
Chapter 5

Solving systems of linear equations

Let A ∈ Rn×n and b ∈ Rn be given. We want to solve Ax = b. What is the fastest method
you know?

We usually learn how to solve systems of linear equations via Gaussian elimination, or
perhaps inverting A by first using the SVD, or some other kind of matrix factorization
technique such as the Cholesky decomposition. These methods are called direct methods:
they produce an exact solution (up to numerical precision) in a bounded number of iterations.
Unfortunately they are also rather slow; for instance computing the inverse takes O(n3) time,
and even just writing it down will usually require O(n2) space, even if the original matrix
A has a very efficient representation — for instance, it is sparse, i.e. it contains only few
non-zero entries (think of the adjacency matrix of a graph with low degree).

What we really want is an algorithm whose running time is related to the input size. If
A is sparse, it can be specified succinctly by listing only the non-zero entries; the running
time of any good algorithm should scale accordingly. In these lectures we will see a couple of
algorithms that take advantage of sparsity. The first class of algorithms are called “iterative
methods”. These are simple and efficient in practice, but suffer from a poor dependence of
the running time on the condition number of the matrix. A second class of algorithms is
restricted to the case of so-called SDD systems (we will define these laters), but can be much
more efficient (at least in theory), running in quasi-linear time with no dependence on the
condition number.

5.1 Iterative methods

Let’s first look into iterative methods. These kinds of algorithms only involve a sequence of
matrix-vector multiplications by A (or related matrices). Any such multiplication can be
done in time O(m) where m is the number of nonzero entries of A, and hence the sparser A is
the faster the algorithm will run. A drawback of these methods is that they never return the
exact solution; instead the algorithm will slowly construct a better and better approximation
to the solution x, and the running time will depend on the quality of approximation desired.

Later on we will return to direct methods, and explore how an approximate form of the
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Cholesky decomposition can be computed very efficiently as well.

5.1.1 First-order Richardson iteration

For any α ∈ R,

Ax = b ⇐⇒ αAx = αb

⇐⇒ x = (I− αA)x+ αb.

What’s the point? We’ve written x as the fixed point of a simple linear equation. This
suggests the following iterative process: set x0 to anything, say x0 = 0, and then iterate

xt = (I− αA)xt−1 + αb.

Note that if this process converges, xt →t→∞ x∗ for some x∗ ∈ Rn, then necessarily Ax∗ = b.
We are going to show that there is convergence as long as I− αA has largest singular value
strictly less than 1, and convergence time will depend on how much smaller than 1 it is.

For simplicity assume A is symmetric positive definite. This assumption is not as re-
strictive as it sounds, and in particular is no more restrictive than assuming that A is
invertible. Indeed, given a system Ax = b, we can always multiply both sides by AT and
obtain ATAx = AT b, where the matrix ATA is now positive-definite (assuming A is invert-
ible). Note that ATA may not be sparse (even if A was), but we can still compute ATAv in
O(nnz(A)) operations for any vector v (we will also need the list of non-zero entries in every
column for this).

Let 0 < λ1 ≤ · · · ≤ λn be the singular values of A. Then the singular values of I − αA
are 1 − αλi. Its largest singular value is maxi |1 − αλi|, and this is minimized by taking
α = 2/(λ1 + λn), in which case we get 1 − 2λ1/(λ1 + λn) for the norm. (Note that we
may not know λ1 + λn a priori. A good guess will do though, as any choice of α such that
α < 2/(λ1 + λn) will work.)

Now let’s show convergence. If x∗ is such that Ax∗ = b, we can write for any t ≥ 0

x∗ − xt = ((I− αA)x∗ + αb)− ((I− αA)xt−1 + αb)

= (I− αA)(x∗ − xt−1),

so ∥∥x∗ − xt∥∥ =
∥∥(I− αA)t(x∗ − x0)

∥∥
≤
∥∥I− αA∥∥t∥∥x∗∥∥

≤ e
− 2λ1
λ1+λn

t∥∥x∗∥∥.
Therefore the number of iterations required to get relative error ‖x∗ − xt‖/‖x∗‖ ≤ ε is
at most (λ1 + λn)/(2λ1) ln(1/ε). The important term here is λn/λ1, which is called the
condition number of A — the smaller the better. It is usually denoted κ and is a measure
of how “skewed” the linear transformation implemented by A is.
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5.1.2 Interpretation using gradient descent

Here is a completely different way to arrive at exactly the same algorithm. Consider the
function

f(x) =
1

2

∥∥Ax− b∥∥2 =
1

2
xTATAx− bTAx+

1

2
‖b‖2.

Our goal is to find an x∗ which minimizes f . For convenience, let b′ = AT b and K = ATA, so
that f(x) = xTKx/2− (b′)Tx + c, where c = ‖b‖2/2. Let’s solve the minimization problem
via the gradient method. Fix a step size η and:

• Set x0 to be an arbitrary vector;

• Iteratively update xt+1 = xt − η∇f(xt) = xt − η · (Kxt − b′).
Then it is easy to check by induction that xt − x∗ = (I − ηK)t(x0 − x∗). The choice of an
optimal step size η amounts to selecting η so that ‖I− ηK‖ is minimized. The best choice is
η = 2/(µ1 +µn), where µ1 and µn are the smallest and largest eigenvalues of K respectively.
This gives precisely the same algorithm — with K = ATA instead of A, and b′ = AT b instead
of b — as in the previous section!

