
Chapter 1

Streaming Algorithms and
Concentration Inequalities

In these lectures we introduce the streaming model of computation and give a couple algo-
rithms for estimating frequency moments. We review basic concentration inequalities for the
analysis of randomized algorithms. We discuss the “median-of-means” technique for error
and success amplification, and analyze it using the Chernoff bound. We give two applications
of the Chernoff bound, to the Johnson-Lindenstrauss lemma for dimension reduction and to
the balanced allocation problem.

1.1 The streaming model

The streaming model is as follows. The input is a “stream” of values σ = (s1, s2, . . .), where
sj ∈ {1, 2, . . . , n} for all j. The algorithm sees the values one by one. When a new value,
sj, arrives, it can perform an update. Then the value disappears, and the next value, sj+1,
arrives. The goal is that once all values have been seen, the algorithm should return a
quantity of interest — for example, the number of distinct elements in the stream.

We will usually assume that the length m of the stream, and the range {1, . . . , n} of the
stream elements, are known in advance. The main complexity parameter is the memory,
S, that the algorithm requires. Sometimes the time T to perform the update for each new
stream element is also measured.

Streaming algorithms are relevant in scenario where there is a massive flux of data coming
through, so it is impossible to store everything in memory. But we would still like to compute
some property of the data. An example is internet traffic, where we can’t simply log every
data packet that goes through, but would still like to maintain some rough statistics that
would let us e.g. detect suspicious activity. Or data collected from large Physics experiments
such as those at CERN, where we want to detect special events without having the ability to
store all the data generated by the measurement apparatus. Or video feeds from surveillance
cameras, where we want to spot suspicious individuals but can’t store the whole stream and
must process information in real time.

1

1.1.1 Estimating the number of distinct elements

As a warm-up, let’s consider the problem of computing the number of distinct elements in a
stream. This is called the 0-th moment of the stream, F0. In general we denote by

fi =
∣∣{1 ≤ j ≤ m : sj = i}

∣∣
the “frequency” of a value i ∈ {1, . . . , n}. Then F0 =

∑m
i=1(fi)

0. Another example is
F1 =

∑
i fi = m, which just counts the length of the stream.

Let’s first try to compute F0 using a deterministic procedure. How much space do you
need? The most näıve algorithm stores a copy of each new element we see. In the worst case
all elements are distinct, so this will require space S = min{n,m} log n. Can we do better?

Suppose you had a deterministic algorithm that solves the problem in space S. For
x ∈ {0, 1}n consider the stream ((1, x1), . . . , (n, xn)). This stream has n distinct elements.
Suppose we execute the algorithm; at the end of the stream the state of the algorithm’s
memory is some arbitrary string m(x) ∈ {0, 1}S. Now let’s initialize the algorithm’s memory
to m(x) (for some x) and give it a single element (i, 0). If the number of distinct elements
reported by the algorithm increases by 1 then we know that xi = 1, whereas if it doesn’t
change we know that xi = 0. In this way it is possible to completely recover x from m(x),
therefore m(x) must take at least 2n possible values: S ≥ n.

This argument only applies to deterministic algorithms that return an exact count for
the number of distinct elements. What about an algorithm that approximates F0, say up to
10% error? In your homework you will see that even in this case one needs space Ω(n).

To save on space we’ll have to abandon determinism, and look for a randomized algorithm.
This means the algorithm can toss coins, and we want the answer to be accurate with high
probability over the outcomes of the coin tosses, for any input stream σ. So let f be a
random function h : {1, . . . , n} → {1, . . . , n}, which represents the outcomes of n n-valued
coin tosses, and consider the following procedure:

(1) Initialization: Set z = 0.

(2) Process sj: Let ` be the largest power of 2 that divides h(sj). If ` > z then z ← `.

(3) Output: Return 2z+
1
2 .

Why does this work? Suppose the stream has at least d distinct elements. Then there is a
good chance that one of the d possible values h(sj) is divisible by log d (note that ` is simply
the number of trailing zeros in the binary representation of h(sj)). On the other hand, if
the stream has no more than d distinct elements then it is pretty unlikely that there is an
item that has much more than log d zeros in a row. This heuristic argument shows that we
expect z to be a reasonable approximation to d, up to a constant multiplicative factor.

What is the space requirement of the procedure? Storing z only requires about log n bits,
so this is very efficient. Note though that we are allowing the algorithm to store h “for free”:
we did not count the space required to record the coin tosses. If we count those as well,
then we need an additional n log n bits — no better than the perfect deterministic algorithm

2

we saw earlier. This could be a serious issue, but we’ll set it aside for now. Later we’ll see
how it is possible to do much better by using a partially random h — an h that is chosen
randomly from a much smaller family of functions than all functions.

How do we analyze this? What is the probability that the algorithm returns an estimate
that is correct within relative error 10%? What if we want error 1%, what is the overhead
in terms of space requirements? Before we answer these questions, let’s work out another
example.

1.1.2 Estimating the second frequency moment

The second frequency moment is F2 =
∑

i f
2
i . The second moment gives a measure of “dis-

crepancy” within the stream: the higher F2 the less “uneven” the frequencies are. Consider
the following algorithm, where h : {1, . . . , n} → {±1} is again a random function:

(1) Initialization: Set c = 0.

(2) Process sj: Add h(sj) to c.

(3) Output: Return c2.

Note the space requirement for this algorithm is quite small (if we again store the function
h for free): at each step c either increases or decreases by 1, so after m elements it ranges in
{−m, . . . , 0, . . . ,m}, requiring only log(2m+ 1) bits to store.

How do we analyze the algorithm. Let Z = c2 be a random variable containing the output
of the algorithm. At a minimum we would like that the algorithm does well on average,
meaning we want to compute E[Z] and compare it to F2. To do this, for each j ∈ {1, . . . , n}
introduce a random variable Yj = h(j) ∈ {±1}, so that Z = (f1Y1 + · · · + fnYn)2. We can
then compute the expectation of Z as follows:

E[Z] = E[(f1Y1 + · · ·+ fnYn)2]

=
∑
j

f 2
j E[Y 2

j] +
∑
i 6=j

fifj E[YiYj]

=
∑
j

f 2
j +

∑
i 6=j

fifj E[Yi] E[Yj]

= F2,

where we used the fact that the Yj are independent and E[Yj] = 0 for every j. This means the
algorithm does return an unbiased estimator. How good is it? Could it be that Z = 100F2

for half the time? Well, that’s impossible: since always Z ≥ 0, you can see that Z ≥ 100F2

can happen at most 1% of the time; otherwise even by setting it to 0 the remaining time it
wouldn’t have the right expectation. This is called Markov’s inequality.

3

1.2 Concentration inequalities

1.2.1 Markov’s Inequality

Suppose given a random variable Z such that the only assumption is Z ≥ 0. Then Markov’s
inequality already lets us say something nontrivial:

Theorem 1.1 (Markov). For a random variable Z ≥ 0 and any k > 0,

Pr(Z ≥ k) ≤ E[Z]
k

.

