
Lecture Notes
Quantum Cryptography Week 4:

From imperfect information to (near) perfect security

cbea

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licence.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

4.1 Privacy amplification 3
4.2 Randomness extractors 4
4.2.1 Randomness sources . 4
4.2.2 Strong seeded extractors . 6

4.3 An extractor based on hashing 8
4.3.1 Two-universal families of hash functions . 8
4.3.2 The 2-universal extractor . 10
4.3.3 Analysis with no side information . 10
4.3.4 The pretty good measurement and quantum side information 11

4.4 Solving privacy amplification using extractors 14

4.1 Privacy amplification 3

This week we discuss privacy amplification. This task is an essential component of many
cryptographic protocols; in particular it forms the final step in the quantum key distribution protocols
we’ll see in the coming weeks. Moreover, we’ll see that privacy amplification can be achieved
using a beautiful family of objects from theoretical computer science called randomness extractors
— themselves well worth studying in their own right!

4.1 Privacy amplification
Let’s start by introducing the task of privacy amplification. Imagine (as usual!) that Alice and Bob
want to use cryptography to exchange messages securely. For this they have access to a classic
public communication channel: they can send each other any messages they like, but the channel
is public: the malicious eavesdropper Eve may be listening in on the whole communication. Our
only cryptographic assumption on the channel is that it is authenticated, meaning that when Alice
(or Bob) receives a message she has the guarantee that it came directly from Bob (or Alice). (We
will return to the topic of authentication in Week 6; for the time being think of it as a convenient
assumption that will usually be met in practice. We will also assume the channel is noiseless, which
in practice is easily ensured by a proper use of error-correcting codes.)

Alice and Bob would like to use symmetric-key cryptography: they know (as you do!) that the
one-time pad is unconditionally secure, so the only thing they need is to come up with a shared
secret key. Moreover, Alice and Bob being old-time friends, they already have a lot of shared
secrets, such as the flavor of the first ice-cream cone they shared. By putting all these secrets
together and translating them in a string of bits, they’re pretty confident they can come up with
some value, call it x ∈ {0,1}n, that’s fairly secret...but only “fairly” so. Unfortunately they’re not
fully confident about which parts of x can be considered a secret, and which may have leaked.
Alice might have told her best friend Mary about the ice-cream. She definitely wouldn’t have told
Mary about her (embarrassing) all-time favorite cheeky cartoon, but then her little brother John
might now about this...Is there a way for Alice and Bob to somehow “boil down” the secrecy that x
contains, throwing away some of the bits but without knowing a priori which are secure and which
may potentially have been leaked?

Answer: yes! This is precisely what privacy amplification will do for them. To describe the
task more precisely, consider the following scenario. Two mutually trusting parties, Alice and Bob,
each holds a copy of the same string of bits x, which we’ll call a “weak secret”. This secret is taken
from a certain distribution px, which we can represent through a random variable X ; later on we’ll
call X the “source”. The distribution of X itself is not known, but the sample x is available to both
parties. An eavesdropper has side information E that may be correlated to X ; for example E could
be the first bit of X , the parity of X , or an arbitrary quantum state ρE

x . Given this setup, the goal for
Alice and Bob is to each produce the same string z, which could be shorter than x but must be such
that the distribution of z (represented via a random variable Z) is (close to) uniform, even from the
point of view of the eavesdropper.

To summarize using symbols, privacy amplification is the transformation:

ρXE
PAX⊗IE7−−−−→ ρZE ≈ε

IZ

|Z|
⊗ρE . (4.1)

Of course this will only be possible under some assumption on X : for example if X = E always
there is not much we can do. Given what we’ve already learned, it’s natural to measure the
“potential for privacy amplification” of a source X through the min-entropy (equivalently, the
guessing probability) Hmin(X |E), as this is a measure of “uncertainty” the eavesdropper has about
X . But we’re getting ahead of ourselves. First let’s see how to perform a simpler but closely related
task, randomness extraction. Then we’ll see how to use this to achieve privacy amplification.

Before diving in, consider the following warm-up exercise:

4

Exercise 4.1.1 Suppose that X ∈ {0,1}3 is uniformly distributed, and E = X1⊕X2 ∈ {0,1}.
Give a protocol for privacy amplification that outputs two secure bits (without any communi-
cation). What if E = (X1⊕X2,X2⊕X3) ∈ {0,1}2, can you still do it? If not, give a protocol
extracting just one bit.

Suppose the eavesdropper is allowed to keep any two of the bits of X as side information.
Give a protocol for Alice and Bob to produce a Z which contains a single bit that is always
uniformly random, irrespective of which two bits of X are stored by the eavesdropper. How
about an R that contains two bits — can they do it? �

4.2 Randomness extractors
In the task of randomness extraction there is a single party, Alice, who has access to an n-bit string
x with distribution X . We call X the source. X is unknown, and it may be correlated to an additional
system E over which Alice has no control. For example, E could contain some information about
the way in which the source was generated, or some information that an adversary has gathered
during the course of an earlier protocol involving the use of X . The only promise that is given to
Alice is a lower bound on the min-entropy, Hmin(X |E)≥ k. Alice’s goal is to produce a new string
Z that is close to uniform and uncorrelated with E. (As you can see, this problem is very similar to
privacy amplification, but without the added complication of Alice having to coordinate with Bob!)

