
MIP∗=RE
A negative resolution to Connes’ Embedding Problem and Tsirelson’s problem

Thomas Vidick*

Abstract

Connes’ Embedding Problem is a deep question on approximability of certain tracial von Neumann
algebras by finite-dimensional matrix algebras. We survey the connections between operator algebras,
quantum information and theoretical computer science that enabled the recent resolution of this prob-
lem. The resolution goes through an equivalent formulation, known as Tsirelson’s problem, in terms of
separating convex sets whose definition is motivated by the study of non-locality in quantum mechanics.
We construct an explicit separating hyperplane using the theory of two-player games from complexity
theory.

1 Introduction

In the 1930s [VN32] von Neumann laid the foundations for the theory of (what are now known as) von
Neumann algebras, with the explicit goal of establishing Heisenberg’s matrix-based formulation of quan-
tum mechanics on a rigorous footing. Following the initial explorations of Murray and von Neumann the
new theory progressively took on a life of its own, and von Neumann algebras now routinely make their
apparition in areas as diverse as geometry, representation theory, free probability, statistical mechanics, and
many others. In his 1976 paper completing the classification of injective von Neumann algebras [Con76],
for which he received the 1982 Fields medal, Alain Connes made a casual remark that has become a cen-
tral problem in the theory of operator algebras. Paraphrasing, Connes’ remark was that any finite von
Neumann algebra, i.e. one that has a finite trace, “ought to” be well-approximated by finite-dimensional
matrix algebras. Thanks to the work of other mathematicians, including Kirchberg and Voiculescu, the re-
mark, now known as Connes’ Embedding Problem (CEP), rose to prominence as one of the most important
open questions in operator algebras. Quoting Vern Paulsen, “The reason that so many operator algebraists
care about this conjecture is that it plays much the same role in operator algebras as is played by the Rie-
mann hypothesis in number theory. There are many problems that we would know the answer to, if only
Connes were true.” For example, Kirchberg showed that CEP is equivalent to the QWEP conjecture about
the equivalence of the minimal and maximal tensor products on the full group C∗ algebra of a nonabelian
free group [Kir93]. Voiculescu gave a reformulation in terms of the existence of matrix microstates in free
probability [Voi94]. Rǎdulescu showed that a group is hyperlinear if and only if its group von Neumann
algebra satisfies CEP [R0̆8]. Goldbring and Hart showed that CEP holds if and only if every type II1 tracial
von Neumann algebra has a computable universal theory [GH16]. Many more equivalent formulations are
known (see e.g. [Cap15] for a survey).
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In these notes we give an overview of an approach to CEP that arose from the study of the non-local ef-
fects of entanglement in quantum mechanics, and recently led a negative answer to the problem [JNV+20a].
In the 1980s Boris Tsirelson was placing the study of quantum correlations, i.e. those families of distribu-
tions that can be generated from local measurements on a bipartite physical system, on a rigorous mathemat-
ical footing. In his work Tsirelson discovered that there was a freedom in deciding how locality should be
reflected in the mathematical formalism, and asked if that freedom had observable consequences. Namely,
Tsirelson realized that “locality” of measurements could be modeled either by requiring that the Hilbert
space associated with the entire system factors as H = HA ⊗HB, with observables on either system be-
ing localized to the corresponding subspace as A⊗ Id and Id⊗B respectively, or by allowing the Hilbert
space to remain arbitrary but requiring that observables associated with each system mutually commute, i.e.
[A, B] = 0. While the two models are clearly different from an algebraic point of view, Tsirelson’s Problem
(TP) asks whether they lead to the same families of distributions, i.e. whether the algebraic distinction has
any observable consequence.

Tsirelson’s problem rose to prominence due to its relevance for a purely computational task: as we will
see later, were TP to have a positive answer then the “largest quantum violation of a Bell inequality,” a
quantity of much interest to experimentalists, would be computable. (This “largest violation” determines
how conclusive an experiment demonstrating the non-local effects of quantum mechanics may be.) This
realization led to further study of the problem and a proof of its equivalence with CEP, thus elevating it to
the same status as the multitude of other equivalent formulations already mentioned. Moreover, it also led to
a potential approach to a negative answer, by showing thatthe largest quantum violation of a Bell inequality
is in fact not computable.

The goal of these notes is to explain the relation between CEP and TP describe the approach to Tsirelson’s
problem through computability theory, and sketch how that approach eventually led to a resolution of the
problem. Our main conceptual tool will be the theory of two-player games, a construct from classical
complexity theory which rose to prominence in the 1990s through its connection with the PCP theorem,
a sweeping reformulation of the complexity class NP, and applications to hardness of approximation for
constraint satisfaction problems. Techniques developed in this study, entirely independent from quantum
information, play an essential role in the resolution of CEP.

We start by giving a precise formulation of the two (equivalent) problems which we are concerned with,
Connes’ Embedding Problem (CEP) and Tsirelson’s Problem (TP), in Section 2. In Section 3 we give a first
hint of our approach to resolving these problems, which proceeds by constructing hyperplanes separating
two convex sets introduced by Tsirelson. This will lead us to introduce non-local games as a rich class of
hyperplanes to work with. We end the section by sketching a proof of the equivalence between CEP and TP
that goes through non-local games and an algebra associated to them. In Section 4 we get to the heart of the
matter, which is the construction of interesting two-player games and concrete requirements on them that
suffice to answer our algebraic problems. It is in this section that complexity theory makes its apparition,
as our requirements will push us into the design of very efficient “compression” procedures that find their
inspiration in the efficient “proof checking” revolution that led to the PCP theorem in complexity theory. In
Section 5 we explain how the complexity-theoretic techniques are combined with ideas from self-testing in
quantum information and stability in group representation theory to complete the argument. We end with a
brief outlook in Section 6.

Acknowledgments. I thank Henry Yuen and Vern Paulsen for comments. A small portion of the text of
these notes is repurposed from an article by the same author published in the Notices of the AMS [Vid19].
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2 Problem statement(s)

We start by reviewing two equivalent, but rather distinct in flavor, formulations of the problem that is the
focus of this article. The first formulation is due to Connes [Con76] and known as Connes’ Embedding
Problem (CEP). The second formulation is due to Tsirelson [Tsi93] and we will refer to it as Tsirelson’s
Problem (TP).

2.1 Connes’ Embedding Problem

The standard formulation of CEP states that “every separable type I I1 von Neumann algebra has an ap-
proximate embedding into the hyperfinite factor R.” Shortly we reformulate this statement using more
elementary language. Before doing so we clarify the terms used in Connes’ formulation.

A (separable) von Neumann algebra M is a sub-algebra of B(H), the bounded linear operators on a
(separable) Hilbert space H, that contains the identity, is closed under taking adjoints (an operation which
we denote ∗) and is closed in the strong operator topology.1 A state τ onM is a positive linear functional
such that τ(1) = 1. A state τ is tracial if τ(xy) = τ(yx) for all x, y ∈ M. It is normal if the restriction of
τ to the unit ball ofM is continuous with respect to the strong operator topology. A tracial von Neumann
algebra (M, τ) is a von Neumann algebraM equipped with a faithful normal tracial state τ.

A commutative von Neumann algebra is isomorphic to L∞(X, µ) for some probability measure space
(X, µ). For this reason tracial von Neumann algebras are often thought of as non-commutative probability
spaces. A von Neumann algebra is a factor if it has a trivial center. von Neumann factors are classified
in types. In their pioneering work on von Neumann algebras Murray and von Neumann showed that every
tracial von Neumann algebra decomposes as a product of type In factors, for 1 ≤ n < ∞, and a type I I1
factor. While for any 1 ≤ n ≤ ∞, a type In factor is always isomorphic to B(H) for some separable
Hilbert space H of dimension n, type I I1 factors are much harder to classify; in fact there cannot be a
classification up to isormorphism by countable structures [ST09], rendering the problem all but hopeless.
(Connes received the Fields medal in 1982 for his work on the classification of type I I I factors, which are
not tracial.)

Murray and von Neumann introduced a specific I I1 factor denoted R and referred to as the hyperfinite
factor. Here the use of the “the” is justified by the fact that R is characterized up to isomorphism as the
unique separable I I1 factor that satisfies a strong form of approximability by matrix algebras. Namely,
(M, τ) is said approximately finite dimensional (AFD) if for every finite subset F ofM and every ε > 0
there is a ∗-subalgebra Q ⊂ M such that Q ' Mn(C) for some n and for every x ∈ F there is y ∈ Q
such that ‖x− y‖2 ≤ ε.2 It can be shown that there is a unique AFD I I1 factor, which is referred to as “the
hyperfinite factor R” when the specific isomorphism does not matter. Concretely, there are many possible
definitions ofR. The most straightforward definition, which is also the original one, is as the completion of
the algebra ∪n≥1M2n(C), where each M2n(C) isometrically embeds in M2n+1(C) using diagonal blocks.
The trace on M is the natural extension of the (dimension-normalized) matrix trace on each M2n , which we
write as tr(·). With this definition it is immediate thatR is AFD.