5.1.3 Speeding up via polynomials

Now here is a really nice trick that gives a quadratic speed-up for the previous algorithm.
The vector xt constructed at the t-th step of the algorithm can be written as

xt =
t∑
i=0

(I− αA)i(αb) = pt(A)b,

where pt(A) =
∑t

i=0 α(I− αA)i. Now if we take t→∞, what do you recognize?
∞∑
i=0

α(I− αA)i = α(I− (I− αA))−1 = α(αA)−1 = A−1,

provided the series converges, which is the case as long as ‖I− αA‖ < 1. This should be no
surprise, since we are solving for x = A−1b: what the previous algorithm is doing is simply
taking the Taylor expansion of the inverse!

Now, the obvious question is, can we do better, where here better means obtaining an
approximation of similar quality but using a polynomial with a lower degree —- this way
we’d have to perform fewer iterations, and thus get a faster algorithm.

What do we need exactly? Given a matrix A, we want pt such that ‖pt(A)A − I‖ ≤ ε,
i.e. |pt(λi)λi − 1| ≤ ε for i = 1, . . . , n, where λi are the eigenvalues of A (assume again that
A is symmetric positive definite). If we have this, then

‖pt(A)b− x∗‖ = ‖pt(A)Ax∗ − x∗‖
= ‖(pt(A)A− I)x∗‖
≤ ‖pt(A)A− I‖‖x∗‖
≤ ε‖x∗‖,
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as desired. The following theorem gives us what we need.

Theorem 5.1. For every t ≥ 1 and 0 < λ1 ≤ λn, let κ = λn/λ1. There is a polynomial
qt(x) of degree t such that qt(0) = 1 and

|qt(x)| ≤ 2
(

1 +
2√
κ

)−t
≤ 2e

− t
2
√
κ , ∀x ∈ [λ1, λn].

To see why this is just what we need, note that qt(0) = 1 implies qt(x) = 1− xpt(x) for
some pt of degree t− 1. Using this pt, we’ll get an approximation with error ε as long as t is
at least ln(2/ε)

√
κ/2: as promised, a quadratic improvement over the previous algorithm.

The proof of Theorem 5.1 uses a construction based on Chebyshev polynomials. If you’ve
never seen those they are worth a look — you’ll prove the theorem in your homework.

5.1.4 Preconditioning

The two methods for solving Ax = b we’ve seen have a linear dependence on the sparsity of
the matrix A, but a different scaling with respect to the condition number κ = λmaxλmin:
linear in κ for first-order Richardson,

√
κ for the improvement using Chebyshev polynomials.

So a natural question is, given an arbitrary matrix A, could we somehow efficiently preprocess
A to make its condition number smaller? This would lead to a corresponding improvement
in running time for each of the three methods.

This is the idea behind preconditioning. Consider any symmetric invertible n×n matrix
B. Then Ax = b ⇐⇒ AB−1(Bx) = b. Let y = Bx, solving Ax = b can be done by
solving for y in AB−1y = b, and then for x in Bx = y. (You might worry that AB−1 is
not symmetric. We could simply multiply by BA on the left, and solve BA2B−1y = BAb
instead.) Can we find B such that both tasks are easier than the original one? We’d like
Bx = y to be easy, and κ(AB−1) to be much smaller than κ(A).

We’re going to see a very nice idea on how to do this for the special case where A is
a Laplacian matrix. (Recall that Laplacian matrices are not invertible, so when we write
inverse we really mean the pseudo-inverse, i.e. the inverse on the orthogonal complement of
the nullspace — the 1 vector. Sometimes we use the notation L+ instead of L−1 to emphasize
this.)

The idea is the following. Suppose G is a given graph, and H a subgraph of G. Then I
claim that LH ≤ LG in the semidefinite order. An easy way to see this is to remember the
interpretation of the Laplacian as a quadratic form:

xTLGx =
∑

(a,b)∈E(G)

wa,b(xb − xa)2 ≥
∑

(a,b)∈E(H)

wa,b(xb − xa)2 = xTLHx.

In particular, we get that λmin(LGL
+
H) ≥ 1 (the matrix is not symmetric, but we can still

talk about its eigenvalues; they are the same as those of L
+/2
H LGL

+/2
H ), so the question is

whether we can find H such that, (i) LHx = y is easy to solve, and (ii) L+
HLG has small

norm. The idea to guarantee (i) is to use H that is a spanning tree for G. (We need the tree
to be spanning so that LH is invertible on the same space as LG is.)
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Exercise 1. Give a linear time-algorithm to solve LHx = y (exactly) when H is a tree.

What kind of trees will be such that ‖L+
HLG‖ is small? We can get a naive bound by

computing the trace:

Tr
(
L+
HLG

)
=

∑
(a,b)∈E(G)

wa,bTr
(
L+
H(eb − ea)(eb − ea)T

)
=

∑
(a,b)∈E(G)

wa,b(eb − ea)TL+
H(eb − ea).

Now, for fixed (a, b) we’ve seen this quantity before: it is the effective resistance between a
and b, in the tree H. But it’s easy to see that, since H is a tree, the effective resistance is just
the sum of the resistances along the unique path in H from a to b. Since effective resistances
are the inverses of weights, we are led to define the stretch of an edge (a, b) ∈ E(G) with
respect to the tree H as

sa,b = wa,b

k∑
i=1

1

wi
,

where the sum is over the path in H from a to b. So what we are looking for is a low-stretch
spanning tree...and such things can be computed efficiently!

Theorem 5.2 (Abraham and Neiman ’12). Every weighted graph G has a spanning tree
subgraph H such that the sum of the stretches of all edges of G with respect to H is at
most O(m log n log log n), where m is the number of edges in G. Moreover, this tree can be
computed in time O(m log n log log n).

The upshot is that using such a tree, we can reduce to the case where κ(L+
HLG) =

O(m log n log log n). In Claim 11.7 we saw that for an arbitrary (unweighted) graph G the
smallest eigenvalue of the (normalized) Laplacian had to be Ω(n−3), and that this bound
could be achieved. So a priori the condition number of an arbitrary Laplacian could be as
large as O(n3): here we get an improvement even for the case of dense graphs.