Now, of course Alice could dump X and create her own uniformly random Z, say by measuring
a |0〉 qubit in the Hadamard basis. To make the problem interesting we won’t allow any quantum
resources to Alice. She also doesn’t have that much freely accessible randomness — maybe she
can get some, but it will be slow and costly. So Alice’s goal is to leverage what she has to the best
she can: she wants to extract randomness from X , not import it from some magical elsewhere!

4.2.1 Randomness sources
Let’s see some concrete examples of sources X , and how it is possible to extract uniform bits from
them.

I.I.D. sources
The simplest case of a randomness source is the i.i.d. source, where the term i.i.d. stands for
independent and identically distributed. A (classical) i.i.d. source X ∈ {0,1}n has a distribution
{px} which has a product form: there is a distribution {p0, p1} on a single bit such that for all
(x1, . . . ,xn) ∈ {0,1}n,

Pr[X = (x1, . . . ,xn)] = Pr[X1 = x1] · · ·Pr[Xn = xn] = px1 · · · pxn .

Such sources are sometimes called von Neumann sources, since they were already considered by
von Neumann. If you are curious about the history of randomness extraction, go look up the von
Neumann extractor online!

Can we extract uniformly random bits from an i.i.d. source? As a warmup, let’s consider how
we could obtain a nearly uniform bit from a source such that each bit Xi is 0 with probability
p0 = 1/4 and 1 with probability p1 = 3/4. Suppose we let Z = X1⊕X2⊕ . . .⊕Xn ∈ {0,1} be the
parity of all n bits of X . Our goal is to show that Pr[Z = 0]≈ 1/2± ε for reasonably small ε .
• Let’s first consider n = 2. How well does our strategy work? We can compute

Pr[Z = 0] = Pr[X1 = 0∧X2 = 0]+Pr[X1 = 1∧X2 = 1]

= p2
0 + p2

1 = 1/16+9/16 = 0.625,

and using a similar calculation we find Pr[Z = 1] = 0.375. Not quite uniform, but closer than
what we started with!

4.2 Randomness extractors 5

• By doing the calculation for increasingly large values of n you will see that the trace distance
ε of Z from a uniformly distributed random variable gets smaller and smaller. At what rate?
Give a bound on ε as a function of n. Do you find our procedure efficient?

Independent bit sources
A slightly broader class of sources are independent bit sources. As their name suggests such sources
are characterized by the condition that each bit is chosen independently; however the distribution
could be different for different bits. Clearly, any i.i.d. source is also an independent bit source, but
the converse does not hold.

Exercise 4.2.1 Show that there exists an independent 2-bit source X such that Pr[X = (0,0)] =
Pr[X = (1,1)] = 3/16, but there is no i.i.d. source satisfying the same condition. �

It turns out that taking the parity of all the bits in the string generated by an independent bit
source still results in a bit that is increasingly close to uniform as n→ ∞, provided each bit from
the source is not fully biased to start with: 0 < Pr[X j = 0]< 1 for all j.

Exercise 4.2.2 Let X be an independent n-bit source such that δ < Pr[X j = 0]< 1−δ for some
δ > 0 and all j ∈ {1, . . . ,n}. Give an upper bound on the distance from uniform of the parity of
the bits of x, as a function of the number of bits n of X and δ . �

Bit-fixing sources
Bit-fixing sources are a special case of independent sources where each bit of X can be of one
of two kinds only: either the bit is completely fixed, or it is uniformly random. For example, the
three-bit source X such that Pr[X = (1,0,0)] = Pr[X = (1,1,0)] = 1/2, with all other probabilities
being 0, is a bit-fixing source: the first bit is fixed to 1, the second is uniformly random, and the
third is fixed to 0.

You can verify for yourselves that, just as for the previous two types of sources we considered,
taking the parity of all bits from a bit-fixing source gives a uniformly random bit. This time, we do
even better: as long as at least one of the bits from the source is not fixed, the parity is (exactly)
uniformly random.

General sources
The randomness sources we just discussed all have something in common: they produce a string in
which each bit is chosen independently. What if we relax this condition?

Consider a tricky example, called an adversarial bit-fixing source: this is the same as a bit-fixing
source, except the value taken by the fixed bits can depend on the previous bits. For example, the
three-bit source X such that Pr[X = (1,0,0)] = Pr[X = (1,1,1)] = 1/2, with all other probabilities
being 0, is an adversarial bit-fixing source: the first bit is fixed to 1, the second is uniformly random,
and the third is fixed to, either 0 if the second was a 0, or 1 if the second was a 1. To see that this
kind of source can be much more tricky, first check that our earlier choice of Z as the parity of all
the bits of X no longer works on the example. However, the parity of the first two, or the first and
last, bits does work on that example. Nevertheless, show that for any fixed choice of a subset of
bits, there exists an adversarial bit-fixing source such that only one bit is fixed, but nevertheless the
parity of the bits in the chosen subset is a constant — arbitrarily far from uniform!