There exist some non-hyperfinite tracial von Neumann algebras (we give an example below). CEP
is the statement that every such algebra nevertheless has some form of weak approximation by finite-
dimensional matrix algebras. The meaning of the second half of the statement of CEP, “has an approxi-
mate embedding into the hyperfinite factor R,” can be formalized by requiring a trace-preserving embed-
ding into an ultrapower Rω. Rather than defining ultrapowers we give an equivalent formulation due to

1This is the topology generated by the seminorms x 7→ ‖xv‖ for v ∈ H, with ‖ · ‖ the operator norm onH.
2The norm is given by ‖x‖2 = τ(x∗x)1/2.
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Voiculescu [Voi02]. For (M, τ) a tracial von Neumann algebra and x1, . . . , xn Hermitian elements ofM
we say that (x1, . . . , xn) has matricial microstates if for every ε > 0, for every N ≥ 1, there is an integer
d ≥ 1 and A1, . . . , An ∈ Md(C) self-adjoint such that for all p ≤ N, for all i1, . . . , ip ∈ {1, . . . , n},∣∣tr(Ai1 · · · Aip)− τ(xi1 · · · xip)

∣∣ < ε .

Then CEP is the statement that for any tracial von Neumann algebra (M, τ), every tuple (xi) of self-
adjoint elements in M has matricial microstates. With more work, Kirchberg [Kir93] (see also [DJ11])
showed using the theory of Jordan algebras that CEP is equivalent to the statement that for every tracial von
Neumann algebra (M, τ), every finite sequence of unitaries u1, . . . , un inM and every ε > 0 there is an
integer d ≥ 1 and U1, . . . , Un unitaries in Md(C) such that for all i, j ∈ {1, . . . , n},∣∣tr(U∗i Uj)− τ(u∗i uj)

∣∣ < ε . (1)

This last formulation may be appealing to the computer scientist as it states that every finite subset of
the unitary group of M approximately embeds into a finite-dimensional matrix unitary group—a form of
infinite-dimensional, non-quantitative Johnson-Lindenstrauss lemma [JL84] for operators.

The versatility of CEP arises from the many examples of tracial von Neumann algebras that are known.
We give some examples coming from groups; for many more see e.g. [AP17]. We restrict our attention to
discrete, countable groups. For G a countable discrete group, let λ be the left regular representation of G in
`2(G). Then the strong operator closure of the linear span of λ(G) in B(`2(G)) is a von Neumann algebra
called the group von Neumann algebra of G and denoted L(G). Letting (δg)g∈G be the natural orthonormal
basis of `2(G) and e ∈ G the unit, there is a natural trace ϕ on L(G) given by ϕ(x) = 〈δe, xδe〉. One
can check that this is a normal faithful tracial state, hence (L(G), ϕ) is a tracial von Neumann algebra.
Moreover, L(G) is a factor if and only if G has the i.c.c. property, namely every non-trivial conjugacy class
is infinite. Thus the group von Neumann algebra of an infinite i.c.c. group G is a I I1 factor. Some examples
are L(S∞), where S∞ is the group of finitely supported permutations of the natural numbers, and L(Fn)
for n ≥ 2, with Fn the free group on n generators. It can be shown that L(G) is isomorphic to R if and
only if G is an i.c.c. amenable group. Thus L(S∞) is isomorphic to R, whereas L(Fn) for n ≥ 2 is not.
Connes [Con76] showed that L(Fn) satisfies CEP, i.e. it embeds in Rω, and this discovery prompted his
remark about all type I I1 factors.

A group G is hyperlinear if and only if for every finite F ⊆ G and ε > 0 there is a d ≥ 1 and a map
θ : F → Ud(C) that is an (F, ε)-almost homomorphism. Namely, if g, h ∈ F are such that gh ∈ F then
‖θ(g)θ(h)− θ(gh)‖2 < ε, if e ∈ F then ‖θ(e)− Id ‖2 < ε, and if x 6= y ∈ F then ‖θ(x)− θ(y)‖2 ≥ 1/4.
This formulation is due to Rădulescu [R0̆0] who introduced the terminology “ hyperlinear.” Later, Elek and
Szabó [ES05] showed that the notion of soficity introduced by Gromov can be characterized in an equivalent
manner, requiring θ to map to the symmetric group Sd. Radulescu showed that a countable group G is
hyperlinear if and only if L(G) embeds into Rω, and he gave an example of G, different from Fn, such that
L(G) is not hyperfinite but embeds into Rω, thus giving another example of a non-hyperfinite I I1 factor
that satisfies CEP. The conjecture whether every countable group is hyperlinear remains open (as does the
stronger conjecture whether every countable group is sofic).

2.2 Tsirelson’s problem

In the early 1980s Boris Tsirelson [Tsi93] wrote a series of papers laying out the mathematical formalism
for the systematic study of the nonlocal properties of quantum mechanics. In quantum mechanics the state
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of a physical system is represented by a unit vector |ψ〉 in a separable Hilbert spaceH.3 A measurement (or
PVM, for projective-valued measure) is represented by a finite collection {P1, . . . , Pk} of projections on H
such that ∑i Pi = Id. Here k is the number of outcomes that the measurement can have; according to the
Born rule, the probability that the i-th outcome is obtained when a system in state |ψ〉 is measured according
to {Pi} is given by 〈ψ|Pi|ψ〉.

Tsirelson was interested in modeling situations in which a physical system is composed of two isolated
parts that can be measured independently, by observers present in separated locations.4 Let us imagine that
each observer can make one out of n possible measurements, each with k possible outcomes, on their share
of the system. To model the statistical behavior that such an experiment might have Tsirelson introduced
the following subset of [0, 1]n

2k2
:

Cqs(n, k) =
{ (
〈ψ|Ax

a ⊗ By
b |ψ〉

)
x,y,a,b : HA,HB Hilbert spaces, |ψ〉 ∈ HA ⊗HB, ‖|ψ〉‖ = 1,

∀(x, y) ∈ {1, . . . , n}2, {Ax
a}a∈{1,...,k}, {B

y
b}b∈{1,...,k} PVM onHA,HB resp.

}
. (2)

Here the subscript qs stands for quantum spatial and refers to the presence of a tensor product in the expres-
sion 〈ψ|Ax

a ⊗ By
b |ψ〉. This tensor product is natural if one accepts the rule for associating a Hilbert space to

composite systems in non-relativistic quantum mechanics, which proceeds by tensoring. Thus in the defini-
tion of Cqs it is understood that observer A’s system is modeled using a Hilbert spaceHA, observer B’s using
HB, and the Hilbert space associated with them jointly is HA ⊗HB, the space in which the system state
vector |ψ〉 lives. Continuing, Tsirelson observed that one could consider an a priori more general definition,

Cqc(n, k) =
{ (
〈ψ|Ax

a By
b |ψ〉

)
x,y,a,b : H Hilbert space, |ψ〉 ∈ H, ‖|ψ〉‖ = 1,

∀(x, y) ∈ {1, . . . , n}2, {Ax
a}a∈{1,...,k}, {B

y
b}b∈{1,...,k} PVM onH

s.t. [Ax
a , By

b ] = 0 ∀(a, b) ∈ {1, . . . , k}2} . (3)

Here the subscript qc stands for “quantum commuting” and refers to the fact that in this definition spatial
isolation is modeled by the constraint that measurement operators should commute, a condition which also
alows their joint measurability. This definition is more natural from a relativistic viewpoint, e.g. in algebraic
quantum field theory observables associated with space-time isolated regions are required to commute, but
there is no a priori separation of the global Hilbert space into tensor products.

Each definition gives rise to a family of convex sets (convexity is easily verified by taking direct sums of
PVMs and scaled vectors). Both provide reasonable models for the distributions, sometimes also referred to
as correlations, that can be generated by an experiment of the form that Tsirelson envisioned. Moreover, in
case all Hilbert spaces are taken to be finite-dimensional it is an exercise to show that the two sets coincide.5

Possibly due to this observation Tsirelson initially assumed that the sets coincide in general, and went on to
prove results about the sets Cqs; in particular he introduced techniques to bound certain facets of it. When
asked for a proof of the equality, however, Tsirelson realized that it eluded him and posed the question as an
open problem.6

3We adopt Schödinger’s bra-ket notation: a ket |ψ〉 is used to denote a vector |ψ〉 ∈ H, whereas a bra 〈ψ| is used to denote a
linear form 〈ψ| : |ϕ〉 ∈ H 7→ 〈ψ|ϕ〉 = 〈ψ, ϕ〉 ∈ C.

4We do not make the notion of “separated locations” precise other than through the upcoming formalism; indeed, finding a
formalization of it is the entire point of Tsirelson’s work. For the moment the reader can consider that we are only interested in
non-relativistic scenario.

5A slightly more difficult exercise is to show that they always coincide when n = k = 2.
6See “Bell inequalities and operator algebras”, available at https://www.tau.ac.il/˜tsirel/download/

bellopalg.pdf
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Tsirelson’s problem has two variants. The first, referred to as Tsirelson’s strong problem, asks about
strict equality between the two sets. This problem was answered in 2019 in a beautiful work by Slofs-
tra [Slo19], who showed that the set Cqs(n, k) is not closed for all large enough n, k. Since Cqc(n, k) is
easily verified to be closed, the sets cannot always be equal. Slofstra proved this result by introducing novel
techniques relating approximation properties for groups to the suprema of linear functionals on these sets
through the language of two-player games, which we will introduce in the next section. In his formulation of
the problem Tsirelson indicated that, if the sets were shown distinct, then an “even more important” problem
would arise, which is referred to as the weak Tsirelson’s problem: does Cqs(n, k) = Cqc(n, k) for all n, k?
Here we will refer to this formulation directly as Tsirelson’s Problem (TP).

