
UCSD Summer school notes

The quantum circuit model

1 Introduction

In the previous lecture you saw the basics of quantum information, including the definition of quantum states
and unitary evolution. From the point of view of computation there are multiple questions that are raised by
the physical model:

• Quantum states and Hamiltonians are described by complex parameters. Can the description of a
quantum state, and a quantum evolution, be efficiently discretized in a way that errors do not accumu-
late too much?

• How do we make sense of the “complexity” of a given Hamiltonian, or the associated unitary evo-
lution, in terms of the computations it can implement? How do we even associate a computational
problem to a Hamiltonian?

• Is it possible to define a universal notion of “efficient quantum computation”, similar to the classical
Turing machine, or is it necessary to take into account the details of the physical system that is used
to implement the evolution? Is there a “universal Hamiltonian” whose evolution can emulate the
evolution of any other Hamiltonian, as a function of the initial conditions?

• Quantum evolution is unitary, and in particular reversible. Classical computation is not reversible
(think of the AND gate). Is reversibility a significant restriction? Can any classical circuit be made
reversible? If so, with what overhead?

One of the messages that we aim to carry across during these few days is that there is a unique notion of
universal quantum computation (analogous to the universal Turing machine), but there are many restricted
models of quantum computation. Some of these models may be universal, but many are not. These models
are often motivated by specific physical implementations, the hope being that they might be easier to realize
than a full-blown universal quantum machine. While not being universal, restricted models may still allow
for efficient quantum algorithms for classes of problems for which we have no classical algorithms. The
diversity of these models makes quantum computation, and quantum algorithms, a much more rich area
than you might think!

Deutsch is the first to have considered the notion of a quantum Turing machine (QTM) [Deu85].
Deutsch’s paper is a great read, and reminds us of the shock that the introduction of quantum computa-
tion might have brought to computer science — in particular, Deutsch discusses the significance of quantum
computers for the, at the time widely accepted, Church-Turing thesis.

1



Deutsch proved that there exists a universal QTM: a fixed machine that has the ability to simulate any
other QTM. Deutsch even showed the machine could in principle simulate the evolution of any physical pro-
cess (as long as it follows the laws of quantum mechanics!), thus laying the basis for his “physical Church-
Turing thesis”. However, Deutsch’s simulation was not efficient. The first to show efficient simulation were
Bernstein and Vazirani, in a paper that lay the foundations of quantum complexity theory [BV97]. One of
the most striking results in that paper is an oracle separation between BPP and BQP (a class introduced in
that paper). This is called the Bernstein-Vazirani algorithm, and we’ll discuss it later.

If you think that classical TMs are unwieldy, well, I’ll let you imagine what a quantum TM could look
like... The model plays an important foundational role, but in practice the most convenient model to work
with is the quantum analogue of the circuit model, with gates acting on qubits, etc.

As quantum Turing machines, quantum circuits were also first introduced by Deutsch, who called them
“Quantum computational networks” [Deu89]. Deutsch introduced the notion of a quantum gate; in par-
ticular, he saw the importance of reversibility and showed that any classical circuits could be made into a
quantum one. Yao [Yao93] later showed that quantum circuits are just as powerful as QTMs: for any QTM,
input size n, and bound t on the running time of the QTM for inputs of size n, there is a circuit of size poly-
nomial in n and t that computes the same function. (In the same paper Yao initiated the study of quantum
communication complexity, a wonderful area on which we’ll unfortunately say very little.)

The goal of this lecture is to introduce quantum gates and quantum circuits, discuss universality of gate
sets, and define the class BQP.

Readings. There are many excellent introductions to the topic, so we won’t be exhaustive in the notes; a
good starting point is the book [KSV02]. A good source for definitions of quantum complexity classes, such
as BQP and many others, is [Wat09].

