
VERIFYING QUANTUM COMPUTATIONS AT SCALE: A

CRYPTOGRAPHIC LEASH ON QUANTUM DEVICES

THOMAS VIDICK

Abstract. Rapid technological advances point to a near future where engi-

neered devices based on the laws of quantum mechanics are able to implement
computations that can no longer be emulated on a classical computer. Once

that stage is reached, will it be possible to verify the results of the quantum

device?
Recently Mahadev introduced a solution to the following problem: is it

possible to delegate a quantum computation to a quantum device in a way that

the final outcome of the computation can be verified on a classical computer,
given that the device may be faulty or adversarial and given only the ability

to generate classical instructions and obtain classical readout information in

return?
Mahadev’s solution combines the framework of interactive proof systems

from complexity theory with an ingenious use of classical cryptographic tech-
niques to tie a “cryptographic leash” around the quantum device. In these

notes I give a self-contained introduction to her elegant solution, explaining

the required concepts from complexity, quantum computing and cryptogra-
phy and how they are brought together in Mahadev’s protocol for classical

verification of quantum computations.

Quantum mechanics has been a source of endless fascination throughout the 20th
century — and continues to be in the 21st. Two of the most thought-provoking
aspects of the theory are the exponential scaling of parameter space (a pure state of
n qubits requires 2n − 1 complex parameters to be fully specified), and the uncer-
tainty principle (measurements represented by non-commuting observables cannot
be performed simultaneously without perturbing the state). The conceptual dif-
ficulty of the problem of verification of quantum computations stems from both
aspects. Suppose given the description of an experiment that can be modeled in
quantum mechanics — say, a number n of individual photons are emitted by lasers
in a certain configuration, then made to interact according to optical equipment
such as mirrors and beam-splitters, and finally some observation is made, for exam-
ple counting the number of photons that hit a strategically located detector within
a certain time period. Quantum mechanics provides a set of formal rules that, in
principle, allow for the computation of the distribution of possible outcomes ob-
tained in this experiment — what is the probability that any number of photons hit
the detector within the prescribed time frame. These rules yield extremely precise
predictions that have been verified in countless experiments. In general however,
computing the prediction requires a number of operations that scales exponentially
with n, the total number of photons in the experiment. What this means in prac-
tice is that as soon as n exceeds, say, 80, it becomes all but infeasible, using even

2010 Mathematics Subject Classification. Primary 68Q12.

1

2 THOMAS VIDICK

the most powerful supercomputers available today, to predict the outcome of any
nontrivial quantum experiment.

In addition to the intrinsic exponential scaling of quantum mechanics, other
quantum phenomena, such as the uncertainty principle, place fundamental limits
on our ability to verify that a quantum mechanical evolution proceeds as expected.
Any attempt by the experimentalist at making intermediate observations on the
state of a subset of the elementary particles involved in her experiment risks altering
its outcome, so that it is not clear at all if the results of low-level benchmarks can
be meaningfully pieced together to certify the final result.

These obstructions should come as no surprise. Indeed it is the same difficulty,
of classical simulation of quantum evolutions, that prompted Feynman to bring
forward the idea of a quantum computer in the first place: a computer that by its
very nature would have the ability to efficiently simulate any quantum process [15].
While such a “universal quantum simulator” remains a distant technological chal-
lenge, smaller-scale quantum devices have begun to appear that will soon have
the capacity to simulate the evolution of specific quantum-mechanical systems, en-
abling physicists to e.g. make predictions regarding properties of new materials (see
e.g. [7]). Such simulators will become interesting the day when they are able to
generate predictions that could not have been obtained on a classical computer. As-
suming that such a “classically unsimulatable quantum simulator” exists, can one
check that the simulator accomplishes the task it was asked to perform — given
that the task could not have been accomplished on a classical computer? If the
simulator makes a wrong prediction, be it due to a fault in its implementation, or
even due to malice on the implementer’s part, is there any way that the error can
be detected without having to rely on yet another quantum simulator to duplicate
the first simulator’s results?

Not all is lost. There obviously are some quantum computations whose outcome
can be easily checked. A standard example is factoring: having run Shor’s quantum
algorithm for finding a prime factor p of an integer n, it is easy to execute Euclid’s
algorithm to check that p|n. In the language of complexity theory, the complexity
class1 associated with the set of languages that can be decided efficiently with
the help of a classical (probabilistic) computer is denoted BPP (for “bounded-error
probabilistic polynomial-time”), while with a quantum computer one gets BQP (for
“bounded-error quantum polynomial-time”). Factoring is an example of a problem
that lies in the class BQP, but is not known to lie in the class BPP.2

As emphasized above, the factoring problem has the additional property that
solutions to it are easily verifiable. Recognizing that many algorithmically difficult
problems seemed to share the feature of having easily verifiable solutions (other
examples are the problem if deciding if two graphs are isomorphic and the problem
of deciding if a graph is 3-colorable), Karp introduced in 1970 the complexity class
NP (for “non-deterministic polynomial-time”). Informally, NP is the class of all
languages that can be efficiently verified on a classical computer, given the right
witness, or proof. If every problem in BQP, i.e. every problem that can be solved

1A complexity class is a collection of languages, and a language is a set of strings; for example,

the set of all binary representations of graphs that are 3-colorable is a language. See Section 1 for
more background on complexity theory.

2Technically, one would have to associate a language, i.e. a set of bitstrings, to fac-
toring; an example is Lfactoring = {binary representations of a pair of integers (n, k1, k2)

such that n has a prime factor p such that k1 ≤ p ≤ k2}.

VERIFYING QUANTUM COMPUTATIONS 3

efficiently on a quantum computer, had this property — that the correct outcome
of the computation can be efficiently verified on a classical computer — then the
question of classical verifiability of quantum computation would be moot. However,
there are very good reasons to think that this is not the case.

Indeed, complexity theorists strongly believe that there are problems in BQP
that do not lie in NP.3 One candidate for such a problem is the “forrelation” problem
introduced in [1]. The input to this problem is a pair of Boolean functions f, g :

Zn2 → {−1, 1}, and it is promised that g and the Fourier transform f̂ of f are either

highly correlated, |〈f̂ , g〉| ≥ 0.9, or barely correlated, |〈f̂ , g〉| ≤ 0.1.4 The goal is
to determine which of the two cases hold. There is an easy quantum algorithm for
this problem that requires a single evaluation of the functions f and g, whereas it
was shown in [27] that, if access to f and g is restricted to evaluation queries, then
the problem lies beyond even the polynomial hierarchy, which is a vast extension of
the class NP. The open challenge is to find an explicit family of functions f , g for
which the problem remains hard, even when given the explicit description of the
functions (such as an evaluation circuit) as input.

P

BPP
BQP

NP IP

Figure 1. Known inclusions between complexity classes. Note
that NP is not known to contain BPP because in NP, the veri-
fication procedure is assumed deterministic. With a randomized
verifier, one obtains the class MA (for “Merlin-Arthur”) that does
contain BPP.

There exists a wide range of problems that are known to be efficiently solvable
on a quantum computer, but for which there is no obvious efficiently verifiable
proof (such as the forrelation problem). Is it possible to design theoretical experi-
ments, or protocols, based on quantum mechanics, for such problems such that the
proper execution of the experiment, or computation, can be certified correct using
a verification procedure that does not itself rely on the manipulation of quantum
information?

In these notes I present an elegant solution to this problem due to Mahadev [24].
Before presenting the solution, a first step is to formalize the question. This is done
in two steps. First, in Section 1 I introduce the complexity-theoretic formalism of

3They also believe that there are problems in NP, such as the traveling salesman problem or
any NP-complete problem, that are not in BQP, so that the two classes are incomparable.

4To be precise, the definition is 〈f̂ , g〉 = 2−3n/2
∑
x,y∈Zn

2
(−1)x·yf(x)g(y).

4 THOMAS VIDICK

interactive proofs and arguments that forms the conceptual backdrop against which
Mahadev’s result is formulated. Second, in Section 2 I give standard background in
quantum computing that allows me to formalize the complexity class BQP and state
Mahadev’s theorem. The remainder of the document is devoted to a presentation
of the main ideas that constitute the proof of Mahadev’s result. Very roughly, the
proof proceeds through the following steps.

• An arbitrary quantum computation can be specified classically by providing
the gate-by-gate description of a quantum circuit, as well as a classical
description of the input on which the circuit is to be evaluated (generally,
this will be a zero state representing a default initialization of all wires of the
circuit). The first step is to reduce the problem of evaluating the output of
such a circuit C to the problem of verifying that a local Hamiltonian H, that
can be efficiently computed from C classically, has a smallest eigenvalue that
is below a certain threshold. Informally, this step is the quantum analogue
of encoding the tableau of a classical computation into an instance of the
Ising spin problem. This step is described in Section 3.
• The previous step has reduced the verification problem to the problem of

classically certifying that a local Hamiltonian has an eigenstate with small
enough eigenvalue. Section 4 introduces the idea of a commitment, which
is an interactive procedure by which a party can commit to a certain value
b, without revealing information about b, yet in a way that is biding : the
party is unable to later “change its mind” with respect to b and claim that
it in fact had committed to some b′ 6= b. The notion of a commitment
protocol for quantum states is the key ingredient in Mahadev’s protocol
and is presented in Section 5.
• Armed with the notion of a quantum commitment scheme we describe the

verification protocol itself in Section 6. Informally, in the protocol the
prover first provides classical information that is meant to indicate the
prover’s “commitment” to being in the possession of a unique, well-defined
quantum state ψ. Then, the verifier challenges the prover to “reveal” mea-
surement outcomes performed on the state ψ that it committed to, in a
way that allows the verifier to estimate the associated energy ψ∗Hψ and
verify that it is sufficiently small.

The security of Mahadev’s quantum commitment scheme, on which her result ul-
timately rests, relies on a computational assumption regarding the impossibility of
efficiently solving a problem known as the Learning with Errors (LWE) problem.
This problem is described in Section 7.

These notes are written in a way that aims to make the most important insights
of Mahadev’s work accessible to any mathematician, with or without background
in complexity theory and quantum information. As a result, the presentation will
remain rather informal, and we alert the reader whenever the discussion makes an
important shortcut.

To keep the presentation focused we do not survey prior works and other ap-
proaches to verification in any depth. The question has a long history, that prior
to Mahadev’s work had resulted in partial answers, obtained in a variety of models
of verification. Some of the most important results include the concurrent works of
Aharonov et al. [2] and Broadbent et al. [12] which showed how to achieve verifica-
tion in a model where the verification procedure can make use of a small, trusted

VERIFYING QUANTUM COMPUTATIONS 5

quantum computer, and the work of Reichardt et al. [29] in a model where the
verification procedure is entirely classical, but has access to two spatially isolated
quantum computers, sharing entanglement, whose joint implementation of a quan-
tum computation it aims to verify. In contrast to Mahadev’s result presented here,
these works achieve information-theoretic (instead of computational) guarantees in
their respective models. For an in-depth discussion of these and related works, I
recommend the recent survey by Gheorghiu et al. [17].

1. Interactive poofs and arguments

The concept of an interactive proof system can be difficult to digest for the
mathematician, in part because it involves some amount of personification. When
they talk of an interactive protocol, computer scientists are accustomed to refer to
imaginary beings known as the verifier and the prover. Even worse, these imaginary
beings are endowed with intentions: the prover is trying to demonstrate something
to the verifier, while the verifier attempts to catch any cheating behavior from the
prover. This is not the kind of language that is frequently used in, say, the theory of
differential equations or operator spaces. Please bear with me — interactive proofs
are one of the most powerful ideas to have emerged out of complexity theory since
the 1990s, and they are a key element of Mahadev’s solution.

It all starts with the complexity class NP, whose study originates in the works of
Cook, Karp, and Levin in the 1970s. A complexity class is a collection of languages.
A (promise) language L is a pair of subsets Lyes, Lno ⊆ {0, 1}∗, where {0, 1}∗
is the set of all “bit strings”: sequences of arbitrary but finite length over the
alphabet {0, 1}. For example, Lyes could be the set of (suitably encoded) 3-SAT
formulas that admit a satisfying assignment,5 and Lno the set of formulas that
are not satisfiable. The language L = (Lyes, Lno) is called 3-SAT. Informally,
a language L is in the class NP if valid statements have an efficiently verifiable
proof, and invalid statements have no valid proof. To formalize the notion of
“valid proof”, we introduce the notion of “verifier”, represented by a polynomial-
time Turing machine V (for our purposes, the reader may replace the intimidating
notion of “Turing machine” by any intuitive notion of efficient computation, such
as an “algorithm”) whose goal is to “verify” claimed proofs. Thus a language L is
in the class NP if there exists a real polynomial p and a Turing machine V such that
for all x ∈ Lyes ∪ Lno, (i) if x ∈ Lyes then there exists a w, the witness, or proof,
such that V (x,w) halts in at most p(|x|) steps, where |x| denotes the length of x,
and returns 1 (for “accept”), and (ii) if x ∈ Lno then for any w, V (x,w) halts in
at most p(|x|) steps and returns 0 (for “reject”). Property (i) is usually referred to
as the completeness condition, and (ii) as the soundness condition. The fact that
3-SAT is in NP follows since given as input a 3-SAT formula ϕ, if the formula is
satisfiable then there exists a witness w (a satisfying assignment for ϕ) that proves
this, whereas if the formula is not satisfiable, it is easy for V to check that any
given purported assignment w is indeed invalid.

5A 3-SAT formula is an AND of 3-variable ORs, i.e. a Boolean formula of the form ϕ =
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x5 ∨ x6) ∧ · · · , where the variables xi ∈ {0, 1} and xi denotes variable
negation.

6 THOMAS VIDICK

Informally, NP captures the collection of problems that have efficiently verifiable
solutions, such as factoring, 3-SAT, the traveling salesman problem, or mathemat-
ical theorems (that have reasonably short proofs within a prespecified axiomatic
system).