While Tsirelson’s problem may at first glance look like an arcane question in the foundations of quan-
tum mechanics, there is a good reason why the authors of [NPA07] asked Tsirelson for a proof of his claim
regarding equality of the two sets. To explain their motivation one should bear in mind that the problem of
optimizing a linear functional over Cqs(n, k) is of primary importance for experiments demonstrating the
nonlocality of quantum mechanics, a key feature of the theory that has puzzled physicists and philosophers
alike ever since the EPR thought experiment brought it to the fore. Unfortunately even for small, fixed n, k
direct optimization over Cqs(n, k) seems intractable, as one has no a priori bound on the dimension of the
space H that will lead to an (even approximately) optimal correlation. In their paper Navascues et al. intro-
duce a decreasing family of outer approximations of the set Cqs(n, k) that are each represented as a positive
semidefinite set, which implies that optimization over each set can be performed in time commensurate with
its description size using semidefinite programming, an extension of linear programming. However, Navas-
cues et al. were only able to show that their outer approximations converge to the set Cqc(n, k), instead of
Cqs(n, k). If Tsirelson’s (weak) problem had an affirmative answer, their work would lead to an algorithm for
computing the supremum of a linear function over Cqs(n, k), a.k.a. computing the largest quantum violation
of a Bell inequality. Thus the original motivation for solving Tsirelson’s problem is purely computational,
and as we will see later it is suprisingly also how the problem was eventually resolved.

Further motivation for resolving Tsirelson’s problem arose when Fritz [Fri12] and Junge et al. [JNP+11]
independently showed that Tsirelson’s problem follows from Kirchberg’s QWEP conjecture, itself shown
equivalent to CEP by Kirchberg. Later, Ozawa [Oza13] established the equivalence between the three
conjectures, thus tying TP to CEP and the many equivalent formulations of it. In Section 3.2 below we
will sketch a different proof of the equivalence between TP and CEP that does not go through the QWEP
conjecture.

3 Separating hyperplanes as nonlocal games

The formulation of Tsirelson’s problem as a question about equality of two convex sets provides a natural
geometric approach to its resolution. For n, k ≥ 1 and λ ∈ (Rn2k2

)∗ a linear functional on Rn2k2
we

introduce the quantities (see also Figure 1)

ωqa(λ) = sup
p∈Cqs(n,k)

∣∣λ · p∣∣ and ωqc(λ) = sup
p∈Cqc(n,k)

∣∣λ · p∣∣ . (4)

Here the subscript qa stands for “quantum approximate”; we write Cqa(n, k) for the closure Cqa(n, k) =

Cqs(n, k). We also define a quantity ωloc(λ), where the supremum is taken over “local” correlations p (this
is the case where all PVMs in (2) mutually commute, see (6) below for a precise definition and a justification
of the term “local”).
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Figure 1: Separating convex sets

To give a negative answer to Tsirelson’s problem it suffices to find n, k and a λ such that ωqa(λ) <
ωqc(λ). In the foundations of quantum mechanics an inequality of the form ωloc(λ) ≤ α is called a Bell
inequality, and an inequality of the form ωqa(λ) ≤ β is called a Tsirelson inequality. The best right-
hand side in a Tsirelson’s inequality is referred to as the “largest quantum violation” of the corresponding
optimal Bell inequality. The design of functionals λ such that ωloc(λ) < ωqa(λ) is relevant to the design of
experiments witnessing the “nonlocality” of quantum correlations. Because of this many functionals have
been studied, such as the famous CHSH inequality ωloc(λCHSH) < 2

√
2 where λchsh ∈ (R2222

)∗ is a
specific functional named after its inventors, who also showed that it satisfies ωqa(λCHSH) ≥ 4 (Tsirelson
later showed that this bound is tight [Tsi80]). How does one go about finding interesting λ? One can
use guessing and physical intuition for how special quantum phenomena such as mutual incompatibility of
observables might be “detected” by some λ. This however can be rather tedious due to the infinite search
space: essentially no better algorithm for approaching ωqa from below is known other than enumerating over
progressively finer nets in increasing dimensions for the Hilbert space; for approaching it from above slightly
better candidate algorithms are known [NPA07] that work well in practice but, as mentioned earlier, are not
even known to converge to the right value—indeed, showing that they do led to formulating Tsirelson’s
problem, and it follows from the refutation of it that they do not.

In the 1990s emerging collaborations between physicists and computer scientists stimulated by the
nascent field of quantum computation led to the study of a subclass of functionals termed “nonlocal games”
which we now introduce.

3.1 Nonlocal games

The idea for a nonlocal game is to interpret the supremum in (4) as the optimal winning probability in a
certain cooperative two-player game. Let’s start with an example of such a game. Fix an n-vertex graph H
as well as a target number of colors k ≥ 1. The “coloring game” associated with H is played as follows. In
the game two cooperating, but non-communicating, players (traditionally referred to as “Alice” and “Bob”)
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interact with a referee as follows. The referee first selects a pair of questions by sampling two vertices of
G, x and y, independently and uniformly at random. The referee sends the label x to Alice, and y to Bob.
Each player is required to reply with a “color” represented by an integer a, b ∈ {1, . . . , k} respectively. The
referee declares this run of the game as a win for the players if and only if whenever x = y then a = b and
whenever (x, y) is an edge in H then a 6= b. (If x 6= y is not an edge in H then all answers are accepted.)
The players’ goal is to maximize their winning probability, taken over the referee’s choice of questions, in
the game; they are allowed to coordinate their choice of strategy but not to communicate once the game
starts.

This last sentence is rather informal; let’s make it more precise. What is a valid strategy? For each pair
of questions (x, y) the players provide answers according to some distribution p(a, b|x, y). So a strategy
specifies a correlation in the sense of Section 2.2. Physical restrictions on the players’ actions translate into
restrictions on the class of correlations that are allowed. The informal restriction here is that the players
“cannot communicate” with each other. The most natural formalization of this requirement is that each
player is constrained to compute their answer “locally”, using functions fA, fB : {1, . . . , n} → {1, . . . , k}
respectively. For two players determining their answers in this way the success probability is precisely

psucc =
1
n2

n

∑
x,y=1

(
1x=y1 fA(x)= fB(y) + 1{x,y}∈E1 fA(x) 6= fB(y)

)
,

where 1S denotes the characteristic function of a set S and E is the edge set of the graph H. Clearly
this expression is 1 if and only if fA = fB is a proper coloring of the graph, i.e. adjacent vertices never
get assigned the same color. Thus the game has a local strategy which wins with probability 1 if and
only if the chromatic number of H is at most k. This relation, between success probability in a game
and a natural graph parameter, hints at rich connections between games and combinatorial optimization,
with games providing a conceptual framework in which to study specific questions about combinatorial
optimization such as hardness of approximation.7

Generalizing the preceding example, a (two-player, one-round) game is specified by integers n, k, the
number of questions and answers per player in the game respectively, a distribution π on {1, . . . , n}2 ac-
cording to which questions are chosen and a decision predicate V : {1, . . . , n}2 × {1, . . . , k}2 → {0, 1}
which identifies correct question-answer tuples. With this notation the maximum success probability of a
local strategy, which we refer to as the “local value” of the game, is

ωloc(G) = sup
fA, fB

∑
x,y

π(x, y)∑
a,b

V(x, y, a, b) 1 fA(x)=a1 fB(y)=b . (5)

Defining λG ∈ (Rn2k2
)∗ by (λG)x,y,a,b = π(x, y)V(x, y, a, b) and introducing the polytope

Cloc(n, k) = Conv
{(

1 fA(x)=a1 fB(y)=b
)

x,y,a,b : fA, fB : {1, . . . , n} → {1, . . . , k}
}

(6)

we have that
ωloc(G) = sup

p∈Cloc(n,k)

∣∣λG · p
∣∣ = ωloc(λG) ,

justifying our abuse of the notation ωloc(·) in (5). To summarize, the maximum success probability of local
strategies in a game G with n questions and k answers per player can be identified with the supremum

7We emphasize that the games discussed here are entirely distinct from the games considered in the “game theory” of Nash
equilibria, where there are two players playing against each other. There is little or no connection between the two areas.
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of a certain linear functional derived from G over the convex set Cloc(n, k). This connection having been
made, a natural question arises: why not consider quantum strategies, in which the players would make local
measurements on a shared quantum state in order to determine their answers? Instead of a pair of functions,
a strategy is now modeled as a tuple S = ({Ax

a}, {B
y
b}, |ψ〉) of measurement operators (PVM) for each

player and a shared state |ψ〉. The no-communication assumption can be implemented by requiring that the
tuple satisfies the conditions introduced in the definition of Cqs(n, k) in (2) (in which case we qualify the
strategy as “quantum spatial”) or of Cqc(n, k) in (3) (in which case we qualify it as “quantum commuting”).8

This leads us to define

ωqa(G) = sup
p∈Cqs(n,k)

∣∣λG · p
∣∣ and ωqc(G) = sup

p∈Cqc(n,k)

∣∣λG · p
∣∣ . (7)

Beyond a mere reformulation of the optimization problems (4), the framing of linear functionals as two-
player (also called “nonlocal” to emphasize their use as witnesses of quantum “nonlocality”) games suggests
a particular mode of thinking about them, e.g. we can now use intuition about player strategies, questions
and answers as opposed to arguably much dryer doubly-indexed families of PVMs.