As you can imagine there is a whole jungle of possible kinds of sources. How do we classify
them? For the purposes of extracting randomness, we aim to measure the inherent uncertainty of
the source, or in other words its entropy. It turns out that the min-entropy provides just the “right”
measure of extractable randomness, in a precise way that we’ll soon see.

6

Definition 4.2.1 A random variable X is a k-source if Hmin(X)≥ k.

Before we move on, we should realize there is something crucial missing from this definition.
Remember we’re going to apply the idea of randomness extraction to a cryptographic task, privacy
amplification. But we forgot to account for the eavesdropper! The process of randomness extraction
is not going to happen in a void: we ought to take into account the possibility for an additional
system E that may be correlated with X . Call E the side information. X is a classical string of bits,
but E may be quantum. How do we model this? The proper way to do it is to introduce a cq state
ρXE , which in general takes the form

ρXE = ∑
x
|x〉〈x|X ⊗ρ

E
x ,

where each ρE
x is positive semidefinite and Tr(ρXE) = ∑x Tr(ρE

x) = 1. Using side information gives
us a convenient way to model any source X as the result of an initially uniform string about which
the adversary has gained partial information. For instance, you can think of a bit-fixing source as a
uniform source correlated with a system E which contains some of the bits of x.

Exercise 4.2.3 Let X be an independent source, where the i-th bit Xi has distribution {pi,1− pi}.
Show that there exists a pair of correlated random variables (Y,Z) on {0,1}n×{0,1}n such that
Y is uniformly distributed in {0,1}n but for any z ∈ {0,1}n the random variable V = Y|Z=z is
such that Vi has the same distribution as Xi if zi = 0, and as 1−Xi if zi = 1. �

Let’s update our definition:

Definition 4.2.2 A cq state ρXE is called a k-source if Hmin(X |E)≥ k.

Can we construct extraction procedures that produce uniformly random bits from any k-source,
without knowing anything else about the source?

4.2.2 Strong seeded extractors
In all examples we’ve seen so far we applied a fixed function, call it Ext, to the source X ; for example
we considered Ext(X) = X1⊕ ·· · ⊕Xn. Such a function is known as a deterministic extractor,
meaning that is it just one fixed function Z = Ext(X) that does not introduce any randomness beside
what is already present in X .

Ideally we’d like to show that it is possible to extract randomness from any k-source using
such a deterministic function. Unfortunately this is not possible: there is no fixed deterministic
procedure that can be used to extract even a single bit of randomness from every possible k-source,
even when k is almost maximal, k = n−1! This is a bit disappointing, but let’s understand why.

Lemma 1 For any function Ext : {0,1}n→{0,1} there exists an (n−1)-source X such that Ext(X)
is constant.

Proof. Let b ∈ {0,1} be such that |Sb| ≥ 2n/2 = 2n−1 with Sb = {x | Ext(x) = b}. Note that there
must exist such a b. Choose a subset S′ ⊆ Sb such that |S′| = 2n−1. Define X by the following
distribution:

px =

{
1/2n−1 if x ∈ S′ ,

0 otherwise .
(4.2)

Clearly, Hmin(X) = n−1, but Ext(X) = b is a constant! �

Have we reached the end of the road — are we stuck to designing special-purpose functions
which only work for this or that special kind of source, as we did with independent sources? Luckily

4.2 Randomness extractors 7

there is a way out, but we’re going to need an additional resource: a little extra randomness. This
extra randomness will be called the seed of the extractor; think of it as a second input Y ∈ {0,1}d

to which Alice has access and is promised to be uniformly random and independent from X and E.
This gives us the notion of a seeded extractor:

Definition 4.2.3 A (k,ε)-weak seeded randomness extractor is a function Ext : {0,1}n ×
{0,1}d →{0,1}m such that for any k-source ρXE ,

D
(

ρExt(X ,Y)E ,
I

2m ⊗ρE

)
≤ ε , (4.3)

where Y ∼Ud is uniformly distributed and independent from X and E, and

ρExt(X ,Y)E = ∑
z
|z〉〈z|Z⊗ρ

E
z with ρ

E
z = 2−d

∑
y

∑
x:Ext(x,y)=z

ρ
E
x .

If the seed is perfectly uniform, why don’t we just return it as our output: define Ext(X ,Y) =Y ?
Well, this satisfies the definition. So maybe there is something wrong with the definition? Remember
that our goal is to extract randomness from X , and that additional uniform randomness should not
be considered free. So we want to keep Y as small as possible, even though X , and k, could be very
large, in which case we’d like to maintain a long output (large m) with only a small help from the
seed (small d).

A better answer considers our ultimate goal of privacy amplification. Remember that in that
setting Alice and Bob share a weak secret X , and they want to produce a uniformly random secret
R. Our solution of an extractor outputting its seed would be similar to asking Alice and Bob to
throw away their initial secret X and share a fresh random string Y . But they only have access to
a public communication channel, how would they agree on the same Y without the eavesdropper
learning it as well?