1.1. Interactive proof systems. A key insight from research in complexity the-
ory in the 1990s is that the collection of languages that admit “efficient verification”
can be substantially extended beyond the class NP by allowing interactive protocols
for verification [5, 18]. Consider a verification procedure V , referred to as the veri-
fier (personification, here it comes...), that is allowed to “ask questions” to another
entity, the prover, about a claimed proof, as illustrated in Figure 2. Can this al-
low verification of languages other than the languages in NP, which admit “static”
proofs?

V P

Input x

“accept”/“reject”

Figure 2. An example of a 4-message interactive proof between
a verifier V , assumed to be computationally bounded, and an all-
powerful prover P .

The verifier in an interactive proof system is modeled as a randomized polynomial-
time procedure. Informally, this refers to any algorithm that makes a total number
of steps that is bounded by a polynomial function (that may depend on the algo-
rithm) of the bitlength of its input, and has access to a source of uniformly random
bits. Formally, the verifier is modeled by a randomized interactive Turing machine,
but we will not need to descend to that level of detail. It is important that the
verifier be randomized: indeed, interactive proof systems with deterministic veri-
fiers reduce to NP, because in the case of deterministic messages from the verifier
there is no advantage to interaction (the prover can send the entire transcript as
“proof”). A randomized verifier may sometimes make an erroneous decision, as
long as for every input the probability of making an error in deciding that input
is small: this ensures that repeating the verification procedure sufficiently many
times and taking the majority decision yields an outcome that is erroneous with
arbitrarily small probability.

Definition 1.1. A language L = (Lyes, Lno) has an interactive proof system if
there exists a randomized polynomial-time verifier V such that the following hold.

• Completeness: For any x ∈ Lyes, there exists a prover P , referred to as
the “honest prover”, such that V accepts P on input x with probability at
least 2

3 .
• Soundness: For any x ∈ Lno and any prover P ∗, V accepts P ∗ on input x

with probability at most 1
3 .

VERIFYING QUANTUM COMPUTATIONS 7

The collection of languages for which there exists an interactive proof system is
denoted IP.

Note the asymmetry between the “completeness” and “soundness” conditions
in the definition, which reflects a similar asymmetry in the definition of NP: it is
always assumed that the prover aims to convince the verifier that the input is in the
language (e.g. for the case of NP, that a 3SAT formula is satisfiable). The verifier,
in turn, aims to make the right decision, by taking information from the prover
but “verifying” it before making a decision, so as not to wrongly accept a negative
instance.

To gain intuition as to how interaction may help, consider the following toy
problem. The input x is interpreted as a bivariate polynomial P (y, z) defined over
a prime field Fp, such that P has degree at most d in each of its variables. Think
of p as much larger than d: the input size, measured in number of bits, is roughly
(d + 1)2 log p (a list of coefficients), and p could be exponentially larger. Let Lyes
be the set of all such polynomials such that S =

∑
y,z P (y, z) = 0, and Lno the set

of polynomials such that S 6= 0. Computing S näıvely takes time O(p2), where the
O(·) hides a multiplicative factor of order the time it takes to evaluate P at any
given point, i.e. polynomial in d and log p. Consider the following protocol, using
which the verifier can be led to making the right decision while having to invest
a computational effort of O(p) only. The first step in the protocol is a message
from the prover to the verifier, which consists in the claimed value of S, together
with a “supporting statement” in the form of a degree-d polynomial Q(z) such that
S =

∑
y Q(z). (The honest prover can find such a Q without difficulty by setting

Q(z) =
∑
y P (y, z).) Upon receipt of an arbitrary (S,Q), the verifier first checks

the equality S =
∑
z Q(z), which takes O(p) time. Next, she selects a uniformly

random z∗ ∈ Fp and checks that Q(z∗) =
∑
y P (y, z∗), which again requires time

O(p). Note that, if it was the case that Q(·) 6=
∑
y P (y, ·), by the Schwartz-Zippel

lemma the probability that Q(z∗) =
∑
y P (y, z∗) would be at most d/p, which is

small provided p is much larger than d, as we assumed. Thus the verifier makes the
right decision with high probability, on any input P .

This “protocol” reduces the verifier’s effort from order p2 to order p, since the
verifier only needs to perform summations over a single variable at a time, instead
of both variables for the näıve computation. The attentive reader will have realized
that the protocol is in fact non-interactive — there is a single message from the
prover to the verifier. Applying the same idea to polynomials with more variables
yields an interactive protocol, in which variables are randomly fixed by the verifier
one at a time, with exponential savings in the amount of time required for verifi-
cation, from order pm to order mp, with m representing the number of variables.
This idea, of efficiently verifying claims about the sum of the values taken by a
multivariate polynomial, is central to the proof of a celebrated result in complexity
theory, namely the inclusion of PSPACE (the class of languages that can be decided
using polynomial space, but arbitrary time) in IP [23, 30]. While the state of the
art in complexity theory does not allow one to prove that PSPACE is a strictly
larger class than NP, this is generally believed to be the case, so that interaction
seems to significantly broaden the class of languages that have efficient verifiers.

In fact, the possibility of interaction sufficiently strengthens the verifier so as to
allow it to verify a class of languages that includes the class BQP of languages that
can be efficiently decided on a quantum computer! Using the idea of Feynman path

8 THOMAS VIDICK

integrals the probability that a quantum circuit returns the outcome “1” can be
expressed as the sum of exponentially many complex numbers, each of which can
be directly computed by taking a product of entries of the matrices that specify
the quantum gates of the circuit; this exponential sum can be exactly computed
(modulo finite-precision issues) in polynomial space. Given that PSPACE is in IP,
it follows that there exists an interactive protocol, of the form described above,
that allows a classical polynomial-time verifier to verify the outcome of a quantum
computation by asking questions to an untrusted prover. But there is a hitch.
The model of interactive proofs does not place limitations on the computational
effort required of the prover. In the protocol for computing sums of polynomials
described earlier, the prover has to compute multiple exponential-sized intermedi-
ate sums, that in general may take time pm tocompute. Unfortunately, following
the proofs that BQP is in PSPACE is in IP leads to a very similar protocol, in
which the prover has to compute exponentially large sums that do not seem to be
amenable to efficient computation even by a quantum procedure. There has been
very little progress in tweaking the protocols obtained in this way to decrease the
computational effort required for the honest prover (see e.g. [3] for a discussion).

1.2. Interactive arguments. If we are to make the requirement that the actions
of the honest prover, i.e. the prover in charge of convincing the verifier in the case
of an input in Lyes, can be implemented efficiently (on a quantum computer), it is
reasonable also to ask, not that there does not exist a P ∗ that would improperly
convince the verifier to accept an input in Lno, but merely that no such P ∗ exists
that can be implemented in (quantum) polynomial time. Interactive proof systems
such that the soundness condition holds under such a computational assumption
are called arguments, a notion introduced in [11].

Since it is not known that the classes P and NP, or even P and IP, are distinct,
in order for the assumption to be effective we further need to posit that a particular
(class of) problems cannot be solved in (quantum) polynomial time. For example,
we could make the assumption that the problem of factoring an integer cannot be
solved in probabilistic polynomial time. Another example is that a certain explicit
family of functions f = {fλ : {0, 1}n(λ) → {0, 1}m(λ)}, where λ ∈ N plays the role
of the input size parameter, cannot be inverted with non-negligible (in λ) success
probability in (quantum) polynomial time.6 We refer to any such assumption as a
computational assumption. The following definition parallels Definition 1.1.

Definition 1.2. A language L = (Lyes, Lno) has an interactive argument under
computational assumption (A) if there exists a randomized polynomial-time verifier
V such that the following hold.

• Completeness: For any x ∈ Lyes, there exists a prover P such that V
accepts P on input x with probability at least 2

3 .7

• Soundness: For any x ∈ Lno and any (quantum) polynomial-time prover
P ∗, V accepts P ∗ on input x with probability at most 1

3 .

6A negligible function ε(λ) is one such that ε(λ)p(λ) →λ→∞ 0 for any polynomial p(λ). A
non-negligible function grows faster than any negligible function.

7The definition of the completeness property does not explicity require P to be efficient. In
practice, the properties of the honest prover are discussed on a case-by-case basis, depending on
the argument system considered.

VERIFYING QUANTUM COMPUTATIONS 9

The relaxed soundness condition of an interactive argument has proved fruitful
to design more efficient proof systems than are known otherwise. For example,
there are arguments for languages in NP such that the total communication is only
poly-logarithmic in the size of the input [22]; no such protocol is known in the in-
teractive proof model. The construction of such arguments rests upon two notions:
probabilistically checkable proofs and commitments. Intuitively, the computational
assumption is used by the verifier to “delegate” parts of its own verification pro-
cedure to the prover. The notion of “commitment” is used to tie the prover to
performing the right actions. We discuss commitments in Section 4, as they play a
central role in Mahadev’s interactive argument for quantum computation. To for-
mulate her result precisely, it only remains to introduce the formalism of quantum
computation, and the associated complexity class BQP. This is done in the next
section.

2. Quantum computation

In this section we give a light introduction to the formalism of quantum com-
puting. Our goal in doing so is to provide the minimal background required to
formally state Mahadev’s theorem, which is given at the end of the section, as well
as describe the main ideas of her proof, introduced in the following sections. (The
reader already familiar with quantum computing may directly skip ahead to the
statement of Theorem 2.3 at the end of the section.)

2.1. Quantum states and observables.

2.1.1. States. An n-qubit quantum state is specified by a density matrix, a positive
semidefinite matrix ρ on the 2n-dimensional Hilbert space H = (C2)⊗n such that
ρ has trace 1. Density matrices generalize classical probability distributions over
n bits, as the latter can be represented by a probability vector p : {0, 1}n → [0, 1]
that we can embed on the diagonal of a density matrix.

Even though in general the formalism of quantum mechanics extends to arbitrary
separable Hilbert spaces, for convenience in these notes Hilbert spaces always come
endowed with a canonical decomposition as a tensor product of n copies of C2,
for some finite integer n, such that each copy of C2 has a canonical basis (e0, e1).
We use the “ket” notation to write the canonical basis as |0〉 = e0, |1〉 = e1, and
we refer to this basis as the “computational basis”. A quantum state is called
pure if its density matrix has rank 1; in this case we can also represent the state
as a unit vector expressed in the canonical basis {ex1

⊗ · · · ⊗ exn
, x ∈ {0, 1}n},

or {|ex1 · · · exn〉} in the more compact ket notation. An arbitrary pure state thus
has an expansion |ψ〉 =

∑
x∈{0,1}n αx|x〉, where the {αx} are complex coefficients

such that
∑
x |αx|2 = 1. The associated density matrix is the rank-1 projection

ρ = |ψ〉(|ψ〉)† = |ψ〉〈ψ|, where the “bra” notation 〈ψ| = (|ψ〉)† is used for the
conjugate-transpose. For a density matrix ρ that lies in the tensor product of
multiple spaces we write e.g. ρAB ∈ HA ⊗ HB using boldface A, B to identify the
different subsystems, often referred to as registers.

2.1.2. Observables. A measurement of a set of qubits is specified by an orthonormal
basis of the Hilbert space associated with the qubits. The outcome of the measure-
ment is the label of one of the basis vectors, and the probability with which each
basis vector is obtained equals the squared norm of the component of the state

10 THOMAS VIDICK

that is in the direction of that basis vector. Formally, suppose |ψ〉 is a state in
(C2)⊗n ⊗ (C2)⊗m, and that the first n qubits of |ψ〉 are measured in the orthonor-
mal basis {|φi〉}i∈1,...,2n of (C2)⊗n. To compute the probability of the i-th outcome
being obtained, we expand |ψ〉 in the basis {|φi〉} as

|ψ〉 =

2n∑
i=1

|φi〉 ⊗ |φ′i〉 ,

where the |φ′i〉 are arbitrary vectors in (C2)⊗m (not necessarily normalized or or-
thogonal). The probability of the i-th outcome is given by ‖|φ′i〉‖2. It will later
be important to remember that a measurement collapses the state: once the out-
come i has been obtained and recorded, the state undergoes a non-unitary evolution

|ψ〉 7→ |ψi〉 =
|φi〉|φ′i〉
‖|φ′i〉‖

.8

A measurement in the basis {|φi〉}, together with a choice of a real number λi
associated with each outcome i, can be succinctly represented as an “observable”
O =

∑
i λi|φi〉〈φi|. For a quantum state ρ, the real number Tr(Oρ) is precisely the

expectation of λi, under the distribution on i obtained by measuring the state ρ in
the basis {|φi〉}. An example is the observable associated with a measurement of a
qubit in the computational basis {|0〉, |1〉}, labeling the first outcome “1” and the
second “−1”. The associated observable is the Pauli σZ matrix,

σZ = |0〉〈0| − |1〉〈1| =

(
1 0
0 −1

)
.

Similarly, a measurement in the Hadamard basis {H|0〉, H|1〉} is represented by the
Pauli σX observable,

σX = HσZH
† =

(
0 1
1 0

)
.

2.2. Circuits. Evolution in quantum mechanics is unitary. Given a unitary U , a
pure state |ψ〉 evolves as |ψ〉 7→ U |ψ〉, and a density matrix ρ evolves as ρ 7→ UρU†.

Not every unitary requires the same amount of resources to be implemented.
Multiple models have been introduced to evaluate the complexity of implementing
a unitary transformation. These include quantum Turing machines, the quantum
circuit model, measurement-based computation, adiabatic computation, topological
computation, and others. All these models have been shown equivalent up to a
polynomial re-scaling of the resources required. For our purposes, the simplest and
most convenient model is the circuit model, that we describe next.