Going back to the example of the coloring game each of the quantities in (7) leads us to a variant of
the chromatic number: for H a graph and GH the coloring game associated to it we define the quantum
spatial (resp. quantum commuting) chromatic number of H as the smallest k such that ωqa(GH) = 1 (resp.
ωqc(GH) = 1). Examples of graphs whose quantum spatial chromatic number is strictly smaller than their
chromatic number have long been known [GTW02, CMN+07]. The possible relevance of the study of the
new chromatic numbers to TP and CEP is pointed out in [PT15], who formulate some related quantities
in terms of operator systems; multiple works have since explored further variants of the chromatic num-
ber [SS11, PSS+16] and introduced other classes of games that are connected to combinatorial parameters.
For example, the coloring game was generalized in [OP16] to a graph homomorphism game whose study led
the authors to associate a C∗-algebra with a game; we describe this algebra in the next section. In [AMR+19]
the authors introduced a quantum isomorphism game and a related notion of “quantum isomorphism” of two
graphs, and showed that there exist graphs that are quantum isomorphic but not isomorphic. Further study of
this notion led to connections with quantum groups [MRV19] and a surprising characterization of quantum
isomorphism in terms of homomorphism counts from planar graphs [MR20] (in contrast, Lovász charac-
terized “classical” graph isomorphism in terms of homomorphism counts from any graph). To summarize,
we find that the study of quantum strategies in two-player games has provided a rich framework in which to
connect combinatorics and functional analysis, leading to valuable insights in both areas.

3.2 The game algebra

The connection between TP and CEP made in [Fri12, JNP+11, Oza13] goes through Kirchberg’s QWEP
conjecture. An arguably more direct route has more recently been found using nonlocal games. Rather in-
formally the idea is that a quantum strategy for the players in a game G, i.e. a collection of PVM operators,
can be thought of as a certain kind of representation for an abstract algebra A = A(G) associated with
the game, whose generators are labeled by (question, answer) pairs and whose relations express the game
constraints. The (in-)existence of different types of successful strategies (quantum spatial, quantum com-
muting) in the game corresponds to the (in-)existence of different kinds of representations for the algebra,
thus tying a statement such as ωqa(G) < 1 = ωqc(G) to representability properties of A.

8To show formally that both types of strategies do not imply communication we compute the marginal distribution on one
player’s answers and observe that it is independent from the question to the other player.
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To introduce the game algebra more formally we first describe the class of synchronous games to which
the construction applies. A game is synchronous if X = Y, A = B, and for all x and a 6= b, V(x, x, a, b) =
0, i.e. identical questions always require identical answers. Informally, the synchronicity condition enables
to “factor out” the bipartite structure of a game and focus on representing the strategy for a single player.

Definition 3.1. Let G = (X, A, π, V) be a synchronous game. The game algebra A(G) is the abstract
unital ∗-algebra generated by elements {ex,a}x,a∈X×A such that for all x, y ∈ X and a, b ∈ A,

e∗x,a = ex,a , e2
x,a = ex,a , ∑

a
ex,a = 1 , and V(x, y, a, b) = 0 =⇒ ex,aey,b = 0 .9

Note that the game algebra may be trivial; for example if V(x, y, a, b) = 0 always then the constraints
cannot be satisfied. To see the connection between representations of the game algebra and perfect strategies
in G (we call a strategy perfect for a certain game if it leads to a winning probability of 1 in the game), as
a first exercise one may verify that ωloc(G) = 1 (i.e. there exists a perfect local strategy for G) if and only
if there is a unital ∗-homomorphism from A(G) into C. (The “if” direction is easiest; the synchronicity
condition on the game is used for the “only if” direction.) This observation can be generalized as follows.

Theorem 3.2. Let G be a synchronous game. Then

(i) [KPS18, Corollary 3.7] ωqa(G) = 1 if and only if there is a unital ∗-representation of A(G) into
Rω;

(ii) [PSS+16, Corollary 5.6] ωqc(G) = 1 if and only if there is a ∗-representation of A(G) into a C∗-
algebra with a tracial state.

Similarly to Voiculescu’s reformulation of CEP in terms of microstates or Radulescu’s definition of
hyperlinearity the condition (i) is equivalent to the existence of approximate representations of A(G) in
finite-dimensional matrix algebras. The theorem implies that the existence of a synchronous game G such
that ωqa(G) < 1 = ωqc(G) is equivalent to the existence of a tracial C∗-algebra that does not embed into
Rω; this latter statement is easily seen to be equivalent to the negation of CEP.

We say a few words about the proof of Theorem 3.2. To show the “only if” direction for the second
item, given a commuting strategy ({Ax

a}, {B
y
b}, |ψ〉) there is a natural state on A(G) given by τ(W) =

〈ψ|ϕ(W)|ψ〉 where W is a polynomial in the ex,a and ϕ(W) replaces ex,a by Ax
a in W. It is immediate that

this is a state; that it is tracial follows (with some work) from the synchronicity condition. For the first item,
a priori the condition ωqa(G) = 1 only gives a sequence of finite-dimensional strategies whose success
probability approaches 1. One can turn each such strategy in an approximate representation of A(G) into
finite matrix algebras, eventually leading to a representation into some ultrapower ofR.

To show the “if” direction for the second item, applying the GNS construction we get PVMs for the
first player from any tracial state on A(G). Constructing appropriate PVMs for the second player requires
a little more work; essentially, one uses the trace to construct commuting left and right representations of
the game algebra. For the first item our starting point is a sequence of approximate representations in finite
dimensions. From this we immediately get a sequence of families of PVM for the first player. There is a
natural definition for PVM elements for the second player which guarantees that PVM elements associated
with different players commute. To conclude, the player’s PVMs can be put into the required tensor product
form by appealing to the equivalence between spatial and commuting strategies in finite dimensions.

9The algebra does not depend on the question distribution π.
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4 Constructing nonlocal games

To build intuition about nonlocal games and the associated game algebra we first review a fundamental
example, the “Mermin-Peres Magic Square game”. In Section 4.2 we build on this example to construct
a family of games whose game algebra has approximate representations into matrix algebras of increasing
minimal dimension. In Section 4.3 we outline our approach for turning this family of games into a counter-
example to TP. This forces us into complexity-theoretic considerations which we explore in Section 4.4.

4.1 The Magic Square game

We start with a classic example, the Magic Square game GMS due to Mermin and Peres [Per90, Mer90].
This game is a synchronous game with n = 6 questions, which are best visualized as the three rows and
three columns of a 3× 3 square that can be pictured as follows:

y1 y2 y3 +1
y4 y5 y6 +1
y7 y8 y9 +1

−1 −1 −1

In the game each of the 6 questions has k = 4 possible answers, which are identified with the four possible
{±1} assignments to the entries of the three squares in the row or column indicated by the question such that
the product of the entries is as labeled on the picture, +1 for a row and−1 for a column. For example, possi-
ble answers to the question associated with the first row are {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)},
which are identified with the answer set {1, . . . , 4} in some arbitrary way. The game decision predicate VMS
enforces the constraint that whenever the players are asked a row or column that intersect the values that
their respective answers assign to the intersection square(s) should be identical. For example, if x is as-
sociated with the first row and y with the first column then VMS(x, y, (1, 1, 1), (1, 1,−1)) = 1 whereas
VMS(x, y, (1, 1, 1), (−1, 1, 1)) = 0. Note that this constraint implies that whenever the players are asked
the same question then their answers should be identical, hence GMS is a synchronous game.

A local strategy for this game is a pair of functions fA, fB : {1, . . . , 6} → {1, . . . , 4}; its success proba-
bility is the probability over x, y ∈ {1, . . . , 6} chosen uniformly at random that VMS(x, y, fA(x), fB(y)) =
1. As an exercise, the reader may use the fact that not all constraints in the square can be simultaneously
satisfied to show that ωloc(GMS) = 34/36. This example illustrates the connection between games and
constraint satisfaction problems that has proved so fruitful in complexity theory.

What is the game algebra AMS = A(GMS)? Generators for AMS are six PVM with four elements
each, {ex,a}a∈{1,...,4} such that ∑a ex,a = 1 for all x ∈ {1, . . . , 6}. An equivalent presentation in terms
of self-adjoint operators that square to identity can be found as follows. Let {ex,a}a be the four orthogo-
nal projections associated with the first row. Let y1 = ex,(1,1,1) + ex,(1,−1,−1) − ex,(−1,1,−1) − ex,(−1,−1,1)
and similarly define y2 and y3. Then y1, y2, y3 square to 1, pairwise commute, and satisfy y1y2y3 = 1.
Conversely, to any such triple it is straightforward to associate a four-outcome PVM {ex,a}a. A similar
construction can be employed for each row and column, a priori leading to 18 yi operators. However, using
the condition that V(a, b, x, y) = 0 =⇒ ex,aey,b = 0 and the consistency condition enforced in GMS we
get that yi defined in this way from the PVM associated with the corresponding row must equal to yi defined
from the PVM associated with the column that yi appears in.

To summarize,AMS is generated by elements y1, . . . , y9 such that y∗i = yi, y2
i = 1, any two yi appearing

in the same row or column of the magic square commute, and the yi satisfy the magic square row and column
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constraints, e.g. y1y4y7 = −1. Our observation that GMS does not have a local strategy that succeeds with
probability 1 implies thatAS has no unital ∗-homomorphism into C. What about homomorphisms in higher-
dimensional algebras? With a little work it is possible to show that there is no such (unital) homomorphism
into M2(C) or M3(C), but there is one into M4(C) given by the following operators:

I ⊗ σZ σZ ⊗ I σZ ⊗ σZ
σX ⊗ I I ⊗ σX σX ⊗ σX
−σX ⊗ σZ −σZ ⊗ σX σY ⊗ σY

, (8)

where

σX =

(
0 1
1 0

)
, σZ =

(
1 0
0 −1

)
and σY = iσXσZ

are the Pauli matrices. Moreover, homomorphisms from AMS into Md(C) for some d obey an interesting
“rigidity” phenomenon. Let Y1, . . . , Y9 be the image of the generators under any such homomorphism. Then
it is easy to verify that the row and column constraints imply that

{Y1, Y5} = {Y2, Y4} = 0 , and [Y1, Y2] = [Y1, Y4] = [Y5, Y2] = [Y5, Y4] = 0 , (9)

where {A, B} = AB+ BA is the anti-commutator. Conversely, any four self-adjoint matrices that square to
identity and satisfy (9) can be extended to a ∗-homomorphism ofAMS. The rigidity phenomenon referred to
above is that the algebra generated by any such (finite-dimensional) Y1, Y2, Y4, Y5 is isomorphic to M4(C)⊗
Md′(C) for some d′, with Y1 7→ I ⊗ σZ, etc. (The other operators, Y3, Y6, Y7, Y8, Y9 are uniquely defined
from those four by the row & column constraints.) Thus any finite-dimensional unital ∗-representation
of AMS is isomorphic to the representation given in (8), possibly tensored with the identity. This very
special property allows us to use the fact that a correlation achieves a high success probability in a game,
λMS · p = 1, to conclude that any realization of this correlation using PVMs acting on a Hilbert space must
satisfy specific algebraic relations; this fact will be crucial to the eventual resolution of TP.