This motivates a stronger definition of extractor, which is the one we’ll use from now on:

Definition 4.2.4 A (k,ε)-strong seeded randomness extractor is a function Ext : {0,1}n×
{0,1}d →{0,1}m such that for any k-source ρXE ,

D
(
ρExt(X ,Y)Y E ,

I
2m ⊗ρY E

)
≤ ε , (4.4)

where Y ∼Ud is uniformly distributed and independent from X and E.

Before we start trying to construct strong extractors, let’s consider the notion of k-source a little
more closely. Why do we think that the min-entropy provides the right way to quantify the amount
of randomness that can be extracted from a given source?

Let’s first argue informally that the min-entropy is an upper bound on the amount of extractable
randomness: there is no strong extractor that has output length more than Hmin(X |E). To see
why this is the case, recall that Hmin(X |E) =− logPguess(X |E). Suppose now that we apply some
function f to X . How hard is it to guess f (X) given E, i.e., what’s Pguess(f (X)|E)? Clearly, since
one way to guess f (X) is to guess X , and then apply f to our guess, we have Pguess(f (X)|E) ≥
Pguess(X |E). However, this is equivalent to

Hmin(f (X)|E)≤ Hmin(X |E) . (4.5)

This means that also the output of the extractor, which for fixed seed y is obtained as a function
f (X) = Ext(X ,y), must have min-entropy at most Hmin(X |E), which implies that the output
Ext(X ,Y), conditioned on Y = y, can be uniform on at most Hmin(X |E) bits!

Now, how about a converse: does there exist a strong extractor that can extract approximately

8

Hmin(X |E) bits from any k-source ρXE? The answer turns out to be yes, and we’re going to see
how this can be done in the next section.

4.3 An extractor based on hashing
Much research has gone into constructing randomness extractors, and they have found many
applications throughout computer science and mathematics. The quality of an extractor is measured
by the parameters it achieves, and different applications require different trade-offs. The main
targets consist in extracting as much randomness as possible (large m) using the smallest possible
seed (small d) and with the best possible error (small ε), all from arbitrary sources with min-entropy
(at least) k.

By using a probabilistic argument (select a function Ext at random from all possible functions,
and fix it to be the extractor), for any given input length k and min-entropy k the best trade-
offs that can be achieved are seed length d = log(n− k)+ 2log(1/ε)+O(1) and output length
m = k+ d− 2log(1/ε)+O(1) [RS00]. Moreover, there are efficient constructions known that
achieve essentially both parameters simultaneously! Rather than aiming for optimal, but often
intricate, constructions, here we will focus on a simple construction which nevertheless achieves
very good parameters for the application we have in mind (privacy amplification!).

Going back to the intuition we developed on the examples, we saw that taking the parity of a
random subset of the bits of the source often (but not always) provides a good way to extract a bit
of randomness. In this case we can think of the seed of the extractor as specifying the subset of bits
whose parity is taken. We could repeat this procedure to extract even more bits, each chosen as the
parity of a different random subset. It is a good exercise to show that this procedure works, but it
has one major drawback: it is excessively costly in terms of seed length, requiring an investment of
approximately n bits of randomness (to specify the subset of bits whose parity is taken) for each
new bit produced!

Let’s see how we can do better. For this we’ll have to make a little detour and learn about
certain families of hash functions.

4.3.1 Two-universal families of hash functions
Informally, a hash function is a function that maps long strings to shorter strings, with the property
that the output of the hash functions tends to be “well-distributed”. What this means depends on
the application we have in mind for the hash function — indeed, the term “hash function” can
be interpreted in many different ways, with the only standard requirement, as its name indicates,
being that a hash function should not increase the length of its input! An additional reasonable
requirement, which formalizes the “well-distributed” aspect of the output of a hash function, is the
following:

Definition 4.3.1 — 1-universal family. A family of hash functions F = { f : {0,1}n→{0,1}m},
where m≤ n, is called 1-universal if for every string x ∈ {0,1}n and z ∈ {0,1}m we have

Pr
f∈F

[f (x) = z] =
1

2m . (4.6)

It is worth reading this definition carefully: in (4.6) both x and z are fixed, and the probability
is taken over a uniformly random function from the family. The condition is equivalent to saying
that for any fixed x, the random variable F(x), where F is uniformly distributed over all f in F , in
uniformly distributed in {0,1}m. Let’s see an example of a 1-universal family of hash functions.

