribution, denoted χ [9]. This distribution
χ is centered around the 0 vector and so the sampled e vectors have small norm, with high
probability. This Learning with Errors problem is conjectured to be post-quantum secure
and so we base our NTCF function on LWE. Specifically, the NTCF function is, as defined
in [8, 7, 5, 4]

g(b, x) = Ax+ b · (As+ e′) + e (mod q) (1)

where b ∈ {0, 1}, A ∈ Zm×nq , x ∈ Znq , s ∈ {0, 1}n, e′ ∈ Zmq , and e ∈ Zm. Furthermore, g(b, x)
can be interpreted as a pair of functions by fixing b:

g0(x) = Ax+ e (mod q)

g1(x) = Ax+ As+ e′ + e (mod q)

With this perspective, we can observe how g(b, x) is approximately two-to-one. Consider
the functions g0, g1 above, but with inputs related by s:

g0(x) = Ax+ e (mod q)

g1(x− s) = Ax+ e′ + e (mod q)

Here, g0(x) and g1(x − s) only differ by the e′ vector. However, since we know that e′

is sampled from a probability distribution with high probability on low-weight vectors from
the definition of LWE [10], then e′ is likely to be low-weight. Thus, Ax+ e and Ax+ e′ + e
should be fairly close, allowing the NTCF function to be two-to-one with high probability.

The protocols listed previously regarding certifiable randomness generation [4], remote-
state preparation [5], self-testing of a single quantum device [6] and verification of general
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quantum computation [7] assume that the quantum device can evaluate this NTCF function
g(b, x) from Equation 1 coherently (i.e. in superposition). However, this cannot be achieved
perfectly on a NISQ device because of the errors incurred when performing quantum opera-
tions. Nevertheless, we wish to investigate the possibility of implementing claw-free functions
on a NISQ device. While it is likely that such an implementation (even a highly optimized
one) will incur a significant amount of noise in order to achieve all of the desired the security
guarantees, our goal is to see whether we can achieve a balance between accuracy and se-
curity. Furthermore, this project mainly focuses on the implementation of the remote-state
preparation (RSP) protocol in [5], which makes use of these functions.

The remote-state preparation protocol was developed as a follow-up to Mahadev’s pro-
tocol for verifiable delegated quantum computation, using only classical communication [7].
Delegated quantum computation is a problem where a (classical) user has a description of a
quantum circuit C, and wants to delegate the evaluation of C |00 . . . 0〉 to a quantum com-
puter. Importantly, the user wants to be able to efficiently verify that the quantum computer
performed this computation correctly. In this setting, the user is typically referred to as the
verifier, whereas the quantum server is the prover. While Mahadev’s scheme was the first
such protocol to utilize only classical communication between the verifier and prover, one
disadvantage is that in order to delegate a quantum circuit consisting of G gates, the prover
has to prepare a highly entangled quantum state comprising of poly(G)-many qubits [7]. In
addition, Mahadev’s protocol does not achieve a cryptographic property known as blindness.
Roughly speaking, blindness means that the quantum circuit C is not revealed to the prover
throughout the protocol.

To address these limitations, Gheorghiu and Vidick developed the remote-state prepa-
ration protocol and showed how it can be used to achieve blind and verifiable delegated
quantum computation (using only classical communication) [5]. Their protocol has two
stages. First, the verifier delegates to the prover the preparation of certain single-qubit
quantum states and checks that these states were prepared correctly. This is the RSP sub-
protocol, which we are focusing on. Then, the verifier instructs the prover to perform a
general quantum computation by suitably entangling and measuring these states according
to the protocol of Fitzsimons and Kashefi [11]. The fact that the protocol can be sepa-
rated into the state preparation phase and the delegated computation phase is in contrast to
Mahadev’s protocol which has a more monolithic structure. RSP thus provides a way to “de-
quantize” quantum communication from quantum protocols. We are therefore motivated to
see whether this primitive can be implemented on near-term devices.

In particular, at the moment, this project is focused on a portion of the RSP protocol
depicted in the diagram below, which implements the evaluation of these NTCF functions
as well as a measurement to create a convenient state for the rest of the protocol.

Here the first register is the b input to g(b, x) and the second register is the x input.
Furthermore, the unitary operation Ug is the operation to evaluate the function on the first
two registers, which is then stored in the third register. After evaluating the function in
superposition, we measure the result of the computation, i.e. the third register, to obtain
an image of the function y. This measurement collapses the first two registers to the state
specified in Figure 1, where we can obtain information about the preimages of g(b, x) = y
from this state. This information about the preimages can then lead to tests for verifiability
of the protocol. Hence, this circuit that we are implementing is a key part of the RSP
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|0〉 H

Ug

1√
2
(|0〉 |x0〉+ |1〉 |x1〉)

|0n〉 H⊗n

|0m〉 |y〉

g0(x0) = g1(x1) = y

Figure 1: Evaluating NTCF Function Circuit Diagram

protocol, which then has the applications previously mentioned.
Specifically, there are two tests for verifiability: the preimage test and equation test [4].

