
Chapter 2

The Experts/Multiplicative Weights
Algorithm and Applications

We turn to the problem of online learning, and analyze a very powerful and versatile algo-
rithm called the multiplicative weights update algorithm. Let’s motivate the algorithm by
considering a few diverse example problems; we’ll then introduce the algorithm and later
show how it can be applied to solve each of these problems.

2.1 Some optimization problems

Machine learning: Learning a linear classifier. In machine learning, a basic but
classic setting consists of a set of k labeled examples (a1, l1), ..., (ak, lk) where the aj ∈ RN

are “feature vectors” and the lj are labels in {−1, 1}. The problem is to find a linear
classifier : a unit vector x ∈ RN

+ such that ‖x‖1 = 1 and ∀j ∈ {1, . . . , k}, lj(aj · x) ≥ 0
(think of x as a distribution over the coordinates of the aj, the features, that “explains”, or
correlates with, the labeling indicated by the lj).

Machine learning: Boosting. Suppose given a sequence of training points x1, . . . , xN
sampled from some universe according to some (unknown) distribution D. Each point has
an (unknown) label c(xi) ∈ {−1, 1}, where the function c is taken from some restricted set
of functions (the “concept class” C). The goal is to find a hypothesis function h ∈ C that
assigns labels to points, and predicts the function c in the best way possible (on average
over D). For instance, in the previous example the concept class is the class of all linear
classifiers (or, “hyperplanes”), the distribution is uniform, and the hypothesis function is x.

Call a learning algorithm strong if it outputs with probability at least 1− δ a hypothesis
h such that Ei∼D

1
2
|h(xi) − c(xi)}| ≤ ε, and weak if the error is at most 1

2
− γ. Suppose

the only thing we have is a weak learning algorithm: for any distribution D, it returns a
hypothesis h such that

E
i∼D

1

2

∣∣h(xi)− c(xi)
∣∣ ≤ 1

2
− γ.

1

The goal is to use the weak learner in order to construct a strong learner.

Approximation algorithms: Vertex Cover Given a universe U = {1, . . . , N} and a
collection C = {C1, . . . , Cm} of subsets of U , the goal is to find the smallest possible number
of sets from C that covers all of U .

Linear programming. Given a set of N linear constraints aTi x ≥ bi, where ai ∈ Rm and
bi ∈ R, the goal is to decide if there is an (approximately) feasible solution: does there exist
an x∗ ∈ Rm

+ such that ai · x∗ ≥ bi − δ for all i ∈ {1, . . . , N}?

Game theory: zero-sum games. Consider a game between two players, the “row” and
“column” players. Each player can choose an action i, j ∈ {1, . . . , N}. If the actions are
(i, j) the payoff to the row player is M(i, j) ∈ R, and the payoff to the column player is
−M(i, j). A player can decide to randomize and choose a distribution over actions which she
will sample from. In particular, if the row player plays according to a distribution p ∈ RN

+

over row actions and the column player plays according to a distribution q ∈ RN
+ over column

actions, then the expected payoff of the row player is pTMq and the expected payoff of the
column player is −pTMq. The goal is to find (approximately) optimal strategies for both
players: (p∗, q∗) such that

(p∗)TMq∗ ≥ λ∗ − ε, λ∗ = max
q

min
p
pTMq = min

p
max
q
pTMq.

What do these five problems have in common? For each there is a natural greedy ap-
proach. In a zero-sum game, we could pick a random strategy to start with, find the second
player’s best response, then the first player’s best response to this, etc. For the linear pro-
gramming problem we can again choose a random x, find a constraint that is violated, update
x. Same for the linear classifier problem (which can itself be written as a linear program). In
the set cover problem we can pick a first set that covers the most possible elements, then a
second set covering the highest possible number of uncovered elements, etc. In boosting we
can tweak the distribution over points and call a weak learner to improve the performance
of our current hypothesis with respect to misclassified points.