4.3 An extractor based on hashing 9

Exercise 4.3.1 For any y ∈ {0,1}n let fy : {0,1}n→{0,1}n be defined by fy(x) = x⊕y, where
the parity is taken bitwise. Show that the family of functions F = { fy, y∈{0,1}n} is 1-universal.
�

You may want to convince yourself that a family of 1-universal hash functions is already
sufficient to construct a weak seeded extractor: use the seed to select a random function from the
family, and output the value of the function evaluated at the source. The property of 1-universality
ensures that the output will be uniformly distributed, even if the input is fixed. However, recall our
earlier criticism: in this case it is apparent that we are “cheating”, and that all the randomness is
coming from the seed. Indeed, it turns out that the property of 1-universality is not sufficient to
obtain a strong seeded extractor. We’ll need the following stronger property, first introduced by
Carter and Wegman:

Definition 4.3.2 — 2-universal family. A family of hash functions F = { f : {0,1}n→{0,1}m}
is called 2-universal if for every two strings x,x′ ∈ {0,1}n with x 6= x′, and any two z,z′ ∈ {0,1}m,
we have

Pr
f∈F

[f (x) = z ∧ f (x′) = z′] =
1

22m . (4.7)

Condition (4.7) in the definition would be satisfied if f (x) and f (x′) were jointly chosen
uniformly and independently at random in {0,1}m. This is a stronger condition than (4.6): we now
require that the pair of random variables (F(x),F(x′)), for F uniformly distributed over f ∈F , are
jointly uniform (as an exercise, verify that the family of hash functions from Exercise 4.3.1 is not
2-universal).

You can check that for any m ≤ n the set of all possible functions f : {0,1}n → {0,1}m is
2-universal. But it is too big a set: it has size |F |= 2m2n

, so that selecting a function at random
from the set would require a seed length d = m2n! Let’s see a much more efficient construction.

Let q = 2n and Fq the finite field with 2n elements. (If you have never seen this field before, the
details of its construction will not be matter to us, but you may still want to check it out online!
The multiplication rule is not the same as multiplication over the integers, mod 2n.) For any
(a,b) ∈ F2

q let

fa,b : Fq→ Fq, fa,b(x) = ax+b,

where addition and multiplication are done in Fq. Then F = { fa,b, (a,b) ∈ F2
q} is a 2-universal

family of only q2 = 22n hash functions. To show this we need to verify that equation (4.7) from
the definition holds. So let’s fix distinct x 6= x′ ∈ Fq and two z,z′ ∈ Fq. What is the probability,
over a uniformly random choice of (a,b), that fa,b(x) = z and fa,b(x′) = z′? The two conditions
are equivalent to ax+b = z and (taking the difference) a(x′− x) = z′− z, thus a = (z′− z)/(x′− x),
where the condition x 6= x′ and the fact that Fq is a field allows us to perform the division. This
equation determines a unique possible value for a. Moreover, once a is fixed there is a unique
possible value for b: b = z− ax (this shouldn’t be a surprise, since we started with two linear
equations and two unknowns). Out of 22m possibilities, we end up with a single one: Pra,b[fa,b(x) =
z∧ fa,b(x′) = z′] = 2−2m, as desired.

One last technicality: recall that our goal was to construct a 2-universal family of functions
f : {0,1}n→{0,1}m, for arbitrary n and m≤ n, whereas what we managed to construct so far are
functions from Fq→ Fq. Since |Fq|= q = 2n the domain of f can be identified with {0,1}n in an
arbitrary way. The range of f may be bigger than {0,1}m, but there is a simple solution: throw
away the last (n−m) bits of f (x)! I’ll let you verify that this works, i.e. it preserves the property of
2-universality.

10

4.3.2 The 2-universal extractor
Equipped with an arbitrary family of 2-universal hash functions, we define an extractor as follows.

Definition 4.3.3 — 2-universal extractor. Let F = { fy : {0,1}n→{0,1}m, y ∈ {0,1}d} be a
2-universal family of hash functions such that |F |= 2d . The associated 2-universal extractor is

ExtF : {0,1}n×{0,1}d →{0,1}m, ExtF (x,y) = fy(x).

One way to think of ExtF is as using its seed y to select a function from the family F uniformly
at random, and then returning the output of the function when evaluated on the source X .

How good is this extractor? The key result required to analyze it is known as the leftover hash
lemma. It was first proven by Impagliazzo, Levin, and Luby for the case when there is no side
information E, and later extended to the case of quantum E by Renner. Here is a statement of the
lemma when there is no side information.

Theorem 4.3.1 — Leftover hash lemma. Let n and k ≤ n be arbitrary integers, ε > 0, m =
k−2log(1/ε), and F = { f : {0,1}n→{0,1}m} a 2-universal family of hash functions. Then
the 2-universal extractor ExtF is a (k,ε)-strong seeded randomness extractor.

In the previous section we saw how to construct a 2-universal family with 22n functions, meaning
that the seed length of the two-universal extractor is 2n. This is much longer than the optimal length
d ≈O(log(n/ε)), and it can be a drawback in some applications for which the randomness required
to produce the seed is particularly costly. However, for our application to privacy amplification, and
especially later to quantum key distribution, it is not a significant limitation. Much more important
for us is the dependence of the output length on the initial min-entropy, which will ultimately
govern the length of key that we are able to produce. In this respect the two-universal construction
is essentially optimal, a good reason to use it!

4.3.3 Analysis with no side information
We first prove the leftover hash lemma in the case when there is no side information, stated in
Theorem 4.3.1. This will be a good warm-up for the general case, which will follow the same
structure.

The proof proceeds in two steps. In the first step we reduce our ultimate goal, bounding the error
of the extractor, i.e. the trace distance between the extractor’s output and the uniform distribution,
to bounding a different quantity called the collision probability. In the second step we show that the
collision probability is sufficiently small to imply the desired bound on the error of the extractor.