Following the preparation of the state 1√
2
(|0〉 |x1〉 + |1〉 |x2〉 according to the circuit above,

the preimage test requests for the prover to measure this state in the computational basis
to obtain b, x. Then, the verifier can check that g(b, x) = y, and if this is satisfied, the test
is passed. On the other hand, the equation test requests a string d, obtained by measuring
the collapsed preimage state in the Hadamard basis. In this case, the verifier checks that

d · (x1 ⊕ x2) = b (2)

using the trapdoor from g to compute both preimages x1, x2. Satisfying this condition is
known as the prover generating a valid equation. In both applications of certifiable random-
ness and remote state preparation, each of these tests are performed with equal probability
[5, 4]. In this project, we mainly measure success as the probability that the prover passes
the equation check.

Thus, in summary, the overall objective for this project is to investigate cryptographic
applications of NISQ devices, and specifically the feasibility of evaluating claw-free functions
on these devices. A number of companies, such as Google, IBM and Rigetti, are at the
forefront of developing NISQ devices and some, such as IBM and Rigetti, have made them
available to users on the Internet through their cloud services [12, 13]. It is therefore not
only important to have NISQ applications but also to have ways of verifying the results for
these applications.

2 Methods

In this section, we describe and analyze the techniques used to implement the remote-state
preparation protocol from [5]. We also discuss optimizations made to reduce the number of
qubits required as well as the depth of the circuit.

We start by detailing the high level implementation of the evaluation of the NTCF
function from Equation 1 in Section 2.1, which we then decompose into elementary operations
in Section 2.2. Then, in Section 2.3, we analyze the performance of the implementation for
small instances, quantified with the Hellinger overlap. In Section 2.4, we consider a different
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approach influenced by the problem Learning with Rounding (LWR) as well as Learning with
Errors (LWE) and briefly discuss it’s performance. Finally, optimizing this LWR approach,
we analyze several techniques for reducing qubit usage and depth in Section 2.5.

2.1 Initial Implementation

Recall the function from Equation 1:

g(b, x) = Ax+ b · (As+ e′) + e (mod q) (1)

where b ∈ {0, 1}, A ∈ Zm×nq , x ∈ Znq , s ∈ {0, 1}n, e′ ∈ Zmq , and e ∈ Zm. The evaluation of
this function in superposition involves only matrix-vector operations, which can be efficiently
parallelized and performed in depth that is logarithmic with respect to the size of the input.
In the original implementation, we used Microsoft’s Q# quantum programming language,
which has built-in operations for modular arithmetic operations.

For example, in the code block below MultiplyAndAddByModularInteger and
IncrementByModularInteger are such operations included in Microsoft’s Quantum Devel-
opment Kit for performing modular arithmetic in quantum registers [14].

27 // add quantum registers x and y into y, mod modulus

28 operation addRegisters (x : Qubit[], y : Qubit[], c : Int , modulus :

Int) : Unit is Adj + Ctl {

29 MultiplyAndAddByModularInteger(c, modulus , LittleEndian(x),

LittleEndian(y));

30 }

31

32 // add constant int to register res , mod modulus

33 operation addConstantToRegister (c : Int , modulus : Int , res : Qubit

[]) : Unit is Adj + Ctl {

34 IncrementByModularInteger(c, modulus , LittleEndian(res));

35 }

Listing 1: Original Implementation

MultiplyAndAddByModularInteger and IncrementByModularInteger implement the
transformations

|x〉 |y〉 → |x〉 |(cx+ y) mod N〉

|x〉 → |(x+ c) mod N〉

respectively, for some constant c and modulus N . We have simply wrapped these functions
in our own addRegisters and addConstantToRegister for convenience. These are very
useful for implementing the evaluation of the function in Equation 1. Since we have As+ e′

and A itself classically, if we have |b〉 |x〉 |e〉, then Ax+ e can be computed by
MultiplyAndAddByModularInteger to compute the inner product between each row of A
and x and add this result to the e register. Moreover, b ·(As+e′) can be added in by utilizing
a controlled version of addConstantToRegister1.