By choosing k = αE[Z] for α ≥ 1 we can reformulate the bound as Pr(Z ≥ αE[Z]) ≤
α−1

Proof. E[Z] ≥ kPr(Z ≥ k) + 0 Pr(Z < k).

We can also do a “proof by picture”. Consider the function g(Z) = Z
k

and let f(Z) be
an indicator function which is 1 if Z ≥ k and 0 otherwise. Then Pr(Z ≥ k) = E[f(Z)] ≤
E[g(Z)] = E[Z]

k
.

Figure 1.1: g(Z) ≥ f(Z) everywhere

Exercise 1. For every k ≥ 1, give an example of a random variable Z such that Markov’s
inequality is tight for this choice of k.

Applied to our problem of estimating F2, Markov’s inequality gives Pr[Z ≥ αF2] ≤ 1
α

,
for any α > 0. So for instance the chance that we overshoot by a factor 4 is at most 1/4. Can
we do better? The exercise shows that, if we don’t assume any more information on Z, we
can’t. To show that Z remains close to its expectation more frequently than the worst-case
behavior, we have to compute the variance.

4

1.2.2 Chebyshev’s Inequality

The variance of a random variable Z (not necessarily non-negative) is defined as

Var[Z] = E[(Z − µ)2], where µ = E[Z].

Theorem 1.2 (Chebyshev). For a random variable with mean E[Z] = µ and any t ≥ 0,

Pr
(
|Z − µ| ≥ t

)
≤ E[(Z − µ)2]

t2
.

Proof. Note that the events |Z − µ| ≥ t and (Z − µ)2 ≥ t2 are equivalent. Since the random
variable |Z − µ| is non-negative, we can apply Markov’s inequality:

Pr
(
|Z − µ| ≥ t

)
= Pr

(
Z − µ)2 ≥ t2

)
≤ E[(Z − µ)2]

t2
.

Here again we can give a proof by picture with g(Z) = (Z−µ)2
t2

and f(Z) an indicator
function which is 1 if |Z − µ| ≥ t and 0 otherwise:

Pr
(
|Z − µ| ≥ t

)
= E[f(Z)]

≤ E[g(Z)]

= E
[(Z − µ)2

t2

]
=

E[(Z − µ)2]

t2
.

Figure 1.2: g(Z) ≥ f(Z) everywhere

From these pictorial proofs one can see that Chebyshev’s inequality is just Markov’s
inequality with a different definition of g(Z). Any function g which is larger than the
indicator function will provide a different bound, and depending on the context it might be
possible to get a better bound than Markov’s or Chebyshev’s.

5

Exercise 2. For every expectation µ ≥ 0, t ≥ 0 and variance 0 ≤ σ2 ≤ t2/2, give a
random variable which has that expectation and variance and satisfies Pr

(
|Z − µ| ≥ t

)
=

t−2 E[(Z − µ)2].

1.3 Variance analysis

1.3.1 The second moment

To estimate the variance, we compute

E[Z2] = E[(f1Y1 + · · ·+ fnYn)4] =
∑
i,j,k,`

fifjfkf` E[YiYjYkY`].

Using independence, the only nonzero terms in the sum above are those where either i =
j = k = `, or when two indices occur twice each. So

E[Z2] =
∑

f 4
j E[Y 4

j] + 3
∑
i 6=j

f 2
i f

2
j E[Y 2

i Y
2
j] = F4 + 3(F 2

2 − F4).

Thus
Var[Z] = F4 + 3(F 2

2 − F4)− F 2
2 ≤ 2F 2

2 .

Applying Chebyshev’s inequality, for any ε > 0,

Pr(|Z − F2| ≥ εF2) ≤
2F 2

2

ε2F 2
2

=
2

ε2
.

If we take ε = 99, then we see Pr(Z ≥ 100F2) ≤ 2/992, a much better bound than we got
by Markov’s inequality! There are still reasons to be dissatisfied, however. In particular, for
the bound to be non-trivial we need to take ε ≥

√
2: what if we want a better estimate, say

to within 1%? Later we’ll see a general method to improve the quality of this approximation
by maintaining a small number of independent counters. The result will be the following
theorem:

Theorem 1.3. For any ε, δ > 0 there is a streaming algorithm using space O(1
ε2

log(1/δ) logm)
that returns an estimate for F2 which is accurate up to a multiplicative factor (1 ± ε) with
probability at least 1− δ.

1.3.2 The 0-th moment

Recall that F0 =
∑
f 0
i is the number of distinct elements in the stream. Let’s analyze the

success probability of the algorithm we saw earlier. For each j ∈ {1, . . . , n} and r ≥ 0
let Xr,j be the indicator random variable for the event that h(j) is divisible by 2r, and
Yr =

∑
j:fj>0Xr,j. Let t be the final value of z at the end of the algorithm. Note that Yr = 0

6

means no element had r or more zeros, thus t ≤ r − 1. Using that, since h is a random
function, for every j the value h(j) is uniformly distributed in {1, . . . , n},

E[Xr,j] = Pr
(
2r divides h(j)

)
=

1

2r
.

By linearity of expectation, E[Yr] = F0/2
r, and using independence

Var[Yr] =
∑
j:fj>0

Var[Xr,j] ≤
∑
j:fj>0

E[X2
r,j] =

∑
j:fj>0

E[Xr,j] =
F0

2r
.

Using first Markov and then Chebyshev,

Pr
(
Yr > 0

)
= Pr(Yr ≥ 1) ≤ E[Yr]

1
=
F0

2r
,

Pr(Yr = 0) ≤ Pr(|Yr − E[Yr]| ≥
F0

2r
) ≤ Var[Yr]

(F0/2r)2
≤ 2r

F0

.

Let F̂ = 2z+
1
2 be the output of the algorithm, and a and b the smallest and largest integer

such that 2a+
1
2 ≥ 3F0 and 2b+

1
2 ≤ F0/3 respectively. Then

Pr(F̂ ≥ 3F0) = Pr(z ≥ a) = Pr(Ya > 0) ≤ F0

2a
≤
√

2

3
,

Pr(F̂ ≤ F0/3) = Pr(z ≤ b) = Pr(Yb+1 = 0) ≤ 2b+1

F0

≤
√

2

3
.

So we have obtained a factor 3-approximation to F0 that is correct with probability 1−2
√

2/3,
by the union bound. But the success probability is pretty low, about 6%! However, just as
for F2 it is possible to boost this very quickly: for any ε, δ we can reduce the error to ±εF0

and boost the success probability to 1−δ using only O(ε−2 log(1/δ)) independent repetitions.