5.2 Laplacian systems

We already saw that the spacial case of Laplacian systems allowed for improvements —
using preconditioning to reduce the condition number. Note the interesting interplay be-
tween algebraic techniques (after all, we are after solving a system of linear equations) and
combinatorial arguments (graph, trees, etc.) that allowed us to make progress.

So let’s focus further on Laplacian systems, and give a completely different, quasi-linear
time algorithm for solving Laplacian systems. Before this, let’s argue that Laplacian systems
are not that restricted. In particular, they are no more restrictive than symmetric diagonally
dominant (SDD) systems. A real n × n matrix A is called SDD if the diagonal coefficients
of A are all non-negative and satisfy Aii ≥

∑
j 6=i |Aij| for all i ∈ {1, . . . , n}.
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Consider an SDD matrix A. Then A can be written as A = P+N , where P is a Laplacian
and N is SDD with non-negative off-diagonal entries. To see this, simply place all negative
diagonal entries of A in P , and the positive ones in N ; split the diagonal entries so that P
is a Laplacian (all row sums are zero), and N is diagonally dominant.

Next we deal with the positive diagonal entries of N . For this the idea is to double the
size of the matrix, and consider A′ ∈ R2n×2n such that A′ = P + N ′ where P ′ is block
diagonal with its upper left and lower right blocks both equal to P , and N ′ is such that
N ′i,i = N ′n+i,n+i = Ni,i and N ′i,n+j = N ′n+j,i = −Pi,j for all i 6= j, all other entries being zero.
Then you can check that P ′ is a Laplacian, N ′ is SDD with non-positive off-diagonal entries,
and Ax = b if and only if A′(x,−x) = b′ = (b,−b).

Finally we need to account for the fact that some row sums may be positive, instead
of zero as required of a Laplacian. The idea for this is to introduce an additional vertex,
(2n+1), and fake edges. Whenever A′i,i >

∑
j 6=i |A′i,j| we add an edge between (2n+1) and i

with weight A′i,i−
∑

j 6=i |A′i,j|. This gives a matrix A′′ that is a Laplacian. Moreover, setting
b′′2n+1 = 0, the equation A′′x = b′′ has at least one solution x′′ = (x,−x, 0); assuming both b
and x are orthogonal to the kernel (1, . . . , 1)T of A′′ the solution is also unique.

Therefore for the remainder of these lectures we let L = D − A be the (un-normalized)
Laplacian associated with a weighted, undirected, connected graph G. L has a single 0
eigenvalue with associated eigenvector (1, . . . , 1)T . We will denote its pseudo-inverse by L+.
Given b ∈ Rn, our goal is to solve Lx = b.

5.2.1 Sparsification

Before we proceed, it will be useful to discuss the topic of sparsification. This can be
understood as another “preprocessing” step that reduces the number of edges in the graph
while maintaining important combinatorial properties of the graph.

Generally speaking, suppose we are given a graph G = (V,E), and we want to solve some
kind of cut or partitioning problem. The running time will typically depend on the number
of edges of the graph, which could be O(n2). The same situation arises in the algorithm we
saw last time: the running time for solving Lx = b was brought down to Õ(m), where m is
the sparsity of L. Could we do even better, by “simplifying” the graph via a pre-processing
step in order to efficiently produce a graph G′ on the same vertex set but with a smaller
number of edges and such that G′ has roughly the same “cut structure” as G? This is the
idea behind sparsification.

Edge sampling

A natural idea is to keep each edge with a certain probability p. Let’s do a “back-of-the-
envelope” calculation. If a cut (S, S) involves c edges, and c′ is the number of edges across
that same partition in G′, then on expectation E[c′] = pc. Moreover, by the Chernoff bound,

Pr
(
|pc− c′| ≥ εpc

)
≤ e−ε

2pc/2.
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If we choose p = Ω(d log n/(ε2c)) for some d, then the probability drops to n−d. It is possible
to show (it is a theorem of Karger) that if the smallest cut in G has size c then the number
of cuts of size αc is at most n2α. So if we are interested in preserving the size of all small
cuts, say cuts of size at most Cn for some large C, we can choose d above large enough as
a function of c and perform a union bound. This lets us take p ≈ log n/(ε2n) and so we
sparsify a dense graph using only O(n log n/ε2) edges.

Unfortunately this only lets us preserve the size of the few cuts that are relatively small
— for slightly larger cuts we’ll have no guarantees. It also doesn’t work if there are small
cuts, as then the concentration is too weak. What is needed is a method to sample edges
involved in fewer cuts with higher probability. (Think of the dumbbell graph: we don’t want
to miss that middle “bridge” edge!)

There is a way to achieve this which involves adding a weight we to each edge, such that
we ≤ c where c is the size of the smallest cut in which the edge is involved. We sample
edges with probability p/we and we assign them a weight of we. The expectation for the
size of any cut is correct, as before. It is possible to show that this method does better —
it provides guarantees that are more uniform across all cuts. But we’re going to see how to
do even better.

Laplacian approximations

We will show the following theorem:

Theorem 5.3. For any ε > 0 and graph Laplacian L there exists a Laplacian L̂ such that
(1 − ε)L ≤ L̂ ≤ (1 + ε)L, a condition that we will abbreviate as L ≈ε L̂. Moreover, L̂ has
O(n log n/ε2) nonzero entries.

Not only do we want existence, as in the theorem, but we also want L̂ to be efficiently
constructible from L. You will see from the proof that this is the case, provided we have an
efficient way to compute “effective resistances”. This point I will gloss over. In fact it itself
reduces to solving a system of linear equations...but an easier one!