2 Quantum circuits

2.1 n qubits

The first thing we need is an appropriate state space. We’re all familiar with the notion that a classical
circuit operates on n bits: the state space for the circuit is {0, 1}n. Similarly, a quantum circuit will operate
on n qubits. As we saw in the previous lecture, the state space for two qubits is the tensor product of
two copies of the state space for a single qubit, C2 ⊗ C2 = C4. If we repeat this operation n times we
get C2 ⊗ · · · ⊗ C2 = (C2)⊗n = C2n

. Thus a quantum circuit operates on unit vectors in C2n
, a space

of exponential dimension! Note that by itself this is not such an extraordinary fact, as the state space
associated with n bits also has exponential cardinality. The main difference of course is that n qubits can be
in the state |x〉 for any x ∈ {0, 1}n, but also 1√

2
(|x〉 − |y〉), etc. (Note the “−” sign: superpositions are not

distributions!)
We’ll usually take the initial state of a quantum circuit to be the state |0n〉 = |0〉⊗ · · · ⊗ |0〉. Sometimes

we’ll also assume the circuit has an input |x〉 written on some of the qubits, so the input state may look
something like |x〉|0〉, where x is on n qubits, and there are m zero qubits, that we call “ancilla” qubits.
Note the omission of the “⊗” symbol, which is regularly omitted for ease of notation.
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2.2 Reversible computation

Now that we have a state space we want to act on it! A first step might be to check that we understand how
to apply a classical circuit using the quantum notation.

For example, if the circuit just has the simplest gate, a NOT gate, this is just the operation NOT: |0〉 7→
|1〉, |1〉 7→ |0〉. Do you recognize this? It is the Pauli σX operation. This operation is unitary, and so we can
apply it to a qubit. Now, we might want to apply this to a qubit that is part of a bigger state space of n qubits.
It will look like this: NOTi : |x〉 7→ |x′〉, where x′ is like x but with the i-th bit flipped. We can write this
gate σx(i) = Id⊗σx ⊗ Id, where the first Id is in fact a tensor product of (i− 1) 2× 2 identities on (i− 1)
qubits, and the second is on (n− i) qubits. Make sure you understand how to write this as a matrix! Start
with n = 2.

So far so good. Now what about the AND gate. Well, this should act as

AND : |00〉 → |0〉, |01〉 → |0〉, |10〉 → |0〉, |11〉 → |1〉 . (1)

Do you notice any problem? There are tons of problems! As you now know all quantum operations are
unitary. A necessary condition for being a unitary is to be invertible, but the map above is not injective.
So (1) doesn’t make much sense as a quantum operation. Unfortunately most classical gates, such as AND
or OR, are not reversible. Any idea how to deal with this?

Here’s a trick: any classical gate that maps two bits to one bit can be made reversible, by leaving the
input unchanged, but instead writing the output in a third, ancilla register:

AND : |x〉|y〉|c〉 7→ |x〉|y〉|(x ∧ y)⊕ c〉 ∀x, y, c ∈ {0, 1}. (2)

Can you prove that this is reversible? (Hint: apply it twice.) Note it is important that we XOR-ed the output
in the third register, instead of just “writing it” there. We wouldn’t be allowed to overwite c, because then
information would be lost and the map wouldn’t be reversible.

Note how our reversible AND (2) now is a 3-qubit gate. In fact you can show that this is necessary.

Exercise 1. Show that two-bit reversible gates are not universal for classical computation. (Hint: show that
any n-bit classical circuit made of two-bit reversible gates implements a linear transformations over Fn

2 .)

But three-bit gates are enough. For example, the Toffoli gate (also called CCNOT) is a specific gate that
is universal for classical computation. This gate simply XOR’s a 1 in the third input if and only if the first
two inputs equal 1: it is precisely our reversible AND in (2)! (Exercise: write the Toffoli gate as an 8× 8
unitary matrix.)

2.3 Quantum gates

We now understand how to implement any n-bit classical circuit as a sequence of three-qubit unitary (in
fact, permutation) gates acting on n qubits. But unitaries can do more things than permutations. What is a
good example? The Hadamard transformation! As a single-qubit gate, this implements

H : |0〉 7→ 1√
2

(
|0〉+ |1〉

)
, |1〉 7→ 1√

2

(
|0〉 − |1〉

)
.

More succinctly, we can write

H : |x〉 7→ 1√
2

∑
y∈{0,1}

(−1)xy|y〉 , ∀x ∈ {0, 1} .
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Does this formula look anything familiar? Fourier transform! So that’s already a funny thing that a quantum
circuit can do: if you act on every single qubit using a H gate, then you have a circuit of depth 1 that
implements the Fourier transform over Fn

2 ,

H⊗n : |x〉 7→ 1√
2n ∑

y∈{0,1}n

(−1)x·y|y〉 , ∀x ∈ {0, 1}n .