1.4 Derandomization

Before we proceed with the advanced analysis of our algorithms, let’s deal with the problem of
storing the random function h used by both algorithms. How do we deal with this? Observe
that our analysis used the fact that h is a random function in a rather weak way: specifically,
when computing the expectation and variance of the random variable Z = c2 describing the
outcome of the algorithm we used conditions such as E[YiYjYkY`] = E[Yi] E[Yj] E[Yk] E[Y`]
for distinct values i, j, k, `, where Yj = h(j) is the random variable that describes the output
of the function at a particular point. As it turns out, this requirement is a much weaker
requirement than full independence, called 4-wise independence. In particular, it is possible
to sample “4-wise independent” functions using much fewer random bits than a uniformly
random function. This is the idea behind derandomization: to try to save on the number
of random coins needed while keeping the function h “random enough” that the analysis
carries over.

7

1.4.1 k-wise independent random variables and hash functions

Definition 1.4. A family of random variables (X1, . . . , XN) is called k-wise independent if
for every k-tuple (i1, . . . , ik) ∈ {1, . . . , N}k the random variables (Xi1 , . . . , Xik) are indepen-
dent.

To see the difference between 2-wise (also called pairwise) independence and full indepen-
dence, consider for example a triple of random variables (X1, X2, X3) that is uniformly dis-
tributed over {(1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1,−1)}. Then (X1, X2, X3) are certainly
not independent: the product is always −1. But you can check that they are pairwise inde-
pendent. Note how this lets us save on the randomness: to generate a sample (X1, X2, X3)
we only need 2 random bits, instead of 3 for fully independent random variables.

As an immediate consequence of the definition, you can see that if the Yi are four-wise
independent then the equality E[YiYjYkY`] = E[Yi] E[Yj] E[Yk] E[Y`] always holds, which is all
that was needed for the analysis of our F2 algorithm: we only need the values produced by h
to be 4-wise independent, not fully independent. Here is a reformulation of this requirement:

Definition 1.5. A family H of functions h : A 7→ B is called k-wise independent if for any
distinct points x1, ..., xk ∈ A and i1, ..., ik ∈ B,

Pr
h∈H

(
h(x1) = i1, . . . , h(xk) = ik

)
=

1

|B|k
.

A 1-wise independent family of hash functions is just a family such that any element x
in the domain is mapped to a random element in the range, when the function is chosen at
random. In general, the requirement of H being k-wise independent is the same as requiring
that the random variables Xi = h(xi), sampled by evaluating a random h ← H at a fixed
point xi, are k-wise independent random variables.

Example. For A = B = {0, 1, ..., p− 1} where p is a prime number, consider the following
family of functions:

H2 =
{
fa,b : x 7→ ax+ b mod p, (a, b) ∈ {0, . . . , p− 1}2

}
.

Then H2 is a family of 2-wise independent hash functions. To check this we only need to
evaluate, for any x1 6= x2, i1 and i2,

Pr
a,b

(ax1 + b = i1 ∧ ax2 + b = i2) = Pr
a,b

(
a =

i2 − i1
x2 − x1

∧ b = i2 − x2a
)

=
1

p

1

p
,

since a and b are chosen independently and uniformly at random.
When we study derandomization it will be important to construct many k-wise indepen-

dent random variables using the fewest possible random bits. Here we have |A| = p random
variables, but the number of random bits is only what is required to choose a random h ∈ H,
so about 2 log p bits. Compare this to log p bits needed to choose just one random value in
{0, . . . , p− 1}!

8

1.4.2 Using pairwise independence

Now we can go back to the F2 algorithm and modify it as follows: instead of using a
completely random function h we use a random function h : {1, . . . , n} → {1, . . . , n} that
is taken from a family H of 4-wise independent hash functions. You can easily check that
the whole analysis goes through unchanged. But now the number of random bits required
to choose h is only O(log n) (you will see an efficient construction of a family of 4-wise
independent hash functions in your homework). To store the function, we simply store the
random coins. Every time we need to evaluate h(j) we read the random coins, recover the
function, and evaluate it at the desired value. Thus for our algorithm to be time-efficient (and
not only space-efficient) it is important that the evaluation of the function at a particular
point can be done quickly, given the “raw” random coins. This is the case for the example
of pairwise independent functions we saw earlier.

1.5 The median-of-means trick

Our main tool in the variance analysis of the streaming algorithms for estimating the fre-
quency moments F0 and F2 has been Chebyshev’s inequality, which is useful whenever we
have good control over the variance E[(Z − µ)2] of Z. Using the inequality we were able to
show that our algorithm gives an answer such that, first the answer is correct on expectation,
and second it falls within a constant multiplicative factor of the right answer with constant
probability. Now we’ll see how to “boost” both the accuracy and success probability of any
such algorithm, by running it multiple times.

First let’s make a very simple observation. Suppose we execute any randomized procedure
N times, using independent random coins at each time. Let the results be random variables
X1, . . . , XN , and set Z to be the average result, Z = (1/N)(X1 + · · ·+XN). Then

E[Z] =
1

N

(
E[X1] + · · ·+ E[XN]

)
=

1

N

(
µ1 + · · ·+ µN

)
,

and

Var(Z) = E
[(1

N

(
X1 + · · ·XN)− 1

N

(
µ1 + · · ·+ µN

))2]
=

1

N2

∑
i

E
[
(Xi − µi

)2]− 2

N2

∑
i,j

E
[
(Xi − µi)(Xj − µj)

]
=

1

N2

∑
i

Var(Xi),

where in the last line we used that Xi and Xj are independent for i 6= j to write E[XiXj] =
E[Xi] E[Xj]. This shows that taking the average of multiple independent runs decreases
variance linearly, with a corresponding improvement in accuracy for our algorithm. More-
over, notice how once again the only property we need is really just pairwise independence.

9

Therefore, this method of amplification would work even if we didn’t use completely inde-
pendent functions h for each executation of the algorithm, letting us save once again on the
random bits.

But suppose now that we can afford full independence, can we get a more efficient am-
plification of the success probability? We will see how this can be done by using a powerful
concentration bound for sums of independent random variables, the Chernoff bound.

Theorem 1.6. For any ε, δ > 0 let

t = C log
1

δ
and k = 3

Var(X)

ε2E[X]2
,

where C is some universal constant. Let Xij, for i ∈ {1, . . . , t} and j ∈ {1, . . . , k}, be
independent random variables with the same distribution as X. Let

Z = mediani∈{1,...,t}

(1

k

k∑
j=1

Xij

)
.

Then E[Z] = µ and Pr(|Z − µ| ≥ εµ) ≤ δ.

Note that the number of copies required to drive the probability of error below δ scales
as log(1/δ), and not 1/δ as it would if we were to rely only on Chebyshev’s inequality.

Proof. Let Yi = 1
k

∑
j Xij for each i ∈ {1, . . . , t}. Using linearity of expectation, E[Yi] = µ,

and using independence,

Var(Yi) =
1

k2

∑
j

Var(Xij) =
Var(X)

k
.

Applying Chebyshev’s inequality, for each i,

Pr(|Yi − µ| ≥ εµ) ≤ Var(Yi)

ε2µ2
=

Var(X)

kε2E[X]2
=

1

3
.