1For a unitary operation U , implemented as a function in Q#, one can create the controlled version of U
using the keyword Controlled.
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2.2 Decomposition of High Level Operations

Despite the convenience of utilizing Q#’s built-in functionality as seen in the previous section,
these operations act as a black box, and the documentation for them is not explicitly available
to analyze what the operations are actually executing in terms of elementary gates. However,
because NISQ devices introduce noise for each quantum operation, we want our circuit
to have optimal depth. By this we mean having an implementation that requires as few
quantum operations as possible, which will result in less noise in the output of the protocol.
Hence, we decomposed the high level operations into circuits composed of rotation gates and
quantum fourier transforms (QFT), using the ideas and circuits presented in [15, 16, 17].
In [16], MultiplyAndAddByModularInteger and IncrementByModularInteger correspond
to the controlled multiplier gate and modular adder gate, respectively.

An example of one such decomposed operation can be seen in the figure below. Note
that the version in the code block implements the transformation

|x〉 → |(x+ c) mod N〉

only for N = 2n, where n is the size of the register we are adding the constant into. We
present this version for simplicity, as the general modulus version is much more involved.
In the literature, this operation corresponds to the circuit from Figure 3 in [16], thus
decomposing the operation IncrementByModularInteger into these single qubit rotations
using R1Frac as well as the QFT witb QFTLE.

53 // maps |x> to |x + c (mod modulus)>

54 // this version only works if modulus = 2^n, where n = Length(x) =

Length(y)

55 operation addConstantToRegister(c : Int , modulus : Int , res : Qubit [])

: Unit is Adj + Ctl {

56 body (...) {

57 let n = Length(res);

58 QFTLE(LittleEndian(res));

59 for (i in 0 .. n - 1) {

60 R1Frac(c, (n - 1) - i, (res)[i]);

61 }

62 Adjoint QFTLE(LittleEndian(res));

63 }

64 adjoint invert;

65 controlled distribute;

66 controlled adjoint distribute;

67 }

Listing 2: Example Operation

Moreover, we also implemented the QFT (called QFTNormal in our implementation), as
displayed below. This implementation is based off of that given in the Qiskit documentation
[12] as well as the circuit known for the QFT [17]. Note that in the Qiskit documenta-
tion, the QFT was implemented recursively, but here, we transformed it into an iterative
implementation in order to make it easier to transform it into its controlled version.

11 operation QFTNormal(qs : LittleEndian) : Unit is Adj + Ctl {

12 body (...) {

13 let n = Length(qs!);
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14 for (i in 0 .. n - 1) {

15 H((qs!)[n - i - 1]);

16 if (i != n - 1) {

17 for (j in 0 .. n - i - 2) {

18 Controlled R1Frac ([(qs!)[j]], (1, n - 1 - i - j, (

qs!)[n - i - 1]));

19 }

20 }

21 }

22 for (i in 0 .. (n / 2) - 1) {

23 // SWAP((qs!)[i], (qs!)[n - 1 - i]);

24 CNOT((qs!)[i], (qs!)[n - 1 - i]);

25 CNOT((qs!)[n - 1 - i], (qs!)[i]);

26 CNOT((qs!)[i], (qs!)[n - 1 - i]);

27 }

28 }

Listing 3: Quantum Fourier Transform Implementation

With each of these operations decomposed into rotations and controlled rotations, we
could estimate the depth of the overall circuit for evaluating the function from Equation 1,
which is roughly given by

Depth ≈ 18mn+ 2 (3)

for a modulus q = 4 and where A is an m×n matrix. This is a very rough estimate, in that it
assumes none of the rotations or controlled rotations can be parallelized. Moreover, the real
depth also depends on the sparsity of the matrix A, so this expression for the depth can be
thought of as an extreme upper bound on the true depth. Furthermore, this implementation
utilizes

# Qubits = 1 +m log q + n log q (4)

where, again, q is the modulus and A is m× n. For a concrete example, consider q = 4, n =
3,m = 6, which results in a depth of 326 and 19 qubits.

2.3 Analysis of Hellinger Overlap between Distributions

Recall from Section 1 that the function from Equation 1 is only approximately two-to-one.
This can be seen by fixing b:

g0(x) = Ax+ e (mod q), for b = 0

g1(x− s) = Ax+ e′ + e (mod q), for b = 1

Further recall that e′ is likely to be a low-weight vector, so Ax+ e and Ax+ e′+ e should
be fairly close to equal. This can be seen in the figure below, where we interpret g0(x) and
g1(x − s) as probability distributions, with variations from their respective centers Ax and
Ax+ e′ due to the error vector e.
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Figure 2: Overlapping Distributions

In order to optimize the performance of the circuit on both simulators and real quantum
hardware, certain parameters of the function can be adjusted accordingly to allow for a
higher amounts of overlap between the two distributions. Moreover, if there is greater
overlap, we will also obtain a valid equation with higher probability, increasing the success
rate of our implementation. Of these adaptable factors, the most effective is in calibrating
the error distribution for e from Equation 1. We investigated the amount of overlap for
several different distributions for e by using the measure known as the Hellinger overlap,
which is defined as the following from [4]:

Overlap = 1−H2(D,D + e) =
∑
e∈Zm

q

√
D(e)D(e+ e′) (5)

where for our case, D is the error distribution for e.
Also, recall when evaluating this function, we want to do so over all possible inputs, so

e must be in a superposition with amplitudes that reflect the probability distribution it is
chosen from. In [4, 7], they define this distribution as a truncated Gaussian distribution.
However, to make a superposition over this distribution would add too much overhead to our
circuit. To simplify, we tried choosing distributions that are easier to create “quantumly” but
also allow for low-weight errors to be chosen with higher probability. Thus, we considered
three different types of distributions: uniform, binomial, and multinomial.