Note how this map does something really weird, which is to compute a global function of the whole input
— the inner product with any given string y — and then stores it in the phase. Just because it depends on all
bits of the input, the best classical circuit for computing inner products would have depth log n. It may not
be immediately obvious if doing this in the phase of a superposition is going to be any useful — but believe
me, it is, and we’ll see how to take advantage of the quantum Fourier transform for algorithms in the next
lecture.

Generalizing from this example, we can define a notion of single-qubit and two-qubit gates: respectively,
a 2× 2 and a 4× 4 unitary matrix U, that can be applied on any one or two out of n qubits by considering
the larger unitary U ⊗ Id. Note for the case of two-qubit U this is a bit tricky, as the two qubits may not
be right next to each other. Make sure you understand what U ⊗ Id looks like as a matrix if, for example,
U is a CNOT gate acting on qubits 1 and 3 out of a 3-qubit system. In practice, we generally won’t have
to explicitly compute such matrices. Instead, we will work directly with circuit representations, with a wire
for each qubit — exactly the same as for classical circuits.

Here is an example of a two-qubit gate: the CNOT gate, that flips the second qubit if and only if the first
qubit is 1. More precisely, CNOT: |x〉|y〉 7→ |x〉|x⊕ y〉. Note that this is in fact a classical gate. Make sure
you know how to write it as a 4× 4 matrix.

2.4 Quantum circuits

Given a finite set of allowed gates {U1, . . . , Uk} we can now define a notion of a circuit C over this gate
set. By definition a circuit implements a global unitary transformation. Do all unitaries have a circuit
representation? Obviously this will depend on the choice of gate set: for example, if there are only single-
qubit gates the circuit maps product states to product states, which is not fully general. Moreover, it’s clear
that for any finite gate set, there are many unitaries that cannot be expressed as a product of gates taken from
that set: while there is a continuous number of unitaries, the set of unitaries that we can express using our
finite gate set is only countable.

So what if we allow approximation? To answer this we first need to select a proper notion of approxima-
tion. It is natural to bound ‖U−U′‖ = sup|ψ〉 ‖(U−U′)|ψ〉‖: this is just the operator norm. If ‖U−U′‖
is small then the two unitaries have approximately the same effect on any state. This is true even when the
unitary acts only on a subset of the qubits, as ‖U ⊗ Id−U′ ⊗ Id ‖ = ‖U −U′‖.

Unfortunately, by a simple counting argument we can see that whatever set of elementary gates that we
allow, as long as it is finite some unitaries will, at best, require a lot of gates to approximate: the space
of n-qubit unitaries has dimension roughly (2n)2 (a bit less), and Schroedinger’s equations allows any one
of them to be counted as a possible quantum evolution, at least in principle. However, by simple volume
estimation the size of an ε-net over that space, for any reasonable measure of distance, will be of order
(1/ε)2Θ(n)

. But the number of circuits involving at most k gates, each acting on at most 2 qubits, and taken
from some finite gate set of size C, is only of order C(k

2) (at each step, choose a gate and the two qubits for it
to act on). This means that to reach any n-qubit unitary, even up to constant accuracy ε, will require circuits
of exponential size, k = 2Ω(n).
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But all this is a necessary condition. We care about sufficiency. Is it the case that any n-qubit unitary
be approximated to within ε by a finite circuit made of 1 and 2-qubit gates? The answer is yes, but we
won’t show it explicitly; you can find a proof in the book [KSV02]. It is not difficult to show; the idea is
just to decompose any big unitary into a product of simpler operations — in a similar flavor as one finds
decompositions such as LU by Gaussian elimination.1 In fact, it is known that all single-qubit gates, plus
CNOT, are sufficient, so these gates form what is called a universal gate set.

Remark 2. How is an abstract circuit implemented physically? One way to think about this is that the device
has a giant quantum memory, that holds the n qubits in a coherent state. Then whenever a gate U is to be
applied to a pair of qubits, the two qubits are copied outside of the box and into a special “chamber” in
charge of applying the gate. Then in that chamber one can “turn on” a Hamiltonian H, such as a specific
magnetic field, for a fixed amount of time t, such that eiHt ≈ U. Then the two qubits are copied back into
memory, and the process can continue with the next gate. Although this description is probably not entirely
accurate, it gives a good idea why it is so hard to construct a quantum computer: it is the interaction between
the quantum memory and the device performing the quantum evolution that is particularly delicate.