For each i let Wi be a random variable that is 1 if |Yi − µ| ≥ εµ. Then by the above bound
E[Wi] ≤ 1/3, and |Z − µ| ≥ εµ only if W =

∑
Wi > t/2. Applying Chebyshev’s inequality,

Pr
(n∑
i=1

Wi >
t

2

)
≤ Pr

(∣∣∣ n∑
i=1

Wi − E
[n∑
j=1

Wj

]∣∣∣ > t

6

)
≤ tVar(W1)

(t/6)2

≤ 1

3

36

t
,

since Var(W1) ≤ E[W 2
1] = E[W1] ≤ 1/3. To make this bound less than δ it is sufficient to

take t = 12/δ. But the theorem claims much better, t = log(1/δ)! That this t is enough is a
consequence of the Chernoff bound, that we will see next.

10

1.6 Chernoff Bounds

In the kind of scenario from the previous example, where W = W1 + · · · + Wn is the
sum of independent random variables, it is possible to do much better than Markov or
Chebyshev. Chebyshev’s inequality takes into account information about the variance, and
it only requires the Wi to be pairwise independent. The Chernoff bound will do better by
looking at all higher-order moments E[W k] simultaneously, and using full independence.

Here is how we do it. For any t ≥ 0 we can write

Pr
(
W ≥ (1 + δ)µ

)
= Pr

(
etW ≥ et(1+δ)µ

)
(x 7→ exis non-negative increasing)

≤ E[etW]

et(1+δ)µ
(Markov’s inequality)

= e−t(1+δ)µ
n∏
i=1

E[etWi] (independence)

= e−t(1+δ)µ
n∏
i=1

(
pie

t + (1− pi)1
)

(for Boolean Wi)

≤ e−t(1+δ)µ
n∏
i=1

epi(e
t−1)) (Taylor series: 1 + x ≤ ex)

= e(µ(e
t−1)−t(1+δ)µ).

Now we solve for t to find the best possible bound. If we take the derivative of the exponential
term with respect to t and set it to 0, we find that the RHS has a minimum at µet−(1+δ)µ =
0, i.e. t = ln(1 + δ). This gives us the final bound

Pr
(
W ≥ (1 + δ)µ

)
≤
(eδ

(1 + δ)(1+δ)

)µ
.

A similar proof can be done for W ≤ (1− δ)µ.

Exercise 3. In the fourth step above we used the fact that Wi ∈ {0, 1}. Suppose now we
only assume that Wi ∈ [0, 1], with E[Wi] = µ/n. How does that step need to be updated?

Assuming the result of the exercise, we have proved the following:

Theorem 1.7. (Multiplicative Chernoff Bound] For any independent random variables X1, . . . , Xn

with Xi ∈ (0, 1] and Z =
n∑
i=1

Xi, µ = E[Z]:

Pr
(
Z ≥ (1 + δ)µ

)
≤
(eδ

(1 + δ)(1+δ)

)µ
, Pr

(
Z ≤ (1− δ)µ

)
≤
(e−δ

(1− δ)(1−δ)
)µ
.

Exercise 4. Show that for δ ∈ (0, 1] the Chernoff bound implies the following weaker but
often more convenient form:

Pr
(
Z ≥ (1 + δ)µ

)
≤ e−

δ2µ
3 , Pr

(
Z ≤ (1− δ)µ

)
≤ e−

δ2µ
2 .

11

We can now finish the analysis of the median-of-means trick:

End of proof of Theorem 1.6. Applying the Chernoff bound to the Wi,

Pr
(t∑
i=1

Wi >
t

2

)
≤ e−

(1/2)2(t/3)
3 = e−

t
36 ≤ δ

provided the constant C from the theorem is chosen large enough.

1.7 Applications

We will multiple applications of the Chernoff bound. The first one is to a geometric problem:
reducing the dimension of high-dimensional data. It will require us to prove a variant of the
bound that is adapted to Gaussian (instead of Bernoulli) random variables, and will prove
very useful in future algorithmic applications. The second application is to a purely com-
binatorial problem: counting the maximum load of a bin when balls are allocated (almost)
randomly.

1.7.1 The Johnson-Lindenstrauss lemma

Suppose given a set of data points x1, . . . , xn ∈ Rd, where we think of d as being very
large. For example, the xi are “feature vectors”: each of the d coordinates of xi contains a
numerical value for an attribute associated to the i-th object in our dataset. Suppose we are
only interested in the rough geometry of this set — that is, we care about pairwise distances
‖xi − xj‖2, a good measure of similarity between elements of our dataset. We might also
want to compute the distances ‖y − xi‖2, where y is a new element. But d is very large.
Is there a way to provide a “low-dimensional sketch” of our dataset that would capture its
geometry, at least in an approximate sense. Note that we can already assume d ≤ n. This is
because the linear span of n vectors has dimension at most n, so we don’t need more than n
dimensions to represent the vectors. The Johnson-Lindenstrauss (JL) lemma shows that, if
we are willing to allow for a small approximation error in the distances, we can go much lower
— essentially, log(n) dimensions. More generally, the JL dimensionality reduction lemma
provides a powerful technique for solving high-dimensional problems such as:

• Proximity problems: nearest neighbor, closest/furthest pair, Euclidean minimum span-
ning tree;

• Clustering, information retrieval;

• Learning an unknown mixture of Gaussians;

• Dimensionality reduction for online settings, such as sketching for streaming with lim-
ited storage;

12

and many more; in fact there is even a whole book devoted to the topic: “The Random
Projection Method”, by Santosh Vempala. Before stating and proving the JL lemma we
introduce a little background on Gaussian random variables.

Gaussian random variables

A real continuous random variable X is defined by a nonnegative, integrable density function
γ : R→ R+ such that

Pr
(
X ∈ [a, b]

)
=

∫ b

a

γ(x) dx.

Definition 1.8. We say X is Gaussian, or normally distributed, with mean µ and variance
σ2 when

γ(x) =
1√

2πσ2
e−(x−µ)

2/2σ2

, (1.1)

in which case we write X ∼ N (µ, σ2). We further say X is standard Gaussian if µ = 0 and
σ2 = 1.

Here are some standard but useful properties of the Gaussian distribution.

Lemma 1.9.

(1) The density γ defined in (1.1) is normalized, i.e.∫ ∞
−∞

γ(x) dx = 1.

(2) Let Z = c1X1 + c2X2 where X1, X2 ∼ N (0, 1) are independent random variables. Then
Z ∼ N (0, c21 + c22).

(3) Let X ∼ N (0, 1) and t < 1/2. Then

E[etX
2

] =
1√

1− 2t
.

Exercise 5. Prove the lemma. For 1., show that it is enough to check normalization for
µ = 0, σ2 = 1. If I =

∫∞
−∞ e

−x2/2 dx, first verify that I is well-defined (it should be bounded)

and then show that I2 = 2π by performing a change of variables. For 2., write the integral
for the cumulative distribution function Pr(Z ≤ t) and again use rotation symmetry.