To summarize, the example of the Magic Square helps us demonstrate two important points. Firstly, it
is possible to design a game such that ωqa(G) = 1 and moreover any strategy that witnesses this is of a
certain minimal dimension—here, 4. Secondly, it is possible to force such strategies to have a certain rigid
structure—here, the operators used as part of the strategy must contain two pairs of mutually anti-commuting
operators, such that operators from different pairs commute.

4.2 The Pauli Braiding game

To bound ωqa(G) for some game G it is useful to understand the structure of approximately optimal strate-
gies in G. This is because due to the non-closure of Cqs(n, k) we can have ωqa(G) = 1 without there being
any perfect quantum spatial strategy for G, and so it will be convenient to develop techniques that are able
to rule out the existence of not only perfect but also near-perfect strategies.

To get us started we state an important tool in the study of approximate group representations.

Theorem 4.1 ([GH17]). Let G be a finite group and f : G → Ud(C) such that

E
x,y∈G

tr( f (y)∗ f (x) f (x−1y)
)
≥ 1− ε ,

for some ε ≥ 0 and where the expectation is taken over the choice of a uniformly random pair of elements
from G. Then there is a representation g : G → Ud′(C) and an isometry V : Cd → Cd′ such that

E
x∈G
‖ f (x)−V∗g(x)V‖2

2 ≤ 2 ε .
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A map f as in the theorem is called an approximate representation of the group G; indeed the condition
with ε = 0 is equivalent to that of being a representation. The theorem is an example of a stability result,
stating that approximate representations are close to exact representations. Here, the measure of “approxi-
mate representation” is rather loose, since group relations are only required to hold on average and under the
`2 norm ‖X‖2 = tr(X∗X)1/2 (as opposed to, say, for all relations and under the operator norm). The use
of the `2 norm requires us to allow d′ > d in the conclusion of the theorem; that this is necessary is easy to
see by “cutting off a corner” from a high-dimensional representation. We remark that Theorem 4.1 has been
extended to the case of amenable groups, with appropriate modifications to allow for infinite-dimensional
representations, in [DCOT19].

In some cases, such as the Magic Square game studied in the previous section, we can observe that the
game algebra is “almost” a group algebra — in fact, it is isomorphic to a quotient of a group C∗-algebra.
Namely, if we let P2 be the group generated by X1, Z1, X2, Z2, J satisfying X2

1 = Z2
1 = X2

2 = Z2
2 = J2 = 1,

[J, X1] = [J, Z1] = [J, X2] = [J, Z2] = 1, and [X1, X2] = [X1, Z2] = [Z1, X2] = [Z1, Z2] = 1, [X1, Z1] =
[X2, Z2] = J (where now [a, b] = aba−1b−1 denotes the group commutator) then it can be verified that
A(G) ' C(P2)/〈J + 1〉.10 In particular, any (approximate) representation of A(G) “descends” to an
(approximate) representation of P2 that (approximately) sends J to −1. Since P2 has a single (exact)
representation that sends J to −1, Theorem 4.1 can be applied to deduce that near-perfect strategies in GMS,
i.e. strategies whose winning probability is close but not necessarily equal to 1, must be proportionately
close to optimal strategies. In particular, it implies the existence of a constant ε0 > 0 such that any quantum
spatial strategy that succeeds with probability larger than 1− ε0 in GMS makes use of a Hilbert space for
each player that has dimension at least 4; moreover, the algebra generated by the strategy’s PVMs contains
operators that are close, in the norm ‖ · ‖2, to a representation of the group P2.

The connection between game algebra and quotient of a group C∗-algebra is quite general and extends
to a large class of synchronous games introduced in [CM14, KPS18] and referred to as linear constraint
system games; this was shown in [Gol21]. The tools introduced so far suggest the possibility of designing
games whose game algebra is isomorphic to quotients of larger groups, such as for example the group PN
which is defined as P2 but with N pairs of anti-commuting generators; this group has a unique irreducible
representation sending J to −1, of dimension 2N . Working out the rules for such a game leads to the
following.

Theorem 4.2 ([NV17]). There is an ε0 > 0 and for every N ≥ 2 a synchronous game G(N)
PBT with 2O(N)

questions and O(1) answers such that any quantum (spatial or commuting) strategy which succeeds in G(N)
PBT

with probability at least 1− ε0 induces an approximate representation of PN sending J to−1 and must have
dimension at least 2N .11

The game from Theorem 4.2 is called the “Pauli braiding game,” referring to how the defining (anti-
)commutation relations “braid” the group generators together. For succinctness we do not describe this
game in its entirety here. To design it it suffices to find an appropriate decision predicate function that will
enforce the group relations. The simpler case of Zn

2 is known in complexity theory as the “linearity test” of
Blum, Luby and Rubinfeld [BLR93]. This test amounts to verifying that the players’ answers a, b and c to
questions x, y ∈ Zn

2 and x + y respectively are related as c = a + b.12 Blum et al. show that near-perfect

10The algebraic relations obtained from the stated relations by sending J 7→ −1 are known as the Weyl-Heisenberg relations.
11One might worry that Theorem 4.1 only guarantees closeness to a representation up to an isometry, which can change the

dimension of the underlying space. This is true, and a litle extra work which we skip here is needed to obtain the strict dimension
bound mentioned in the theorem.

12Here it seems like there are three players; a small variant of the test works with two players.
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local strategies are close to homomorphisms from Zn
2 to {−1, 1}, and this is extended to finite-dimensional

matrix representations in [Vid11]. For the case of PN we combine the linearity test for testing the product
rule between commuting elements in PN and the Magic Square game for testing anti-commuting elements.
The stated number of questions, 2O(N), follows from the number of group elements, which is 2 · 4N , and is
about quadratically larger due to the use of auxiliary questions that are associated with e.g. a pair of group
elements.

4.3 A fixed-point argument

At this point we have designed an infinite family of games (G(N)
PBT)N≥1 such that for all N ≥ 1, ωqa(G

(N)
PBT) =

ωqc(G
(N)
PBT) = 1. While this clearly does not provide a separation, there is more that we may hope to use. In

particular, thanks to the rigidity (stability) arguments exposed in the previous section we know that there is
an ε0 > 0 such that for any N ≥ 2 and any quantum spatial strategy for G(N)

PBT that succeeds with probability
at least 1− ε0 the Hilbert space underlying the strategy must have dimension at least the dimension of the
smallest representation of PN that sends J to −1, i.e. 2N . For a game G and p ∈ [0, 1] we let E(G; p)
be the smallest dimension of a strategy that succeeds in G with probability at least p; then according to
Theorem 4.2 we have that

∀N ≥ 1 , E
(
G(N)

PBT; 1− ε0
)
≥ 2N . (10)

Eq. (10) shows that any quantum strategy of dimension < 2N has success probability bounded away from
1 in G(N)

PBT. To complete our goal it would suffice to create a single game G that satisfies this property
for every N ≥ 1. Indeed, if E(G; 1− ε0) ≥ 2N for all N then it follows that ωqa(G) < 1, because the
optimal success probability of a quantum spatial strategy in G can be arbitrarily well-approximated by finite-
dimensional strategies. If in addition we are able to guarantee that ωqc(G) = 1 then we will have completed
our negative resolution of TP, separating Cqa(n, k) from Cqc(n, k) for n and k the number of questions and
answers in G respectively.

The key idea is to define the game G as the fixed point of a certain compression procedure that transforms
families of games such as (G(N)

PBT)N≥1 into other families with comparable size but increased requirements
in terms of the minimal dimension of near-optimal strategies. To make this precise we first need a means of
representing infinite families of games. Recall that a computable function is f : N→ N ∪ {⊥} such that,
informally, there is an algorithm that on input n ∈N returns f (n) if f (n) ∈N; if f (n) =⊥ the algorithm
does not terminate. A computable function is total if f (n) ∈ N for all n.13 Computable functions are
enumerable and can thus themselves be encoded as integers in a natural way (e.g. via some unambiguous
encoding of a Turing machine that computes the function).

