Exams

Omar Fawzi

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Oct 28th, 2015

with Norm Beaudry, Frédéric Dupuis and Renato Renner

Randomness for testing

Randomness used to test a property (specific state, Bell violation,...)

- Many systems $Y_1 \dots Y_n$
- Want: testing random subset enough to guarantee global property

Randomness for testing

Randomness used to test a property (specific state, Bell violation,...)

- Many systems $Y_1 \dots Y_n$
- Want: testing random subset enough to guarantee global property

Another property we would like to test:

Has student
$$B$$
 learned the data $X_1 \dots X_n$?

Want: testing random subset enough to guarantee global learning

Probabilistic model

Systems:

- Data: $X_1, \ldots, X_n \in \{0, 1\}^n$
- Student memory: *B* (could be classical or quantum)

Modeled by a joint distribution $P_{X_1...X_nB}$

Probabilistic model

Systems:

- Data: $X_1, \ldots, X_n \in \{0, 1\}^n$
- Student memory: *B* (could be classical or quantum)

Modeled by a joint distribution $P_{X_1...X_nB}$

Test:

- Exam: $\vec{i} = (\vec{i}_1, ..., \vec{i}_k)$ with $\vec{i}_p \in \{1, ..., n\}$
- Given *B* and \vec{i} , answer $A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k$
- Grade given by $G_k = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}}} = k d_H(X_{\vec{i}}, A^{\vec{i}})$

Property we are testing: correlation between B and $X_1 \dots X_n$

Probabilistic model

Systems:

- Data: $X_1, \ldots, X_n \in \{0, 1\}^n$
- Student memory: *B* (could be classical or quantum)

Modeled by a joint distribution $P_{X_1...X_nB}$

Test:

- Exam: $\vec{i} = (\vec{i}_1, ..., \vec{i}_k)$ with $\vec{i}_p \in \{1, ..., n\}$
- Given *B* and \vec{i} , answer $A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k$
- Grade given by $G_k = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}}} = k d_H(X_{\vec{i}}, A^{\vec{i}})$

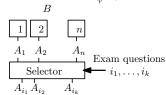
Property we are testing: correlation between B and $X_1 \dots X_n$

Think of the student as the adversary

Exam strategies

$$\begin{array}{ll} \textbf{Notation: Data:} \ X_1 \dots X_n \in \{0,1\}^n & \text{Exam: } \vec{i} = (\vec{i}_1,\dots,\vec{i}_k) \ \text{with } \vec{i}_p \in \{1,\dots,n\} \\ \text{Student memory } B & \text{Answer } A^{\vec{i}} = A^{\vec{i}}(B,\vec{i}) \in \{0,1\}^k & \text{Grade } \mathsf{G}_k(A^{\vec{i}}) = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_{\vec{i}_p}^{\vec{i}}} \end{array}$$

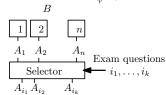
Special kind of strategy: Simple strategies



Exam strategies

$$\begin{array}{ll} \textbf{Notation: Data:} \ X_1 \dots X_n \in \{0,1\}^n & \text{Exam: } \vec{i} = (\vec{i}_1,\dots,\vec{i}_k) \ \text{with } \vec{i}_p \in \{1,\dots,n\} \\ \text{Student memory } B & \text{Answer } A^{\vec{i}} = A^{\vec{i}}(B,\vec{i}) \in \{0,1\}^k & \text{Grade } \mathsf{G}_k(A^{\vec{i}}) = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_{\vec{i}_p}^{\vec{i}}} \end{array}$$

Special kind of strategy: Simple strategies



Exam strategies

Notation: Data:
$$X_1 \dots X_n \in \{0,1\}^n$$
 Exam: $\vec{i} = (\vec{i}_1,\dots,\vec{i}_k)$ with $\vec{i}_p \in \{1,\dots,n\}$
Student memory B Answer $A^{\vec{i}} = A^{\vec{i}}(B,\vec{i}) \in \{0,1\}^k$ Grade $G_k(A^{\vec{i}}) = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}_p}}$

Special kind of strategy:
Simple strategies

Selector
$$A_{i_1} A_{i_2} A_{i_k}$$
Exam questions
$$B$$
General strategy
$$A_{i_1} A_{i_2} A_{i_k}$$
Exam questions
$$A_{i_1} A_{i_2} A_{i_k}$$
Exam questions
$$A_{i_1} A_{i_2} A_{i_k}$$
Exam questions
$$A_{i_1} A_{i_2} A_{i_k}$$

In general strategies, answer to question *i* depends on context

Notation: Data: X_1, \ldots, X_n

Exam:
$$\vec{i} = (\vec{i}_1, \dots, \vec{i}_k)$$
 with $\vec{i}_p \in \{1, \dots, n\}$

Answer
$$A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k$$

Exam:
$$\vec{i} = (\vec{i}_1, \dots, \vec{i}_k)$$
 with $\vec{i}_p \in \{1, \dots, n\}$
Answer $A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k$ Grade $G_k(A^{\vec{i}}) = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}}}$