The Johnson-Lindenstrauss lemma

The JL lemma addresses the question of low-dimensional embeddings of points in Euclidean
space that approximately preserve distances. The construction we give not only shows
existence, but also yields a randomized algorithm for finding a linear embedding satisfying
the desired properties with high probability. The lemma can be stated as follows.

13

Lemma 1.10 (Johnson-Lindenstrauss). For any integer d > 0, 0 < ε, δ < 1/2 and integer
k > 4 ln(2/δ)/(ε2− ε3) there exists a distribution on k× d real matrices G such that for any
x ∈ Rd,

Pr
(
(1− ε)‖x‖2 ≤ ‖Gx‖2 ≤ (1 + ε)‖x‖2

)
> 1− δ.

Proof. The distribution we use is simple: G ∈ Rk×d is formed by choosing coefficients
Gij ∼ N (0, 1/k) i.i.d. Let

Z =
‖Gx‖2

‖x‖2
=

k∑
i=1

(Gx)2i
‖x‖2

,

so that the desired bounds are (1 − ε) ≤ Z ≤ (1 + ε) w.h.p. Observe that, for all i,
(Gx)i =

∑d
j=1Gijxj ∼ N (0, ‖x‖2/k), by the second item from Lemma 1.9 and our choice of

Gij, so

E[(Gx)2i] = Var[(Gx)i] =
‖x‖2

k
,

and E[Z] = 1
‖x‖2

∑k
i=1

‖x‖2
k

= 1.

Now we want a high probability concentration bound on Z. Let Xi = (Gx)i
‖x‖ , so that Z =∑k

i=1X
2
i . Since the rows of G are independent it follows that the Xi are independent, so Z is

a sum of i.i.d. random variables. Unfortunately these random variables are not bounded, so
we can’t directly apply the Chernoff bound, or generalizations such as Bernstein’s inequality.
Instead we go back to the basics and apply the Laplace transform method from scratch. This
will also give us a sharper bound.

We bound Pr(Z ≥ (1 + ε)), the other tail being analogous.

Pr(Z ≥ (1 + ε)) = Pr
(
etkZ ≥ etk(1+ε)

)
≤ E[etkZ]

etk(1+ε)

=

∏k
i=1 E[etkX

2
i]

etk(1+ε)

=
1

(1− 2t)k/2etk(1+ε)
,

where the second equality uses independence of the Xi and the third equality follows from
item 3. in Lemma 1.9 (using

√
kXi ∼ N (0, 1) and assuming t < 1/2). Now we pick

t = ε
2(1+ε)

< 1/2, so that this upper bound simplifies to(
(1 + ε)e−ε

)k/2 ≤ ((1 + ε)(1− ε+ ε2/2))k/2

= (1− ε2/2 + ε3/2)k/2

≤ e−(ε
2−ε3)k/4,

where the inequalities follow by Taylor expansion. Choosing k > 4 ln(2/δ)/(ε2− ε3) yields a
tail bound of at most δ/2. Adding the bound for the lower tail yields an overall probability
of failure of at most δ.

14

The following is a simple but important consequence:

Theorem 1.11. Let P be a set of n points in Rd and 0 < ε < 1. For dimension k > 8 lnn
ε2−ε3 ,

there exists a linear map ϕ : Rd → R
k, such that, for all u, v ∈ P ,

(1− ε)‖u− v‖2 ≤ ‖ϕ(u)− ϕ(v)‖2 ≤ (1 + ε)‖u− v‖2,

that is, the mapping ϕ does not distort distances too much.

Proof. The construction for ϕ is simply to choose G randomly as in Lemma 1.10, and set
ϕ(u) = Gu. Then for every pair (u, v), ‖ϕ(u) − ϕ(v)‖2 = ‖G(u − v)‖2. If we choose
δ = O(1/n2) in Lemma 1.10 we get that for any pair (u, v) the probability that (1− ε)‖u−
v‖2 < ‖G(u− v)‖2 < (1 + ε)‖G(u+ v)‖2 is at least 1− 1/(2n2). Taking a union bound over
all possible pairs, a random G will work with probability at least 1/2, and in particular there
exists a G, hence a ϕ, that works.

Remark 1.12. We can tweak the constant factor in the threshold for k to get a high probabil-
ity bound that ϕ works, e.g., choosing k > 12 lnn

ε2−ε3 yields failure probability at most
(
n
2

)
2
n3 <

1
n
.

Such a bound yields a Las Vegas algorithm for constructing a working ϕ (repeatedly sample
a ϕ and check the distortion of ϕ until success).

Remark 1.13. A somewhat cleaner threshold for k of the form k = Ω(ε−2 lnn) suffices if
we have an upper bound on ε, e.g., if ε < 1/2, then ε2 − ε3 > ε2/2 so

k >
16 lnn

ε2
=⇒ k >

8 lnn

ε2 − ε3
.

1.7.2 Balanced allocation

Suppose there are n servers and n jobs. Our goal is to assign jobs to servers in a balanced
way. What is an easy way to do this? Suppose we just assign jobs at random. Will the
allocation be balanced — how many jobs will go to the server with the heaviest load?

Random Allocation

The problem is equivalent to assigning n balls to n bins in a way that the load of the bin
with the most balls is minimized. So suppose that each ball is dropped in a random bin.
Let Zi count the number of balls in bin i: Zi =

∑
j Xij, where Xij = 1 if ball j falls into bin

i, and Xij = 0 otherwise. Then

E[Zi] = E
[n∑
j=1

Xij

]
=

n∑
j=1

E[Xij] =
n∑
j=1

1

n
= 1.

Using the Chernoff bound, for any k ≥ 1

Pr
(
Zi ≥ k

)
= Pr

(
Zi ≥ kE[Zi]

)
≤
(ek−1
kk

)E[Zi]

=
ek−1

kk
.

15

Let k = 3 lnn
ln lnn

. The reason for this choice will become clear soon. Applying the union bound,
the probability that any bin has at least k balls is at most

Pr
(

any bin ≥ 3 lnn

ln lnn

)
≤ n

(e ln lnn

3 lnn

) 3 lnn
ln lnn

= n exp
(3 lnn

ln lnn

(
1 + ln

(ln lnn

3 lnn

))]
≤ n exp

(3 lnn

ln lnn

(
ln ln lnn− ln lnn

)]
= n exp

(3 lnn · ln ln lnn

ln lnn
− 3 lnn

)
.

For large n, ln ln lnn� ln lnn, and so

Pr
(

any bin ≥ 3 lnn

ln lnn

)
≤ n exp(−2 lnn) =

1

n
(1.2)

The motivation for the choice of k is now clear. For k = 3 lnn
ln lnn

and large n, the probability
that there is a bin with many balls is small and decreases with n. It is possible to show that
this is tight: with high probability there will always exist a bin that contains Ω(lnn/ ln lnn)
balls.