Fix a canonical encoding of games as natural numbers; since the collection of all games (with, say,
question distribution that has rational coefficients) is countable this can be done in a straightforward manner.
We say that a function G : N → N succinctly represents the family (GN)N≥1 if G is computable and for
every N ≥ 1, G(N) is the representation of GN . Now suppose that there exists a total computable function
Compress that given as input a succinct representation G for a family of games (GN)N≥1 returns a succinct
representation G ′ for a family of games (G′N)N≥1 such that the following conditions hold for all N ≥ 1:

(C.1) If ωqa(GN+1) = 1 then ωqa(G′N) = 1;

13We wrote “roughly speaking” because we are not making the notion of algorithm precise. It is a major success of computability
theory that essentially any reasonable notion of computability that has been formalized has been shown equivalent to the other
notions. For concreteness, one can replace “algorithm” by “Turing machine.”
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(C.2) E(G′N ; 1
2 ) ≥ min

{
E(GN+1; 1

2 ), N
}

.14

In the next section we argue that the existence of such a “compression” procedure is fairly natural once one
is familiar with the use of nonlocal games in complexity and cryptography, and in particular with the design
of delegated computation protocols using the PCP theorem—buzzwords that will be explained later.15 For
the time being, let us assume that the map Compress exists. We will make use of an additional ingredient in
the form of a refutation procedure NPA for the quantum commuting value. NPA is an algorithm that takes as
input the integer representation of a (single) game G and halts if and only if ωqc(G) < 1. (If ωqc(G) = 1,
then NPA(G) runs forever.) The existence of such a procedure follows from the results of Navascues et
al. [NPA07] that were already mentioned in Section 2.2, and we take it for granted.

Using these two procedures, Compress and NPA, let us define another function, call it F, that takes as
input (the integer representation of) a succinct representation G for a family of games (GN)N≥1 and returns
a succinct representation G ′ that is defined as follows. (We specify G ′ as an algorithm expressed in high-
level language, which can ultimately be implemented by some computable function.) On input N, G ′ does
the following:

1. Compute the description of G1 = G(1);

2. Run NPA on G1 for N steps. If NPA halts, then return the description of a trivial game that always
accepts.

3. Compute T = Compress(G).

4. Return a description of the game G′N = T (N).

We observe that provided G and Compress are total computable functions, and Compress returns a total
computable function when given one as input, then F is also a total computable function. Applying a
fundamental result in the theory of computable functions, Rogers’ fixed point theorem, the map F has a fixed
point, call it G∞, that is a computable function. Let G∞ = G∞(1) (more precisely, the game whose integer
representation is G∞(1)). We claim that ωqa(G∞) < ωqc(G∞) = 1, thus providing us with the desired
separation. To show this, suppose first that ωqc(G∞) < 1. Then since F(G∞) = G∞, and since NPA must
halt on G∞ after some number N∞ of steps, for N ≥ N∞ the game G∞(N) is a trivial game that always
accepts. By a straightforward induction using property (C.1) of Compress it follows that ωqa(G∞) = 1,
hence ωqc(G∞) = 1 as well, a contradiction. So ωqc(G∞) = 1 and at step 2. NPA never halts. We
then get by induction using property (C.2) of Compress that E(G∞; 1

2 ) ≥ N for all N. This implies that
ωqa(G∞) ≤ 1

2 , because no sequence of finite-dimensional strategies can ever get a success probability larger
than 1

2 .
The preceding argument shows that to refute TP it “only” remains to design the Compress procedure.

This, of course, is the hard part. Before we tackle this task we discuss a subtle point about the preceding
argument.

4.4 Enter complexity

In the analysis of the fixed point G∞ of the map F we implicitly assumed that the game G∞ = G∞(1) is
well-defined. What if G∞ never halts on input 1? Rogers’ fixed point theorem does not guarantee that the

14Here the last “N” can be replaced by any unbounded function of N for the ensuing argument to work.
15This is not to say that it is straightforward—indeed, the two conditions together already imply that executing Compress once

on a trivial family of games that always accept yields an infinite family of games with increasing dimension requirement.
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fixed point itself is a total function, and it need not be defined on all inputs. Even if it were a total function,
there would not be an a priori guarantee that G∞ returns well-formed outputs on every input—in general
it will return integers, which depending on our encoding procedure may not all correspond to well-defined
games. Indeed, we should detect that there is something suspicious in the entire setup. A function Compress
satisfying all the requirements we have listed is easy to design; for example, G ′ = Compress(G) could
on input N return a game that is a mixture of GN+1 and G(N)

PBT,16 and this would easily satisfy both (C.1)
and (C.2) (indeed, with a stronger bound of 2N instead of N in (C.2)).

Observe that by virtue of being a fixed point of F, G∞, as a family of games, has a size (as a function of
N) that is at least that of Compress(G∞), which has a size that is at least that of Compress(Compress(G∞)),
etc. Therefore, for F to have a fixed point that is a well-defined family of games, it is necessary that the
procedure Compress lives up to its name, i.e. satisfies the following additional requirement:

(C.3) The size of the game G′N is smaller than the size of the game GN .

Here, by “size” we mean the size of an explicit representation of the game, which we can approximate by
the total number of questions and answers. In the next section we will see that a more refined notion of size,
in terms of the running time of an algorithm computing the referee’s questions and its decision, is needed.

While it may not be immediately clear at the level of the discussion, a proper formalization of (C.3)
together with small modifications to the description of F (e.g. the introduction of a “time-out” condition
that ensures that the output of F is always a well-defined family of games, whatever its input) leads to a
procedure such that we are able to guarantee that any fixed-point is a valid description of a family of games.
Thus complexity-theoretic requirements on Compress arise naturally from our strategy based on identifying
G∞ as a fixed point, and this beyond the most elementary requirement that the map be computable. In the
next section we give some of the main ideas that go in the design of Compress; as we do so we will discover
that more refined complexity-theoretic requirements are required for us to proceed with the construction.

5 Compression

So how do we implement a “compression” procedure such that (C.1), (C.2) and (C.3) hold? Although it
has well-established parallels in classical complexity and cryptography, this is a relatively new question in
the study of nonlocal games and comparatively few techniques are known for it [Ji17, FJVY19, MNY20].
Two main ideas have been used. The first is the idea of efficient verification of computations, which takes its
origin in classical complexity theory in the 1980s (where it was studied under the name of “program check-
ing” [BK95]) and received a huge boost when probabilistically checkable proofs (PCP) were discovered in
the 1990s [AS98, ALM+98]. The second is the idea of rigidity, which we already encountered when analyz-
ing the Magic Square game in Section 4.1 and whose relevance to quantum information and cryptography
was first made explicit in work by Mayers and Yao who coined the term “self-testing” for it [MY04].

In this section we aim to give a flavor of both techniques and how they come together to implement com-
pression. In the process we will see that more refined arguments about complexity make their apparition. As
observed in Section 4.4 the design of a procedure which satisfies both (C.1) and (C.2) is relatively straight-
forward if one does not impose any requirement on how the size of family of games G ′ = Compress(G)
depends on that of G. This leads us to reframe the question of implementing compression into one of reduc-
ing the size of a game given as input—given a game G (which we think of as G(N + 1)), how do we design

16What we mean is that the referee would flip a coin to decide which game is played, and inform the players of their decision;
for both conditions to hold we’d place a higher probability on G(N)

PBT being played.
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G′ (which we think of as G ′(N)) that has similar properties (same ωqa(G), same dimension requirements)
but a smaller number of questions and answers—since we are now talking about the N-th game in the fam-
ily, and not the (N + 1)-st? We first discuss the problem of reducing the number of answers in a game, and
then that of reducing the number of questions.

5.1 The PCP theorem and answer reduction

The colloquial formulation of the PCP theorem is that mathematical proofs can be written in a format such
that the validity of the entire proof can be verified by looking only at a few randomly chosen locations of it.
It will be useful to express this slightly more formally. First we fix a language, which in general is a subset
L ⊆ {0, 1}∗ of strings of bits of any length, and for the example could be the set of all valid statements
in, say, Peano arithmetic. Second we fix a proof verification procedure D that takes as input a statement x
and a proof Π ∈ {0, 1}∗ and returns a bit D(x, Π) ∈ {0, 1}, with 1 indicating that the proof is valid. In
the example D would check that all the claimed steps in Π follow from an axiom and that the proof indeed
establishes the statement x.17 The PCP theorem states that from D it is possible to compute a D′ such that
D′ takes inputs x and Π′, is allowed to toss some random coins, but can only look at 10 bits of Π′ and then
returns a decision in {0, 1}. It should be that (i) for any (x, Π) that D accepts there is a Π′, which can be
computed from Π, such that D′ accepts (x, Π′) (this is usually referred to as the “completeness” property)
and (ii) for any x such that there is no Π such that D accepts (x, Π) there is also no Π′ such that D′ accepts
(x, Π′) with probability larger than 1/3 (this is referred to as “soundness”—note the apparition of a small
probability of error, which can be made arbitrarily small by allowing D′ to make more queries to Π′, but
cannot in general be driven to zero).

There is a crucial requirement for the PCP theorem to apply that is worth emphasizing: the transforma-
tion described above is only possible in the case where D is efficient, in the sense that the time it takes to
evaluate an input (x, Π) is a fixed polynomial in the length of x (in particular, it can only ever access polyno-
mially many bits of Π, which can thus be truncated without loss of generality). This efficiency requirement
is crucial to the proof of the PCP theorem, which first represents the entire computation done by D as a
“tableau” with intermediate variables associated to each computation step, before finding an encoding of it
that can be checked very efficiently; this last step uses techniques from the theory of error-correcting codes.
The PCP theorem thus states that proofs that can be verified efficiently, in a number of computation steps
polynomial in their length, can be encoded in such a way that verification can also be sparse—only a few
bits need to be accessed in order to make a high-confidence decision.18

Why is this relevant to our task? Recall that given a game G our goal is to find a game G′ that is smaller
than G and such that (C.1) and (C.2) hold. Here we are concerned with reducing the size of answers in G′;
we will address the size of questions in the next section. Fix a pair of questions (x, y) for G. We can think
of the referee’s task in the game as verifying the claim that “there exists a pair of answers (a, b), that can
be locally produced from (x, y), such that V(x, y, a, b) = 1.” Setting aside the italicized part, the referee’s
task amounts to verifying the existence of a proof, the pair (a, b), that passes some verification procedure,
V(x, y, ·, ·). The PCP theorem indicates that there is some “encoding” of (a, b), call it (Πa, Πb), that can
be verified by only examining a few locations of it. We could then devise another verification procedure
V ′, for the game G′, that samples a pair of questions (x, y) as in G as well as a few locations (i1, . . . , i5)
that it needs to see in Πa, (j1, . . . , j5) that it needs to see in Πb, and would send x′ = (x, i1, . . . , i5)

17Note that here D should accept statements and proofs of any length. Formally it could be modeled as a Turing machine with
two input tapes.