Specifically, the uniform distribution is over all e vectors that have an L1 norm bounded
by a certain chosen threshold. All other e vectors occur with probability 0. Then, for
the binomial case, we consider each entry in the e vector independently. For each entry,
we choose to have either a non-zero entry with probability p or 0 with probability 1 − p.
Moreover, when choosing the non-zero entries, each is chosen uniformly at random from the
possible q − 1 options2. Finally, the multinomial case is a generalized case of the binomial
distribution, where each nonzero entry of the e vector is now chosen from the possible
q − 1 options with different probabilities depending on its absolute value. Furthermore, we
wanted a multinomial distribution where small errors were more likely than large errors to
more closely reflect the truncated Gaussian.

2Note that this is not technically a binomial distribution but is similar in the sense that we have 0 with
probability 1− p and nonzero entries with probability p.
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For each of these distributions, we calculated the Hellinger overlap numerically in Python
and plotted the L1 norm of the shift vector e′ against this overlap while varying the param-
eters of the distributions. Ideally, for low weight shifts e′, we want very high overlap (close
to 1), while for high weight shifts, we want overlap close to 0. Also, we performed these
calculations for the case of q = 4, since this allows us to use larger LWE instances in the
construction of the NTCF function.

First, we considered the uniform distributions, which can be defined as

Du(e, threshold) =

{
0 if ||e|| > threshold

1
number of possible errors s.t. ||e|| ≤ threshold

if ||e|| ≤ threshold

Out of different thresholds from 0 to 12, the results for thresholds of 5 and 6 seemed
the most promising. However, even despite this, as seen in the plots below, the amount of
overlap for shifts of norm 1 or 2 were not as high as was necessary. Ideally, these small shifts
of 1 or 2 should have overlap significantly higher than 0.5.

(a) Threshold of 5 (b) Threshold of 6

Figure 3: Uniform Distribution Plots

We next considered the binomial distribution3. Below are the plots for p = 0.3 and
p = 0.35 for the binomial distribution:

3Again, strictly speaking this is not a binomial distribution, however it has similar properties in that each
component of the e vector is non-zero with probability p.
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(a) Probability p = 0.3 (b) Probability p = 0.35

Figure 4: Binomial Distribution Plots

The results are better than the uniform case as the overlap is lower for higher shifts.
Also, we can easily create a superposition mimicking this distribution using controlled-Y
rotations. Each entry in the error state e can be expressed as the superposition below for
the binomial distribution.

ei =
√

1− p |00〉+

√
p

3
|01〉+

√
p

3
|01〉+

√
p

3
|11〉

Finally, the multinomial distribution had the greatest potential, as its properties resem-
bled the truncated Gaussian most closely. In particular, we considered multinomial distribu-
tions such that +1 and +3 errors had a factor f times higher probability of occurring than
+2. Viewing +3 as the equivalent of −1 modulo 4, we can see that +3 is a low-weight error
which we want with higher probability. Also, in order to make shifts of the same norm have
equal overlap, we fixed this factor depending on p to be

f =
(2− 2p)±

√
4− 4p

2p

Using this factor, we calculated the overlap between the original multinomial distribution
and one shifted distribution, shifted by e′, as seen in the plots below.
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(a) Probability p = 0.35 (b) Probability p = 0.4

Figure 5: Multinomial Distribution Plots

Here, the multinomial distributions were the most promising, with overlap significantly
less for higher norm shifts e′ and also high overlap for low norm shifts. Furthermore, a
superposition resembling this distribution can be created very similarly to the binomial but
with an extra parameter of the factor f .

ei =
√

1− p |00〉+

√
fp

2f + 1
|01〉+

√
p

2f + 1
|10〉+

√
fp

2f + 1
|11〉

We assessed the performance of each of these distributions by evaluating the NTCF
function in superposition with each respective distribution for the e register. Following this
evaluation, we checked how often we obtained a superposition over preimages in the first
register, which is the expected outcome. In particular, we expected that there would be
mainly two terms in superposition with amplitudes close to 1/

√
2. Unfortunately, even with

all three of these approaches, the fidelity of the superposition was quite low. We found this
is largely due to the small instances we were considering in order to fit everything in around
15 qubits.

