
CS286.2 Lecture 16: 3-player entangled games and the role of
monogamy

Scribe: Brenden Roberts

Recall Tsirelson’s theorem, which we saw last time. The strong equivalent characterizations of bipartite
quantum correlations it establishes provide an alternative characterization of the entangled value of XOR
games, which as we saw takes the form ω?(G) = τ(G) + 1

2 β?(G), where τ(G) is the win probability
of a strategy of random answers by the players and β?(G) the bias acquired from entanglement. Using
Tsirelson’s theorem, we were able to express the bias in the form

β?(G) = sup
xs,yt∈Rn+2,‖xs‖=‖yt‖=1

E
(s,t)∼π

gs,t xs · yt,

which is a far more tractable formulation. In fact, it leads to an efficient computation algorithm. We show
that we may rewrite

β?(G) = sup
Z∈R2n×2n

Z≥0
Zii=1 ∀ i

Tr(ĜZ), Ĝ =
1
2

[
0 (gs,t)

(gs,t)> 0

]
(1)

The direction ≤ follows by choosing the specific

Z =

[
xs
yt

]
·
[
xs yt

]
,

which clearly satisfies all of the conditions on Z. Conversely, any real positive semidefinite Z has a factor-
ization Z = W>W. If [xs] are the first n columns of W and [yt] the last n columns, we recover our unit
vectors.

Recall the concept of a linear program (LP), in which one seeks to optimize a linear objective function
under a given set of linear constraints on the variables. Symbolically, an LP can be written as

min
n

∑
i=1

cixi subject to xi ∈ R

xi ≥ 0
Ajx = bj, j = 1, . . . , n,

where ci ∈ R, Aj ∈ Rn×n, bj ∈ Rn×1 for all i, j. An LP is solvable in poly time. A broader class
of optimization problems that we know how to efficiently solve are semidefinite programs (SDP). In an
SDP the objective function remains linear, but the constraints are allowed to include positive semidefinitess
constraints on matrix variables. An SDP takes the form

min Tr(CZ) subject to Z ∈ Rn×n

Z ≥ 0
Tr(AjZ) = bj, j = 1, . . . , n.
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Note that in case C and all the Aj are diagonal matrices the optimal Z can also be taken to be diagonal, and
the SDP becomes an LP. The expression of β?(G) given in (1) is an example of an SDP: optimization of a
linear function, with PSD constraints. It can be solved to within additive error ε in time poly(n, log 1/ε).
This observations has a complexity-theoretic consequence on the computability of β?(G). In order to ex-
plain it, introduce the following complexity class:

Definition 1. For any c < s,
⊕

MIPlog(c, s) is the set of all languages L such that there exists a poly time
mapping from x to an XOR game Gx such that

• x ∈ L =⇒ ω(Gx) ≥ c,

• x 6∈ L =⇒ ω(Gx) ≤ s.

The class
⊕

MIP?
log(c, s) is defined equivalently, replacing ω(Gx) by ω?(Gx).

Theorem 2 (Håstad). There exists constants s < c (e.g., c = 12
16 , s = 11

16 + ε) such that NP =
⊕

MIPlog(c, s).

Theorem 3 (CHTW). For all s < c such that c− s > 1
2n ,
⊕

MIP?
log(c, s) ⊆ P.

We saw last time, using the example of MAXCUT, that exact solutions for unentangled XOR games are
NP-hard. Theorem 2 shows that even approximation remains NP-hard. However, for this class of games,
entanglement has a drastic collapsing effect: in the entangled case XOR games prove to be too easy to be
interesting. A better class of games is one for which computing the quantum value is NP-hard.

In order to obtain an interesting hardness result for ω? we extend beyond the class of XOR games by
considering 3-player games. As an example, consider the following 3-player variant of the magic square.
Recall first the 2-player magic square game:

+1 +1 -1

+1

+1

+1 A B

R
check parity, consistency

|ψ〉

row/column single entry

We saw that players sharing entanglement could win with probability 1: ω?(MS2) = 1. The proof
relies on:

1. A “quantum assignment” (4 × 4 Hermitian matrices that square to Id) X1, . . . , X9 to the entries,
satisfying the appropriate parity constraints (X1X2X3 = +I, etc.)

2. The shared quantum state |ψ〉 is the maximally entangled state on C4 ⊗C4, and in particular it holds
that for any A, B,

〈ψ|A⊗ B|ψ〉 = 1
4

Tr(AB).
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A 3-player XOR game MS3 can be constructed in a natural way from MS2. The referee chooses a row or
column at random, then asks each of the three players A, B, C for distinct entries and checks the parity of
the answers. This game is completely symmetric in the players. It is clear that if one can obtain a tripartite
|φ〉 ∈ C4 ⊗C4 ⊗C4 satisfying 〈φ|A⊗ B⊗ C|φ〉 = 1

4 Tr(ABC), then using the same ingredients as above
it would follow that ω?(MS3) = 1.

However, we claim that ω?(MS3) < 1. The intuitive reason is the monogamy of entanglement: in the
three-player game, the quantum correlations required to win have to be “diluted” between the three players.
And there simply does not exist a tripartite analogue of the strong correlations that are provided by the
bipartite maximally entangled state – as we now demonstrate.