In the circuit model, in order to implement an n-qubit unitary U the unitary must
first be decomposed as a product U = UT · · ·U1, where each Ui is a unitary that
acts non-trivially on at most two qubits, i.e. it can be written as a tensor product of
a unitary on C2 ⊗C2 with the identity on the remaining space. Moreover, each Ui
should be taken from a finite “gate set” of allowed operations on the computer. A

widely used gate set is {H,T,CNOT}, where H = 1√
2

(
1 1
1 −1

)
is the Hadamard

gate, T =

(
1 0
0 eiπ/4

)
the T (sometimes also called π/8) gate, and CNOT the

two-qubit unitary that sends |a〉|b〉 7→ |a〉|a⊕ b〉 for any a, b ∈ {0, 1}.

8If the conflict between the statements that “quantum mechanics requires all evolutions to be
unitary” and “a measurement is an irreversible process” puts you ill at ease, you are not alone.

VERIFYING QUANTUM COMPUTATIONS 11

A fundamental theorem in quantum computing, the Solovay-Kitaev theorem,
states that for the purpose of efficient circuit representation any finite set of 1 and
2-qubit gates is as good as any other, as long as it generates a dense subgroup in
SU(2) (which is the case for the above-defined set). More formally,

Theorem 2.1 (Solovay-Kitaev ’97). There is a constant c such that for any finite
gate set G ⊆ SU(2) such that the group 〈G〉 generated by G is dense in SU(2) and
G is closed under inverse, for any ε > 0 there is an ` = O(logc(1/ε)) such that G`

is an ε-net in SU(2).9

We can now define the class BQP of problems that we are concerned about.

Definition 2.2. A promise language L = (Lyes, Lno) is in BQP if there exists a
classical deterministic polynomial-time Turing machine such that, on input x ∈
Lyes ∪Lno the Turing machine returns the description of a quantum circuit C over
the gate set {H,T,CNOT}, together with a specially designated output qubit for
the circuit, such that

• If x ∈ Lyes then the probability that a measurement of the output qubit of
C, when all input qubits are initialized to the |0〉 state, is 1, is at least 2

3 ;

• If x ∈ Lno then the same probability is at most 1
3 .

Due to the fact that quantum gates are by necessity reversible, it may not be
immediately obvious that quantum computations generalize classical computation.
In fact, given a function f : {0, 1}n → {0, 1}m specified by a classical circuit, it
is always possible to devise a quantum circuit of comparable size for the unitary
Uf that maps |x〉|b〉 to |x〉|f(x) ⊕ b〉 for x ∈ {0, 1}n, b ∈ {0, 1}m. This can be
achieved by showing that any classical circuit over, say, {AND,OR,NOT} can be
efficiently simulated by a reversible circuit; we omit the details. We often consider
the application of the unitary Uf “in superposition”: by linearity,

Uf :
∑

x∈{0,1}n
αx|x〉|0m〉 7→

∑
x∈{0,1}n

αx|x〉|f(x)〉 .

We close this section by stating the main result that these notes aim to present.
The computational assumption that underlies soundness of the interactive argu-
ment, the learning with errors assumption, is a standard assumption in post-
quantum cryptography (classical cryptography designed to be secure against quan-
tum adversaries) that we review in Section 7.

Theorem 2.3 (Mahadev 2018). Any language in BQP has an interactive argument
that is computationally sound against quantum polynomial-time provers under the
learning with errors assumption. Moreover, the verifier runs in probabilistic poly-
nomial time, the honest prover can be executed in quantum polynomial-time, and
the interaction between verifier and prover consists of 2 rounds (4 messages) only.

It is an important open question if the same theorem can be stated in the for-
malism of interactive proofs, instead of arguments (i.e. without making a com-
putational assumption on the cheating prover), while still keeping the condition
that the honest prover can be executed in quantum polynomial time. Intuitively,

9An ε-net is a set of points S ⊆ SU(2) such that for all U ∈ SU(2), there is V ∈ S such that
‖U − V ‖ ≤ ε. Here the norm is the operator norm, but any norm would give essentially the same

result, since the space has small dimension.

12 THOMAS VIDICK

in Mahadev’s proof system the post-quantum cryptographic assumption is used to
restore symmetry between the quantum prover and the less powerful classical veri-
fier. A specific cryptographic construction, a quantum commitment scheme, is used
to “tie the prover’s hands” in a way such that it has no choice but to implement
the required computation — unless it has the power to break the cryptographic
assumption. Nevertheless, while it is clear how the assumption is leveraged in the
design of the protocol, it is not known whether one could do without it.

3. Certificates for computation

The first step in the proof of Theorem 2.3 is to identify a quantum certificate for
the validity of a given quantum computation (i.e. a certificate that the probability
that a quantum circuit provided as input returns the outcome “1”, when all input
qubits are initialized to the |0〉 state, is at least 2

3 ; cf. Definition 2.2). This is
achieved by the main theorem of this section, Theorem 3.1, that is due to Kitaev
and predates Mahadev’s work. In the following sections we will show how the
existence of the kind of certificate provided by Theorem 3.1 can be verified using
an interactive argument with a classical verifier.

We first consider the case of a classical computation. Given as input the descrip-
tion of a classical circuit, what is a good “certificate” for the claim that the circuit
returns the value 1 when all input bits are initialized to the 0 state? While such
a certificate is not really needed, as the verifier can simply execute the circuit by
itself, this solution does not generalize well to the case of a quantum circuit and a
classical verifier. In the following section we leverage the theory of NP-completeness
to identify a particular kind of certificate for the validity of a classical circuit that
has the advantage that it will generalize to the case of quantum circuits.

σ1

σ2 σ3

σ4
σ5

σ6

J13

J34
J26

Figure 3. Schematic representation of an instance of the Ising
spin problem. Here each σi is a variable in {0, 1}, and each Jij a
fixed coupling constant in [−1, 1]. The goal is to find an assignment
to the variables that minimizes the expression (3.1).

3.1. Warmup: the Ising spin problem. We consider a problem from classical
statistical physics and show how to reduce the verification of a classical computation
to it. Consider a graph with n vertices, such that each vertex i ∈ {1, . . . , n} is
associated a value (or “state”) σi ∈ {0, 1}, and each edge (i, j) is associated a real
weight (or “coupling constant”) Jij such that |Jij | ≤ 1. (See Figure 3.) Vertices
represent particles that can be in one of two states, σi = 0 or σi = 1, and edges
represent interactions between particles, where the interaction can be attractive

VERIFYING QUANTUM COMPUTATIONS 13

(Jij ≥ 0) or repulsive (Jij < 0). The energy of a configuration σ ∈ {0, 1}n is
defined as10

(3.1) Hising(σ) = −
∑
(i,j)

Jij (−1)σi+σj .

Informally, the energy functional (a.k.a. Hamiltonian) Hising measures the number
of interaction constraints that are not satisfied by an assignment σ, with each
violation giving a penalty of |Jij |. It is well-known that the problem of deciding,
given as input n, the coefficients Jij , and two thresholds a, b such that b−a is at least
a constant independent of n,11 whether the minimum of Hising over all σ ∈ {0, 1}n
is less than a, or larger than b, is an NP-complete problem (i.e. any problem in NP
reduces to it); moreover, this holds even for the case where Jij ∈ {−1, 0, 1} for all
(i, j).

NAND

NAND

NAND

NAND

NAND

0

1

0

0

1

0

1

0

0

1

0

1

1

0

1

1

1

1

1

1
1

0

1

1

0

σ1, . . . , σ5 σ6, . . . , σ10 σ11, . . . , σ15 σ16, . . . , σ20 σ21, . . . , σ25

x

w

{
{

Figure 4. The tableau of a classical circuit. Here x = 10, w =
10, and there is one ancilla qubit, initialized to 0. The circuit
has 5 NAND gates (a, b) 7→ (a, 1 − ab).The tableau is given by
σ ∈ {0, 1}25, that represents the state of each of the 5 circuit wires
at successive stages of an execution of the circuit.

To understand why the Ising problem is as hard as any problem in NP, let’s see
how we can reduce to it the problem of deciding whether, given a classical circuit
C acting on n + m + r bits and an input string x ∈ {0, 1}n, there exists a string
w ∈ {0, 1}m such that the circuit accepts (x,w, 0r). By definition any problem in
NP can be expressed in this form, with x as the input, w as the witness, and C as
the verifier’s circuit. In general C is specified by a sequence of gates (C1, . . . , C`)
taken from some fixed gate set, that we may without loss of generality restrict to
the sole NAND gate.12 Next consider the tableau of the computation performed by
the circuit C. (See also Figure 4.) This is simply a list of values associated with
each wire in the circuit: the input wires (initialized to (x,w, 0r)), the output wire of
any gate in the circuit, and the final output wire (that should equal 1, which stands
for “accept”). Given a tableau, it is possible to verify that the tableau is correct
by checking the propagation of each gate, one at a time: if the inputs to a NAND

10Technically the expression in (3.1) can take negative values, which may not seem appropriate

for an “energy”. Correcting this is a matter of introducing an additive shift.
11It is typical to normalize Hising by dividing by its “norm”

∑
i,j |Jij |, in which case the

promise on the gap b− a becomes that it is at least an inverse polynomial in n.
12The NAND gate maps (a, b) to (a, 1− ab). (The first output is included for convenience, to

keep the number of wires constant, but is not necessary.) It is a universal gate, meaning that any
circuit can be simulated by one made of NAND games only with a polynomial overhead in the

total number of gates.

14 THOMAS VIDICK

gate are σi1 , σi2 ∈ {0, 1}, the output should be (σi3 = σi1 , σi4 = 1− σi1σi2). Wires
corresponding to the input string x should be initialized to the corresponding input
bit, whereas wires associated with the witness string w can take arbitrary values.
We can express this set of constraints as a Hamiltonian HC : {0, 1}T → R, where
T is the total number of wires in the circuit:

(3.2) HC = Hin +Hprop +Hout ,

where Hin is a summation of energy penalties13 1σik
6=xk

= 1
2 (1− (−1)xk+σik) with

ik the input wire associated with the k-th bit of x and 1σij
6=0 with ij the input wire

associated with the j-th ancilla bit, Hprop a summation of penalties of the form
1σik

6=σij
+ 1σik+1

6=1−σij
σi`

for each NAND gate mapping (ij , i`) to (ik, ik+1), and

Hout consists of a single penalty term 1σiT
6=1, for iT the output wire. Then, HC

is such that there exists σ such that HC(σ) = 0 if and only if there is a witness w
such that C accepts (x,w, 0r); otherwise, HC(σ) ≥ 1 for all σ.

Note that HC doesn’t quite have the form (3.1) of an Ising spin Hamiltonian yet:
some of its terms involve three variables at a time, and moreover not all terms are
directly expressed as a function of the parity of the sum of two variables. With a
little more work, using so-called “gadgets” it is possible to complete the reduction
and find an H ′C that is equivalent to HC (in terms of capturing the same decision
problem) but is of the form (3.1) [6].

Using the trivial observation that P ⊆ NP (any language that can be efficiently
decided can be efficiently verified by ignoring the witness and performing the ef-
ficient decision procedure), it follows from the above discussion that the problem
of deciding whether a classical circuit returns 1 on the all 0 input, which is com-
plete for P, can be efficiently reduced to the problem of deciding whether an Ising
Hamiltonian has a configuration with energy at most some threshold value a (that
can be efficiently determined by following the steps of the reduction), or if all con-
figurations have energy at least b, for some b such that b − a = Ω(1). (Explicitly,
the Hamiltonian is obtained by adding penalty terms 1σik

6=0 for all input wires
associated to w to the Hamiltonian HC obtained from the reduction described in
the preceding paragraphs.)

Our next step is to devise a quantum analogue of this reduction.

3.2. Quantum spin problems. We can interpret the Hamiltonian Hising intro-
duced in (3.1) as an “energy functional”, that associates an energy to any configu-
ration σ. In quantum mechanics, a Hamiltonian is any linear operator on Hilbert
space, with the restriction that the operator should be Hermitian (and bounded;
for convenience here we only consider finite-dimensional spaces, so that the lat-
ter condition is automatic). The interpretation is that the Hamiltonian associates
a definite energy λi ∈ R to any quantum state that happens to be in one of the
Hamiltonian’s eigenstates |φi〉. The energy of an arbitrary state ρ is then computed
as Tr(Hρ).14 Often it is also required that the Hamiltonian be local, meaning that
H can be expressed as a sum of a polynomial number of terms hi, each of which
acts nontrivially on at most k qubits (i.e. each term can be expressed as the tensor
product of the identity on (n − k) qubits, and an arbitrary Hamiltonian on the

13We use the notation 1E for the indicator that event E occurs.
14The reader may have noticed that the syntactic requirements for “Hamiltonians” and “ob-

servables” are identical. Physically, a Hamiltonian is meant to represent a specific observable,

that corresponds to the energy of a system; mathematically, the two notions are interchangeable.

VERIFYING QUANTUM COMPUTATIONS 15

remaining k qubits), for some constant k. This constraint reflects the fact that
each term in the Hamiltonian is meant to represent a physical interaction between
a small number of (typically spatially close) elementary particles.

Using the notation introduced in the previous section, the Ising spin Hamiltonian
can be recast as a quantum Hamiltonian, H ′ising = −

∑
(i,j) Jij σ

i
Zσ

j
Z , where σiZ is

shorthand for the observable that is σZ on the i-th qubit and the identity on the

others, σiZ = Id⊗(i−1)⊗σZ ⊗ Id⊗(n−i). Since this Hamiltonian is diagonal in the
computational basis, its eigenstate with smallest eigenvalue, also called its “ground
state” or minimal energy state, is always attained at a pure computational basis
state |σ〉, for some σ ∈ {0, 1}n.

Things get more interesting when we consider Hamiltonians made of a combina-
tion of non-commuting observables. Consider for example the 2-qubit Hamiltonian

(3.3) HEPR = −1

2
(σ1
Xσ

2
X + σ1

Zσ
2
Z) .