In each case it is not so easy to analyze such a greedy approach, as there is always a risk to
get stuck in a “ local minimum”. In this lecture we’re going to develop an abstract “greedy-
but-cautious” algorithm that can be applied to efficiently solve each of these problems.

2.2 Online learning

Consider the following situation. There are T steps, t = 1, . . . , T . At each step t,

• The player chooses an action x(t) ∈ K ⊆ RN .

• She suffers a loss f (t)(x(t)), where f (t) : K → [−1, 1] is the loss function.

2

The player’s goal is to devise a strategy for choosing her actions x(1), . . . , x(T) which minimizes
the regret,

RT =
T∑
t=1

f (t)(x(t))−min
x∈K

T∑
t=1

f (t)(x). (2.1)

The regret measures how much worse the player is doing compared to a player who is told
all loss functions in advance, but is restricted to play the same action at each step. Since
the player may be adaptive a piori regret could be positive or negative. In virtually all cases
the set K as well as the functions f (t) will be convex, so that setting x = 1

T
(x(1) + · · ·+ x(T))

we can see that under this convexity assumption regret is always a non-negative quantity.

Exercise 1. What if regret were defined, not with respect to the best fixed action in hind-
sight, but by comparison with an offline player who is allowed to switch between experts at
every step? Construct an example where the loss suffered by such an offline player is 0, but
the expected loss of any online learning algorithm is at least T · (1− 1/N).

In online learning we can distinguish between the cases where the player is told what the
function f (t) is, or only what her specific loss f (t)(x(t)) is. The former scenario is called the
“full information model”, and it is the model we’ll focus on. The latter is usually referred
to as the “multi-armed bandit” problem, but we won’t discuss it further. In addition we are
going to make the following assumptions:

• The set of allowed actions for the player is the probability simplex KN = {p ∈
R
N
+ ,
∑

i pi = 1},

• Loss functions are linear, f (t)(p) = m(t) · p where m(t) ∈ RN is such that |m(t)
i | ≤ 1 for

all i ∈ {1, . . . , N}. Note that this ensures that f (t)(p) ∈ [−1, 1] for any p ∈ KN .

This setting has an interpretation in terms of “experts”: think of each of the coordinates
i = 1, . . . , N as an expert. At each time t, the experts make recommendations. The player
has to bet on an expert, or more generally on a distribution over experts. Then she gets to
see how well the expert’s recommendations turned out: to each expert i is associated a loss
m

(t)
i , and the player suffers an average loss

∑
i p

(t)
i m

(t)
i . The player’s goal is to minimize her

regret RT , which in this case boils down to

RT =
T∑
t=1

f (t)(p(t))− min
p∈KN

T∑
t=1

f (t)(p)

=
T∑
t=1

m(t) · p(t) − min
i∈{1,...,N}

T∑
t=1

m
(t)
i ,

i.e. she is comparing her loss to that of the best expert in hindsight.
How would you choose which expert to follow so as to minimize your total regret? A

natural strategy is to always choose the expert who has performed best so far. Suppose for
simplicity that experts are always either right or wrong, so that the losses m

(t)
i ∈ {0, 1}: 0

3

for right and 1 for wrong. Suppose also that there is at least one expert who always gets it
right. Finally suppose at each step we “hedge” and choose an expert at random among those
who have always been correct so far. Then whenever we suffer a loss rt ∈ [0, 1] it precisely
means that a fraction rt of the remaining experts (those who were right so far) got it wrong
and are thus eliminated. Since N

∏
t(1−rt) ≥ 1 (there are N experts to start with and there

must be at least 1 remaining), taking logarithms we see
∑

t rt ≤ lnN , which is not bad; in
particular it doesn’t grow with T .