(i) From trace distance to collision probability.
Our goal is to bound D(ρExt(X ,Y)Y ,2−(m+d)I), where X has min-entropy at least k and Y is uniformly
distributed over d-bit strings. The joint distribution of (Z = Ext(X ,Y),Y) is given by

pzy = Pr[(Ext(X ,Y),Y) = (z,y)] = 2−d
∑

x: fy(x)=z
px. (4.8)

Using the definition of the trace distance, we get

D(ρExt(X ,Y)Y ,2
−(d+m)I) =

1
2 ∑

z,y

∣∣∣2−d
∑

x: fy(x)=z
px−2−d−m

∣∣∣
≤ 2

m
2−1

(
2−d

∑
z,y

∣∣∣ ∑
x: fy(x)=z

px−2−m
∣∣∣2)1/2

= 2
m
2−1

(
2d

∑
z,y

p2
zy−2−m

)1/2
,

4.3 An extractor based on hashing 11

where for the second line we applied the Cauchy-Schwarz inequality. This completes our first
step. The quantity CP(ZY) = ∑z,y p2

zy is called the collision probability of (Z,Y), and we turn to
bounding it next.

(ii) A bound on the collision probability.
Using the definition (4.8) and expanding the square,

∑
z,y

p2
zy = 2−2d

∑
y,z

∑
x,x′:

fy(x)= fy(x′)=z

px px′

= 2−2d
∑
y,z

(
∑

x 6=x′:
fy(x)= fy(x′)=z

px px′+ ∑
x: fy(x)=z

p2
x

)
= 2−(d+m)

∑
x 6=x′

px px′+2−d
∑
x

p2
x

≤ 2−(d+m)+2−(d+k).

Here the crucial step is in bounding the summation over x 6= x′ when going from the second to
the third line: we are using the property of 2-universality to argue that for any x 6= x′ there is a
fraction exactly 2−m of all fy that map both x and x′ to the same value. To bound the second term in
going from the second-last to last lines we used ∑x p2

x ≤maxx px = 2−Hmin(X) and the assumption
Hmin(X)≥ k.

Plugging this back into the bound on the trace distance from (i) we obtain

D(ρExt(X ,Y)Y ,2
−(d+m)I)≤ 2

m−k
2 −1,

proving the lemma.

4.3.4 The pretty good measurement and quantum side information
We would like to extend the proof in the previous section to the case where the source X is correlated
with some quantum side information E, that is, ρXE = ∑x |x〉〈x|⊗ρE

x is an arbitrary cq state such
that Hmin(X |E)≥ k. Before diving into this, let’s make a small detour by considering the related
problem of optimally distinguishing between a set of quantum states.

The pretty-good measurement
Let ρXE = ∑x |x〉〈x|⊗ρE

x be a cq state. What is the optimal probability with which Eve, holding
the quantum system E, can successfully guess x? We’ve seen this problem already: the answer is
captured by the guessing probability,

Pguess(X |E)ρ = max
{Mx}

∑
x

Tr(Mxρ
E
x), (4.9)

where the maximum is taken over all POVM {Mx} on E. But what is the best POVM? If x ∈ {0,1}
takes only two values you’ve already seen the answer: in this case we can write

Tr(M0ρ
E
0)+Tr(M1ρ

E
1) = Tr

(M0 +M1

2
·
(
ρ

E
0 +ρ

E
1
))

+Tr
(M0−M1

2
·
(
ρ

E
0 −ρ

E
1
))

≤ 1
2
+

1
2

D(ρE
0 ,ρ

E
1),

and moreover the last inequality is an equality if M0 and M1 are the projectors on the positive and
negative eigenspaces of the Hermitian matrix ρE

0 −ρE
1 respectively.

12

When |X | > 2 unfortunately the situation is a bit more murky. The problem of finding the
optimal measurement can be solved efficiently with a computer by expressing the optimization
problem (4.9) as a semidefinite program, a generalization of linear programs for which there are
efficient algorithms. But what we’d really like is a nice, clean mathematical expression for what the
optimal measurement is, so that we can work with it in our proofs! No such simple closed form is
known. However, what we can do is find a simple measurement that always achieves close to the
optimum: the pretty-good measurement.

So what is this “pretty-good” measurement? To get some intuition first consider the case where
the states ρE

x are perfectly distinguishable; for example ρE
x = px|x〉〈x| is simply a classical copy of

X . Then it is clear what we should do: measure in the computational basis, and recover x! Observe
that in this case the POVM elements Mx are directly proportional to ρx: we can think of the states
as “pointing” in some direction correlated with x, and it is natural to make a measurement along
that direction.

Can we generalize this idea? Let’s try defining Mx = ρE
x . This is positive semidefinite, so

it satisfies the first condition for a POVM. However, ∑x Mx = ∑x ρE
x = ρE is not necessarily the

identity, as required by the second condition. The solution? Normalize!