 $\begin{array}{ll} \textbf{Notation: Data: } X_1, \dots, X_n & \text{Exam: } \vec{i} = (\vec{i}_1, \dots, \vec{i}_k) \text{ with } \vec{i}_p \in \{1, \dots, n\} \\ \textbf{Student memory contains } B & \text{Answer } A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k & \text{Grade } \mathbf{G}_k(A^{\vec{i}}) = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}}} \end{array}$

Example: X uniform on $\{0,1\}^n$ and

$$B = \begin{cases} X & \text{with prob. } 1/2 \\ 0 & \text{with prob. } 1/2 \end{cases}$$

```
Notation: Data: X_1, \dots, X_n Exam: \vec{i} = (\vec{i}_1, \dots, \vec{i}_k) with \vec{i}_p \in \{1, \dots, n\} Student memory contains B Answer A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k Grade G_k(A^{\vec{i}}) = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}_p}}
```

Example: X uniform on $\{0,1\}^n$ and

$$B = \begin{cases} X & \text{with prob. } 1/2 \\ 0 & \text{with prob. } 1/2 \end{cases}$$

 \rightarrow no absolute good/bad student

Notation: Data: X_1, \ldots, X_n Student memory contains B

Exam: $\vec{i} = (\vec{i}_1, \dots, \vec{i}_k)$ with $\vec{i}_p \in \{1, \dots, n\}$

Answer $A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k$ Grade $G_k(A^{\vec{i}}) = \sum_{p=1}^k \mathbf{1}_{X_{\vec{i}_n} = A_{\vec{i}_p}}$

Example: X uniform on $\{0,1\}^n$ and

$$B = \begin{cases} X & \text{with prob. } 1/2\\ 0 & \text{with prob. } 1/2 \end{cases}$$

 \rightarrow no absolute good/bad student

Property we are looking after:

memory *B* allows answering many X_1, \ldots, X_n correctly

Theorem

For any $P_{X_1...X_nB}$ and any $\{A^{\vec{i}}\}_{\vec{i}}$, there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}}) \in \{0, 1\}^n$ s.t.

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\overline{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

Exam: simple strategies

Notation: Data: X_1, \ldots, X_n Exam: $\vec{i} = (\vec{i}_1, \ldots, \vec{i}_k)$ with $\vec{i}_p \in \{1, \ldots, n\}$

Student memory contains *B* Answer $A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k$

For simple strategies, $A_p^{\vec{i}} = A_{\vec{i}_p}$ for some $A \in \{0, 1\}^n$

We choose $\overline{A} = A$. Statement becomes

Theorem

For any random variable $A = A_1 \dots A_n$,

$$\mathbf{P}_{\vec{i},X,A} \left\{ \frac{1}{n} \sum_{\ell=1}^{n} \mathbf{1}_{X_{\ell} = A_{\ell}} \leqslant \frac{1}{k} \sum_{p=1}^{k} \mathbf{1}_{X_{\vec{i}_p} = A_{\vec{i}_p}} - \delta \right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

Exam: simple strategies

Notation: Data: X_1, \ldots, X_n Exam: $\vec{i} = (\vec{i}_1, \ldots, \vec{i}_k)$ with $\vec{i}_p \in \{1, \ldots, n\}$

Student memory contains *B* Answer $A^{\vec{i}} = A^{\vec{i}}(B, \vec{i}) \in \{0, 1\}^k$

For simple strategies, $A_p^{\vec{i}} = A_{\vec{i}_p}$ for some $A \in \{0, 1\}^n$

We choose $\overline{A} = A$. Statement becomes

Theorem

For any random variable $A = A_1 ... A_n$,

$$\mathbf{P}_{\vec{i},X,A} \left\{ \frac{1}{n} \sum_{\ell=1}^{n} \mathbf{1}_{X_{\ell} = A_{\ell}} \leqslant \frac{1}{k} \sum_{p=1}^{k} \mathbf{1}_{X_{\vec{i}_p} = A_{\vec{i}_p}} - \delta \right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

For fixed *X* and *A*: standard bounds on hypergeometric distribution

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}}$, there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\vec{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}}$, there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\vec{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

• Choose
$$\overline{A}_{\ell} = \text{maj}\{A_{\ell}^{\vec{j}} : \ell \in \vec{j}\}$$

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}}$, there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\vec{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

How to choose \overline{A} ?

• Choose $\overline{A}_{\ell} = \text{MAJ}\{A_{\ell}^{\vec{j}} : \ell \in \vec{j}\}\$ does not work, have to use \vec{i}

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}}$, there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\vec{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

- Choose $\overline{A}_{\ell} = \text{MAJ}\{A_{\ell}^{\vec{j}} : \ell \in \vec{j}\}\$ does not work, have to use \vec{i}
- Choose $\overline{A}_{\ell} = \text{MAJ}\{A_{\ell}^{\vec{j}} : \ell \in \vec{j}, |\vec{j} \cap \vec{i}| \text{ large, } A^{\vec{j}} = A^{\vec{i}} \text{ on } \vec{i} \cap \vec{j}\}$ maybe works, but tough to analyze

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}}$, there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\vec{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

- Choose $\overline{A}_{\ell} = \text{MAJ}\{A_{\ell}^{\vec{j}} : \ell \in \vec{j}\}\$ does not work, have to use \vec{i}
- Choose $\overline{A}_{\ell} = \text{MAJ}\{A_{\ell}^{\vec{j}} : \ell \in \vec{j}, |\vec{j} \cap \vec{i}| \text{ large, } A^{\vec{j}} = A^{\vec{i}} \text{ on } \vec{i} \cap \vec{j}\}$ maybe works, but tough to analyze
- Optimal strategy?