But now let’s remove our assumption that there is an expert that always gets it right
— in practice, no one is perfect. Suppose at the first step all experts do equally well, so
m(1) = (1/2, . . . , 1/2). But now experts get it right or wrong on alternate days, m(2t) =
(1, . . . , 1, 0, . . . , 0) and m(2t+1) = (0, . . . , 0, 1, . . . , 1) for t ≥ 1. In this case, it turns out we’re
always going to pick the wrong expert! Our regret increases by 1/2 per iteration on average,
and we never “learn”. In this case a much better strategy would be to realize that no expert
is consistently good, so that by picking a random expert at each step we suffer an expected
loss of 1/2, which is just as good as the best expert — our regret would be 0 instead of ∼ T/2.

Follow the Regularized Leader. The solution is to consider a strategy which does not
jump around too quickly. Instead of selecting the absolute best expert at every step, we’re
going to add a “risk penalty” which penalizes distributions that concentrate too much on a
small number of experts — we’ll only allow such high concentration if there is really a high
confidence that the experts are doing much better than the others. Specifically, instead of
playing the distribution p such that

p(t+1) = arg min
p∈KN

∑
j≤t

m(j) · p,

we’ll choose
p(t+1) = arg min

p∈KN

(
η
∑
j≤t

m(j) · p+R(p)
)
, (2.2)

where R is a “regularizer” and η > 0 a small weight of our choosing used to balance the two
terms.

2.3 The Multiplicative Weights Update algorithm

The multiplicative weights update (MWU for short) algorithm is a special case of follow
the regularized leader where the regularizer R is chosen to be the (negative of the) entropy
function.

Regularizing via entropy. Let R(p) = −H(p), where H(p) = −
∑

i pi ln pi is the entropy
of p. (In this lecture we’ll use the unusual convention that logarithms are measured in “nats”.
This is only for convenience, and in later lectures we’ll revert to the binary logarithm log.)
We’ll use the following properties of entropy.

4

Lemma 2.1. Let p, q be distributions in KN , H(p) =
∑

i pi ln
1
pi

the entropy of p and

D(p‖q) =
∑

i pi ln
pi
qi

the relative entropy (sometimes also called KL divergence) between
p and q. Then the following hold:

(1) For all p, 0 ≤ H(p) ≤ lnN .

(2) For all p and q, D(p‖q) ≥ 0.

Exercise 2. Prove the lemma.

The only way to have zero entropy is to have ln pi = 0 for each i such that pi 6= 0, i.e. pi =
1 for some i and zero elsewhere: low-entropy distributions are highly concentrated. At the
opposite extreme, the only distribution with maximal entropy is the uniform distribution (as
being uniform is the only way to saturate Jensen’s inequality used in the proof of the lemma).
Thus the effect of using the negative entropy as a regularizer is to penalize distributions that
are too highly concentrated.

The multiplicative weights update rule. With this choice of regularizer it is possible
to solve for (2.2) explicitly. Specifically, note that the gradient at point q is simply ∇qi =

η
∑

j≤tm
(j)
i + ln(qi) + 1, and setting this to zero gives qi = e−1−η

∑
j≤tm

(j)
i . This gives us

the unique minimizer over Rn. To take into account the normalization to a probability
distribution, we project on KN and find the update rule

p
(t+1)
i =

e−η
∑

j≤tm
(j)
i∑

i e
−η

∑
j≤tm

(j)
i

=
e−ηm

(t)
i p

(t)
i∑

i e
−ηm(t)

i p
(t)
i

.

You can check using the KKT conditions that this solution indeed minimizes (2.2) over KN ,
when R(p) = −H(p). This suggests the following multiplicative weights update algorithm:

5

Algorithm 1: Multiplicative Weights Algorithm (a.k.a MW or MWA)
Choose η ∈ (0, 1);

Initialize weights w
(1)
i for each i ∈ {1, . . . , N} ;

(example: w
(1)
i = 1, but they can be chosen arbitrarily)

for t = 1, 2, . . . , T do

Choose decisions proportional to the weights w
(t)
i , i.e., use the distribution

p(t) =
(w(t)

1

Φ(t)
, . . . ,

w
(t)
N

Φ(t)

)T
,

where Φ(t) =
∑

iw
(t)
i ;

Observe the costs m(t) of the decisions;

Penalize costly decisions by updating their weights: w
(t+1)
i ← e−ηm

(t)
i w

(t)
i ;

end

At every step we update our weights w(t) ← w(t+1) by re-weighting expert i by a mul-

tiplicative factor e−ηm
(t)
i that is directly related to its performance in the previous step.