Remark 5.4. Recall the interpretation of the Laplacian as a quadratic form, xTLx =∑
(i,j)∈E(xi − xj)

2. If L̂ ≈ε L then for any cut (S, S), by setting xi = 1 for i ∈ S and
xi = 0 and using

(1− ε)xTLx ≤ xT L̂x ≤ (1 + ε)xTLx

we see that the size of the same cut in Ĝ will be a close approximation, up to a multiplicative
(1 ± ε), to its size in G. So the notion of “spectral sparsifier” implicit in Theorem 5.3 is
at least as strong as that of “combinatorial sparsifier” (which only requires approximately
preserving the size of all cuts); in the homework you will show that it can be strictly stronger
(i.e. not every combinatorial sparsifier is a spectral sparsifier).

Let’s see that this kind of approximation is also the right kind for our broader goal of
solving a Laplacian system. I claim that, for these purposes, it is enough to have L ≈1/2 L̂.
Indeed, once we have such an approximation we can compute an approximate solution x
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iteratively by setting x(0) = 0 and x(t+1) = x(t)− 1
2
L̂+(Lx(t)− b) (note that (??) forces L̂ and

L to have exactly the same nullspace).

Claim 5.5. We have ‖x(t) − L+b‖L ≤ (2/3)t−1‖L+b‖L, where ‖u‖L = uTLu.

The weird norm in the claim is just to deal with the nullspace of L being nonzero. As
long as b is orthogonal to (1, . . . , 1)T , we have LL+b = b and ‖L+b‖L = ‖b‖, ‖x(t)−L+b‖L =
‖Lx(t) − b‖.

Proof. We prove it by induction on t. The bound is clearly true for t = 0. Suppose it true
for some t. Then

Lx(t+1) − b = (Lx(t) − b)− 1

2
LL̂+(Lx(t) − b)

=
(
I− 1

2
LL̂+

)
(Lx(t) − b).

From (??) we see that Π/3 ≤ LL̂+/2 ≤ Π, where Π = L+L = L̂+L̂; therefore ‖Π−LL̂+/2‖ ≤
2/3.

We now introduce an additional piece of useful notation. For a symmetric matrix S we
write S = L+/2SL+/2, where L is always the same fixed Laplacian. With this notation, the
condition L ≈ε L̂ is equivalent to ∥∥L̂− Π

∥∥ ≤ ε, (5.1)

which is the condition that we’ll focus on from now on.

Sampling via effective resistances

Let’s prove the theorem. Our strategy is to use some form of importance sampling, with
a well-chosen set of weights. For any edge (a, b), let ra,b = (ea − eb)

TL+(ea − eb), where
L+ is the pseudo-inverse of the Laplacian matrix (the inverse of L on its range) and ea the
indicator vector with a 1 in the a-th coordinate and 0 elsewhere. This quantity is called
the effective resistance of edge (a, b). The reason is as follows: there is a nice interpretation
of the Laplacian in terms of currents and voltages. Let v be a vector of voltages at each
vertex in the graph. Think of each edge as having a resistance of 1. Then Ohm’s law
v(b)− v(a) = rab(i(b)− i(a)) lets us compute the currents. Conservation of current at each
vertex implies that depending on our choice of voltages, to realize it we will need to inject or
extract current at any given vertex. Let ie be the corresponding vector of exterior currents.
Then I claim that ie = Lv. This is easy to see from the definition of the Laplacian: for any
vertex a, (Lv)a = v(a)−

∑
b∼a

1
db
v(v) is the default in voltages at a based on what we want

to impose, via v, and what Ohm’s law gives us.
Inverting this equation, we see that v = L+ie. Now suppose we force one unit of current

from a to b, ie = vb − va. Again by Ohm’s law, the effective resistance between a and b will
be the difference in potential that is induced by this current, so reffab = (eb− ea)TL+(eb− ea).
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Back to our sampling procedure. Let’s set pa,b = min(1, Cra,b log n/ε2), for some constant
C that will be defined later. Edge (a, b) is sampled with probability pa,b, and it is given a

weight 1/pa,b. This way we get the expectation right: if we let L̂ be the random matrix

associated to the sampled graph then on expectation E[L̂] = L. Our goal is to show that
with high probability Ĝ has O(n log n/ε2) edges and is an ε-approximation to G, in the sense
that L ≈ε L̂.

Number of edges. Let’s start by counting the expected number of edges in Ĝ. We have∑
(a,b)∈E

ra,b =
∑

(a,b)∈E

(eb − ea)TL+(eb − ea)

=
∑

(a,b)∈E

Tr
(
L+(eb − ea)(eb − ea)T

)
= Tr

(
L+L

)
= n− 1,

the dimension of the range of L. The choice of weights ra,b we made is precisely so that this
equation works out. Once we scale by C log n/ε2 to obtain pa,b, we see that the expected

number of edges in Ĝ is O(n log n/ε2), which is quasi-linear in n. Moreover, using that
each edge is sampled independently a simple Chernoff bound shows that the probability we
sample more than a constant times this number of edges is exponentially small.

Approximation quality. The main remaining question is whether we can show our sam-
pling technique achieves L ≈ε L̂. Let Xa,b be the random matrix defined as 1

pa,b
L+/2La,bL

+/2

with probability pa,b, and 0 otherwise, where La,b = (eb − ea)(eb − ea)
T . If we ignore the

“sandwiching” by L+/2, Xa,b is the Laplacian matrix corresponding to the random graph

obtained when we flip the coin that lets us decide whether to include edge (a, b) in Ĝ or not.
We have

E
[∑
a,b

Xa,b

]
= L+/2

(∑
a,b

La,b

)
L+/2 = L+/2LL+/2 = Π,

the projector on the range of L. Let X =
∑

a,bXa,b. We will prove that with high probability
Π ≈ε X, i.e. e−εΠ ≤ X ≤ eεΠ. Note that if we have this we can simply multiply on both
sides by L1/2 and deduce the conclusion we really want, e−εL ≤ L̂ ≤ eεL.