2.4 Construction of Functions Using Learning with Rounding

Given the results from the previous section, we turned to a different approach regarding
claw-free functions based on rounding or truncation. Such functions are mentioned briefly
in [4], defined as

g(b, x) = bAx+ b · (As+ e′)e (6)

where b·e is specified to be “a rounding function that truncates ‘many’ of the least significant
bits of the operand” [4]. In other words, we only take the most significant bits of the number
being rounded. Also, in Equation 6, all operations are done modulo q. We can view this
function as utilizing rounding to create the properties we need, rather than adding in extra
noise, as we did before by adding e.
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Upon reading the rounding scheme presented in [18], we applied this to the q = 4
and q = 8 cases. In [18], the rounding scheme is such that the q elements in Zq, i.e.
{0, 1, . . . , q − 2, q − 1}, are separated into k separate “bins.” Then, for a vector x, each of
its components are then rounded to the index of the bin that the component is in. Also, as
stated in the paper, if q, k are powers of two, this is just taking the log k most significant
bits of each entry of x, just as described in the NTCF function from [4].

Furthermore, upon testing our implementation utilizing this rounding scheme for k =
2 (i.e. just taking the most significant bit)4, we successfully obtained two preimages in
superposition with 100% probability. Also, as a different test for success, we also obtained
a valid equation 100% of the time. We discuss the results of this implementation further in
Section 3. Moreover, this implementation utilizes

# Qubits = 1 + n log q +m log q +m (7)

This is an increase by m qubits from the previous approach, where the number of qubits
is given by Equation 4. However, there are several ways to decrease this number, as discussed
in Section 2.5 below.

2.5 Approaches for Reducing Qubit Usage and Depth

In this section, we describe different methods for reducing qubit usage and depth. Here,
we also discuss rough worst-case depth estimates to compare the strategies. However, the
accurate depths are presented in Section 3, as computed by Cirq [19] for certain problem
instances. Each approach has its own trade-offs in terms of success as well, which we also
detail in Section 3.

2.5.1 Workspace Ancilla Register

One way to significantly reduce qubit usage is to utilize a workspace register. However, before
detailing this approach, we will first review the unoptimized technique for comparison. Recall
that the initial implementation for the rounding idea used 1 + n log q + m log q + m qubits.
In order to evaluate the function from Equation 6, we have four quantum registers. The first
two together are known as the preimage register, as they store the equal superposition of
b, x, i.e. the inputs to the function. The third register then stores the result of evaluating
the function prior to rounding, i.e. Ax+ b · (As+ e′). Finally, the fourth register stores the
rounded result, which is simply a vector whose entries are the most significant bit of each
entry in the vector Ax+b ·(As+e′). These registers are summarized in the expression below.

|b〉 |x〉 |Ax+ b · (As+ e′)〉 |bAx+ b · (As+ e′)e〉 (8)

Thus, because b is a single bit and x is an n-dimensional vector modulo q, they use one
qubit and n log q qubits, respectively. Furthermore, Ax + b · (As + e′) is an m-dimensional
vector modulo q, hence corresponding to m log q qubits. Finally, the rounded result is a

4As a note, this k = 2 case is ideal, as the most significant bit can be stored in just one qubit, making
our rounded register m qubits even without using the phase encoding.
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binary vector since we just take the most significant bits, leading to m additional qubits, in
total adding to the number from Equation 7.

In order to reduce qubit usage, consider the following idea. Each entry in the rounded
result vector only depends on one entry from the vector Ax + b · (As + e′). Hence, we do
not need to compute Ax + b · (As + e′) all at once, but could compute one entry, copy the
most significant bit into the result register, then repeat for each entry. This is what we
mean to utilize a workspace register, where the ancillas we use to calculate each entry of
Ax+ b · (As+ e′) one at a time act as a workspace for us to do intermediary computations.
Furthermore, because we are computing one entry at a time, this utilizes only log q qubits
as opposed to the previous m log q, for a total of

# Qubits = 1 + n log q + log q +m

This is a significant decrease in qubit usage. As a concrete example, consider the case of
n = 2, m = 6, q = 8. With the original implementation, we would use 31 qubits, while with
this version we would only use 19. Unfortunately, reusing these ancilla qubits requires us to
reset them after computing each entry of Ax+ b · (As+e′), which roughly doubles the depth.
However, because we still obtain 100% success rate with this modification, we can afford an
increase in error. Furthermore, we have found that the number of qubits is generally more
restrictive than the depth, as a larger number of qubits can lead to more noisy operations
as well.