As a matrix, this can be written as

HEPR =


−1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 −1

 .

What is remarkable about this Hamiltonian is that its smallest-eigenvalue eigenstate
is a state

|φ+〉 =
1√
2

(
|0〉|0〉+ |1〉|1〉

)
=

1√
2


1
0
0
1

 ,

also known as a “Bell state”, or “EPR pair”. This state has the property of being
entangled : it cannot be expressed in the form |φ1〉 ⊗ |φ2〉, for any two single-qubit
states |φ1〉 and |φ2〉.

The possibility for quantum Hamiltonians to force entanglement in their ground
state distinguishes them from classical Hamiltonians, whose eigenstates are com-
putational basis states, and in particular can be expressed as a tensor product of
single-qubit states. As a result, while a classical Hamiltonian always has a min-
imal energy configuration that can be described using n bits (hence, as already
observed, the problem of deciding its minimum energy is in NP, with the wit-
ness being a classical n-bit description of the minimal energy configuration), for
quantum Hamiltonians this need not be the case. The complexity class QMA (for
“Quantum Merlin-Arthur”) is the quantum analogue of NP: QMA is the collection
of all (promise) languages L = Lyes ∪ Lno such that it is possible for a quantum
polynomial-time verifier to correctly decide whether an input x ∈ Lyes or x ∈ Lno,
with error at most 1

3 , with the help of a “quantum proof” |φ〉 provided by an
all-powerful, but untrusted, quantum prover. The problem of deciding the mini-
mal energy of a local Hamiltonian to within some inverse polynomial precision is
an example of a problem that is in QMA: informally, given a claimed minimum-
eigenvalue eigenstate presented as a quantum state, it is possible to estimate the
associated eigenvalue by making the appropriate energy measurement. Kitaev es-
tablished a quantum analogue of NP-completeness of 3-SAT by showing that the
local Hamiltonian problem is QMA-complete, i.e. the constraints expressed by any

16 THOMAS VIDICK

polynomial-time quantum verification procedure can be reduced to constraints of
the form checked by a local Hamiltonian. We give an overview of Kitaev’s reduction
next.

3.3. Certificates for quantum computations. In Section 3.1 we have seen that
the computation carried out by a classical circuit can be represented as a “tableau”,
such that the property of being a valid tableau can be encoded in a classical Hamil-
tonian, thereby reducing the task of deciding whether a classical circuit accepts
its input to the task of deciding whether the associated Hamiltonian (that can be
efficiently computed from the circuit) has a small enough eigenvalue.

CNOT

H

T

|ψ0〉|0〉
⊗
+

|ψ1〉|1〉
⊗
+

|ψT 〉|T 〉
⊗
+

|ψtableau〉 =
|ψhist〉 =

CNOT

CNOT

Figure 5. Two different ways to create a tableau from a quantum
circuit. The state |ψtableau〉 is the tensor product of the state of the
circuit at each time step. The state |ψhist〉 is their superposition,
indexed by a clock register that goes from |0〉 to |T 〉.

What is the correct notion of a tableau for quantum circuits? The first idea
is to consider the juxtaposition of the quantum state of an `-gate circuit at each
step of the computation, i.e. the tensor product |ψ0〉 ⊗ · · · ⊗ |ψT 〉 of the states |ψi〉
obtained by executing the circuit from scratch and stopping after i gates have been
applied. While this is a well-defined n(T + 1)-qubit quantum state (see Figure 5)
the property of being a valid “quantum tableau” cannot be enforced using a local
Hamiltonian! The reason is subtle, and has to do with the possible presence of
entanglement at intermediate steps of the computation. Indeed, there are quantum
states that are very different, in the sense that they are perfectly distinguishable by
some global observable, yet cannot be distinguished at all by any local observable,
that would act on at most, say, half the qubits. An example is given by the two
n-qubit “cat” (named after the homonymous animal) states

|ψ±〉 =
1√
2

(
|0 · · · 0〉 ± |1 · · · 1〉

)
.

The two states |ψ+〉 and |ψ−〉 are easily seen to be orthogonal, so that they can be
perfectly distinguished by a measurement. But it is an exercise to verify that for any
observable that acts on at most (n−1) of the n qubits, both states give exactly the
same expectation value. (Informally, this is because any measurement on a strict
subset of the qubits of the state necessarily destroys the coherence; the only relevant
information, the ± sign, is encoded “globally” and cannot be accessed locally.) Note
that this is a uniquely quantum phenomenon: if two classical strings of bits have
each of their bits equal, one pair at a time, then the strings are “globally” identical.
Not so for quantum states.

VERIFYING QUANTUM COMPUTATIONS 17

So näıve tableaus will not do. In the late 1990s the physicist Alexei Kitaev
introduced a very powerful idea that provides a solution. Kitaev’s idea is to replace
the juxtaposition of snapshot states by their superposition (see Figure 5). A special
ancilla system, called the “clock”, is introduced to index different elements of the
superposition. Thus, instead of defining a tableau as |ψ0〉 · · · |ψT 〉, Kitaev considers
the state

(3.4) |ψhist〉 =
1√
T + 1

T∑
t=0

|t〉|ψt〉 .

Kitaev showed that, assuming the clock register is encoded in unary, it is possible
to check the correct propagation of every step of the circuit directly on this super-
position by only applying local observables, in a manner very similar to what we
did for classical tableaus: there is a set of observables Hin that checks that |ψ0〉 has
the right format; a set of observables Hprop that checks propagation of the circuit,
and an observable Hout that checks that the “output qubit” of the circuit is in the
right state. (In addition, there is a term Hclock that checks that the clock register
is well-formed, i.e. contains the representation of an integer in unary. This can be
done locally by penalizing configurations of the form “· · · 10 · · · ”.) The key point
that makes this possible is that, while equality of quantum states cannot be decided
locally when the states are juxtaposed, it becomes possible when they are given in
superposition. As an exercise, we can verify that a measurement of the first qubit
of the state

|ψSWAP 〉 =
1√
2

(
|0〉|ψ0〉+ |1〉|ψ1〉

)
in the Hadamard basis {H|0〉, H|1〉} returns the first outcome with probability
exactly 1

2 (1 + |〈ψ0|ψ1〉|2). With more work, replacing the use of gadgets for the
classical case by techniques from perturbation theory, it is possible to write the
resulting Hamiltonian as a linear combination of local terms that all take the form
of the EPR Hamiltonian (3.3). (Such a Hamiltonian is called a Hamiltonian “in
XZ form”, for obvious reasons.) The result is the following theorem from [14].

Theorem 3.1. For any integer n ≥ 1 there are n′ = poly(n), a = a(n) and
δ ≥ 1/poly(n) such that the following holds. Given a T -gate quantum circuit
C = C1 · · ·CT acting on n qubits, such that T = poly(n), and an input x for the
circuit, there exist efficiently computable real weights {Jij , i, j ∈ {1, . . . , n′}} such
that |Jij | ≤ 1 for all i, j and moreover if

(3.5) HC = −
∑
i,j

Jij
2

(
σiXσ

j
X + σiZσ

j
Z

)
,

then:

• (Completeness) If the circuit C accepts its input x with probability at least
2/3, then the smallest eigenvalue of HC is at most a;
• (Soundness) If the circuit C accepts its input x with probability at most 1/3,

then the smallest eigenvalue of HC is at least a+ δ.

Remark 3.2. It is possible to modify Theorem 3.1 so that the completeness and
soundness statements specify that “if there exists a state |φ〉 such that C accepts
on input (x, |φ〉) with probability at least 2/3...” and “if there does not exist
a state |φ〉 such that C accepts on input (x, |φ〉) with probability greater than

18 THOMAS VIDICK

1/3...” respectively. Thus, Theorem 3.1 can be adapted to show that the problem
of estimating the minimal energy of a Hamiltonian of the form (3.5) is a QMA-
complete problem.

Theorem 3.1 provides us with a roadmap for the verification of quantum circuits:
it is sufficient to verify the existence of a quantum state that yields certain statistics,
when some of its qubits are measured in the computational (σZ observable) or
Hadamard (σX observable) basis. The reason this can be considered progress is
that we no longer need to check the time evolution of a quantum state under a
quantum cicuit; it is sufficient to collect measurement statistics and estimate the
energy. In particular, the theorem readily leads to a verification protocol in a
model where the prover has a full quantum computer, and the verifier only has a
limited quantum device — namely, a one-qubit memory, together with the ability
to measure the qubit using either the σX or σZ observables.

Such a verification protocol was introduced by Fitzsimons, Hadjušek and Mori-
mae [16], and is summarized in Figure 6. In the protocol, the prover is required to
prepare a smallest eigenstate of the Hamiltonian HC given in (3.5). While it may
not be immediately obvious at the level of our description, it is possible to prepare
such a “history state” (3.4) by executing a quantum circuit that is only mildly more
complex than the original circuit C.

Let C be a quantum circuit provided as input, and HC the n-qubit Hamiltonian
obtained from C as in (3.5).

(1) The verifier initializes a counter γ to 0. She executes the following inter-
action with the prover independently N = C/δ4 times, where C is a large
enough universal constant:
(a) The prover creates an eigenstate |ψ〉 of H with smallest eigenvalue.
(b) The prover sends the qubits of |ψ〉 one by one to the verifier.
(c) The verifier selects a measurement W ∈ {X,Z} uniformly at random,

and measures each qubit in the associated basis unpon reception. Let
bW,i ∈ {−1, 1} be the outcome for the i-th qubit.

(d) The verifier selects (i, j) uniformly at random among those pairs such
that Jij 6= 0. She updates her counter γ ← γ − JijbW,ibW,j .

(2) If γ/N ≤ a+δ/2 the verifier accepts the interaction. Otherwise, she rejects.

Figure 6. The Fitzsimons-Hadjuček-Morimae verification protocol.

Even though the verifier’s “quantumness” in this protocol is limited — she only
needs to hold one qubit at a time — this capability is crucial for the analysis, as it
is used to guarantee the “existence” of the state that is being measured: it allows
us to meaningfully talk about “the state |ψ〉 whose first qubit is the first qubit
received by the verifier; whose second qubit is the second qubit received by the
verifier; etc.”. These qubits are distinct, because the verifier has seen and then
discarded them (it would be a different matter if they were returned to the prover).
In particular, the fact that a one-qubit computer can be trivially simulated on a
classical piece of paper is immaterial to the argument.

With a classical verifier things become substantially more delicate. How can we
verify the existence of an n-qubit state with certain properties, while having only

VERIFYING QUANTUM COMPUTATIONS 19

access to classical data about the state, data that, for all we know a priori, could
have been generated by a simple — classical — laptop? To achieve this we need
to find a way for the verifier to establish that the prover holds an n-qubit state,
without ever having the ability to directly probe even a single qubit of that state.
The major achievement in Mahadev’s work is a method to do just this; it is the
topic of the next section.

4. Commitments

The key ingredient in Mahadev’s verification protocol for quantum computations
is a commitment scheme that allows a quantum prover to “commit” to a quantum
state using only classical information, thereby providing the means to remove the
need for quantum communication in the protocol described at the end of the pre-
vious section. Before introducing her commitment scheme, we review the classical
notion of commitment and show how it can be implemented using collision-resistant
hash functions.

4.1. Classical commitments. Consider the following toy task of “coin-flipping
over the phone” [8]: Alice is at work; Bob is at home; they would like to decide
over the phone who will cook dinner tonight. Neither volunteers: they need to flip
a coin. Clearly neither of them trusts the other to do this properly, so they need
a protocol that makes it infeasible for either party to bias the outcome in their
favor. Here is a way to achieve this using “commitments”. Bob chooses a value
b ∈ {0, 1} — ideally, he chooses it uniformly at random, but this is up to him.
He then “commits” to b by sending Alice some information c — think of Bob as
inserting a piece of paper with b written on it in a large safe, handing the safe to
Alice, but keeping the key to himself. Then, Alice herself chooses a bit a ∈ {0, 1},
and announces it directly to Bob. Finally, Bob reveals his bit b by giving Alice the
“key” r to the safe. Alice uses r to open the safe and check Bob’s claimed value for
b. If the check goes through, they jointly agree that the bit d = a⊕ b is unbiased.
Finally, they use d to designate the night’s cook-in-chief.

The properties of the coin-flipping protocol described in the previous paragraph
—informally, that neither user has the ability to bias the outcome of the coin flip,
provided the other user behaves honestly — suggest the following two requirements
for the commitment scheme: it should be hiding (Alice does not learn b, unless
Bob explicitly reveals it to her) and binding (once he has committed, Bob cannot
“reveal” any value other than the one he committed to). Formally, a commitment
scheme is defined as follows.

Definition 4.1 (Classical commitment scheme). A (non-interactive) commitment
scheme (for a message space M) is a triple of probabilistic polynomial-time proce-
dures (Gen,Commit,Reveal) such that

• k ← Gen(1λ) generates a key k, when provided as input an integer λ
written in unary.15

• Commit takes as input a key k and an m ∈M and returns a pair (c, d)←
Commitk(m) that consists of a commitment value c, and a reveal value d.16

15λ is referred to as the security parameter. The reason it is provided in unary is that this

guarantees, by the polynomial-time requirement on Gen, that the bit length of k is polynomial in

the integer λ.
16We write the input key k to Commit as a subscript that is often omitted for convenience.

20 THOMAS VIDICK

• Reveal takes as input a key k and a pair (c, d) and returns a value m′ ←
Revealk(c, d) such that m′ ∈ M ∪ {⊥}, where ⊥ is a special “failure”
symbol.
• (Correctness:) For any m ∈M , if (c, d)← Commitk(m) then it holds that
Revealk(c, d) = m.
• (Statistical hiding:) for any two m 6= m′ ∈ M the distributions of c ←
Commitk(m) and c′ ← Commitk(m′) are identical.
• (Computational binding:) No probabilistic polynomial-time procedure A

can, given k as input, return a triple (c, d, d′) such that m← Revealk(c, d)
and m′ ← Revealk(c, d′) are such that m 6= m′ ∈ M with non-negligible
probability.