This is starting to look very much like a Chernoff bound...except we are dealing with
matrices! As in the Chernoff (or, rather, Hoeffding) bound, the quality of concentration we
get will very much depend on the maximal size of the matrices Xa,b, this time measured by
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their operator norm. So let’s make sure this is never too big:

‖Xa,b‖ ≤
1

pa,b

∥∥L+/2La,bL
+/2
∥∥

=
1

pa,b
Tr
(
L+(ea − eb)(ea − eb)T

)
=
ra,b
pa,b

=
ε2

C log n
, (5.2)

where we used that L+/2La,bL
+/2 is positive semidefinite of rank 1 to equate its norm with

its trace. Note how the norm is independent of (a, b). This uniformity is a very good sign
that we’ll be able to obtain good concentration, and another main advantage of sampling
via effective resistances.

Matrix Chernoff bounds. We’re almost done — we’re only missing the appropriate ma-
trix Chernoff bound ! Luckily for us, such a thing exists. Just as we saw a matrix Freedman’s
inequality, here is a matrix analogue of Hoeffding’s inequality:

Theorem 5.6. Let X1, . . . , Xm be independent random positive semidefinite n-dimensional
matrices (not necessarily identically distributed) and R > 0 such that ‖Xi‖ ≤ R for all i. Let
X =

∑
Xi, and µmin, µmax the smallest and largest eigenvalues of E[X] respectively. Then

for any 0 < ε < 1,

Pr
(
λmin

( m∑
i=1

Xi

)
≤ (1− ε)µmin

)
≤ ne−

ε2µmin
2R ,

Pr
(
λmax

( m∑
i=1

Xi

)
≥ (1 + ε)µmax

)
≤ ne−

ε2µmax
3R .

Note the main difference in the above statement, with respect to the standard Hoeffding
bound, is the dimensional factor n on the right-hand side. This is a bit annoying (it would
have been nice to have a dimension-free bound!), but in general it is unavoidable.

Exercise 2. Give an example of X1, . . . , Xm independent and identically distributed random
n-dimensional matrices such that ‖Xi‖ ≤ 1 for all i ∈ {1, . . . ,m} and X =

∑
iXi is such

that
Pr
(
λmax(X) ≥ (1 + ε)λmax(E[X])

)
≥ ne−ε

2µmax/C ,

for some 0 < ε < 1 (possibly depending on n) and a constant C > 0.

Let’s apply the theorem to conclude our analysis. In our case, by (5.2) we can set
R = ε2/(C log n). Also for us EX = Π, which has both its smallest and largest eigenvalues
equal to 1 (there is the 0 eigenvalue, but it doesn’t matter, as we can do all the analysis in
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the subspace orthogonal to the associated 1 eigenvector; note 1TXa,b1 = 0 for all (a, b) ∈ E).
The matrix Chernoff bound gives us

Pr
(
λmin(X) ≤ (1− ε)

)
≤ ne−

ε2C logn

2ε2 = n1−C/2,

and

Pr
(
λmax(X) ≥ (1 + ε)

)
≤ ne−

ε2C logn

3ε2 = n1−C/3.

If we choose say C = 4, then both probabilities are small, and we get the desired approxi-
mation (1− ε)Π ≤ X ≤ (1 + ε)Π with high probability.

5.3 Gaussian elimination

Back to our original problem: we want to solve Lx = b! The most standard technique is to
proceed by Gaussian elimination. The idea for this is to write the Cholesky factorization of
L,

L = PTDT TP, (5.3)

where T is lower triangular, D diagonal, and P is a permutation matrix that corresponds
to choosing a particular order for the elimination. It is then straightforward to solve for
x = P (T T )−1D−1T−1Pb, since each of the inverses can be computed very easily. The total
number of operations required is O(n+ nnz(T )), where nnz(T ) denotes the number of non-
zero entries of T .

To find a decomposition of the form (5.3) we proceed iteratively, as described in the
following procedure:

Gaussian-Elimination(G,L):

(1) Set L(0) = L;

(2) Fix an ordering (v1, . . . , vn) of the vertices of G;

(3) For i = 1, . . . , n do

(?) Set L(i) = L(i−1) − L(i−1)(:,vi)L
(i−1)(:,vi)

T

L(i−1)(vi,vi)
;

(4) Return D = diag(1/L(i−1)(vi, vi)), T = (L(0)(:, v1)| · · · |L(n−1)(:, vn)), and P =∑
i e
T
i evi .

Figure 5.1: Gaussian elimination

The procedure has n iterations, and each iteration takes O(n2) time to update the matrix
L(i+1). Therefore Gaussian elimination runs in O(n3) time.
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We can give a combinatorial interpretation of this algorithm. Given a Laplacian L and a
vertex v, let (L)v =

∑
e∈E: v∈ew(e)beb

T
e , where be = v − u if e = (u, v). (L)v is the Laplacian

associated to the subgraph containing only those edges incident on b. Then we can write the
update above as

L(i) = L(i−1) − (L(i−1))vi + (L(i−1))vi −
L(i−1)(:, vi)L

(i−1)(:, vi)
T

L(i−1)(vi, vi)
,

where vi is the i-th vertex in the chosen elimination order. We would like to argue that
each L(i−1) can be interpreted as the Laplacian of a graph G(i−1) on the vertex set V (i−1) =
{vi, . . . , vn}. Clearly for i = 1 this is true. Suppose it true for some i. Observe that
L(i−1) − (L(i−1))vi is a Laplacian: it is the Laplacian of the subgraph of G(i−1) obtained by
removing vertex vi and all edges incident on it. The following exercise shows that (L(i−1))vi−
L(i−1)(:,vi)L

(i−1)(:,vi)
T

L(i−1)(vi,vi)
is also a Laplacian.