Another minor adjustment we made in regards to this was to save one extra qubit from
the result register. When calculating the last entry of Ax + b · (As + e′), we can take the
rounded result directly from the ancilla register, rather than copying it into a new qubit
since we no longer need to reset the ancilla. Thus, our final qubit usage for this optimization
is

# Qubits = n log q + log q +m (8)

This small adjustment also reduces depth slightly, as we do not reset the ancilla. Fur-
thermore, the success rate is maintained at 100%. A rough, worst-case depth estimate is
given by

Depth ≈ 3 + 2mn(log q)2 + 6m log q −m (9)

2.5.2 Phase Encoding Rounded Result

Another adjustment for reducing qubit usage can be used in addition to the one detailed
previously. We refer to this technique as phase encoding. The approach is based off of
quantum random access codes (QRAC), introduced in [20]. Here, the idea is to encode k
classical bits into one qubit and by measuring in a certain basis, we can recover any of the
k classical bits with high probability.

Similarly, in this phase encoding technique, we encode several of our rounded result bits
into the phase of one qubit, which we refer to as a phase qubit. However, because these phase
qubits are not orthogonal, we sacrifice success rate for using fewer qubits. Furthermore, the
more phase qubits we have, the closer to orthogonal, and hence more accurate, the whole
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state will be. Thus, there is a balance between reducing the number of qubits and the success
rate. We present the specific numerics of phase encoding and the success rate in Section 3,
while here we discuss the circuits required to encode two or three bits into one phase qubit.

First, in order to encode two bits into one phase qubit, we use the following circuit. Note
that a0, a1 ∈ {0, 1} are the bits we wish to encode, where |a0〉 , |a1〉 are the qubits that store
the respective bits.

|a0〉
|a1〉

|0〉 H S

Figure 6: Circuit to Phase Encode 2 Bits

This circuit utilizes π
2

Z rotations in order to encode these bits into the phase qubit
represented by the bottom wire. Furthermore, this can also be described by the following
transformation:

|00〉 → |+〉
|01〉 →

∣∣+π/2

〉
|10〉 → |+π〉
|11〉 →

∣∣+3π/2

〉
where |+θ〉 = 1√

2
(|0〉+eiθ |1〉). Similarly, we can encode three bits into one phase qubit using

the circuit

|a0〉
|a1〉
|a2〉

|0〉 H S T

Figure 7: Circuit to Phase Encode 3 Bits

This circuit utlizes π
4

Z rotations rather than π
2

in order to encode more bits into a single
phase qubit. Furthermore, this can be described by the transformation:

|000〉 → |+〉
|001〉 →

∣∣+π/4

〉
...

|111〉 →
∣∣+7π/4

〉
14



This strategy for reducing qubit usage does not affect the depth of the circuit, so this
is still given by the expression from Equation 9. However, as discussed previously, it does
affect the accuracy of our results. Moreover, the qubit usage varies depending on how many
bits are encoded into one phase qubit. Let c be the number of bits encoded. Then, the
number of qubits required is given by the following expression

# Qubits = 1 + n log q + log q +
⌈m
c

⌉
(10)

2.5.3 Direct Computation of Result in Phase Using QRAC

Finally, the last significant strategy is similar to the previous one, in that it is also based off
of quantum random access codes (QRAC) [20]. Recall that the idea is to encode k classical
bits into one qubit and by measuring in a certain basis, we can recover any of the k classical
bits with high probability. Here, both of our approaches utilize QRAC to reduce qubit usage,
but they differ in what they encode. In contrast to phase encoding, here we are computing
result Ax+ b · (As+ e′) directly in phase then performing a special measurement to retrieve
the most significant bit. Recall that in phase encoding, we were computing Ax+ b · (As+ e′)
in the computational basis and then encoding the rounded results in phase.

To further explain the specifics of the idea, we have m phase qubits, similar to in phase
encoding. However, rather than using the workspace register, we can directly compute each
entry of Ax + b · (As + e′) into the phases of each of the corresponding phase qubits. For
instance, say a is the i-th row of A and y = As + e′, where yi is the i-th entry of y. Then,
after our computation, the phase qubit will be in the state

|+θ〉 , θ =
π

4
· (〈a, x〉+ b · yi)

which can be done using controlled Z rotations. Moreover, because A, y both have entries
modulo q, then there can only be q total possible |+θ〉 states. For this approach, we only
considered q = 8 to optimize performance, so for this case, we have eight possible |+θ〉 states.
We can visualize these states in the XY plane of the Bloch sphere, as seen in the figure below.
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110∣∣+3π/2

〉 010∣∣+π/2

〉

100

|+π〉

000

|+〉

101∣∣+5π/4

〉

001∣∣+π/4

〉111∣∣+7π/4

〉

011∣∣+3π/4

〉

Figure 8: Visualization of States in XY Plane of Bloch Sphere

Here, the four states with most significant bit 0 are on the right side of the blue line,
while the other four states with most significant bit 1 are on the left side of the blue line.
Thus, if we perform a measurement along the red axis, we should get the correct most
significant bit with high probability. This red axis corresponds to measuring in the basis
{
∣∣+3π/8

〉
,
∣∣−3π/8

〉
}.