The definition refers to a scheme that is statistically hiding and computation-
ally binding. It is possible to consider schemes with the qualifiers inverted, i.e.
computationally hiding and statistically binding, but we will not make use of such
a scheme here. Note that, under the assumption that the scheme is statistically
hiding, the binding property can only be required to hold under a computational
assumption. This is because if the distribution of the commitment value c does not
depend on whether the message m = 0 or m = 1, then for any c it is possible to
find d0 and d1 that reveal to m′ = 0 and m′ = 1 respectively. The computational
binding requirement is that, even though these values must exist, they should be
hard to find.

We end this section by presenting a construction of a commitment scheme whose
computational binding property rests on the assumption that there exists a family
of collision-resistant hash functions (CRHF). A CRHF is a family of functions
{fk(λ) : {0, 1}n(λ) → {0, 1}m(λ)}, for polynomially bounded functions k(λ), n(λ),
m(λ) of λ, such that given k(λ) for any x the value fk(x) can be evaluated efficiently,
but it is impossible for any probabilistic polynomial-time adversary A to find a pair
of inputs x 6= x′ such that fk(x) = fk(x′) with non-negligible probability. Collision-
resistant hash functions are widely used in cryptography, and many constructions
are known based on assumptions such as the Diffie-Hellman assumption about
hardness of the discrete logarithm problem or the Learning with Errors problem
about hardness of solving noisy linear equations. (Unconditionally proving the
existence of a CRHF would imply that P 6=NP,17 so we have to rely on computational
assumptions.) For reasons that will become clear when we discuss the extension to
quantum commitments, it is convenient for us to make the additional assumption
that the functions fk are 2-to-1. Specifically,

Assumption (2TO1): For each k = k(λ), both functions fk,0 : r 7→
fk(0‖r) and fk,1 : r 7→ fk(1‖r) are injective, and they have the
same range.

In Section 7 we sketch a construction of a CRHF family that is almost 2-to-1, in a
sense that we will make precise, based on the learning with errors problem.

Let {fk : {0, 1}n → {0, 1}n/2} be a 2-to-1 CRHF family (this is also called a
“claw-free” family, where any triple (r0, r1, y) such that fk(0‖r0) = fk(1‖r1) = y
forms a claw). Here is a commitment scheme based on fk (see also Figure 7). The
scheme allows commitments of single-bit messages, M = {0, 1}. Both parties agree
on a security parameter λ ≥ 1. To commit to a bit b ∈ M , the committer selects

17The converse implication is not known to hold.

VERIFYING QUANTUM COMPUTATIONS 21

V

C

function fk

c

b ∈ {0, 1}
r ←R {0, 1}n−1

c← fk(b‖r)

commitment
phase

reveal
phase

b, r
if c 6= fk(b‖r)
then abort

o/w, return b

Figure 7. A computationally binding commitment protocol based
on the use of a CRHF family {fk(λ)}λ. We refer to the party per-
forming the commitment as the committer, and the party receiving
the commitment as the verifier. The symbol x ←R S means that
x is selected uniformly at random from the finite set S.

a uniformly random r ∈ {0, 1}n−1 and sends c = fk(b‖r) to the verifier, where
the symbol ‖ is used to denote string concatenation. To reveal b, the committer
sends both b and r to the verifier, who checks that c = fk(b‖r). This scheme is
computationally binding, because to “change his mind” the committer needs to
identify r0 and r1 such that fk(0‖r0) = fk(1‖r1), which is a collision. And the
scheme is statistically hiding, because due to the 2-to-1 property any commitment
c from the committer has exactly one preimage under fk,0 and one preimage under
fk,1, that the verifier has no basis to prefer over each other.

4.2. Quantum commitment schemes. We now devise an analogue of Defini-
tion 4.1 that allows for committing to quantum states. Keeping in mind the goal
of using such a commitment scheme for classical verification, we wish to keep the
actions of the verifier classical. It is then no longer meaningful to expect that the
scheme would allow the committer to “reveal” its quantum state to the verifier. In-
stead of revealing the quantum state itself, we settle for the ability for the committer
to reveal measurement outcomes performed on the state to which it has committed
to. Importantly, we should allow the verifier to request measurement outcomes in
a choice of at least two incompatible bases, so that the committer couldn’t simply
have measured its state first and then classically committed to the measurement
outcome. Intuitively, the “binding” requirement of the scheme should be that it is
impossible for the committer to report measurement outcomes that are obtained by
measuring a state that depends on the measurement basis requested by the verifier.
For example, it should be impossible for the committer to “commit” to a state ρ
such that it later has the ability to both “reveal” to the verifier that a measurement
of ρ in the computational, or in the Hadamard, basis yields an outcome +1 — as
indeed, there is no such state.

We proceed with a formal definition that mimics Definition 4.1 with these desider-
ata in mind.

Definition 4.2 (Qubit commitment scheme). A qubit commitment scheme for a
pair of observables (X,Z) on a Hilbert space HB is a triple of classical probabilis-
tic polynomial-time procedures (Gen,OpenZ ,OpenX) and a triple of quantum
polynomial-time procedures (Commit,MeasZ ,MeasX) such that

• k ← Gen(1λ) generates a key k, when provided as input an integer λ
written in unary.

22 THOMAS VIDICK

• Commit is a quantum polynomial-time procedure

Commitk : HB → HC ⊗HB’

such that for any density matrix ρBR on HB ⊗HR, where R is an arbitrary
reference system, the state (Commitk⊗ IdR)(ρBR) is classical on C (i.e. the
first output register, C, has been measured). We call the post-measurement
state on B’ the post-commitment state.
• MeasZ and MeasX are quantum measurements on B′ that return classical

strings dZ and dX as their output, respectively.
• OpenZ and OpenX take as input a pair (c, dZ) and (c, dX) and return a

value aZ ∈ {0, 1} ∪ {⊥} and aX ∈ {0, 1} ∪ {⊥} respectively.
• (Correctness:) For any state ρBR, the distribution of

(4.1) aZ ←
(
OpenZ ⊗ IdR

)
◦
(
MeasZ ⊗ IdCR

)
◦
(
Commitk ⊗ IdR

)
(ρ)

is statistically indistinguishable from the distribution obtained by measur-
ing the register B of ρBR using observable Z.18 A similar condition holds
for the combination of MeasX and OpenX .
• (Statistical hiding:) For every ρBR and ρ′BR, the distributions of c and c′

obtained from Commitk(ρ) and Commitk(ρ′) respectively are statistically
indistinguishable.
• (Computational binding:) For any triple of quantum polynomial-time pro-

cedures (Commit∗,Meas∗Z ,Meas∗X) and efficiently preparable state ρ∗BR
such that the values a∗Z and a∗X defined as in (4.1) (with Commit∗ and
Meas∗ replacing Commit and Open respectively) are different from⊥ with
non-negligible probability, there exists a state σB such that the distribution
of (−1)a

∗
Z and (−1)a

∗
X , conditioned on a∗Z 6=⊥ or a∗X 6=⊥ respectively, are

computationally indistinguishable from the outcome distribution obtained
by directly measuring σB using Z and X respectively.

Although the definition may at first seem complicated, it closely parallels Defini-
tion 4.1 of a classical commitment scheme. The main difference is that a quantum
commitment scheme allows the committer to commit to a quantum state ρ in such
a way that the verifier may request measurement outcomes obtained by measur-
ing the state ρ using two different observables, Z and X. The observables Z and
X may not be simultaneously measurable, so that it is not possible to implement
a quantum commitment scheme by providing classical commitments to measure-
ment outcomes in both bases simultaneously. The most important guarantee of
the scheme is the binding property, that ensures that any committer is tied to re-
porting outcomes for both types of measurement requests that could, at least in
principle, have been obtained from a single quantum state. For example, for the
case of a single qubit commitment and Z and X corresponding to measurements
in the computational and Hadamard basis respectively, it should not be possible to

18Statistical indistinguishability between two families of distributions {Dλ}λ∈N and {D′λ}λ∈N
means that there does not exist a procedure that, given as input 1λ as well as a sample from either
Dλ or D′λ, can determine which is the case with a success probability that is larger than 1

2
+ ε(λ),

for some non-negligible function ε(λ). This is equivalent to the statistical distance between the two

distributions being at most ε(λ). Computational indistinguishability is defined similarly, except

that the distinguishing procedure is restricted to run in probabilistic polynomial time. For distri-
butions on a single bit, computational indistinguishability implies statistical indistinguishability,

but this is no longer the case for distributions over larger domains.

VERIFYING QUANTUM COMPUTATIONS 23

generate a commitment string c such that it is later possible to find dZ and dX that
both yield aZ = 0 and aZ = 1 with high probability, as Heisenberg’s uncertainty
principle rules out the existence of a single-qubit state that yields the outcome 0
when measured in both the computational and the Hadamard basis.

A few additional remarks on the definition are in order. A first remark is that the
definition does not restrict the dimension of the system B, so that it allows commit-
ting to a multiple-qubit state. However, we have restricted the reported outcomes
to be from a pair of two-outcome observables only. It is possible to formulate a
more general definition, that allows more than two measurements with outcomes
in a larger set than {0, 1}. In fact, such a commitment scheme is eventually needed
for Mahadev’s protocol. For the sake of simplicity, we gave the simpler definition.

A second remark is that the definition is formulated as a “stand-alone” security
definition, meaning that it does not attempt to guarantee security in a broader
context where e.g. multiple commitments would be obtained in sequence, or the
committer’s post-measurement states could be used as part of a subsequent crypto-
graphic procedure, etc. Giving a “universally composable” definition, as has been
done for the case of classical commitments [13], would be desirable to make quan-
tum commitments useful in a broader context; giving such a definition falls outside
the scope of these notes (and is not needed for the analysis of Mahadev’s protocol).

5. Constructing quantum commitments

We proceed to describe the key innovation that underlies Mahadev’s protocol, a
quantum commitment scheme that satisfies the properties of Definition 4.2.19 To
get started we consider the most näıve scheme, that consists in applying the com-
mitment scheme described in Section 4.1 directly, in superposition, to a quantum
state. For simplicity we consider the case of committing to a single-qubit state,
when the observables Z and X are the single-qubit Pauli observables σZ and σX .

5.1. Key generation. Let n,m ≥ 1 be integer and{
fk(λ) : {0, 1}n(λ) → {0, 1}m(λ)

}
λ∈N

a family of functions that satisfies assumption (2TO1) stated in Section 4.1. The
public key k ← Gen(1λ) for the scheme contains a description of the function fk
that allows one to evaluate it on any input. For simplicity, throughout this section
we fix λ, and often drop the index k, writing f for a function chosen according to the
procedure Gen. In the coming subsections we progressively formulate requirements
on f that are stronger than those of a 2-to-1 CRHF.

5.2. Commitment procedure. We start by describing the procedure Commitk,
for the case where the committer wishes to commit to a single-qubit state |ψ〉 =
α|0〉+β|1〉. As a first step, the committer evaluates the function f in superposition
by creating an additional register that contains a uniform superposition over all
(n − 1)-bit strings and then computing the commitment in superposition into a

19As already hinted at, her scheme satisfies more, and in particular allows commitments to
more than two measurements, each with more than two outcomes. Here we concentrate on the

simplest non-trivial variant, that already demonstrates (almost) all the interesting features.

24 THOMAS VIDICK

third ancilla register initialized to |0〉:

|ψ〉 = α|0〉+ β|1〉 7→
(
α|0〉+ β|1〉

) (1√
2n−1

∑
r∈{0,1}n−1

|r〉
)
|0n〉

7→ |ψ′〉 =
1√

2n−1

∑
r∈{0,1}n−1

α|0〉|r〉|f(0‖r)〉+ β|1〉|r〉|f(1‖r)〉 .(5.1)

The committer then measures the last register in the computational basis to obtain
a classical commitment string c ∈ {0, 1}m. The string c is the outcome returned
by the procedure Commitk. The remaining two registers, the first qubit and the
register containing r, form the register B’ that contains the post-commitment state.

At this point it is worth noting explicitly that the (2TO1) property is crucial
in ensuring that the post-measurement state retains the same “structure” as the
original state |ψ〉 that was committed to, i.e. the commitment procedure does
not “damage” the quantum state to which it is applied. Recall from Section 2.1
that in general any measurement induces a collapse of the state. Informally, the
reason that this does not happen here is that since the classical commitment scheme
is statistically hiding, the commitment string reveals no information about the
committed bit, so that measuring the commitment can be done without perturbing
the committed state. Thus when the commitment string is measured, the state
|ψ′〉 in (5.1) partially collapses to the post-measurement state consistent with the
outcome obtained,

(5.2) |ψ′′〉 =
(
α|0〉|r0〉+ β|1〉|r1〉

)
|c〉 .

We pause for a moment and argue that the state |ψ′′〉 is a plausible “commitment”
to |ψ〉, and in particular why the operations performed so far may yield a scheme
that has the binding property. Observe that |ψ′′〉 is very similar to |ψ〉, except that
the initial superposition that defined |ψ〉 got slightly “muddled” by the inclusion of
r0 and r1. Nevertheless, morally the superposition is preserved: most importantly,
the coefficients α, β that define it are unchanged. In fact, the state |ψ′′〉 is unitarily
related to |ψ〉, by the simple unitary

(5.3) Uc : |0〉|r0〉 7→ |0〉|0〉 , |1〉|r1〉 7→ |1〉|0〉
(extended in an arbitrary way to the whole space). However, although this unitary
exists, it may not be easy for the prover to implement it! This is because doing so
seems to require the identification of both r0 and r1 from c, which would require
the prover to find a collision for f . (See Figure 8.)