However, we do so smoothly, a small step at a time; how small the step is governed by η, a
parameter that we’ll choose for best performance later.

Remark 2.2. Note that for small η, e−ηm
(t)
i ≈ 1 − ηm(t)

i . So we could also use a modified

update rule, w
(t+1)
i = (1−ηm(t)

i)w
(t)
i , directly in the algorithm; it sometimes lead to a slightly

better bound (depending on the structure of the loss functions).

Analysis. The following theorem quantifies the performance of the Multiplicative Weights
Algorithm.

Theorem 2.3. For all N ∈ N, 0 < η < 1, T ∈ N, losses m
(t)
i ∈ [−1, 1] for i ∈ {1, . . . , N}

and t ∈ {1, . . . , T}, the above procedure starting at some p(1) ∈ KN suffers a total loss such
that

T∑
t=1

m(t) · p(t) ≤ min
p∈∆N

(T∑
t=1

m(t) · p+
1

η
D
(
p‖p(1)

))
+ η

T∑
t=1

N∑
i=1

(
m

(t)
i

)2
p

(t)
i

where D(p‖q) =
∑

i pi ln(pi/qi) is the relative entropy.

Before proving the theorem we can make a number of important comments. First let’s
make some observations that will give us a simpler formulation. By choosing p(1) to be the
uniform distribution we can ensure that D(p‖p(1)) = lnN − H(p) is always at most lnN ,

whatever the optimal p is. Moreover, using |m(t)
i | ≤ 1 the last term is at most ηT . Using

the definition of the regret (2.1), we get

RT ≤
1

η
lnN + ηT .

6

The best choice of η in this equation is η =
√

lnN/T , in which case we get the bound

1

T
RT ≤ 2

√
lnN

T
.

What this means is that, if we want to have an average regret, over the T rounds, that is
at most ε, then it will suffice to run the procedure for a number of iterations T = 4 lnN/ε2.
The most remarkable feature of this bound is the logarithmic dependence on N : in only a
logarithmic number of iterations we are able to narrow down on a way to select experts that
ensures our average loss is small. This matches the guarantee of our earlier naive procedure
of choosing the best expert so far, except that now it works in all cases, whether the experts
are consistent or not! The dependence on ε, however, is not so good. This is an important
drawback of the MWA; in many cases it is not a serious limitation but it is important to
have it in mind, and we’ll return to this issue when we look at some examples. First let’s
prove the theorem.

Proof of Theorem 2.3. The proof is based on the use of the relative entropy as a potential
function: for any q we measure the decrease

D(q‖p(t+1))−D(q‖p(t)) =
∑
i

qi ln
p

(t)
i

p
(t+1)
i

= η
∑
i

qim
(t)
i +

(∑
i

qi
)

ln
(∑

i

e−ηm
(t)
i p

(t)
i

)
≤ ηm(t) · q − ηm(t) · p(t) + η2

∑
i

(
m

(t)
i

)2
p

(t)
i ,

where for the last line we used e−x ≤ 1−x+x2 and ln(1−x) ≤ −x for all |x| ≤ 1. Summing
over t and using that the relative entropy is always positive proves the theorem.

2.4 Applications

We now give three applications of the multiplicative weights algorithm: to finding linear clas-
sifiers, solving zero-sum games, and solving linear programs. You’ll treat other applications
in your homework.

2.4.1 Finding linear classifiers

Let’s get back to our first example, learning a linear classifier. For simplicity, we are going
to assume that there exists a strict classifier, in the sense that there exists x∗ ∈ RN such
that

‖x∗‖1 = 1 and ∀j ∈ {1, . . . , k}, lj(aj · x∗) ≥ ε (2.3)

for some ε > 0 (here ‖a‖1 =
∑

i |ai|).