The Power of Two Choices

How can we achieve a more balanced allocation? Here is a simple trick we could try to play:
for each ball, pick two bins at random, and drop the ball in the bin with fewer balls (to make
the analysis simpler we’ll allow that the two bins happen to be the same, in which case we
have no choice).

Let Bi be the random variable that counts the number of bins with at least i balls, after
all n balls have been distributed. Let βi be an upper bound on Bi: Bi ≤ βi. Suppose that
at the beginning of the t-th step there are Ti bins having at least i balls each. What is the
probability that the t-th ball is placed in a bin having at least i balls? For this to happen
both bins selected need to have at least i balls. Then

Pr
(
ball t placed in bin with ≥ i balls

)
=
(Ti
n

)2
≤ B2

i

n2
≤ β2

i

n2
.

So the expected number of bins containing at least i+1 balls is at most the expected number

of successes in a Bernoulli experiment with n trials and probability of success
β2
i

n2 :

E[Bi+1] ≤ n · β
2
i

n2
=
β2
i

n
.

Applying Markov’s inequality, Pr(Bi+1 ≥ e
β2
i

n
) ≤ e−1. This motivates the following sequence

of βi’s. Trivially, B6 ≤ n
6
≤ n

2e
. So we set

β6 =
n

2e
, β7 =

n

22e
, β8 =

n

24e
, . . . , βi =

n

22i−6e
.

16

Since Pr
(
Bi+1 ≥ e

β2
i

n

)
is low, the probability that Bi ≤ βi for each i is high. Let Ei be the

event that Bi ≤ βi. Note that Pr(E6) = 1.

Lemma 1.14. For all i s.t. β2
i ≥ 2n lnn, Pr(¬Ei+1|Ei) ≤ 1

n2 Pr(Ei)
.

Proof.

Pr(¬Ei+1|Ei) =
Pr(¬Ei+1 ∧ Ei)

Pr(Ei)

≤
Pr
(

Binomial
(
n,

B2
i

n2

)
≥ eβ2

i

n

)
Pr(Ei)

=
Pr
(
Binomial(n,

B2
i

n2) ≥ eE(Binomial(n,
B2
i

n2))
)

Pr(Ei)
.

Here, we used that βi+1 =
eβ2
i

n
. ¬Ei+1 then occurs if Binomial(n,

B2
i

n2) ≥ Bi+1 >
eβ2
i

n
. Now,

use the Chernoff bound as Pr(Z ≥ eE(Z)) ≤ exp(−E(Z)) to deduce Pr(¬Ei+1|Ei) ≤
exp
(
−β

2
i
n

)
Pr(Ei)

≤ exp(−2 lnn)
Pr(Ei)

≤ 1
n2 Pr(Ei)

.

Lemma 1.15. For all i s.t. β2
i ≥ 2n lnn, Pr(¬Ei+1) ≤ i+1

n2 .

Proof. Use induction on i. The base case is Pr(¬E6) = 0 ≤ 7
n2 . Next we have

Pr(¬Ei+1) = Pr(Ei) Pr(¬Ei+1|Ei) + Pr(¬Ei) Pr(¬Ei+1|¬Ei)

≤ Pr(Ei)
1

n2 Pr(Ei)
+

i

n2
Pr(¬Ei+1|¬Ei)

≤ 1

n2
+

i

n2

≤ i+ 1

n2
,

where Pr(¬Ei) ≤ i
n2 comes from the induction hypothesis.

We have shown that for all β2
i ≥ 2n lnn, the probability that βi does not bound Bi is

low, and decreases like O
(

1
n2

)
. Now, we must consider the other case where β2

i < 2n lnn.

Let i∗ be the minimum i for which β2
i < 2n lnn. Then, i∗ ≤ ln lnn

ln 2
+O(1).

Lemma 1.16. Pr(Bi∗+2 ≥ 1) ≤ O
(ln(n)2

n

)
.

17

Proof. Define Ei∗+1 = {Bi∗+1 ≤ 6 lnn}. Then

Pr(¬Ei∗+1) ≤ Pr(Bi∗+1 ≥ 6 lnn|Ei∗) Pr(Ei∗) + Pr(¬Ei∗)

≤
Pr(Binomial(n, 2 lnn

n
) ≥ 6 lnn)

Pr(Ei∗)
·Pr(Ei∗) +

1

n

≤ 1

n2
+

1

n

= O
(1

n

)
.

Thus

Pr(Bi∗+2 ≥ 1) ≤ Pr(Bi∗+2 ≥ 1|Ei∗+1) ·Pr(Ei∗+1) + Pr(¬Ei∗+1)

≤ Pr(Binomial(n, (6 lnn/n)2) ≥ 1)

Pr(Ei∗+1)
·Pr(Ei∗+1) +O

(1

n

)
≤
(6 lnn

n

)2
· n+O

(1

n

)
= O

((lnn)2

n

)
,

as desired.

1.7.3 Fast Johnson-Lindenstrauss

The Johnson-Lindenstrauss dimension reduction lemma has many algorithmic applications,
and we will see some of them today. Typically, the lemma is used to speed up an algorithm
by first, applying the dimension reduction map to reduce the dimension of the problem to
some small k, and second, solving the low-dimensional problem. For this to be effective
it is important that the map can be applied efficiently. Using the construction from the
previous lecture, where the dimension reduction matrix was a k × d matrix G with entries
i.i.d. Gaussian, computing the image of a vector x ∈ Rd will take time about kd. In some
applications x might be a sparse vector, in which case the running time would be k‖x‖0,
where ‖x‖0 is the number of non-zero entries of x. If ‖x‖0 is a constant, this still depends
on k, which depending on the problem could be large.

In order to do better, we want to show that the JL lemma holds for some random matrices
G that are more structured, and such that Gx can be computed very efficiently. Today we
will see that in fact we can choose G to have many entries equal to to 0: each column of
G will have only s nonzero entries, where s = Θ(ε−1 log(1/δ)) is independent of d and k.
We’ll see that we can get exactly (up to constant factors) the same guarantees as with the
completely random G, but now the computation time for Gx is much faster: it no longer
depends on k!