Note that we haven’t made the requirement that f should be collision-resistant
yet. Even though it is only needed for the analysis of a multi-qubit commitment
scheme, for completeness we introduce an assumption on f that is known as col-
lapsing and is a stronger property than being collision resistant.

Assumption (C): Consider the following abstract game between an
arbitrary “ prover” and a trusted (quantum) “challenger”.20 First,
the prover is required to prepare an arbitrary state of the form
|φ〉 =

∑
x αx|x〉, where x ranges over the domain of f . The prover

hands the state |φ〉 over to the challenger, who evaluates f in su-
perposition on |φ〉 and measures the image register, obtaining a c

20This game is not meant to be executed in the protocol; rather, it is meant to indicate a task
that the committer, impersonating the “prover”, should not be able to complete.

VERIFYING QUANTUM COMPUTATIONS 25

|0〉

|1〉

|𝜓〉

𝑈𝑐
∗

Figure 8. An illustration of the commitment procedure. On the
left, the state |ψ〉 is expressed in the known basis (|0〉, |1〉). On the
right, the basis is an unknown (to the committer) pair of orthonor-
mal vectors (|0〉 ⊗ |r0〉, |1〉 ⊗ |r1〉) in a high-dimensional space.

in the range of f and the (suitably normalized) post-measurement
state |φ′〉 =

∑
x:f(x)=c αx|x〉. The challenger returns to the prover

the string c together with either the state |φ′〉 or the probabilistic
mixture

∑
x:f(x)=c |αx|2|x〉〈x| obtained by measuring the same state

|φ′〉 in the computational basis (and throwing away the outcome).
The prover wins if it correctly guesses which is the case. Assump-
tion (C) on the function f states that no quantum polynomial-time
prover can succeed in this game with probability non-negligibly
larger than 1

2 .

The reason that Assumption (C) implies collision resistance is that, if the function
were not collision resistant, the prover could identify a colliding pair (x0, x1) and
submit |φ〉 = 1√

2
(|x0〉 + |x1〉) to the challenger. It could then measure the chal-

lenger’s response in a basis containing the two states 1√
2
(|x0〉 ± |x1〉) and guess

that, in case the “−” outcome is obtained, the challenger must have measured; in
the other case, the prover guesses at random.

5.3. Statistical hiding. The statistical hiding property is straightforward, and
follows from the (2TO1) property as in the case of the classical commitment scheme:
any measurement outcome c that the prover could obtain is such that c = f(0‖r0) =
f(1‖r1) for some r0, r1 ∈ {0, 1}n−1, and in fact the distribution of c is uniform over
the range of the function f .

5.4. Revealing measurement outcomes in the computational basis. We
describe the procedures MeasZ and OpenZ together. Recall that after having
performed the commitment procedure, the committer’s state takes the form of
|ψ′′〉 in (5.2). The measurement MeasZ simply consists in a measurement of the
first two registers of |ψ′′〉 in the computational basis. This results in an outcome
dZ = (b, rb) ∈ {0, 1} × {0, 1}n−1 that the committer reports to the verifier.

The verifier’s procedure OpenZ is defined as follows. Given c and dZ = (b, rb),
the verifier first checks that b‖rb is a preimage of c under f , i.e. that f(b‖rb) = c.
We refer to this test as the preimage test. In case the test fails, the verifier sets
aZ ←⊥. (Note that this test is identical to the test performed by the verifier in
the reveal phase of the classical commitment protocol described in Section 4.1.) In
case the test succeeds, the verifier sets aZ ← b.

The completeness property for this pair of procedures is clear. Given a state of
the form (5.2) that has been obtained by the correct application of the procedure

26 THOMAS VIDICK

Commitk, a measurement of the first n qubits always yields a pair (b, rb) such
that f(b‖rb) = c. Moreover, the distribution of the bit b is Pr(b = 0) = |α|2,
Pr(b = 1) = |β|2, which is exactly the distribution of a measurement of the qubit
|ψ〉 in the computational basis.

5.5. Revealing measurement outcomes in the Hadamard basis. We turn
to the procedures MeasX and OpenX . The measurement MeasX consists in a
measurement of the first two registers of |ψ′′〉 in the Hadamard basis. This results
in an outcome dX = (u, t) ∈ {0, 1} × {0, 1}n−1 that the committer reports to the
verifier.

The verifier’s procedure OpenX is defined as follows. Given c and dX = (u, t)
the verifier first computes the two preimages 0‖r0 and 1‖r1 of c under f . For this
to be possible we make the following assumption on the function f :

Assumption (T): There is “trapdoor information” such that, given
the trapdoor, it is possible to efficiently invert f , i.e. given c, recover
r0, r1 such that f(0‖r0) = f(1‖r1) = c.

Functions that are easy to compute and hard to invert, but easy to invert given
a trapdoor, are widely used in cryptography; they form the bedrock of public-key
cryptography. We will say more about how such a trapdoor can be “planted” in
an efficiently computable function in Section 7.21 For the time being, we proceed
with the description of OpenX . Having determined r0 and r1, the verifier sets

(5.4) aX ← u⊕ t · (r0 ⊕ r1) ∈ {0, 1} ,
except if t = 0n−1, in which case the verifier sets aX ←⊥ (the motivation for this
condition will become clear later, when we discuss Assumption (HC)).

The completeness property of this pair of procedures can be verified by direct
calculation. To provide some intuition for the expression (5.4), we verify complete-
ness for the case when α = β = 1√

2
, i.e. |ψ〉 = |+〉 = 1√

2
(|0〉+ |1〉). Applying the H

gate on the first n qubits of the state |ψ′′〉 in (5.2) yields (omitting the last register,
that contains |c〉)

H⊗n|ψ′′〉 =
1√

2n+1

∑
b∈{0,1}

(∑
u∈{0,1}

(−1)ub|u〉
)
⊗
(∑
t∈{0,1}n−1

(
(−1)t·r0 + (−1)t·r1

)
|t〉
)

=
1√

2n−1

∑
u∈{0,1},t∈{0,1}n−1

1t·r0=u⊕(t·r1)|u〉|t〉 .

Thus in this case, for any outcome (u, t) that can be obtained with non-zero
probability by the committer’s procedure MeasX , the verifier’s decoded bit is
aX = u ⊕ t · (r0 ⊕ r1) = 0, which agrees with the outcome of a measurement
of the state 1√

2
(|0〉 + |1〉) in the Hadamard basis. (Moreover, the probability of

obtaining t = 0n−1 is exponentially small, so that the committer has only an expo-
nentially small chance of leading to an abort.) Informally, the addition of t·(r0⊕r1)
to the bit u acts as a “decoding” operation that accounts for interference created by
the strings r0, r1 that have been appended to the prover’s qubit in the commitment
phase.

21Technically the use of a trapdoor requires a modification of the Gen procedure, so that it is

allowed to return a (public key, private key) pair such that the public key is given to the committer

and allows evaluation of f , while the private key is given to the verifier only, and allows inversion
of f .

VERIFYING QUANTUM COMPUTATIONS 27

V

P

function f

c

|ψ〉 = α|0〉 + β|1〉 ∈ C2

measure to obtain c

commitment
phase

Z-meas
phaseb, rif c 6= f (b‖r),

Evaluate f
in superposition

open Z? measure in comp. basis

u, t

open X?

aZ ← b

aX ← u⊕ t
·(r0 ⊕ r1)

to obtain b, r

measure in Had. basis
to obtain u, t

X-meas
phase

then abort

Figure 9. Committing to a qubit.

5.6. The committed qubit. We have defined all procedures that underlie the
qubit commitment scheme, and verified that these procedures satisfy the required
completeness requirement, as well as the property of statistical hiding. (The pro-
tocol is summarized in Figure 9.) It remains to show the computational binding
property, which is the heart of the matter. The property requires to show the exis-
tence of a state σ having certain properties in regard to the outcomes recorded by
the verifier in the protocol. In this section, we define the state σ, that we refer to
as the “commited qubit”. In the next section we argue the required properties.

Note that we have to be careful with the meaning that we ascribe to any definition
of a “committed qubit”. Indeed, the attentive reader will have observed that it is
straightforward for a classical committer to “succeed” in the commitment protocol,
by selecting an arbitrary (b, rb), setting c = f(b‖rb), and sending dZ = (b, rb) and
dX a uniformly random n-bit string when asked to do so. Indeed, that this is
possible should come as no surprise: it exactly corresponds to the honest behavior
for a committer desiring to commit to the “classical” qubit |b〉! In fact, one may
consider the fact that the commmitment scheme can be implemented by a classical
verifier, whenever the information to be committed to is classical, as a useful feature
of the scheme.

In general, the actions of an arbitrary committer can be modeled by two measure-
ment procedures Meas∗Z and Meas∗X such that each measurement has outcomes
that range in the set of n-bit strings. Up to a change of basis for the committer’s
post-commitment state we may assume without loss of generality that the mea-
surement Meas∗Z consists of a measurement of the first n qubits of the prover’s
post-commitment state in the computational basis. In other words, we may fix a
basis in which the post-commitment state can be expressed as

(5.5) |ψ̃〉 =
∑

b∈{0,1},r∈{0,1}n−1

α̃b,r |b〉|r〉|φb,r〉 ,

for arbitrary coefficients α̃b,r and normalized states |φb,r〉, and such that moreover
it holds that Meas∗Z = MeasZ .22

22We have not entirely justified why this assumption is without loss of generality. It requires
the use of the Stinespring dilation theorem, that guarantees that any measurement with n-bit

28 THOMAS VIDICK

Having fixed a basis, the measurement Meas∗X can in general be expressed as
the composition of an arbitrary unitary V acting on the entirety of the committer’s
space, followed by a measurement of the first n qubits in the Hadamard basis, i.e.
Meas∗X = V ∗(MeasX ⊗ Id)V . Using that {Id, σX , σZ , σXσZ} form a basis for
the space of linear operators on C2, any such unitary can be uniquely expanded
according to its action on the first qubit as

V = Id⊗VI + σX ⊗ VX + σZ ⊗ VZ + σXσZ ⊗ VXZ .

With this notation it is not hard to verify that the linear map defined by

(5.6) Ṽ : |b〉|φ〉 7→
(
|b〉VI |φ〉+(−1)b|b〉VZ |φ〉

)
|0〉+

(
|b〉VX |φ〉+(−1)b|b〉VXZ |φ〉

)
|1〉 ,

where b ∈ {0, 1} and |φ〉 is arbitrary, is an isometry, hence is an admissible operation

in quantum mechanics.23 (Note that Ṽ increases dimension by a factor 2. The new
qubit register, in third position, is called a “purifying system”.) We are ready to
make a key definition.

Definition 5.1 (Committed qubit). Given a commitment string c ∈ {0, 1}m and
an arbitrary post-commitment state for the prover of the form (5.5), let σ be the

single-qubit state obtained from |ψ̃〉 by performing the following operations:

(i) Apply the isometry Ṽ defined in (5.6) to |ψ̃〉, yielding a state on (C2)⊗n⊗H′
(for some H′).

(ii) Measure qubits 2 to n in the Hadamard basis, obtaining an outcome string
t ∈ {0, 1}n−1.

(iii) If t · (r0 ⊕ r1) = 1 mod 2, apply a σZ operator to the first qubit. Here 0‖r0
and 1‖r1 are the two preimages of the commitment string c under f .

(iv) Return the first qubit.

Note that the verifier does not know the state σ; in fact, strictly speaking σ is
not present on the committer’s space at any time. The point is that σ exists, and
is well-defined (mathematically) as a function only of the commitment string c, the

post-commitment state |ψ̃〉, and the unitary V .

5.7. Computational binding. The discussion in the preceding section establishes
a definition of a state σ, that may not exist directly on the provers’ space at any
time in the protocol, but that is explicitly defined from states and operators that are
a function of the committer’s. To establish the binding property, it remains to show
that the distribution of outcomes obtained by measuring σ in the computational
and Hadamard bases is computationally indistinguishable from the distribution
of outcomes computed by the verifier using the OpenZ and OpenX procedures
respectively, under the assumption that the procedures lead to non-⊥ outcomes
with high probability.

We start with the case of the computational basis, that is easier. Recall that
we made a choice of basis for the committer’s space such that its post-commitment
state is of the form |ψ̃〉 in (5.5), and moreover the measurement Meas∗Z = MeasZ

outcomes can be expressed, up to isometry, as a measurement of n qubits in the computational
basis.

23For the expert, Ṽ is obtained from V by a σZ -twirl, followed by a conditional σX bit-flip.
The motivation for this definition will become clear in the proof of the computational binding

property.

VERIFYING QUANTUM COMPUTATIONS 29

measures the first n qubits of |ψ̃〉 in the computational basis and returns the out-
come (b, r), from which the verifier obtains aZ = b (provided the preimage test
succeeds).

According to Definition 5.1, the committed qubit σ is defined from |ψ̃〉 by ap-

plying the isometry Ṽ in (5.6) and returning the first qubit, to which may have
been applied a σZ operator, depending on the string t. We make two observations.
First, note that Ṽ has a block-diagonal form: it stabilizes the spaces |0〉 ⊗ H′′ and
|1〉 ⊗H′′, where H′′ = (C2)⊗(n−1) ⊗H′ is the Hilbert space associated with all but
the committer’s first qubit. As a result the outcome of a measurement of the first
qubit of |ψ̃〉, or of Ṽ |ψ̃〉, in the computational basis, are identically distributed.
Second, the σZ operator has no effect on a measurement in the computational ba-
sis. These two observations together establish that the verifier’s outcome aZ = b
has exactly the right distribution.