Assume for the sake of contradiction that we have both: observables X1, . . . , X9, which are the same for
all of A, B, C; and a quantum state |ψ〉 ∈ Cd ⊗Cd ⊗Cd, for some d, which give ω?(MS3) = 1. Then it
must be the case that the following equalities all simultaneously hold:

〈ψ|X1 ⊗ X2 ⊗ X3|ψ〉 = +1
... = +1

〈ψ|X3 ⊗ X6 ⊗ X9|ψ〉 = −1.

Since ‖Xi‖ ≤ 1 for every i ∈ {1, . . . , 9}, this implies

X1 ⊗ X2 ⊗ X3|ψ〉 = |ψ〉
...

X3 ⊗ X6 ⊗ X9|ψ〉 = −|ψ〉

We may multiply the operators Xi however we wish. Using the above, together with the fact that Xi
2 = I

for i = 1, . . . , 9,

X1 ⊗ I⊗ I|ψ〉 = I⊗ X2 ⊗ X3|ψ〉 (row 1)
= X5 ⊗ I⊗ X3X8|ψ〉 (column 2)
= X5X7 ⊗ X9 ⊗ X3|ψ〉 (row 3)

X1 ⊗ I⊗ I|ψ〉 = I⊗ X4 ⊗ X7|ψ〉 (column 1)
= X5 ⊗ I⊗ X6X7|ψ〉 (row 2)
= −X5X3 ⊗ X9 ⊗ X7|ψ〉 (column 3)

Multiplying by the inverse of X5 ⊗ X9 we thus obtain

X7 ⊗ I⊗ X3|ψ〉 = −X3 ⊗ I⊗ X7|ψ〉

By symmetry, this anticommutation-like property extends to any pair of registers, and we can write

X7 ⊗ X3 ⊗ X3|ψ〉 = −X3 ⊗ X7 ⊗ X3|ψ〉 = X3 ⊗ X3 ⊗ X7|ψ〉 = −X7 ⊗ X3 ⊗ X3|ψ〉

Because observables are invertible, we find |ψ〉 = −|ψ〉, which is a contradiction. By going through
the same proof but keeping track of approximations a more quantitative result can be obtained, bounding
ω?(MS3) away from 1 by some constant — though we do not know what the optimal value ω?(MS3) is.
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A B C

R

w.p. 1
2 ,

{
play CHSH with A, B
play CHSH with B, C

EPR EPR

For an even more striking example of the confounding effect of adding a player to an XOR game, we
revisit the CHSH game. Consider the following 3-player variant of the CHSH game. The referee simply
chooses at random whether to play CHSH2 with A, B or B, C. He does not inform B whether he is playing
with A or C, and the player not chosen is not asked any questions. The rest of the game proceeds as before;
recall that for CHSH2, the winning condition is a⊕ b = s ∧ t, s, t ∈ {0, 1}.

Claim 4. ω?(CHSH3) = ω(CHSH3) = 3
4 < 1

2 ω?(CHSH2(A,B)) +
1
2 ω?(CHSH2(B,C)). That is, the

addition of the third player, even though a priori inoffensive, reduces the optimal quantum strategy to a
classical one.

Proof. Suppose for the sake of contradiction that there exists an optimal quantum strategy for the players
such that

1
2

Pr(A, B win) +
1
2

Pr(B, C win) >
3
4

.

We will show this is impossible by making use of a further relaxation of the entangled win probability
called the “no-signaling” win probability and denoted by ωNS(G). The no-signaling value corresponds to
the maximum success probability of players that are allowed to use resources that go even beyond those
allowed by quantum mechanics, while still not communicating in-between themselves. More precisely, the
players are allowed to “play”, i.e. provide answers, according to any family of probability distributions
{p(a, b, c|x, y, z)}x,y,z, where x, y, z are questions, satisfying

∑
b,c

p(a, b, c|x, y, z) = ∑
b,c
(a, b, c|x, y′, z′) ∀ x, y, y′, z, z′, (2)

along with symmetric conditions for the other players. Note that if the distributions p are quantum, i.e.
p(a, b, c|x, y, z) = 〈ψ|Aa

x ⊗ Bb
y ⊗ Cc

z|ψ〉 for some state |ψ〉 and POVM Ax, By and Cz, then since ∑b Bb
y =

∑c Cc
z = Id we see that p satisfies the no-signaling conditions. In particular, we have that for any game G,

ω(G) ≤ ω?(G) ≤ ωNS(G).1 Because of the linear form of the no-signaling constraints (2), one can show
that the computation of ωNS(G) can be expressed as an LP. This makes bounding ωNS in practice often
much easier than ω?. For the particular case of the game CHSH3 one can explicitly write down what the
LP is and construct a dual certificate showing that ωNS(G) = 3/4. This readily gives a bound on ω?(G),
and in this case we find that ω(CHSH3) = ω?(CHSH3) = ωNS(CHSH3) =

3
4 .

We note in conclusion that ω(CHSH2) =
3
4 , ω?(CHSH2) = cos2 π

8 , ωNS(CHSH2) = 1.

1Each of these inequalities can be strict, as is demonstrated by the 2-player CHSH game: as an exercise, show that
ωNS(CHSH2) = 1!
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