7

First we observe that we may also assume that x∗ ∈ RN
+ . For this, create a new input

by setting bj =

(
aj
−aj

)
∈ R2N . Suppose there exists x∗ ∈ RN such that (2.3) holds.

Let x∗+ = max(x∗, 0) and x∗− = min(x∗, 0) (component-wise), so x∗ = x∗+ + x∗−. Then

y∗ =

(
x∗+
−x∗−

)
has non-negative entries summing to 1, and satisfies (2.3) with the bj replacing

the aj. Conversely, for any y∗ =

(
y∗1
y∗2

)
∈ R2N

+ with entries summing to 1 such that (2.3)

holds (for the bj), we can define x∗ = 1
2
(y∗1 − y∗2), so ‖x∗‖1 ≤ 1 and x∗ satisfies (2.3), with

the aj and ε replaced by 1
2
ε.

Thus the two problems are equivalent, and for the remainder of this section we assume
that (2.3) is satisfied for some x∗ ∈ RN

+ such that
∑

i x
∗
i = 1 (we keep using the notation

aj). We also define ρ = maxj ‖aj‖∞, where ‖a‖∞ = maxi=1,...,N |ai|.

The idea behind applying MWA here is to consider each of the N coordinates of vectors aj
as an expert, and choose the loss function m(t) as a function of one of the aj that is not well
classified by the current vector p(t). If p(t) is such that all of the aj’s satisfy lj(aj · p(t)) ≥ 0,
then all points are well classified by x = p(t) and we can stop the algorithm. Otherwise, we
update p(t) through the MWA update rule and go to the next step. The question here is to
determine why the algorithm terminates, and in how many steps.

Let us analyze the MW approach in a bit more details. We initialize w
(1)
i = 1 for all i,

and p(t) accordingly. At each round t, we look for a value j such that lj(aj · p(t)) < 0, i.e. aj
is not classified correctly. If there is none, the algorithm stops. If there is one, pick this j
and define m(t) = − lj

ρ
aj; note that by definition of ρ, m

(t)
i ∈ [−1, 1] for all i.

By assumption, there exists x∗ such that

m(t) · x∗ = −lj(aj · x∗)/ρ ≤ −ε/ρ.

By the main MW theorem, since x∗ is a distribution, we have

T∑
t=1

m(t) · p(t) ≤
T∑
t=1

m(t) · x∗ +
lnN

η
+ ηT.

Using m(t) · x∗ ≤ −ε/ρ, we get

T∑
t=1

m(t) · p(t) ≤ −ε
ρ
T +

lnN

η
+ ηT.

Now, one should remark that until the last time step T , i.e. until the algorithm stops, we
chose aj such that lj(aj ·p(t)) < 0, which implies that ∀t = 1, ..., T , m(t)·p(t) = −lj(aj ·p(t))/ρ >
0. It immediately follows that

0 < −ε
ρ
T +

lnN

η
+ ηT.

8

Finally, choosing η = ε
2ρ

, we obtain T < 4ρ2 lnN
ε2

. This proves that the algorithm terminates,

and that it finds a classifier in less than 4ρ2 lnN
ε2

timesteps.

2.4.2 Zero-sum games

Next we consider games in the game theoretic sense: informally, a set of k players each have
a set of a actions they can choose from; every player chooses an action, after which he gets
a payoff or utility that is a function of his own action and the actions of other players. Here
will limit ourselves to 2-player zero-sum games, in which each of the two players has a finite
number N of available actions. The payoffs of players 1 and 2 (let us call them the row
and column players from now on) can be represented by a single payoff matrix M ∈ RN×N

such if the row player plays action i, and the column player plays j, then the column player
receives payoff M(i, j) and the row player receives −M(i, j).