Consider the following construction for a k× d matrix G. Each column of G is split into
s contiguous blocks of size k/s. In each block there will be a single non-zero entry. We use

18

an indicator variable ηr,i = 1 if the r-th entry of the i-th column is nonzero, and ηr,i = 0
otherwise. The nonzero entries will be σr,i/

√
s, where σr,i ∈ {±1} are chosen uniformly at

random. Thus we define
Gr,i =

ηr,iσr,i√
s

for every r ∈ {1, . . . , k} and i ∈ {1, . . . , d}. Before we go on let’s verify that this is at least
good in expectation:

E
[
‖Gx‖2

]
= E

[1

s

k∑
r=1

d∑
i,j=1

ηr,iηr,jσr,iσr,jxixj

]
=

1

s

k∑
r=1

d∑
i=1

η2r,ix
2
i

=
d∑
i=1

x2i = ‖x‖2,

where for the second equality we used E[σr,i] = 0 and σ2
r,i = 1, and for the third we used

that there are exactly s nonzero ηr,i per column so
∑k

r=1 ηr,i = s.
We have not yet specified how the locations ηr,i of the nonzero entries are chosen. There

is only one important condition that these entries must satisfy: we need that there are few
collisions between non-zero entries in different columns. More precisely we will require that
for any i 6= j ∈ {1, . . . , d},

k∑
r=1

ηr,iηr,j = O
(s2
k

)
. (1.3)

Note that if we chose the nonzero locations uniformly at random within each block then the
expected number of collisions per pair of columns is precisely s × (s/k) = s2/k. Using a
Chernoff bound, the probability that there are more than e.g. 2s2/k collisions is exponentially
small in s2/k, so if s2/k = Ω(log(d/δ)) we can apply a union bound and the probability
that any pair of columns has more than 2s2/k collisions will be at most δ. So a random
construction works, provided the sparsity s, and hence the final computation time, depends
logarithmically on d. In fact it is possible to remove this requirement by using a finer analysis
(based on a weaker assumption than (1.3)), but we will not show this in this lecture. We’re
going to cheat a little bit, assume we have a way to choose the {ηr,i} such that (1.3) holds,
and show the following:

Theorem 1.17 (Kane-Nelson). For any integer d > 0 and 0 < ε, δ < 1/2 the distri-
bution on k × d real matrices G described above is such that if k = Ω(ε−2 log(1/δ)) and
s = Ω(ε−1 log(1/δ)) then for any x ∈ Rd,

Pr
(
(1− ε)‖x‖2 ≤ ‖Gx‖2 ≤ (1 + ε)‖x‖2

)
> 1− δ.

19

The main ingredient in the proof is a concentration bound due to Hanson and Wright
that applies to quadratic forms: for B a real n × n matrix we are interested in studying∑n

i,j=1Bijzizj where the zi ∈ {±1} are random signs. The expectation of this is

E
[n∑
i,j=1

Bijzizj

]
=
∑
i

Bii = Tr(B).

The following theorem shows that the concentration properties of this expression are governed
by two different norms of B: the operator norm ‖B‖ (the largest singular value), and the
Frobenius norm

‖B‖F =
√

Tr(BTB) =

√√√√ n∑
i,j=1

B2
i,j.

Theorem 1.18 (Hanson-Wright). Let z = (z1, . . . , zn)T be a vector of i.i.d. Rademacher
{±1} random variables. For any B ∈ Rn×n and p ≥ 2,

E
∣∣zTBz − Tr(B)

∣∣p ≤ Cp max
{√

p‖B‖F , p‖B‖
}p
,

for some universal constant C > 0 independent of B, n, p.

Exercise 6. Show that the moment bound stated in Theorem 1.18 is equivalent to the
following tail bound: there exists constants C ′, C ′′ > 0 such that for all t > 0,

Pr
(∣∣zTBz − Tr(B)

∣∣ > t
)
≤ C ′e

−C′′min
(

t2

‖B‖2
F

, t
‖B‖

)
.

Proof of Theorem 1.17. We can write (Gx)r =
∑

j ηr,jσr,jxj/
√
s, and define

Z = ‖Gx‖2 − 1

=
1

s

k∑
r=1

∑
i,j

ηr,iηr,jσr,iσr,jxixj − 1

=
1

s

k∑
r=1

∑
i 6=j

ηr,iηr,jσr,iσr,jxixj.

Now the key observation is that we can rewrite this as σTBσ, where B is a block-diagonal
matrix with k blocks, and each block is d× d with entries ηr,iηr,jxixj for i 6= j, and 0 on the
diagonal. In particular we have Tr(B) = 0. To apply Hanson-Wright, we need to estimate
the Frobenius norm and the operator norm of B. Let’s start with the Frobenius norm:

‖B‖2F =
1

s2

∑
i 6=j

x2ix
2
j

(k∑
r=1

ηr,iηr,j

)
≤ O

(1

k

)
‖x‖42

= O
(1

k

)
,

20

where the second line is by assumption (1.3).
Next we bound the operator norm. Since B is block-diagonal it suffices to bound the norm

of any block r. We can write the r-th block Br = (Sr − Dr)/s where Sr = (ηr,iηr,jxixj)i,j
and Dr is diagonal with coefficients η2r,ix

2
i on the diagonal. Now ‖Dr‖ ≤ ‖x‖2∞ ≤ 1 and

‖Sr‖ = ‖ηrx‖2 ≤ ‖x‖2 ≤ 1. Overall, ‖B‖ ≤ 2/s.
Applying the (tail version of) the Hanson-Wright inequality,

Pr
(
|Z| > ε‖x‖2

)
= Pr

(∣∣σTBσ − Tr(B)
∣∣ > ε

)
≤ C ′e−Cmin

(
O(ε2k),O(εs)

)
≤ δ,

given the choice of s and k made in the theorem.

1.7.4 Approximate nearest neighbors

Suppose given n points x1, . . . , xn ∈ Rd. Given a query y ∈ Rd, which is the closest xi to y?
A typical algorithm for this problem will have two phases:

(1) (Preprocessing) Construct a data structure based on the n points.

(2) (Query) Given a new point y ∈ Rd, query the data structure and return the index of
a nearest neighbor.

If d is small, d = 2 or d = 3, there are some very efficient data structures for this problem,
using quasi-linear (in n) space and answering each query in O(log n) time. But as soon as
d grows (think log n� d� n, for instance d = n0.1) the problem suffers from the “curse of
dimensionality”: either the data structure needs to have size exponential in d, or the time
per query must be linear in d.

For instance, the simplest algorithm would simply store the points xi; given query y it
evaluates all distances and returns the closest point. This requires O(nd) space for the data
structure and O(nd) time per query. At the opposite end of the spectrum, we can construct
a structure based on the Voronoi diagram of the xi. This will require space nO(d), but only
time O(d log n) per query; you can think of it as a spatial extension of the usual O(log n)
binary search.

Let’s see how we can do much better by using dimension reduction based on the Johnson-
Lindenstrauss lemma. First, let’s settle for ε-approximate nearest neighbors: given y, find i
such that ‖y− xi‖ ≤ (1 + ε) min1≤j≤n ‖y− xj‖. Suppose also that the closest point to y has
distance 1 (we can always perform binary search to reduce to this case).

Fix a grid on Rd where each cube has sides of length ε/
√
d. For each i, let Gi be the

set of grid cells that contain at least one point at distance at most 1 from xi, and store all
resulting grid cells in a hash table (where the key is an identification number for the cell,
and the value is the index of the point xi associated to that cell; if a cell has more than
one xi associated to it we can keep only one as the distances will necessarily be almost the

21

same). By a volume argument, the number of grid cells associated to any i is at most (c/ε)d

for some constant c, so our data structure uses dn (to store the xi) plus O(n(c/ε)d) space.
Given a query y, we simply find the grid cell it is contained in and return the associated
point i.