18“Sparse” is often called “local” in the literature. We use a different word to make the distinction with the notion of “locality”
associated with the players in a two-player game, which in our context is distinct.
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and y′ = (y, j1, . . . , j5) as its questions. The players would locally compute Πa and ΠB respectively and
respond with the requested locations. The PCP theorem would guarantee that this verification procedure is
essentially equivalent to the original one; however, now the length of answers has been reduced down to a
constant.

While this is a plausible sketch for how answer reduction may be achieved, there are a number of major
caveats that need to be addressed. Firstly, we implicitly assumed that the PCP encoding of the “proof” (a, b)
would naturally take the form (Πa, Πb). However, in general a PCP encoding is calculated globally, and
such a nice bipartitioning may not (in fact, cannot) hold. Secondly, it is essential for the soundness of the
argument that we certify that (a, b) not only exist but can be produced locally from (x, y). Thirdly, again for
soundness Πa should not be allowed to depend on the queries (i1, . . . , i5) that are being made to it: we need
to find a mechanism that forces the player to fix it independently of them, even though the referee will never
see the entirety of it. Finally and crucially, as already mentioned the PCP theorem only applies to efficient
verification procedures. To make use of it here it is therefore essential that the verification predicate V used
in G can be implemented by an algorithm that runs in time polynomial in the length of (x, y).

The last point forces us to rethink our approach. While we initially thought of games as some mildly
restrictive formulation of linear forms, the desire to “compress” games puts us face to face with a new
algorithmic requirement: we now have to keep track of the complexity of the verification predicate. As
long as we do so, however, we have a plan for reducing the size of answers. While this plan raises specific
challenges, all of them can be addressed using variations of techniques that have been developed in the
decades-long history of using the PCP theorem to implement efficient proof verification in a variety of
settings. In the next section we will see how reducing the size of questions prompts us to impose similar
efficiency requirements on the procedure used to sample questions (x, y) ∼ π in G.

5.2 Rigidity and question reduction

In the previous section we saw how techniques developed for the study of PCPs could be leveraged to im-
plement savings in the length of answers in a nonlocal game (at the cost of a small increase in the question
length). The idea for reducing the length of questions appears in [NW19], where it is referred to as “in-
trospection.” While the PCP theorem takes its full meaning in a classical context, the idea of introspection
makes essential use of quantum mechanical features, and in particular the possibility to test that incompatible
measurements have been made on a shared quantum state.

To explain the idea suppose first that the distribution π on questions in the game G is uniform over
{(x, x) : x ∈ {0, 1}N}. Suppose that G is modified into a game G′ such that with probability 1/2 the
players are asked to play the game G(N)

PBT introduced in Section 4.2 (and with probability 1/2 they play the
original G). Let us see how introducing the Pauli braiding game can be used to force the players to locally
generate their own questions in exactly the same way as the referee would have.

For simplicity let us assume that the players’ strategy succeeds with probability 1 in G(N)
PBT, when it is

played. Again for simplicity let us assume that the state |ψ〉 ∈ H⊗H used as part of the players’ strategy is
a “maximally entangled” state, i.e. it satisfies 〈ψ|A⊗ B|ψ〉 = tr(ABT) for any A, B ∈ B(H).19 In the game
G(N)

PBT there is a question associated with each element of PN , to which the answer is a single bit.20 For each
such question, in the strategy there is a two-outcome PVM {Ax

0 , Ax
1} that the player applies when receiving

the question. We can write each such PVM as an observable Ax = Ax
0 − Ax

1 . Adapting our notation to the

19This can be shown to hold without loss of generality whenever the game is a synchronous game, which is the case for all games
considered here.

20There are more questions, which are used to test the group relations; this explains the “2O(N)” in Theorem 4.2.
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present situation, we conclude that as part of the strategy for every a, b ∈ {0, 1}N there is an observable
A(a, b) that corresponds to the player’s measurement on the question associated with the group element
Xa1

1 · · ·X
aN
N Za1

1 · · · Z
aN
N ∈ PN . Moreover, whenever the strategy has a success probability sufficiently close

to 1 in the game then there is an isometry V such that A(a, b) ' V∗σX(a)σZ(b)V, where the approximation
is meant in the sense of Theorem 4.1 and we introduced the shorthand σX(a) = σa1

X ⊗ · · · ⊗ σan
X and

similarly for σZ(b).
Consider the following modification to G(N)

PBT. Introduce a pair of additional questions, labeled X resp.
Z, on which the player is expected to perform the 2N-outcome PVM that corresponds to a joint measurement
of all observables {A(a, 0N , 0)} resp. {A(0N , b, 0)}, which is possible since they commute (in a perfect
strategy).21 These two questions have much longer answers which can be used for “randomness generation,”
in the following sense. Using that A(0N , b, 0) ' V∗σZ(b)V it follows that the PVM applied on question
Z is isometric to a rank-1 measurement in the joint eigenbasis of all σZ(b) (possibly tensored with an
irrelevant identity). Since all rank-1 projections have the same trace (recall that here we are working in
a finite-dimensional matrix algebras, whose trace is unique) it follows that each answer is obtained with
the same probability, 1/2N . Furthermore, using that the joint eigenbases of {σX(a)} and of {σZ(b)} are
mutually unbiased it follows that if both players are sent the same question (Z, Z) then they must provide
the same uniformly distributed answer, while if the question is (X, Z) they must each provide uncorrelated
uniformly random answers. Geometrically this observation corresponds to the statement that any p such
that λ

G(N)
PBT
· p = 1 has a certain projection (e.g. to x = Z, y = X) that is proportional to the all-1 vector.

Thus using G(N)
PBT, suitably modified by the introduction of additional questions as described above, we

can guarantee that any strategy which succeeds with sufficiently high probability in this part of the game
must return uniformly random identical answers (a, a) ∈ ({0, 1}N)2 to the question (Z, Z). In this way it
is possible to enforce that the players locally generate a pair (a, a) that is distributed exactly as the questions
that the referee would send them in the game G. Moreover, the “effort” in doing so is virtually trivial: each
player was sent a single question that essentially reads “generate the same random value as your partner!”

While this constitutes the main idea—using rigidity to force players to locally generate their own
questions—there are many issues to address. Firstly, we need the player not to report the question that
they generated, but use it in order to compute an answer that it then sends to the referee. For this there
is a simple workaround applying ideas from the previous section: we can in a first step ask the player to
report the generated question as well as their answer, and in a second step to perform answer reduction.
Secondly, the distribution of questions in the game need not be uniform over identical (a, a) or independent
(a, b) answers. This requires extending the method described above. In particular, “complicated” distribu-
tions are likely to be harder to enforce, requiring more questions to a point where no question reduction is
achieved—thus another complexity requirement creeps in, that the families of games we consider should
have question distributions of bounded complexity, a requirement that should of course be formalized in an
appropriate manner. Finally and most importantly, while the “useful” question (Z, Z) in the game is short,
ensuring that the player performs the right action on it requires the referee to implement the entire game
G(N)

PBT. As mentioned in Theorem 4.2 this game has 2O(N) questions, which in general will be far larger than
the number of questions in G! In the next section we address this issue by discussing a game that has similar
guarantees in terms of testing but much smaller question size.

21The game should enforce that such a measurement is being made in any (near)-optimal strategy; this is not hard to achieve.
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5.3 The quantum low-degree test

In the previous section we sketched how the task of question reduction can be completed, provided there is
an analogue of the game G(N)

PBT for testing the group PN but with a reduced number of questions. Such a
result is shown in [JNV+20a], building on [NV17].

Theorem 5.1 ([JNV+20b]). There is an ε1 > 0 and for every N ≥ 2 a synchronous game G(N)
LDT with

2poly log(N) questions and answers such that any quantum (spatial or commuting) strategy which succeeds
with probability at least 1− ε0 in GLDT(N) induces an approximate representation of PN that sends J to
−1 and must have dimension at least 2N .

The only difference with Theorem 4.2 is the number of questions and answers, which is now quasipoly-
nomial instead of exponential. This difference hides a deeper difference in terms of how the game is struc-
tured. Recall that the Pauli braiding test is built on the linearity test of [BLR93], interpreting the latter as a
test for the group ZN

2 and extending it to a test for PN whose analysis could be performed based on The-
orem 4.1. With a much smaller number of questions it is no longer possible to have a question associated
with each element of the group. Since PN can be generated by 2N elements it is still possible to have a
question per generator, and plausible to show that in optimal strategies the observables associated with each
of these questions generate a group isomorphic to PN . This task, however, will clearly be rather arduous
in the case of near-perfect strategies. This is because near-perfect strategies provide a presentation (observ-
ables associated to the generators) which satisfy, at best, a certain set of relations on the average to some
small constant error (in the norm ‖ · ‖2). Extending the generators to the entire group by taking products
will quickly build up the error in a way that, if the only available tool is the triangle inequality, is likely to
become unmanageable.