A player can decide to randomize and choose a distribution over actions which she will
sample from. In particular, if the row player plays according to a distribution p over row
actions (instead of playing one specific action) and the column player plays according to a
distribution q over column actions, then the expected payoff of the column player is pTMq
and the expected payoff of the row player is −pTMq.

Given that each player is trying to maximize her utility, we can see that the row and
column players in a zero-sum games have conflicting objectives: the column player wants
to maximize pTMq, while the row player want to minimize the same quantity. One nice
property of zero-sum games is that it does not matter for any of the players whether they
act first: Von Neumann’s minimax theorem states that

max
q

min
p
pTMq = min

p
max
q
pTMq = λ∗.

This means in particular that it does not matter whether the row player tries to minimize
pTMq first and lets the column player act second and maximize minp p

TMq or the column
player tries to maximize pTMq first and the row player then minimizes maxq p

TMq: the
utility both players end up getting does not change. This “optimal” utility λ∗ is called the
value of the game.

We want to show that the MWA allows us to find strategies that are near-optimal for a
zero-sum game, in the sense that for any ε > 0 and for a sufficient number of time steps T ,
the MWA finds a set of strategies (1

T

∑T
t=1 p

(t), 1
T

∑T
t=1 q

(t)) for the row and column players
that satisfy

λ∗ ≤
(1

T

T∑
t=1

p(t)
)T

M
(1

T

T∑
t=1

q(t)
)
≤ λ∗ + ε.

The idea behind the MW here is to take p(t) to be the strategy of the row player. At each
time step, q(t) is chosen as the best response to strategy p(t) (i.e. the strategy which maximize
the utility of the column player given that the row player plays p(t)); then, the row player
uses the multiplicative weight update based on a loss vector m(t) chosen as the vector of

9

expected payoffs for the row player when the column player plays q(t) to decide what p(t+1)

will be in the next time step. Intuitively, the row player tries to penalize the strategies that
lead to a low payoff and to put more weight on the strategy that leads to a higher payoff.
Formally, the algorithm proceeds as follows:

Algorithm 2: MWA for zero-sum games
Choose η ∈ (0, 1) ;

Initialize weights w
(1)
i := 1 for each i ∈ {1, . . . , N};

for t = 1, 2, . . . , T do

Define the distribution p(t) = {w
(t)
1

Φ(t) , . . . ,
w

(t)
N

Φ(t)}, where Φ(t) =
∑

iw
(t)
i ;

Define q(t) = argmaxq(p
(t))TMq and m(t) = Mq(t);

Penalize costly decisions by updating their weights: w
(t+1)
i ← e−ηm

(t)
i w

(t)
i ;

end

Let’s analyze this algorithm. Assume that the payoffs M(i, j) ∈ [−1, 1]. Choosing
η =

√
lnN/T and T = 4 lnN/ε2, according to the MW theorem, for any distribution p∗,

1

T

T∑
t=1

m(t) · p(t) =
1

T

T∑
t=1

(p(t))TMq(t) ≤ 1

T

T∑
t=1

(p∗)TMq(t) + ε . (2.4)

Take p∗ = argminp p
TMq(t). Then for any t,

(p∗)TMq(t) ≤ min
p
pTMq(t) ≤ max

q
min
p
pTMq = λ∗ ,

and therefore (2.4) implies

1

T

T∑
t=1

(p(t))TMq(t) ≤ λ∗ + ε .

To lower bound 1
T

∑T
t=1(p(t))TMq(t), note that for every distribution q,

(p(t))TMq(t) ≥ (p(t))TMq

given the choice of q(t) made in the algorithm; therefore,

(p(t))TMq(t) ≥ max
q

(p(t))TMq

and
(p(t))TMq(t) ≥ min

p
max
q
pTMq = λ∗.

Using the fact that the above bounds are valid for any t, by linearity we get that the
distributions produced by the algorithm satisfy

λ∗ ≤
(1

T

T∑
t=1

p(t)
)T

M
(1

T

T∑
t=1

q(t)
)
≤ λ∗ + ε.