2.5 The Solovay-Kitaev theorem

What we have seen so far is that there is a well-defined notion of universality: as long as we consider a
set of single- and two-qubit gates from which one can construct an arbitrarily good approximation to any
single-qubit gate, and that includes the CNOT gate, then the gate set is universal, i.e. it can approximate
arbitrarily well any n-qubit unitary (as long as the error per gate is made much smaller than the total number
of gates in the circuit, so that errors don’t add up to too much).

Unfortunately there is a potential catch in this argument, because the number of gates required still
depends on how efficiently the set allows to approximate a single unitary, and this could vary wildly from
one set to another. If, for example, getting ε-close required 21/ε elementary gates, given that we need ε to
scale with the size of the final circuit this wouldn’t be at all efficient! The Solovay-Kitaev theorem shows
that can never be the case: any finite set of gates that generates a dense subset of U(2), the group of all
2× 2 unitary matrices, does so efficiently. More precisely:

Theorem 3 (Solovay-Kitaev ’97). There is a constant c such that for any gate set G such that 〈G〉 is dense
in SU(2) and G is closed under inverse, for any ε > 0 there is an ` = O(logc(1/ε)) such that G` is an
ε-net in SU(2).

The best exponent currently known to hold for all gate sets is c = 3.97. For specific gate sets it is known
how to get the exponent down to 1. (Information-theoretically, any inverse-closed dense set gets exponent
1.) This is relevant for quantum compilers, that aim to decompose an arbitrary unitary in as small a sequence
of gates as possible.

Note the requirement that the gate set is closed under inverses. This seems to be required for the proof,
but it is an open question if the theorem still holds without that condition. (See [BO17] for recent progress.)

Note also the theorem makes a statement about SU(2) only. SU(2) is the group of unitaries with
determinant 1; equivalently, it is U(2) modulo phase. There is a good reason for this, as the theorem is false
for U(2). The problem is that a global phase cannot be approximated efficiently enough. Try it: the best
you can do is use continued fractions, and that may require a number of gates that scales like 1/

√
ε, not

log(1/ε). But this is ok, because quantum operations are only defined up to a global phase.

1Beware though that it is in fact really quite different: tensor products of matrices behave very differently from direct sums, so
one has to be very careful in trying to apply any intuition one might have about the latter to the former.
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While the theorem states existence, we really care about an efficient algorithms. This also exists, and
comes out from the proof. See the book [KSV02], or [DN05] for a self-contained proof, or [Ozo09] for a
more modern exposition.

2.6 Universal gate sets

A gate set is universal if it is closed under inverse and generates a dense subset of SU(2). This allows us to
apply Theorem 3, and adding in the CNOT gate gives a universal set. What gates one chooses depends on the
“hardware”, or on what operations one finds convenient to have as elementary building blocks, depending
on the application. A popular set is the Hadamard and the π/8 gate (also called T gate), given by

H =
1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 eiπ/4

)
.

It is possible to have a universal set made of just a single gate: Deutsch’s 3-qubit CTL-CTL-R gate, where
R is a rotation along a particular angle θ such that θ/π is irrational.

A useful classification of unitary operations in terms of their power for computation is as follows. At the
bottom level we have the Pauli operations, which are all tensor products of single-qubit unitaries taken from
{Id, σX, σY, σZ}. These form a group called the Pauli group P . At the first level we have what are called
Clifford gates: these are all unitaries U such that UPU† ∈ P for all P ∈ P . This is again a group, called
the Clifford group C. Then at the second level we have unitaries that conjugate Cliffords to Cliffords, etc.

It is known that any circuit made only of Clifford gates can be efficiently simulated classically, so it
is not universal. This is known as the Gottesman-Knill theorem. It is an interesting result because the
reason the circuits can be simulated efficiently is not because they do not create entanglement; indeed, a
Hadamard and a CNOT, which are both Clifford gates, can generate very complex kinds of entangled states,
such as any number of EPR pairs between any pairs of circuits. Instead, the Gottesman-Knill theorem relies
on representing quantum states using the Stabilizer formalism, a topic we will return to when we discuss
quantum error correction.

As soon as one non-Clifford gate is added to the 2-qubit Clifford group, we get a universal gate set.

Exercise 4. Verify that the H and CNOT gates are Clifford gates, but the T gate is not.