Definition 4.3.4 Given a collection of positive semidefinite matrices {ρx}, the pretty-good
measurement (PGM) associated to the collection is the POVM with elements

Mx = ρ
−1/2

ρx ρ
−1/2,

where ρ = ∑x ρx and the inverse is the Moore-Penrose pseudo-inverse, i.e. we use the convention
0−1 = 0.

Note how we dealt with division by zero in the definition. Defining division by zero may
seem odd, but this convention makes sense in the context of linear operators. If ρ is orthogonal to
some subspace, i.e. it is an eigenspace of eigenvalue 0, then the pseudo-inverse ρ−1 should also be
orthogonal to that subspace. A useful property of this convention is that it makes it so that if P is an
orthogonal projection and PρP is invertible, then (PρP)−1 = Pρ−1P.

How well does the pretty-good measurement compare to the optimal guessing measurement?
Let {Nx} be an optimal guessing POVM for Eve. Then by definition

Pguess(X |E) = ∑
x

Tr
(
Nxρ

E
x
)

= ∑
x

Tr
(
(ρ1/4Nxρ

1/4)(ρ−1/4
ρ

E
x ρ
−1/4)

)
≤
(
∑
x

Tr
(
ρ

1/2Nxρ
1/2Nx

))1/2(
∑
x

Tr
(
ρ
−1/2

ρ
E
x ρ
−1/2

ρ
E
x
))1/2

≤
(
PGM(X |E)

)1/2
,

where

PGM(X |E) = ∑
x

Tr(Mxρ
E
x) = ∑

x
Tr

(
ρ
−1/2

ρxρ
−1/2

ρx
)

(4.10)

is the success probability of the PGM in the guessing task. The second and third lines are the most
important here. To go from the first to the second line we inserted factors ρ1/4 and ρ−1/4 that
cancel each other out (using cyclicity of the trace), but are important for normalization. To go from
the second to the third line we used the Cauchy-Schwarz inequality twice: first, for each x we apply
a matrix version of the inequality,∣∣Tr(AB)

∣∣≤ (
Tr(AA†)

)1/2(Tr(BB†)
)1/2

, (4.11)

4.3 An extractor based on hashing 13

with A = ρ1/4Nxρ1/4 and B = ρ−1/4ρE
x ρ−1/4; and second, we apply the usual version∣∣∣∑

x
axbx

∣∣∣ ≤ (
∑
x

a2
x

)1/2(
∑
x

b2
x

)1/2
,

valid for any real ax and bx (here ax = Tr(ρ1/2Nxρ1/2Nx) and bx = Tr(ρ−1/2ρE
x ρ−1/2ρE

x)). Finally
to get to the last line we used ∑x Nx = I to bound the first term, and the definition of the pretty-good
measurement for the second.

Proof of the leftover hash lemma with quantum side information
The proof follows the same structure as the proof we saw for the case with no side information,
but it is slightly more involved technically. We will use the following inequality:for any positive
Hermitian σ and positive semidefinite τ such that Tr(τ) = 1 and the support of τ contains the
support of σ ,

Tr
(
|σ |

)
≤ Tr

(
(τ−1/4

στ
−1/4)2)1/2

. (4.12)

To prove the inequality, observe that

Tr
(
|σ |

)
= Tr

(
τ

1/4
τ
−1/4|σ |τ−1/4

τ
1/4)

= Tr
(
τ

1/4|τ−1/4
στ
−1/4|τ1/4)

= Tr
(
|τ−1/4

στ
−1/4|τ1/2).

Here the second line is obtained by computing the trace in the eigenbasis of τ−1/4στ−1/4;
see [Ren08, Lemma 5.1.2] for details of the calculation. To conclude the proof of (4.12), ap-
ply (4.11) with the choise A = τ−1/4στ−1/4 and B = τ1/2.

(i) From trace distance to collision probability.
Our goal is to bound D(ρExt(X ,Y)Y E ,2−(m+d)I⊗ρE), where Y is uniformly distributed and X is such
that Hmin(X |E)≥ k. We can write

ρExt(X ,Y)Y E = ∑
z,y
|z〉〈z|⊗ |y〉〈y|⊗ρzy, with ρzy = 2−d

∑
x: fy(x)=z

ρx.

Note that our normalization makes is so that

∑
z,y

Tr(ρzy) = 2−d
∑
x,y

Tr(ρx) = Tr(ρ) = 1.

Since the state ρExt(X ,Y)Y E is a ccq state, using the definition of the trace distance we can expand

D(ρExt(X ,Y)Y E ,2
−(d+m)I⊗ρE) =

1
2 ∑

z,y

∥∥ρzy−2−(d+m)
ρ
∥∥

1

≤ 2
m+d

2 −1
(

2−(m+d)
∑
z,y

Tr
(
(ρ−1/4(ρzy−2−m

ρ)ρ−1/4)2))1/2

= 2
m
2−1

(
2d

∑
z,y

Tr
(
ρzyρ

−1/2
ρzyρ

−1/2)−2−m
)1/2

,

where for the second line we first applied (4.12) for each (y,z) with σ = ρzy−2−(d+m)ρ and τ = ρ ,
and then the usual Cauchy-Schwarz inequality. Do you recognize the expression in the last line?
Using the notation from (4.10), we have

PGM(Z|Y E) = 2d
∑

z
Tr

(
ρzyρ

−1/2
ρzyρ

−1/2),

14

so the sequence of equations above show that

D(ρExt(X ,Y)Y E ,2
−(d+m)I⊗ρE) ≤ 2

m
2−1(PGM(Z|Y E)−2−m)2

.