10

This equation shows that p∗ and q∗ are approximate equilibria of the game, in the sense that
neither the row or the column player can improve her utility by more than ε by changing
her strategy, when the strategy of the other player remains fixed. Indeed, imagine that the
column player decides to change her strategy to another q. Then, she is going to get payoff(1

T

T∑
t=1

p(t)
)T

Mq ≤ 1

T

T∑
t=1

(p(t))TMq(t) ≤ λ∗ + ε.

However, she is guaranteed to earn payoff at least λ∗ when playing q∗, and can therefore not
improve her payoff by more than ε by changing her strategy. A similar reasoning applies to
the row player.

2.4.3 Solving linear programs

Our goal is to check to feasibility of a set of linear inequalities,

Ax ≥ b, x ≥ 0,

where A = [a1...am]T is an m × n matrix and x an n-dimensional vector, or more precisely
to find an approximately feasible solution x∗ ≥ 0 such that for some ε > 0,

aTi x
∗ ≥ bi − ε, ∀i.

The analysis will be based on an oracle that answers the following question: Given a vector c
and a scalar d, does there exist an x ≥ 0 such that cTx ≥ d? With this oracle, we will be able
to repeatedly check whether a convex combination of the initial linear inequalities, aTi x ≥ bi,
is infeasible; a condition that is sufficient for the infeasibility of our original problem. Note
that the oracle is straightforward to construct, as it involves a single inequality. In particular,
it returns a negative answer if d > 0 and c < 0.

The algorithm is as follows. Experts correspond to each of the m constraints, and loss
functions are associated with points x ≥ 0. The loss suffered by the i-th expert will be
mi = 1

ρ
(aTi x − bi), where ρ > 0 is a parameter used to ensure that the losses mi ∈ [−1, 1].

(Although one might expect the penalty to be the violation of the constraint, it is exactly
the opposite; the reason is that the algorithm is trying to actually prove infeasibility of
the problem.) In the t-th round, we use our distribution p(t) over experts to generate an
inequality that would be valid, if the problem were feasible: the inequality is∑

i

p
(t)
i a

T
i x ≥

∑
i

p
(t)
i bi. (2.5)

We then use the oracle to detect whether this constraint is infeasible, in which case the
original problem is infeasible, or return a point x(t) ≥ 0 that satisfies the inequality. The loss
we suffer is equal to 1

ρ

∑
i p

(t)
i (aTi x

(t) − bi), and we use this loss to update our weights. Note

that in case infeasibility is not detected, the penalty we pay is always nonnegative, since x(t)

satisfies the inequality (2.5).

11

The simplified form of the multiplicative weights theorem gives us the following guarantee:

T∑
t=1

m(t) · p(t) ≤
T∑
t=1

m
(t)
i · p

(t)
i + 2ρ

√
lnm

T
,

for any i. Choose T = 4ρ2 ln(m)/ε2. Using that the left-hand side is non-negative, if we set

x∗ =
1

T

T∑
t=1

x(t)

we see that for every i, aTi x
∗ ≥ bi − ε, as desired.

The number of iterations required to decide approximate feasibility, T , scales logarith-
mically with the number of constraints m. This is much better than “standard” algorithms
such as the ellipsoid algorithm, which are polynomial in n. However, the dependence on the
accuracy ε is quadratic, which is much worse than these algorithms, for which the depen-
dence is in log(1/ε). Finally the dependence of T on ρ−1 is also quadratic. The value of ρ
depends on the oracle (it is called the “width” of the oracle), and depending on the specific
LP we are trying to solve it may or may not be possible to design an oracle that guarantees
a small value of ρ.

12

	The Experts/Multiplicative Weights Algorithm and Applications
	Some optimization problems
	Online learning
	The Multiplicative Weights Update algorithm
	Applications
	Finding linear classifiers
	Zero-sum games
	Solving linear programs