Now, we will analyze the probability with which we obtain the most significant bit.
Assuming that we have one of the four states with most significant bit of 0, then we want
to find the probability that we measure a 0. Without loss of generality, we can assume that
the four states occur with equal probability. Then, notice from Figure 8 that

∣∣+π/4

〉
,
∣∣+π/2

〉
form an angle of π/8 with the 0 outcome (red line). Similarly, |+〉 ,

∣∣+3π/4

〉
form an angle of

3π/8 with the 0 outcome. Recall that the probability of an outcome is given by the cosine
squared of half of the angle between the two states on the Bloch sphere. Thus, in our case,
the probability of obtaining 0 if we have one of the states with most significant bit 0 is

1

2

(
cos2

(
3π

16

)
+ cos2

( π
16

))
≈ 0.82 (11)

Furthermore, it can be shown that this is approximately the optimal success probability
with which we can encode and recover k = 3 bits. In order to see this, consider Nayak’s
bound presented in [20, 21] which states that if a QRAC encodes m classical bits into n
qubits such that we can recover each of the m classical bits with probability p, then it must
be that

n ≥ (1−H(p))m

where H(p) is the binary entropy function

H(p) = −p log2(p)− (1− p) log2(1− p)
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In our case, we want to encode 3 classical bits into 1 qubit. As seen in Equation 11, we
can do so with probability 0.82. Thus, calculating the binary entropy function, we have

H(0.82) ≈ 0.68

Furthermore, using Nayak’s bound, we know that

1

3
≥ 1−H(p) ≈ 0.32

Hence, we can see that the probability with which we recover the most significant bit is
close to optimal by Nayak’s bound [20, 21].

Overall, this approach is a large deviation from the original implementation, but with
a significant reduction in depth as well as a small decrease in qubit usage. Because we are
computing Ax + b · (As + e′) in phase and measuring to obtain the rounded result, we no
longer need the ancilla register. Thus, our qubit usage decreases by log q for a total of

# Qubits = 1 + n log q +m (12)

Furthermore, the circuit for performing the computation in phase is much simpler than
in the previous approaches. As a rough, worst-case depth estimate, we have

Depth = 4 +mn log q +m (13)

However, in exchange for these improvements, the success rate also decreases significantly.
Despite the most significant bit being recovered with high probability, even if one is wrong,
this will cause the entire equation to be invalid during our tests.

3 Results

In the course of optimizing these circuits, we also discovered an interesting phenomena
regarding the hardness of LWE. While testing the LWR based implementation detailed in
Section 2.4, we found that for the case of q = 4 the circuit for the evaluation of the trapdoor
claw-free function is entirely Clifford. Furthermore, it is known by the Gottesman-Knill
Theorem [22] that Clifford circuits can be efficiently simulated classically. However, the
NTCF functions we are considering are hard to break under the LWE assumption. In
other words, it should be hard to efficiently evaluate the functions from Equations 1, 6
in superposition without utilizing a quantum computer, given that LWE is hard5. Thus,
because this evaluation is easy to simulate classically for the case of q = 4, this implies that
LWE is easy in this case, which was previously unknown.

Following this discovery, we shifted focus to the case of q = 8, which is the next smallest
power of 26. For this case, we tested all of the different optimizations presented in Section 2.5

5This is an assumption because LWE has not yet been proven to be hard (classically or quantumly).
However, we have good reason to believe that this is the case, as the best known (classical and quantum) al-
gorithms for LWE run in exponential time. Furthermore there are reductios from worst-case lattice problems
to LWE. This topic is further discussed in [9, 10]

6We are only choosing moduli that are powers of 2 because it greatly simplifies the circuits required for
modular arithmetic. For more information on general moduli arithmetic in quantum registers, see [16].
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on noiseless simulators and have recorded their various success rates and depths in Tables 1,
2. Moreover, we have tested on the IBM online devices [12], but without significant results
due to the limited connectivity of their devices7. Table 1 also records the number of qubits
required when using each optimization. This is omitted in Table 2 because, as previously
discussed, the depth for the various phase encoding schemes is the same while differing in
qubit usage and success rate, which can be viewed in Table 1.