Exercise 3. Show that

Ci = (L(i−1))vi −
L(i−1)(:, vi)L

(i−1)(:, vi)
T

L(i−1)(vi, vi)
=

∑
vj ,vk∼vi

w(i−1)(vi, vj)w
(i−1)(vi, vk)

w(i−1)(vi)
b(vj ,vk)b

T
(vj ,vk)

,

(5.4)
where w(i−1) denote edge weights in G(i−1).

Another way to formulate the formula derived in the exercise is that to go from G(i−1)

to G(i) we remove the subgraph incident on vi, and instead replace it by a clique on the
neighbors of vi in G(i−1), where each pair of neighbors is linked by an edge having weight
w(i−1)(vi,vj)w

(i−1)(vi,vk)

w(i)(vi)
.

Note that this procedure has one very unfortunate effect. Suppose that the original graph
G is sparse, e.g. it is a constant-degree graph. Then the Laplacian L is also sparse: it only
has n + dn nonzero entries. Then computing the updates L(i+1) should only require O(d2)
operations, leading to a linear-time algorithm (for constant d). Unfortunately, the update
does not preserve sparsity: as we just discussed, each update consists in deleting one vertex
and adding a (weighted) clique between all its neighbors — so the graph is to quickly going
to become denser and denser.

Our goal is to develop an algorithm which avoids such “densification”. We will present
a very recent quasi-linear time algorithm for this problem due to Kyng and Sachdeva [?].

We think of G as a sparse graph, though this need not strictly be the case. It will also
be convenient to allow G to have multi-edges, i.e. two vertices can be linked multiple times,
with different weights. In terms of the Laplacian, which is the way the grap is represented
throughout the algorithm, it means there can be multiple terms proportional to the Laplacian
L(u,v) for a single edge. We define L+ to be the pseudo-inverse of L, and Π = LL+ = L+L
the projector on the range of L.
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5.3.1 Sampling cliques

Based on the intuition we got from analyzing the Gaussian elimination procedure as a vertex
elimination procedure where a star on a vertex is replaced by a clique on its neighbors, our
main idea is to introduce a randomized algorithm which, instead of introducing a complete
clique on all neighbors of the eliminated vertex vi, only considers a sub-clique, with Laplacian
Yi =

∑
e Yi,e, obtained by sub-sampling a small fraction of the edges.

Before proceeding, we need to set a bit of notation. Let bu,v denote the Laplacian
associated with a single (unweighted) edge e = (u, v). The algorithm will maintain ex-
plicit representations of the Laplacian it manipulates through a multi-edge decomposition
as L =

∑
e=(u,v)w(e)bu,vb

T
u,v, where w(e) is the weight of an edge e. We allow multi-edges,

meaning we can have e 6= e′ with the same endpoints (u, v) but different (or even the same)
weights w(e), w(e′). Given a sub-graph, also represented via its Laplacian S, and a vertex v
we let (S)v denote the sub-Laplacian of S containing all edges of S incident on v. We write
wS(v) for the sum of weights of all edges in S that are incident on v, and dS(v) for the degree
of v in S (the number of edges of S incident on v, counted with multiplicity).

Consider the following procedure:

Clique-Sample(S,v): S a Laplacian specified by an explicit decomposition as a sum of
weighted multi-edge Laplacian; v a vertex.

(1) For j from 1 to dS(v) do

• Sample e = (u, v) incident on v with probability w(e)/wS(v);

• Sample e′ = (u′, v) incident on v with probability 1/dS(v);

• If u 6= u′ set Yj = w(e)w(e′)
w(e)+w(e′)

b(u,u′)b
T
(u,u′); else set Yj = 0.

(2) Return Y =
∑

j Yj.

Figure 5.2: Sampling cliques

The following claim shows that the clique sampling procedure works, on expectation.

Claim 5.7. Let S be a Laplacian input to Clique-Sample and v a vertex. Then the output
Y of Clique-Sample(S,v) satisfies the following properties:

(1) Y =
∑

j Yj where each Yj is either 0 or the Laplacian of a multi-edge whose endpoints
are neighbors of v in S;

(2) E[Y ] = C(S, v), where C(S, v) = (S)v − S(:,v)S(:,v)T

S(v,v)
;

13



Proof. The first property is clear. For the second property, we can write

E
[∑

j

Yj

]
= dS(v)

∑
e=(u,v)

∑
e′=(u′,v), u′ 6=u

w(e)

wS(v)

1

dS(v)

w(e)w(e′)

w(e) + w(e′)
b(u,u′)b

T
(u,u′)

= C(S, v),

where to get the second equality, observe that each pair of edges (e, e′) appears exactly twice
in the sum, with different weights; then use Exercise 1 from the previous lecture.

Claim 5.7 is already good enough to argue that “in expectation” the following modified
Gaussian elimination algorithm works:

Modified-Gaussian-Elimination(G,L): G a weighted graph and L the Laplacian of G,
specified as a sum of weighted edge Laplacians (with repetition in case G has multi-edges).

(1) Set Ŝ(0) = L;

(2) Fix an ordering (v1, . . . , vn) of the vertices of G;

(3) For i = 1, . . . , n do

(?′) Let Ĉi = Clique-Sample(Ŝ(i−1), vi);

Set Ŝ(i) = Ŝ(i−1) − (Ŝ(i−1))vi + Ĉi.