We have thus managed to relate the distance from uniform to the advantage of the pretty good
measurement over random guessing (that would succeed with probability 2−m). We can understand
this step of the proof as a reduction from arbitrary attacks of an adversary to the extractor, whose
optimal success probability is expressed in the first line, to attacks of a very specific form, where the
adversary, given a sample (z,y), measures its side information using the pretty-good measurement
associated with the family of states {ρzy}. The square root factor on the third line expresses the fact
that the pretty-good measurement is quadratically far from optimal. What is the point of losing this
square root? The pretty-good measurement has a crucial advantage, that we are going to use in the
second step of the proof: it has a form of “linearity”, in the sense that the PGM operators associated
with the family of states {ρzy} can be obtained by summing up PGM operators associated with the
states {ρx}. Let’s see how this works in our favor.

(ii) A bound on the collision probability.
Proceeding exactly as in the case with no side information, we can calculate

PGM(Z|Y E)−2−m = 2−d
∑
y,z

∑
x,x′:

fy(x)= fy(x′)=z

Tr(ρxρ
−1/2

ρx′ρ
−1/2)−2−m

= 2−d
∑
y,z

(
∑

x 6=x′:
fy(x)= fy(x′)=z

Tr(ρxρ
−1/2

ρx′ρ
−1/2)

+ ∑
x: fy(x)=z

Tr(ρxρ
−1/2

ρxρ
−1/2)

)
−2−m

= 2−m
∑

x 6=x′
Tr(ρxρ

−1/2
ρx′ρ

−1/2)+∑
x

Tr(ρxρ
−1/2

ρxρ
−1/2)−2−m

≤ PGM(X |E).

Using the 2-universal hashing property, we have managed to relate the advantage over random of the
pretty good measurement in guessing Z, to the success probability of the pretty good measurement
to guess X directly. But the last expression is, by assumption, at most 2−Hmin(X |E), since the guessing
probability achieved from using the PGM cannot be the optimal one. Together with the bound
proven in step (i) we finally obtain

D(ρExt(X ,Y)Y ,2
−(d+m)I)≤ 2

m−k
2 −1,

precisely the same bound as when there was no side information at all.

4.4 Solving privacy amplification using extractors
Back to cryptography...how do we use extractors to solve privacy amplification? By now you must
have a good idea how this can be done. Let Ext be a (k,ε) strong seeded randomness extractor.
Here is a simple protocol:

1. Alice and Bob share a weak secret X , which may be correlated with an eavesdropper holding
quantum side information E.

2. Alice choses a random seed Y for the extractor, and computes RA = Ext(X ,Y). She sends Y
to Bob over a public communication channel.

3. Upon receiving Y , Bob sets RB = Ext(X ,Y).

4.4 Solving privacy amplification using extractors 15

First note that this protocol is always correct: Alice and Bob output the same string, RA = RB. Is
it secure? Remember the criterion (4.1) we introduced to define security of privacy amplification.
Note also that here, at the end of the protocol, Eve has access to her original side information E,
but also to any communication exchanged over the public channel: precisely the seed Y . So the
condition becomes

X : Hmin(X |E)ρ ≥ k PA7−→ R = Ext(X ,Y) : ρRY E ≈ε

IR

|R|
⊗ρY E ,

which is precisely the requirement of a (k,ε) strong extractor! All the pieces have come into place:
by instantiating the extractor with the 2-universal extractor based on the 2-universal family of hash
functions from Section 4.3.1 you now have a complete construction of a secure one-way protocol
for privacy amplification. This will be crucially used in our quantum key distribution protocols.

Acknowledgments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International Licence. The lecture notes are written by Nelly Ng, Thomas Vidick and Stephanie
Wehner. We thank David Elkouss, Kenneth Goodenough, Jonas Helsen, Jérémy Ribeiro, and Jalex
Stark for proofreading. We thank Joe Renes for spotting a typo in a previous version of the notes,
and suggesting a streamlined analysis of the leftover hash lemma with quantum side information.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Bibliography

[Ren08] Renato Renner. “Security of quantum key distribution”. In: International Journal of
Quantum Information 6.01 (2008), pages 1–127 (cited on page 13).

[RS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. “Bounds for dispersers, extractors, and
depth-two superconcentrators”. In: SIAM Journal on Discrete Mathematics 13.1 (2000),
pages 2–24 (cited on page 8).

	4.1 Privacy amplification
	4.2 Randomness extractors
	4.2.1 Randomness sources
	4.2.2 Strong seeded extractors

	4.3 An extractor based on hashing
	4.3.1 Two-universal families of hash functions
	4.3.2 The 2-universal extractor
	4.3.3 Analysis with no side information
	4.3.4 The pretty good measurement and quantum side information

	4.4 Solving privacy amplification using extractors