Before we consider measurements in the Hadamard basis, we make a simplifying
assumption. Note that an honest committer, whose state |ψ̃〉 is the state |ψ′′〉
in (5.2), always passes the preimage test. For the remainder of the analysis we make
the assumption that, in case the verifier decides to execute the OpenZ procedure,
the committer’s measurement procedure Meas∗Z always returns a pair (b, r) that
passes the preimage test.24 As a consequence of this assumption the expression for
the state |ψ̃〉 simplifies to

(5.7) |ψ̃〉 =
∑

b∈{0,1}

α̃b |b〉|rb〉|φb〉 ,

where r0 and r1 are such that f(0‖r0) = f(1‖r1) = c, since using Assumption
(2TO1) all other (b, r) would be rejected by the preimage test.

Our task now is to argue that the verifier’s bit aX , as obtained from the OpenX
procedure described in (5.4), has a distribution that is computationally indistin-
guishable from that of a Hadamard measurement of the committed qubit.

We start from the distribution of aX . Recall from Section 2.1 that given a
quantum state ρ̃ = |ψ̃〉〈ψ̃| the expectation value of an observable O is given by

Tr(Oρ̃) = 〈ψ̃|O|ψ̃〉. Here, using Meas∗X = V ∗(MeasX ⊗ Id)V , the observable
O is obtained by first applying V , followed by a measurement in the Hadamard
basis of all qubits but the first to obtain the string t (this corresponds to applying
the projection |t〉〈t|), then a σZ bit-flip on the first qubit, as a function of the

outcome t obtained (this corresponds to applying the unitary σ
t·(r0⊕r1)
Z), and finally

a measurement of the first qubit in the Hadamard basis (this corresponds to the
observable σX). As a result, the expectation value of (−1)aX can be expressed as

E
[
(−1)aX

]
=

∑
t∈{0,1}n−1

〈ψ̃|V †H⊗n
(
(σ
t·(r0⊕r1)
X σZσ

t·(r0⊕r1)
X)⊗ |t〉〈t|

)
H⊗nV |ψ̃〉 ,

where for later convenience we have used σX = HσZH to rewrite the observable
applied on the first qubit.

We now turn to the expectation value of (−1)b, where b is the outcome of a
measurement of the committed qubit σ in the Hadamard basis. Using the definition

24This assumption requires that in any execution of the commitment protocol there is a positive

probability that the verifier executes the preimage test. In the case of Mahadev’s verification
protocol, each of the two reveal phases is chosen with probability 1/2, so that a simple reduction

allows us to make the assumption without loss of generality.

30 THOMAS VIDICK

of the committed qubit this can be expressed in a similar fashion, except that due to
the use of the isometry Ṽ in the definition of σ the unitary V has been conjugated
by a random σZ operator:25

E
[
(−1)b

]
=

1

2
E
[
(−1)aX

]
+

1

2

∑
t∈{0,1}n−1

〈ψ̃|σZV †σZH⊗n
(
(σ
t·(r0⊕r1)
X σZσ

t·(r0⊕r1)
X)⊗ |t〉〈t|

)
H⊗nσZV σZ |ψ̃〉

=
1

2
E
[
(−1)aX

]
−1

2

∑
t∈{0,1}n−1

〈ψ̃|σZV †H⊗n
(
(σ
t·(r0⊕r1)
X σZσ

t·(r0⊕r1)
X)⊗ |t〉〈t|

)
H⊗nV σZ |ψ̃〉 ,

where all σZ operators act on the first qubit, and for the second line we used
σZH = HσX to commute the innermost σZ all the way to the middle, where
we simplified σXσZσX = −σZ . Taking the difference between the two terms,
simplifying the middle expression using anti-commutation, and cancelling out cross-
terms gives∣∣∣E[(−1)aX

]
−E

[
(−1)b

]∣∣∣
=

1

2

∣∣∣ ∑
t∈{0,1}n−1

(−1)t·(r0⊕r1)
(
〈0, r0, φ0|V †H⊗n

(
σZ ⊗ |t〉〈t|

)
H⊗nV |0, r0, φ0〉

+ 〈1, r1, φ1|V †H⊗n
(
σZ ⊗ |t〉〈t|

)
H⊗nV |1, r1, φ1〉

)∣∣∣ ,(5.8)

where to write this last expression we used the assumption that the state |ψ̃〉 can
be expressed as in (5.7), i.e. that the committer succeeds in the verifier’s preimage
test with probability 1. To argue that the right-hand side of (5.8) cannot be large,
we make the following final assumption.

Assumption (HC): No quantum polynomial-time procedure can,
given as input a description of f , return a quadruple (c, r, u, t) such
that f(b‖r) = c for some b ∈ {0, 1}, t 6= 0n−1, and u = t · (r0 ⊕
r1), where r0, r1 are the two preimages of c, with probability non-
negligibly larger than 1

2 .

If the expression on the right-hand side of (5.8) were non-negligible, there would
be a violation of Assumption (HC): a quantum polynomial-time “adversary” (to

the assumption) could simulate the prover to prepare |ψ̃〉 and measure the first n
qubits register to obtain (b, rb). It would then apply the unitary V and measure
the first n qubits in the Hadamard basis to obtain a string (u, t). Finally, the
adversary would return the tuple (c, r, u, t); (5.8) exactly measures the correlation
of the bit u with the correct value t · (r0 ⊕ r1). Note that the requirement that
t 6= 0n−1 is necessary for the assumption to be reasonable, as for t = 0n−1 the value
u = 0 is easy to determined. The adversary described above obtains t = 0n−1 with
probability 2−(n−1).

25For the second part of the state on the right-hand side of (5.6), corresponding to the last

qubit being in state |1〉, there is also a missing “σX” operator on the first qubit, labeled |b〉. A
σX has no effect on the outcome of a measurement in the Hadamard basis, so it can be ignored

here.

VERIFYING QUANTUM COMPUTATIONS 31

Thus Assumption (HC) guarantees that the expression in (5.8) is negligibly small,
completing the proof of the binding property for the case of a Hadamard basis
measurement.

5.8. Summary. The preceding sections have introduced a quantum commitment
scheme that allows a committer to commit to a single-qubit state in a way that is
perfectly hiding (this guarantees to the committer that committing does not leak
information), and later reveal the outcome of a measurement of the qubit in the
computational or Hadamard basis in a way that is computationally binding (this
guarantees to the verifier that the outcomes aZ or aX obtained from the committer’s
reported strings dZ or dX respectively are consistent with measurements on a single
state).

The use of a quantum commitment scheme in Mahadev’s verification protocol, to
be described in the next section, requires the prover to commit to an n′-qubit state.
This is done by requiring n′ commitment strings c1, . . . , cn′ . There are still only two
possible measurements: the first reports the n′-bit outcome obtained by measuring
the n′-qubit state in the computational basis, and the second does the same for the
Hadamard basis. The construction and analysis of a quantum commitment scheme
that accommodates this is very similar to the construction and analysis given in
this section, except that the proof of the computational binding property explicitly
requires the assumption (C) introduced in Section 5.2.

Our description would not be satisfying if we did not discuss assumptions (2TO1),
(C), (T), and (HC). Are these assumptions reasonable? While (2TO1) and (T) are
fairly standard assumptions in classical cryptography, for which it is possible to find
multiple constructions, Assumption (C) is less common (though it has been used
in different contexts in quantum cryptography), and Assumption (HC) is even less
usual (though it can be seen as a strengthening of a more standard “(non-adaptive)
hardcore bit property”). In Section 7 we sketch a construction of a function family
satisfying all four assumption simultaneously, based on the computational hardness
of the “Learning with Errors” problem in cryptography.

6. Verifying quantum computations

In Section 3 we reduced the problem of verifying the outcome of an arbitrary
polynomial time quantum computation to the following decision problem.

Input: An integer n′, the description of an n′-qubit Hamiltonian H
in XZ form,

(6.1) HC = −
∑

1≤i<j≤n

Jij
2

(
σiXσ

j
X + σiZσ

j
Z

)
,

a real number a, and δ > 0.
Promise: The smallest eigenvalue of H is either less than a, or at
least a+ δ.
Decision: Accept if and only if the smallest eigenvalue of H is less
than a. (We refer to such H as “YES” instances.)

The reduction guarantees that the “promise gap” δ can be taken to be at least
some inverse polynomial in n′. For ease of exposition we further assume that all
coefficients Jij lie in {−1, 0, 1}, and that a = −

∑
|Jij |. In physical language this

corresponds to a “frustration-free” Hamiltonian, meaning that in the case of a YES

32 THOMAS VIDICK

instance an eigenstate with smallest eigenvalue a is also an eigenstate with eigen-
value Jij of each of the local terms hij = 1

2 (σiXσ
j
X + σiZσ

j
Z). (This last assumption

is with loss of generality, as it is not hard to see that the resulting problem lies
in NP; nevertheless, we make it because it helps simplify the presentation without
hiding any interesting steps.)

Informally, Mahadev’s protocol for deciding this problem combines the protocol
described in Figure 6 in Section 3 with the quantum commitment scheme introduced
in Section 5. This leads to the protocol summarized in Figure 10. (The protocol
we present requires a polynomial number of rounds. We chose to do so to simplify
the analysis. Mahadev’s protocol can be executed in two rounds only, as stated in
Theorem 2.3.)

Let λ be a security parameter, C a quantum circuit provided as input, and HC the
n′-qubit Hamiltonian obtained from C as in (3.5). Let (Gen,OpenZ ,OpenX) be

the verifier’s procedures in a quantum commitment scheme such that the
measurements Z and X correspond to n′-bit outcome n′-qubit measurements in

the computational and Hadamard bases respectively. Let
(Commit,MeasZ ,MeasZ) be the committer’s procedures in the same scheme.

(1) The verifier initializes a counter γ to 0. She executes the following inter-
action with the prover independently N = C/δ4 times, where C is a large
enough universal constant:
(a) The verifier generates a (public key, private key) pair (pk, sk) ←

Gen(1λ), and sends the public key pk to the prover. She keeps the
secret key sk private.

(b) The prover creates an eigenstate |ψ〉 of H with smallest eigenvalue.
Let ρ = |ψ〉〈ψ| be the associated density matrix. The prover executes
c← Commitpk(ρ) and sends c to the verifier.

(c) The verifier selects a measurement W ∈ {X,Z} uniformly at random,
and asks the prover to reveal measurement outcomes in the basis W .

(d) The prover performs the measurement MeasW on the post-
commitment state, and returns the outcome dW to the verifier.

(e) The verifier computes aW ← OpenW (c, dW). If aW =⊥ the verifier
aborts the protocol. Otherwise, aW is an n-bit string. The verifier
selects (i, j) uniformly at random among those pairs such that Jij 6= 0.
She updates her counter γ ← γ − Jij(−1)aW,i+aW,j .

(2) If γ/N ≤ a+δ/2 the verifier accepts the interaction. Otherwise, she rejects.

Figure 10. The Mahadev verification protocol.

In order to prove Theorem 2.3 we need to verify the completeness and soundness
properties required of an argument system. The completeness property is straight-
forward. Assuming H has an eigenstate |ψ〉 with eigenvalue at most a, the prover
can commit to that eigenstate and honestly report measurement outcomes. In this
case, the verifier will never abort. Her counter γ is a random variable such that
the probability of γ/N being larger than a + δ/2 can be bounded by a small con-
stant, less than 1

3 , using Hoeffding’s inequality and assuming that the constant C
is chosen large enough.

VERIFYING QUANTUM COMPUTATIONS 33

To establish the soundness property we first observe that we may assume that
the prover’s actions in, say, a fraction at least 1− δ2 of the rounds, is such that, if
W = Z is chosen by the verifier in that round, then the probability of the verifier’s
reported outcome dZ leading to aZ =⊥ is very small, smaller than δ2. Indeed, if
this is not the case then the probability that the verifier obtains aZ =⊥ at least
once throughout the entire protocol will be at least 2/3, which would immediately
establish the soundness property.

Under that assumption, for those rounds we may make use of the computational
binding property of the quantum commitment scheme, that establishes the existence
of an n-qubit committed state ρ that underlies the distribution of measurement
outcomes aZ or aX obtained by the verifier in those rounds. By assumption of a NO
instance, for any such state the distribution of outcomes obtained when measuring
in the computational or Hadamard basis must, on average, lead to a value for the
verifier’s variable γ that averages, for those rounds, to at least a+δ−O(δ2). Taking
into account those rounds where we do not have control of the committer (because
its behavior has a larger probability of leading to an abort), the probability that
the verifier’s final count γ/N is lower than a+δ/2 can be made less than 1

3 provided
that the constant C is chosen large enough.

The argument completes the proof sketch for the main theorem exposed here,
Theorem 2.3. In the next section we conclude by outlining a construction of a
family of functions that satisfies the requirements for implementing the quantum
commitment scheme described in Section 5, under the learning with errors assump-
tion.

7. A construction based on the learning with errors problem

In Section 5 we have identified four assumptions on a family of functions {fk(λ) :

{0, 1}n(λ) → {0, 1}m(λ)}λ∈N that are sufficient for the resulting quantum commit-
ment scheme to be computationally binding. Can the four assumptions be simul-
taneously satisfied? Strictly speaking, we do not know the answer. In this section
we sketch a construction that nearly satisfies the assumptions. The construction
appears in [9], and a mild modification of it is used in Mahadev’s protocol. Even
though the assumptions introduced in the Section 5 will not all be strictly satisfied
by the construction, it is possible to verify that the protocol itself remains sound.

7.1. The LWE problem. Our starting point is the Learning with Errors (LWE)
problem, introduced by Regev [28]. The hardness of this problem has become a
widely used computational assumption in cryptography, for at least three reasons.
The first is that it is very versatile, allowing the implementation of advanced prim-
itives such as fully homomorphic encryption [10], attribute-based encryption [19],
program obfuscation [32, 20], traitor tracing [21], and many others. The second is
that the assumption can be reduced to the hardness of worst-case computational
problems on lattices: an efficient procedure that breaks the LWE assumption on
average can be used to solve the closest vector problem in (almost) any lattice.
The third reason, that is most relevant to the use of the LWE assumption for the
verification protocol presented here, is that in contrast to the RSA assumption on
the hardness of factoring or the discrete logarithm problem so far it is believed
that the LWE problem may be hard for quantum computers, so that cryptographic
schemes based on it remain (to the best of published knowledge) secure against
quantum attacks.