What is needed for Theorem 5.1 is an efficient stability result: a small (quasipolynomially many gener-
ators and relations) presentation of the group PN such that any collection of operators that approximately
satisfies the defining relations (in a similar sense as Theorem 4.1) is close to an exact representation — where
crucially the closeness should depend on the initial approximation quality but not, or only very mildly, on
the size of the group.

Theorem 5.1 is obtained as a quantum extension of the PCP theorem. The generating set it is based
on is defined using the Reed-Muller error-correcting code, in a way that we do not have space to detail
here. As far as we are aware it is the only “efficient” (small number of generators) & “robust” (approximate
representations are close to exact ones) stability result of its kind and may be a tool of independent interest
in other areas.22 Interestingly, a pared-down version of the result for the group ZN

2 is used in the analysis
of the answer reduction procedure from Section 5.1. Indeed, while the use of the PCP theorem made in that
section is a priori entirely classical the analysis needs to take into account quantum strategies for the players,
and the classical soundness analysis is not sufficient.

5.4 MIP∗=RE

The previous sections complete our sketch of the design of the compression procedure, and following the
argument from Section 4.3 of the construction of a correlation separating Cqc from Cqs. While we started
off without making considerations of complexity, we were led to introduce such considerations due to (1)
the requirements for applying the fixed-point argument, and more crucially (2) the necessity of using tools
such as the PCP theorem to implement the game compression procedure.

22See e.g. [BC20] for a discussion of some group stability results.
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A small modification of the definition of the fixed-point G∞ leads to an interesting consequence in
complexity theory itself. In the definition of F, replace the algorithm NPA used at step 2. by the execution
of an arbitrary Turing machine M; i.e. replace the step by “Run M for N steps. If M halts then return the
description of a trivial game that always halts.” We claim that with this modification the game G∞ = G∞(1)
satisfies ωqa(G∞) = 1 if and only if M halts (in some finite number of steps), and ωqa(G∞) < 1 otherwise.
This can be shown using very similar reasoning to that employed in Section 4.3. Suppose first that M halts.
Then step 2. detects this for some large enough N, and as in Section 4.3 we conclude that ωqa(G∞) = 1.
If however M never halts then step 2. never completes, and again as in Section 4.3 we quickly see that
ωqa(G∞) ≤ 1

2 .
Furthermore, it can be verified that the procedure which to M associates the corresponding game

G∞ = G∞(M) can be implemented in time polynomial in the description of M. That is, to any Turing
machine M we are able to associate a game G∞(M) that has a perfect quantum spatial strategy if M halts,
and no near-perfect quantum spatial strategy in case M does not halt. In complexity-theoretic terms this
establishes a reduction from the halting problem to the problem of deciding between ωqa(G) = 1 and
ωqa(G) ≤ 1

2 (here 1
2 is an arbitrary positive quantity < 1). The halting problem is a complete problem

for the class of recursively enumerable languages RE, while the latter problem is (once properly formu-
lated) complete for the class MIP∗ of languages that have “quantum multiprover interactive proof systems.”
Thus the argument establishes the equality MIP∗ = RE, which gives its title to [JNV+20a]. From a purely
complexity-theoretic standpoint this equality is interesting because it relates two classes that are a priori de-
fined in very different terms, and it is surprising because the class RE is very large and makes no reference
to time complexity at all (the definition of the halting problem does not refer to how much time is allowed
for the Turing machine to halt) while the class MIP∗ does impose efficiency requirements on the verification
time, i.e. the time it takes for the referee in the game to generate questions and verify answers to them. It is
notable that the equality parallels a celebrated result MIP = NEXP [BFL91], a major stepping stone on the
way to the proof of the PCP theorem which is now given a form of “quantum” or “non-commutative” ex-
tension. On a more philosophical note, the equality MIP∗ = RE vindicates the long-witnessed hardness of
designing and analyzing interesting Bell inequalities, showing that the optimal quantum bound is in general
an uncomputable function of the coefficients of the Bell functional.

6 Outlook

We end with some brief remarks on future work. While in this document we have insisted on the role
played by complexity theory in the design of a separating correlation, and hence indirectly in the design
of an algebra that refutes Connes’ Embedding Problem, we are not aware of a meta argument that would
require this. In particular, while it can be formally shown that the complexity-theoretic equality MIP∗ = RE
directly implies a refutation of Tsirelson’s problem, the converse is not known to hold. It would be very
interesting if a more direct argument, without making any reference to even computability theory, could
be found. This has previously been the case, when Slofstra’s proof that Cqs is not closed [Slo19] (which
was closely tied to a proof of undecidability) was later greatly simplified [DPP19, Col20], removing all
references to computability.

The particular proof technique described here leads to some interesting follow-up questions. In the
realm of complexity theory it is interesting to study variants of complexity classes associated with quantum
correlations and characterize their complexity; see [MNY20] for recent work in this direction. In terms
of group theory we believe that the notion of efficient stability put forward in Section 5.3 deserves further
study, as stability questions already have a rich history [Hye41, Kaz82, BOT13, GH17]. Of course an
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important open question is that of proving the existence of a non-hyperlinear or even non-sofic group; the
work outlined in Section 3.2 provides a promising avenue towards this.
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[4] A. Atserias, L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis, Quantum and
non-signalling graph isomorphisms. Journal of Combinatorial Theory, Series B 136 (2019), 289–328

[5] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover interactive
protocols. Computational complexity 1 (1991), no. 1, 3–40

[6] O. Becker and M. Chapman, Stability of approximate group actions: uniform and probabilistic. arXiv
preprint arXiv:2005.06652 (2020)

[7] M. Blum and S. Kannan, Designing programs that check their work. Journal of the ACM (JACM) 42
(1995), no. 1, 269–291

[8] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical problems.
Journal of computer and system sciences 47 (1993), no. 3, 549–595

[9] M. Burger, N. Ozawa, and A. Thom, On ulam stability. Israel Journal of Mathematics 1 (2013), no.
193, 109–129

[10] P. J. Cameron, A. Montanaro, M. W. Newman, S. Severini, and A. Winter, On the quantum chromatic
number of a graph. the electronic journal of combinatorics 14 (2007), no. R81, 1

[11] V. Capraro, Connes’ embedding conjecture, pp. 73–107. Springer International Publishing, Cham,
2015

[12] R. Cleve and R. Mittal, Characterization of binary constraint system games. In International collo-
quium on automata, languages, and programming, pp. 320–331, Springer, 2014

[13] A. Coladangelo, A two-player dimension witness based on embezzlement, and an elementary proof of
the non-closure of the set of quantum correlations. Quantum 4 (2020), 282

[14] A. Connes, Classification of injective factors. Annals of Mathematics (1976), 73–115

[15] M. De Chiffre, N. Ozawa, and A. Thom, Operator algebraic approach to inverse and stability theorems
for amenable groups. Mathematika 65 (2019), no. 1, 98–118

[16] K. Dykema and K. Juschenko, Matrices of unitary moments. Mathematica Scandinavica (2011), 225–
239

22



[17] K. Dykema, V. Paulsen, and J. Prakash, Non-closure of the set of quantum correlations via graphs.
Communications in Mathematical Physics 365 (2019), no. 3, 1125–1142
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[34] L. Mančinska and D. E. Roberson, Quantum isomorphism is equivalent to equality of homomorphism
counts from planar graphs. In 2020 ieee 61st annual symposium on foundations of computer science
(focs), pp. 661–672, IEEE, 2020

[35] D. Mayers and A. Yao, Self testing quantum apparatus. Quantum Information & Computation 4 (2004),
no. 4, 273–286

[36] D. Mermin, Simple unified form for the major no-hidden-variables theorems. Physical Review Letters
65 (1990), no. 27, 3373

[37] H. Mousavi, S. S. Nezhadi, and H. Yuen, On the complexity of zero gap MIP. arXiv preprint
arXiv:2002.10490 (2020)

[38] B. Musto, D. Reutter, and D. Verdon, The morita theory of quantum graph isomorphisms. Communi-
cations in Mathematical Physics 365 (2019), no. 2, 797–845

[39] A. Natarajan and T. Vidick, A quantum linearity test for robustly verifying entanglement. In Proceed-
ings of the 49th annual acm sigact symposium on theory of computing, pp. 1003–1015, 2017

[40] A. Natarajan and J. Wright, NEEXP is contained in MIP∗. In 2019 ieee 60th annual symposium on
foundations of computer science (focs), pp. 510–518, IEEE, 2019

[41] M. Navascués, S. Pironio, and A. Acı́n, Bounding the set of quantum correlations. Physical Review
Letters 98 (2007), no. 1, 010401

[42] C. M. Ortiz and V. I. Paulsen, Quantum graph homomorphisms via operator systems. Linear Algebra
and its Applications 497 (2016), 23–43

[43] N. Ozawa, About the Connes embedding conjecture. Japanese Journal of Mathematics 8 (2013), no. 1,
147–183

[44] V. I. Paulsen, S. Severini, D. Stahlke, I. G. Todorov, and A. Winter, Estimating quantum chromatic
numbers. Journal of Functional Analysis 270 (2016), no. 6, 2188–2222

[45] V. I. Paulsen and I. G. Todorov, Quantum chromatic numbers via operator systems. The Quarterly
Journal of Mathematics 66 (2015), no. 2, 677–692

[46] A. Peres, Incompatible results of quantum measurements. Physics Letters A 151 (1990), no. 3-4, 107–
108
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