Optimization n m # Qubits Success Rate
None 3 12 24 100%
None 3 10 22 100%
None 2 6 15 100%

Phase Encoding 2→ 1 3 12 19 92.02%
Phase Encoding 2→ 1 3 10 18 85.4%
Phase Encoding 3→ 1 3 12 17 82.7%
Phase Encoding 3→ 1 3 10 17 81.8%

QRAC 2 6 13 69.8%

Table 1: Success Rates for Various Optimizations

The optimization listed is in reference to Section 2.5. “None” means that we have not adjusted
the qubit usage other than the use of the workspace register described in Section 2.5.1. Note that

QRAC indicates the optimization from Section 2.5.3. Also, success rate is the probability with
which we obtain a valid equation. For phase encoded versions, the success probability is

calculated by computing the total variation from the original version. Furthermore, all data are
reported for the case of q = 8 and utilizing the Qiskit simulators [12].

Optimization n m Depth
None 3 12 274
None 3 10 222
None 2 6 93

QRAC 2 6 14

Table 2: Depth of Circuit for Different Instances

The optimization listed is in reference to Section 2.5. “None” means that we have not adjusted
the depth other than the use of the workspace register described in Section 2.5.1. Note that

QRAC indicates the optimization from Section 2.5.3. Also, the depth of no optimization is the
same as for phase encoded versions, so we have omitted the latter to avoid redundancy.

Furthermore, all data are reported for the case of q = 8 and utilizing the Qiskit simulators [12].

The results running on real quantum hardware are still to be determined. However, upon
running simulations with noise, the circuits in terms of native gates as well as the original
both generate valid equations approximately 55% of the time. This serves as a rough estimate
for the success of the experiment, which we hope to run soon.

7This connectivity prevents controlled operations between any two qubits. Thus, when compiling a circuit
to run on their devices, this depth is much higher than that of the original circuit, as we must perform SWAP
gates when performing controlled operations between two qubits that are not neighbors.

18



Acknowledgements. The authors thank Norman Yao, Greg Meyers, and Soonwon Choi for
useful discussions. We also thank Chris Monroe and Daiwei Zhu for their help in running the
experiment. Laura Lewis is supported by the Michael Mathes Endowed Scholarship Fund,
Robert and Amelia Peeler Scholarship Fund, the Alcorn Scholarship, and Caltech Summer
Undergraduate Research Fellowship (SURF) Program. Alexandru Gheorghiu and Thomas
Vidick are supported by MURI Grant FA9550-18-1-0161 and the IQIM, an NSF Physics
Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore
Foundation (GBMF-12500028). Thomas Vidick is also supported by NSF CAREER Grant
CCF-1553477, AFOSR YIP award number FA9550-16-1-0495, and a CIFAR Azrieli Global
Scholar award.

References

[1] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

[2] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Sur-
face codes: Towards practical large-scale quantum computation. Physical Review A,
86(3):032324, 2012.

[3] Frank Arute et al. Quantum supremacy using a programmable superconducting pro-
cessor. Nature, 574(7779):505–510, 2019.

[4] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas
Vidick. A cryptographic test of quantumness and certifiable randomness from a single
quantum device. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 320–331. IEEE, 2018.

[5] Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and composable
remote state preparation. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pages 1024–1033. IEEE, 2019.

[6] Tony Metger and Thomas Vidick. Self-testing of a single quantum device under com-
putational assumptions. arXiv preprint arXiv:2001.09161, 2020.

[7] Urmila Mahadev. Classical verification of quantum computations. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 259–267. IEEE,
2018.

[8] Alexandru Gheorghiu and Matty J Hoban. Estimating the entropy of shallow circuit
outputs is hard. arXiv preprint arXiv:2002.12814, 2020.

[9] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009.

[10] Oded Regev. The learning with errors problem. Invited survey in CCC, 7:30, 2010.

[11] Joseph F Fitzsimons and Elham Kashefi. Unconditionally verifiable blind quantum
computation. Physical Review A, 96(1):012303, 2017.

19



[12] IBM Contributors. IBM Quantum Experience. https://www.ibm.com/

quantum-computing/technology/experience/. Online; accessed 25-July-2020.

[13] Rigetti Computing Revision. Welcome to the Docs for the Forest SDK. http://docs.
rigetti.com/en/stable/. Online; accessed 25-July-2020.

[14] Microsoft Contributors. Microsoft Quantum Documentation. https://docs.

microsoft.com/en-us/quantum/?view=qsharp-preview. Online; accessed 25-July-
2020.

[15] Archimedes Pavlidis and Dimitris Gizopoulos. Fast quantum modular exponentiation
architecture for shor’s factorization algorithm. arXiv preprint arXiv:1207.0511, 2012.

[16] Stephane Beauregard. Circuit for shor’s algorithm using 2n+ 3 qubits. arXiv preprint
quant-ph/0205095, 2002.

[17] Thomas G Draper. Addition on a quantum computer. arXiv preprint quant-ph/0008033,
2000.
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