Ok, so we have dn + O(n(c/ε)d) space and O(d) query time (to determine the cell and
hash it; we can use a simple linear hash function h(z1, . . . , zd) = (a1z1 + · · · + adzd mod p)
mod s), where p is prime and s is the hash table size). So this is very efficient in terms of
query time, but still requires space exponential in d.

But now we can reduce the dimension! Apply the Johnson-Lindenstrauss lemma to
project all the xi to d′ = O(ε−2 log n) dimensions. This gives nO(log(1/ε)/ε2) space. When
a query y is made, we project it in O(dε−2 log n) time, and answer the query in O(d′) =
O(ε−2 log n) time. For ε constant, we have space polynomial in N and query time O(d log n):
this matches the query time of the basic Voronoi algorithm, but the space requirement
is greatly reduced. Unfortunately the dependence on ε is rather bad. Nevertheless, this
can be made into a practical algorithm as all operations are very simple, and it is used in
practice. Note also the query time is dominated by the time required to compute the Johnson-
Lindenstrauss embedding, and it is useful to reduce this: using the fast JL described earlier,
if the queries x are sparse vectors we can get a query time that is independent of d and
logarithmic in n.

1.7.5 Approximating matrix products

Suppose A ∈ Rd×n and B ∈ Rd×m are given. Näıvely the product ATB takes time O(ndm)
to compute. If n = d = m we can do time O(nω), where ω ≈ 2.373, using fast matrix
multiplication (Strassen’s algorithm gives log2 7 ≈ 2.807, and much more work gives small
improvements); this can also be used to speed up the rectangular case by breaking up A,B
in d× d blocks. Here we’re going to see how to compute ATB approximately, with additive
error ε‖A‖F‖B‖F where ‖A‖F = (

∑
i,j A

2
i,j)

1/2 is the Frobenius norm. The idea is very

simple: we insert a random low-dimensional projection S ∈ Rd′×d and return the product
ATSTSB. The whole product can be computed in time O(ndd′ + mdd′ + nd′m), which is
much better as long as d′ � n, d,m.

One natural way to do this is via sampling: write ATB =
∑d

i=1 aib
T
i where ai are the

columns of a, and bi the rows of B. Then we can try to approximate this sum by a random
sample. Using a standard concentration bound you can check that to get additive error
ε‖A‖F‖B‖F with probability at least 1−δ it is enough to sample Ω(ε−2δ−1) terms. Moreover
the dependence on δ can be improved to log(1/δ) by using a standard amplification trick
(repeat the experiment many times and output the median).

We’ll see a way to achieve a similar guarantee using the Johnson-Lindenstrauss dimension
reduction technique. Using the fast JL we saw earlier this lets us improve the dependence
on ε from ε−2 to ε−1. In fact we’ll prove something slightly more general:

Theorem 1.19. Let ε, δ ∈ (0, 1/2) and D a distribution on d′×d matrices such that for any

22

unit vector x ∈ Rd

E
S∼D

∣∣‖Sx‖22 − 1
∣∣` ≤ ε`δ (1.4)

for some ` ≥ 2. Then for any A,B each having d rows,

Pr
S∼D

(
‖ATSTSB − ATB‖F > 3ε‖A‖F‖B‖F

)
< δ.

Recall that in the last lecture we saw that if D = DJL is the Johnson-Lindenstrauss
distribution then for any unit norm vector x

Pr
S∼D

(∣∣‖Sx‖2 − 1
∣∣ > ε

)
≤ e−ε

2d′/8.

Using the last problem from Homework 1 it follows that for any ` ≥ 1,

E |‖S‖2x − 1|` ≤ (C
√
`/d′)`

for some constant C. So if we set d′ = Ω(log(1/δ)ε−2) and ` = log(1/δ) we get that DJL
satisfies (1.4). The same is true for the sparse Johnson-Lindenstrauss transform we saw
earlier.

Proof of Theorem 1.19. The proof is a good application of the moment method for proving
concentration bounds. Fix x, y ∈ Rd with norm 1. We can write the inner product

(Sx)T (Sy) =
1

2

(
‖Sx‖22 + ‖Sy‖22 − ‖Sx− Sy‖22

)
.

Recall the definition ‖X‖` = (E |X|`)1/` for a random variable X. Using the triangle in-
equality for ‖ · ‖` (this is also called Minkowski’s inequality),∥∥(Sx)T (Sy)− xTy

∥∥
`

=
1

2

∥∥(‖Sx‖22 − 1) + (‖Sy‖22 − 1)− (‖Sx− Sy‖22 − ‖x− y‖22)
∥∥
`

≤ 1

2

(∥∥‖Sx‖22 − 1
∥∥
`

+
∥∥‖Sy‖22 − 1

∥∥
`
−
∥∥‖Sx− Sy‖22 − ‖x− y‖22)∥∥`)

≤ 1

2

(
εδ1/` + εδ1/` + ‖x− y‖22 εδ1/`

)
≤ 3εδ1/`.

Let x1, . . . , xn be the columns of A and y1, . . . , ym the columns of B. Define a random
variable

Xi,j =
1

‖xi‖2‖yj‖2
(
(Sxi)

T (Syj)− xTi yj
)
.

23

Then ‖ATSTSB − ATB‖2F =
∑

i,j ‖xi‖22‖yj‖22X2
i,j. Using again the triangle inequality,∥∥‖ATSTSB − ATB‖2F∥∥`/2 =
∥∥∥∑

i,j

‖xi‖22‖yj‖22X2
i,j

∥∥∥
`/2

≤
∑
i,j

‖xi‖22‖yj‖22 ‖X2
i,j‖`/2

=
∑
i,j

‖xi‖22‖yj‖22 ‖Xi,j‖2`

≤ (3εδ1/`)2
(∑

i,j

‖xi‖22‖yj‖22
)

= (3εδ1/`)2‖A‖2F‖B‖2F .

Finally by Markov’s inequality,

Pr
(
‖ATSTSB − ATB‖F > 3ε‖A‖F‖B‖F

)
≤
(1

3ε‖A‖F‖B‖F

)`
E ‖ATSTSB − ATB‖`F

≤ δ.

24

	Streaming Algorithms and Concentration Inequalities
	The streaming model
	Estimating the number of distinct elements
	Estimating the second frequency moment

	Concentration inequalities
	Markov's Inequality
	Chebyshev's Inequality

	Variance analysis
	The second moment
	The 0-th moment

	Derandomization
	k-wise independent random variables and hash functions
	Using pairwise independence

	The median-of-means trick
	Chernoff Bounds
	Applications
	The Johnson-Lindenstrauss lemma
	Balanced allocation
	Fast Johnson-Lindenstrauss
	Approximate nearest neighbors
	Approximating matrix products