2.7 Principle of deferred measurement

We have not discussed measurements yet. Our convention has been that a circuit is made of a sequence of
single-qubit and two-qubit unitary gates. The circuit acts on n + m qubits, the first n of which contain the
input |x〉 and the remaining m are initialized to |0〉. The output of the circuit is determined by measuring
one (or more) specially designated output qubits in the computational basis.

What if we would like to make intermediate measurements? Or introduce ancilla qubits in the middle of
the computation? Neither of these operations can be modeled as a unitary gate. Rather, both measurements
and introduction of ancilla can be represented as trace-preserving completely positive (TPCP) maps. The
exact definition of a TPCP map would take us too far; suffice it to say that it captures the most general
operation allowed by quantum mechanics — it allows to express unitary evolution, measurements, and
creation of qubits in the same formalism.

To keep the discussion simple let’s consider the case of a measurement in the computational basis: if
|ψ〉 = α|0〉 + β|1〉, this returns 0 with probability |α|2 and 1 with probability |β|2. Here is an alternate
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description of the same operation: initialize an ancilla to |0〉, apply a CNOT from the computational qubit
to the ancilla, and measure the ancilla. The CNOT accomplishes

(α|0〉+ β|1〉)|0〉 7→ α|0〉|0〉+ β|1〉|1〉 .

So measuring the ancilla gives the same outcome distribution as measuring the computational qubit. More-
over, the computational qubit is automatically projected in the same state as it would have had it been
measured. Since no operation is performed on the ancilla, it can be measured at the end of the circuit, to the
same effect. And the computation can be continued on the computational qubit, right after the CNOT.

This argument shows that any intermediate measurement can be simulated by adjoining a single ancilla
qubit, and replacing the measurement gate by a CNOT from the computational qubit to the ancilla. Nothing
needs to be done to the ancilla! It can be measured at the end of the circuit, or not, since we don’t do
anything with the outcome.

Thus, at the expense of increasing the space complexity of the circuit we can always assume a circuit is
unitary. But if we consider space-bounded computation?

Open Question 5. Characterize the power of log-space quantum computation. If intermediate measure-
ments are not allowed then [FL16] gives complete problems for “unitary quantum logspace”. Currently we
don’t know any problems that can be solved in quantum logspace with intermediate measurements, and not
without. Note that Watrous [Wat03] shows that quantum log(n)-space (including intermediate measure-
ments) is included in classical randomized log2(n)-space.

3 The class BQP

Given a quantum circuit Q acting on n + m qubits, we say that “Q accepts input x with probability p” if the
probability of obtaining the outcome 1 after a measurement in the computational basis of the output qubit
of Q on input |x〉 is p.

Definition 6. We say that a language L = (Lyes, Lno) is in BQP if there exists a family of polynomial-time
generated quantum circuits {Qn}n∈N such that for all integer n and x ∈ {0, 1}n, if x ∈ Lyes then Qn

accepts x with probability at least 2
3 , and if x ∈ Lno then Qn accepts x with probability at most 1

3 .

Note the requirement that the family {Qn} is polynomial-time generated. This means that there exists a
classical Turing Machine that on input 1n runs in time poly(n) and returns a description of Qn as a sequence
of gates taken from a fixed universal set.

The definition of BQP sets arbitrary values 2/3 and 1/3 for the completeness and soundness parameters.
Error amplification works just as for the case of BPP, by repeating the circuit sequentially. This requires
intermediate measurements, but we have seen that these could be postponed till the end of the computation.
This requires ancilla qubits, so the state space increases. In fact, it is also known how to perform “in place”
amplification, without increasing the number of ancilla. As a result, any choice of a, b such that a− b >
poly−1(n) gives the same definition: for any such a, b, and for any fixed polynomial q, BQP(a, b) =
BQP = BQP(1− 2−q, 2−q).

Exercise 7. Show that BQP is included in PP, the class of languages for which there exists a probabilistic
Turing machine that accepts YES inputs with probability > 1/2, and rejects NO inputs with probability
> 1/2. (Hint: first show inclusion in PSPACE by giving space-efficient implementations of basic linear
algebra operations. Inclusion in PP follows from similar arguments, but is a bit more delicate.)
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The class PP lies outside of the polynomial hierarchy. The most commonly-held belief is that the
intersection of BQP and PH is non-trivial: it is neither BPP, nor PH itself. There are candidate oracle
problems that are in BQP, but are not believed to be in PH: see [Aar10, FU15].
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