(4) Return D̂ = diag(1/Ŝ(i−1)(vi, vi)), T̂ = (Ŝ(0)(:, v1)| · · · |Ŝ(n−1)(:, vn)), and P̂ =
∑

i e
T
vi
ei.

Figure 5.3: Modified Gaussian elimination

Due to property (2) in Claim 5.7 we see that in expectation, the rule (?′) performs exactly
the same update as (?): if (D̂, T̂ ) is the output of the algorithm, and P̂ the chosen ordering
of vertices, then

E
[
P̂ T̂ D̂T̂ T P̂ T

]
= L, (5.5)

as desired.
We can also bound the running time of the algorithm. The subroutine Clique-Sample(Ŝ, v)

can be executed in time O(degS(v)) (For this one must show how to implement the neighbor-
sampling steps in constant time on average — this is possible by performing a pre-processing
step to store all neighbors of v in an appropriate data structure). By definition, procedure
(?′) preserves the total number of multi-edges in the graph. Since we choose the next vertex
to eliminate at random at each step, its expected degree is the average degree in the initial
graph, scaled by n/i at the i-th iteration. Summing over all i = 1, . . . , n we obtain a running
time of O(m log n).
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5.3.2 A Martingale

Of course, correctness in expectation is, by itself, useless. What we really need, as we saw

in (5.1), is a bound on the norm of L̂−Π. To get started, let’s find a way to express L̂−Π
as a sum of random variables that correspond to the clique samples made by the algorithm.
Towards this, introduce a sequence of random variables

L̂(k) = Ŝ(k) +
k∑
i=1

Ŝ(i−1)(:, vi)Ŝ
(i−1)(:, vi)

T

Ŝ(i−1)(vi, vi)
, (5.6)

for k = 0, . . . , n. Intuitively, L̂(k) represents the Laplacian of an “intermediate graph” at
the k-th iteration of the algorithm: for vertices v1, . . . , vk, L̂

(k) is like the final row-reduced
Laplacian, whereas for vertices vk+1, . . . , vn, L̂(k) is the graph that results from the original
graph, with all the additional cliques added in. In particular, L̂(0) = L and L̂(n) = L̂. Using
the definition,

L̂(k) − L̂(k−1) = Ŝ(k) − Ŝ(k−1) +
Ŝ(k−1)(:, vk)Ŝ

(k−1)(:, vk)
T

Ŝ(k−1)(vk, vk)

= Ĉk − (Ŝ(k−1))vk +
Ŝ(k−1)(:, vk)Ŝ

(k−1)(:, vk)
T

Ŝ(k−1)(vk, vk)

= Ĉk − E[Ĉk|Fk−1],

where the last equality follows from (2) in Claim 5.7, and we introduced Fk−1 to denote all
the random choices made by the algorithm up to the start of the k-th iteration. Now Ĉk
itself decomposes as a sum Ĉk =

∑
e Yk,e, and so using a telescoping sum we can write

L̂− L = L̂(n) − L̂(0)

=
n∑
k=1

(
L̂(k) − L̂(k−1))

=
n∑
k=1

dk∑
e=1

(
Yk,e − E[Yk,e|Fk−1]

)
,

where dk = degŜ(k−1)(vk). Multiplying left and right by L+/2, we have succeeded in expressing

the difference between the graph Laplacian L and the estimate L̂ returned by our algorithm
as a sum of mean-zero random variables. Let

Z = L+/2(L̂− L)L+/2 =
n∑
k=1

dk∑
e=1

Xk,e, (5.7)

where Xk,e = Yk,e − E[Yk,e|Fk−1]. Our goal (5.1) is then to bound the probability that Z
does not satisfy the inequalities −εΠ ≤ Z ≤ εΠ, for some ε ≤ 1/2; since Z has the same
kernel as L (which is the same as L̂), this is equivalent to −εI ≤ Z ≤ εI.
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5.3.3 Matrix concentration inequalities

The decomposition (5.7) expresses Z as a sum of mean-zero matrix random variables. These
random variables are not independent, but they form a martingale difference sequence
(MDS): for each 1 ≤ k ≤ n and 1 ≤ e ≤ dk we gave E[Xk,e|Fk−1] = 0 (note that here
it is sufficient to condition on all choices up to the (k − 1)-st iteration, as all the edge sam-
ples e made by Clique-Sample are taken independently from each other). Since we have
an MDS, we are in a good shape to apply the following concentration theorem, which is a
matrix-valued variant of Freedman’s inequality due to Joel Tropp:

Theorem 5.8. Let {Xi = Yi − Yi−1}i=1,...,m be a martingale difference sequence, where
Yi is a symmetric n × n matrix. Suppose that ‖Xi‖ ≤ R for all i ∈ {1, . . . ,m}. Let
Wk =

∑k
i=1 E[X2

i |Yi−1]. Then for all t ≥ 0 and σ2 > 0,

Pr
(
∃k : ‖Yk‖ ≥ t and ‖Wk‖ ≤ σ2

)
≤ ne

− t2/2

σ2+Rt/3 .

Note that if the Xi are i.i.d. then Wk is just a number. In this case we can set σ2 =
∑

iX
2
i

in Theorem 5.8, and recover (a matrix variant of) Bernstein’s inequality. In terms of the
quality of the bounds, the only difference between the matrix Freedman’s and the scalar
Freedman’s inequality is the dimension dependence, which shows up via the prefactor of n
in front of the exponential.

5.3.4 Variance analysis

To apply Theorem 5.8 we need to control two things: first, the operator norm of each edge
sample taken by Clique-Sample, and second, the “variance” ‖Wk‖.

To bound the norm of the Yi (note that the relevant quantity for the application of
Theorem 5.8 is really the norm of Yi) we need to make some assumption on the weights that
are considered by the algorithm. Assume for simplicity that the initial Laplacian L is the
Laplacian of an unweighted graph, so that all weights w(e) = 1.