34 THOMAS VIDICK

The LWE assumption comes in multiple flavors, all roughly equivalent. Here we
formulate the decisional LWE assumption on the difficulty of distinguishing samples
from two distributions. To state the problem, fix a size parameter n ≥ 1, an integer
modulus q ≥ 2, a number of equations m ≥ n log q, and an error distribution
χ over Zq. Given χ, write χm for the distribution over Zmq that is obtained by
sampling each entry of a vector independently according to χ. The decisional LWE
assumption is the following.

(Decisional LWE) Let A be a uniformly random matrix in Zm×nq ,
s a uniformly random vector in {0, 1}n, e a random vector in Zmq
drawn from χm, and r a uniformly random vector in Zmq . Then no
classical or quantum probabilistic polynomial-time procedure can
distinguish (A,As+ e) from (A, r).

We include a few words of explanation for the reader unaccustomed with the no-
tion of computational indistinguishibility between ensembles of distributions. Note
that the distribution of (A,As+e) and the distribution of (A, r) are in general very
far from each other: provided m is sufficiently larger than n a random vector r will
not lie in the column span of A, nor even be close to it. What the (decisional) LWE
assumption asserts is that, even though in principle these distributions are far from
each other, it is computationally difficult, given a sample from the one or the other,
to tell which is the case.26 Note that without the error vector e the task would be
easy: given (A, y), solve for As = y and check whether the solution has coefficients
in {0, 1}. The LWE assumption is that the inclusion of e makes the task substan-
tially more arduous. In particular, it is well-known that Gaussian elimination is
very sensitive to errors, which rules out the most natural approach. To the reader
with a geometric mind, it might help to picture a discrete lattice (all integer linear
combinations of the columns of A, as a subset of Rm) such that to each lattice point
is added a little noise, in the form of a discrete Gaussian distribution with small
variance centered at the lattice point. Even though all the Gaussian “blobs” thus
obtained are well separated, given a point in any one of them, it is (conjecturally)
hard to recover the center of the blob, i.e. the closest lattice vector.

We comment briefly on the choice of parameters. The integer n should generally
be thought of as commensurate with the security parameter λ, i.e. n = Θ(λ). The
modulus q should be at least polynomial in n, but can be as large as exponential;
this will be the case in our construction. The error distribution χ can be chosen
in multiple ways. A common choice is to set χ a discretized centered Gaussian
distribution with variance αq, for some small parameter α (typically chosen as an
inverse polynomial function of n); this is generally denoted DZq,αq. For more details
on LWE and its applications, we refer to the survey [26].

7.2. Construction. To specify the function f we describe how public and private
parameters for the function are chosen. Let λ be the security parameter (i.e. the
number 2λ is thought of as an estimate of the time required to break assumptions
such as (HC)).

First, integers n,m and a modulus q are chosen such that n = Ω(λ), q ≥ 2 is
a prime, and m = Ω(n log q). Then, a matrix A ∈ Zm×nq is sampled at random,

26Computational hardness only makes sense as the input size goes to infinity, which is why to
be precise we should consider a family of distributions, parametrized by an integer λ, and argue

that the samples become harder and harder to distinguish as λ→∞.

VERIFYING QUANTUM COMPUTATIONS 35

together with a “trapdoor” in the form of a matrix R ∈ Z`×mq , where n ≤ ` ≤ m
is a parameter. The sampling procedure has the property that the distribution of
A is statistically close to uniform, and R is such that G = RA ∈ Z`×nq is a “nice”
matrix, in the sense that given b = Gs + e, for any s ∈ Znq and e small enough,

it is computationally easy to recover s.27 That such a sampling procedure would
exist and be efficiently implementable is non-trivial, and relies on the underlying
lattice structure given by the columns of A; see [25]. Finally, a uniformly random
s ∈ {0, 1}n, and a random e ∈ Zmq distributed according to DZq,αq with α of order

1/(
√
mn log q),28 are sampled. The public information is (A, y = As + e). The

private information is the pair (R, s).
Next, we discuss how the function can be evaluated, given the public parameters

(A, y). We define two functions f0, f1 that should be understood as f(0‖·) and
f(1‖·) respectively. For b ∈ {0, 1} the function fb takes as input an x ∈ Znq (that
can be seen as an element of Zwn2 for w = dlog qe) and returns Ax + e′ + by,
which is an element of Zmq ⊆ Zwm2 . Here, e′ is a vector sampled at random from
a distribution DZq,α′q such that α′ is “much larger” than α. The inclusion of e′

makes f a “randomized” function, which is the main way in which the construction
differs from the requirements expressed in Section 6. A formal way around this is
to think of fb as the function that returns not Ax + e′ + by, but the distribution
of Ax + e′ + by, when e′ ∼ DZq,α′q and all other variables are fixed. In practice,
the evaluation of f on a quantum computer (as required of the honest prover in
the verification protocol) involves preparing a weighted superposition over all error
vectors, and computing the function in superposition.

We would, of course, rather do away with this complication. Why is the error
vector necessary? It is there to satisfy the important requirement that the functions
f0 and f1 are injective with overlapping ranges, i.e. Assumption (2TO1). Injectivity
follows from the existence of the trapdoor for A and an appropriate setting of
the standard deviation of the error distribution, which guarantee that (given the
trapdoor) x can be recovered from Ax+e′+by (with high probability over the choice
of e′). To make the function ranges overlap, we need the distribution of Ax+ e′ to
have the same support as the distribution of Ax′+e′+y = A(x′+s)+(e′+e). The
first distribution considers an arbitrary vector in the column span of A, shifted by
e; the second considers the same, except that the shift is by (e′ + e). For the two
distributions to (almost) match, we need the distribution of e′ to (almost) match
the distribution of e+e′. This is possible as long as the standard deviation σ′ = α′q
is substantially larger than the standard deviation σ = αq; provided this holds it is
an exercise to compute the statistical distance between the two Gaussian and verify
that it can be made very close to 1.

With this important caveat in place, we have specified the function f and verified
property (2TO1). Property (T) follows from the existence of the secret information
(R, s). Given a b ∈ {0, 1} and an element c = Ax+ e′ + by = A(x+ bs) + (e′ + be)
in the range of fb it is possible to use the trapdoor matrix R to recover x+ bs and
subtract bs to deduce the preimage x of c under fb.

27One can think of G as a matrix whose rows are almost orthonormal, so that Gaussian

elimination on G induces only small propagation of the errors.
28The precise choice of α is delicate, and the parameters given here should only be treated as

indicative; we refer to [9, Section 8] for the right setting of parameters.

36 THOMAS VIDICK

The two remaining properties, the collapsing property (C) and the hardcore bit
property (HC), require more work, and we refer to [9] for a detailed exposition.
We remark that the two properties are not entirely new. Property (C) was been
introduced by Unruh as a strengthening of the classical property of collision re-
sistance required for his work on the security of commitment protocols that are
computationally binding against quantum adversaries [31]. Similar “hardcore bit”
properties to (HC) have been shown for many LWE-based cryptographic schemes
(see e.g. [4]). Usually the property states that “for any vector t ∈ Znq \{0}, the
value t · s ∈ Zq is indistinguishable from uniform, even given a sample (A,As+ e)”.
Our property (HC) is subtly stronger, in that the adversary may choose the vector
t itself, possibly as a function of the sample (A,As + e). An additional difficulty
stems from the specific “bit” that the adversary predicts in our setting. In the
definition of Assumption (HC) this bit is the value u = t · (r0⊕ r1), where r0, r1 are
the binary representation of the two preimages in Znq , x0 and x1 = x0 − s, of the
prover’s commitment string c ∈ Zmq . (Recall that the use of the binary represen-
tation came from the requirements on the honest prover, that is asked to perform
a measurement in the Hadamard basis, yielding a binary string of outcomes.) It
is in order to complete the argument showing that a procedure that returns the
information asked for in Assumption (HC), i.e. the quadruple (c, r, u, t), can be
turned into a procedure that breaks the decisional LWE assumption, that we need
to assume that the secret vector s is a binary vector. The result is a somewhat
roundabout construction that we may hope will be simplified in future work.

Acknowledgments. I am indebted to Urmila Mahadev for numerous conversa-
tions that helped clarify her work. I thank Victor Albert, Alexandru Georghiu,
Urmila Mahadev and Oded Regev for comments on earlier versions of these notes.

References

1. Scott Aaronson and Andris Ambainis, Forrelation: A problem that optimally separates quan-

tum from classical computing, SIAM Journal on Computing 47 (2018), no. 3, 982–1038.

2. Dorit Aharonov, Micahel Ben-Or, and Elad Eban, Interactive Proofs For Quantum Compu-
tations, Arxiv preprint arXiv:0810.5375 (2008).

3. Dorit Aharonov and Ayal Green, A quantum inspired proof of P#p ⊆ IP , arXiv preprint
arXiv:1710.09078 (2017).

4. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan, Simultaneous hardcore bits and

cryptography against memory attacks, Theory of Cryptography Conference, Springer, 2009,

pp. 474–495.
5. László Babai, Trading group theory for randomness, Proceedings of the seventeenth annual

ACM symposium on Theory of computing, ACM, 1985, pp. 421–429.
6. Francisco Barahona, On the computational complexity of ising spin glass models, Journal of

Physics A: Mathematical and General 15 (1982), no. 10, 3241.

7. Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes
Pichler, Soonwon Choi, Alexander S Zibrov, Manuel Endres, Markus Greiner, et al., Probing

many-body dynamics on a 51-atom quantum simulator, Nature 551 (2017), no. 7682, 579.

8. Manuel Blum, Coin flipping by telephone a protocol for solving impossible problems, ACM
SIGACT News 15 (1983), no. 1, 23–27.

9. Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas Vidick,

Certifiable randomness from a single quantum device, arXiv preprint arXiv:1804.00640 (2018).
10. Zvika Brakerski and Vinod Vaikuntanathan, Efficient fully homomorphic encryption from

(standard) lwe, SIAM Journal on Computing 43 (2014), no. 2, 831–871.

11. Gilles Brassard, David Chaum, and Claude Crépeau, Minimum disclosure proofs of knowledge,
Journal of Computer and System Sciences 37 (1988), no. 2, 156–189.

VERIFYING QUANTUM COMPUTATIONS 37

12. Anne Broadbent, Joseph F. Fitzsimons, and Elham Kashefi, Universal blind quantum com-

putation, Arxiv preprint arXiv:0807.4154 (2008).

13. Ran Canetti and Marc Fischlin, Universally composable commitments, Annual International
Cryptology Conference, Springer, 2001, pp. 19–40.

14. Toby Cubitt and Ashley Montanaro, Complexity classification of local hamiltonian problems,

SIAM Journal on Computing 45 (2016), no. 2, 268–316.
15. Richard P Feynman, Simulating physics with computers, International journal of theoretical

physics 21 (1982), no. 6-7, 467–488.

16. Joseph F Fitzsimons, Michal Hajdušek, and Tomoyuki Morimae, Post hoc verification of
quantum computation, Physical review letters 120 (2018), no. 4, 040501.

17. Alexandru Gheorghiu, Theodoros Kapourniotis, and Elham Kashefi, Verification of quantum

computation: An overview of existing approaches, arXiv preprint arXiv:1709.06984 (2017).
18. Shafi Goldwasser, Silvio Micali, and Charles Rackoff, The knowledge complexity of interactive

proof systems, SIAM Journal on computing 18 (1989), no. 1, 186–208.
19. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee, Attribute-based encryption for

circuits, Journal of the ACM (JACM) 62 (2015), no. 6, 45.

20. Rishab Goyal, Venkata Koppula, and Brent Waters, Lockable obfuscation, Foundations of
Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on, IEEE, 2017, pp. 612–

621.

21. , Collusion resistant traitor tracing from learning with errors, Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, ACM, 2018, pp. 660–670.

22. Joe Kilian, A note on efficient zero-knowledge proofs and arguments, Proceedings of the

twenty-fourth annual ACM symposium on Theory of computing, ACM, 1992, pp. 723–732.
23. Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan, Algebraic methods for in-

teractive proof systems, Journal of the ACM (JACM) 39 (1992), no. 4, 859–868.
24. Urmila Mahadev, Classical verification of quantum computations, arXiv preprint

arXiv:1804.01082 (2018).

25. Daniele Micciancio and Chris Peikert, Trapdoors for lattices: Simpler, tighter, faster, smaller,
Annual International Conference on the Theory and Applications of Cryptographic Tech-

niques, Springer, 2012, pp. 700–718.

26. Chris Peikert et al., A decade of lattice cryptography, Foundations and Trends R© in Theoretical
Computer Science 10 (2016), no. 4, 283–424.

27. Ran Raz and Avishay Tal, Oracle separation of BQP and PH, Electronic Colloquium on

Computational Complexity (ECCC), vol. 25, 2018, p. 107.
28. Oded Regev, On lattices, learning with errors, random linear codes, and cryptography, Journal

of the ACM (JACM) 56 (2009), no. 6, 34.

29. Ben W Reichardt, Falk Unger, and Umesh Vazirani, Classical command of quantum systems,
Nature 496 (2013), no. 7446, 456.

30. A. Shamir, IP= PSPACE, Journal of the ACM (JACM) 39 (1992), no. 4, 869–877.

31. Dominique Unruh, Computationally binding quantum commitments, Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2016,

pp. 497–527.
32. Daniel Wichs and Giorgos Zirdelis, Obfuscating compute-and-compare programs under LWE,

2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), IEEE,

2017, pp. 600–611.

California Institute of Technology, Pasadena CA 91106, USA
E-mail address: vidick@cms.caltech.edu