Let ρ > 0 be a parameter to be decided on later. Say that a Laplacian S is ρ-bounded
with respect to L if ‖w(e)b(u,v)‖ ≤ 1/ρ for every edge e = (u, v) in S. We can assume that
the initial Laplacian L is ρ-bounded with respect to itself: this means that all edge weights
should be at most 1/ρ, which can be achieved by splitting each “regular” edge into ρ multi-
edges of weight 1/ρ each. The following claim shows that the Clique-Sample procedure
does not increase this measure of weight throughout the algorithm:

Claim 5.9. Let S be a Laplacian input to Clique-Sample, L a Laplacian, and assume
that S is 1/ρ-bounded with respect to L. Then the output Y of Clique-Sample(S,v) is
1/ρ-bounded with respect to L, i.e. ‖Y j‖ ≤ 1/ρ for every j.

Proof. To prove the claim we use the following:

Exercise 4. Show the following “triangle inequality”: for any three distinct vertices v, u, u′,∥∥b(u,u′)bT(u,u′)∥∥ ≤ ∥∥b(v,u)bT(v,u)∥∥+
∥∥b(v,u′)bT(v,u′)∥∥. (5.8)
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[Hint: quadratic forms...]

Using (5.8),

w(e)w(e′)

w(e) + w(e′)

∥∥b(u,u′)bT(u,u′)∥∥ ≤ w(e)w(e′)

w(e) + w(e′)

(∥∥b(v,u)bT(v,u)∥∥+
∥∥b(v,u′)bT(v,u′)∥∥)

≤ w(e)w(e′)

w(e) + w(e′)

( 1

ρw(e)
+

1

ρw(e′)

)
=

1

ρ
,

where in the second line we used the assumption that S itself is ρ-bounded with respect to
L.

Claim 5.9 readily gives us a good choice for R in our application of theorem 5.8: we can

take R = 1/ρ. Now it remains to study the variance term Wk =
∑k

i=1

∑di
e=1 E[Xi,e

2|Fi−1] (we
can always assume that all edges for a given run of Clique-Sample are taken in together).
Fix an index k, and observe that

E
[ dk∑
e=1

Xk,e
2
∣∣∣Fk−1 ] ≤ 1

ρ
C(Ŝ(k−1), vk),

where we used Xk,e
2 ≤ 1

ρ
Xk,e, which follows from Claim 5.9, and the definition of C(·, ·).

Note that C(Ŝ(k−1), vk) is itself a random variable, which depends on all choices made by
the algorithms at iterations prior to the k-th. What we do know from the definition is that
C(Ŝ(k−1), vk) ≤ (Ŝ(k−1))vk , where vk is chosen uniformly at random among (n − k) possible

vertices. Let’s make an assumption that the Laplacian Ŝ(k−1) considered throughout the
procedure remain “reasonably bounded” compared to the original Laplacian L, i.e.

Ŝ(k−1) ≤ DL (5.9)

for some constant D. This is not unreasonable, as from the definition of L̂(k−1) we see that
Ŝ(k−1) ≤ L̂(k−1), so we can hope that the approximations L̂(k−1) we defined do not deviate
too much from L.

Assuming (5.9), since Ŝ(k−1) = 1
2

∑n
i=k(Ŝ

(k−1))vi (the 1/2 is due to the fact that each
edge gets counted twice, for each of its endpoints) we get that on average over the choice of
vertex vk (all other prior choices of the algorithm remaining fixed),

E
π

[
C(Ŝ(k−1), vk)

]
≤ D

2(n− k)
I. (5.10)

There is one remaining subtlety that prevents us from using this bound directly for the
value of σ2 in Theorem 5.8. The reason is that the choice of vertex vk must be made when
we make the call to Clique-Sample. So we can consider vk to be uniformly random at the
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time when we sample the first edge Yk,e. For subsequent edges however, vk has been fixed,

so that the above averaging argument for bounding C(Ŝ(k−1), vk) no longer applies.
This difficulty can be overcome by introducing a second martingale, with random vari-

ables the C(Ŝ(k−1), vk) themselves. This martingale does not have expectation zero, but we
can bound its terms by another application of Freedman’s inequality, yielding a good bound
on C(Ŝ(k−1), vk) that we can apply not only at the time of the first clique sample, but for
subsequent ones as well.

Ignoring the difficulty, by summing (5.10) over k = 1, . . . , n, we get that by choosing
σ2 = O(log n/ρ) in Theorem 5.8 the bound ‖Wk‖ ≤ σ2 holds always (in fact, it’ll only hold
with high probability, due to the above-mentioned issue). With t = ε and R = 1/ρ the
bound from the theorem becomes ne−O(ερ/ logn). With a constant value of ε, say ε = 1/10,
it is enough to choose ρ = O(log2 n) to make the bound inverse polynomial. Overall, this
gives a running time O(mρ log n) = O(m log3 n) for the algorithm: quasilinear in the input
size, as desired.

Remark 5.10. A second issue we glossed over is the assumption (5.9). In fact it is possible
to reduce the proof to an even stronger condition, viz.

(1− ε)L ≤ L̂(k−1) ≤ (1 + ε)L (5.11)

for each k = 1, . . . , n. The idea here is to proceed in two steps. Define an event Ek that
corresponds to (5.11), and condition the martingale on Ek being true. Then the above
proof carries through, and we can bound the truncated martingale. Finally, it is possible to
show that the truncated martingale has more chances of not satisfying the conclusion that
−εI ≤ Z ≤ εI, therefore the bound on the truncated martingale applies to the untruncated
one as well, with no loss. We refer to [?] for more on this.
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