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}}$, there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\vec{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

- Choose $\overline{A}_{\ell} = \text{MAJ}\{A_{\ell}^{\vec{j}} : \ell \in \vec{j}\}$ does not work, have to use \vec{i}
- Choose $\overline{A}_{\ell} = \text{maj}\{A_{\ell}^{\vec{j}} : \ell \in \vec{j}, |\vec{j} \cap \vec{i}| \text{ large, } A^{\vec{j}} = A^{\vec{i}} \text{ on } \vec{i} \cap \vec{j}\}$ maybe works, but tough to analyze
- Optimal strategy? In what sense?

Notation:
$$\vec{i}^{p-1} = \vec{i}_1, \dots, \vec{i}_{p-1}$$

Two steps:

- Introduce "sequential exams" and prove statement
- Relate general strategies for a strategy for sequential exam

Notation:
$$\vec{i}^{p-1} = \vec{i}_1, \dots, \vec{i}_{p-1}$$

Two steps:

- Introduce "sequential exams" and prove statement
- Relate general strategies for a strategy for sequential exam

Sequential exam (or oral exam)

Interaction between examiner and student

- Questions one by one
- Have to answer \vec{i}_p before getting \vec{i}_{p+1}
- After answering \vec{i}_p also gets $X_{\vec{i}_p}$

Notation:
$$\vec{i}^{p-1} = \vec{i}_1, \dots, \vec{i}_{p-1}$$

Two steps:

- Introduce "sequential exams" and prove statement
- Relate general strategies for a strategy for sequential exam

Sequential exam (or oral exam)

Interaction between examiner and student

- Questions one by one
- Have to answer \vec{i}_p before getting \vec{i}_{p+1}
- ullet After answering $ec{i}_p$ also gets $X_{ec{i}_p}$

$$o A_p^{ ext{seq}} = A_p^{ ext{seq}}(\vec{i}_p, \vec{i}^{p-1}, X_{\vec{i}^{p-1}}) \text{ but independent of } \vec{i}_{p+1} \dots \vec{i}_k$$

Notation:
$$\vec{i}^{p-1} = \vec{i}_1, \dots, \vec{i}_{p-1}$$

Two steps:

- Introduce "sequential exams" and prove statement
- Relate general strategies for a strategy for sequential exam

Sequential exam (or oral exam)

Interaction between examiner and student

- Questions one by one
- Have to answer \vec{i}_p before getting \vec{i}_{p+1}
- ullet After answering $ec{i}_p$ also gets $X_{ec{i}_p}$

$$o A_p^{ ext{seq}} = A_p^{ ext{seq}}(\vec{i}_p, \vec{i}^{p-1}, X_{\vec{i}^{p-1}}) \text{ but independent of } \vec{i}_{p+1} \dots \vec{i}_k$$

Remark: A priori "general" and "sequential" incomparable

Proof for sequential strategies

Theorem

For any sequential strategy A^{seq} , there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\vec{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{8}}$$

Simplification: define \overline{A} only on \vec{j} with $|\vec{j}| = k$

$$\rightarrow$$
 look at $\left[\frac{G_k(\overline{A})}{k} \leqslant \frac{G_k(A^{\text{seq}})}{k} - \delta\right]$

Proof for sequential strategies

Theorem

For any sequential strategy A^{seq} , there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\vec{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{8}}$$

Simplification: define \overline{A} only on \vec{j} with $|\vec{j}| = k$

$$\rightarrow$$
 look at $\left[\frac{G_k(\overline{A})}{k} \leqslant \frac{G_k(A^{\text{seq}})}{k} - \delta\right]$

$$\overline{A}_{\vec{j}_p} \stackrel{\text{def}}{=} A_p^{\text{seq}}(\vec{j}_p, \vec{i}^{p-1}, X_{\vec{i}^{p-1}})$$

To answer all questions: Partition $[n] = S_1 \cup \cdots \cup S_k$ at random, and for $\ell \in S_p$, let $\overline{A}_{\ell} = A^{\text{seq}}(\ell, \overline{\ell}^{p-1}, X_{\overline{\ell}^{p-1}})$

Proof for sequential strategies

Notation: $\vec{i}^{p-1} = \vec{i}_1, \dots, \vec{i}_{p-1}$ Grade $\mathsf{G}_k(A^{\mathrm{seq}}) = \sum_{p=1}^k \mathbf{1}_{X_{\overrightarrow{i}_p} = A_p}$ Grade $\mathsf{G}_k(\overline{A}) = \sum_{p=1}^k \mathbf{1}_{X_{\overrightarrow{i}_p} = \overline{A}_p}$

Using Azuma's inequality:

$$\mathbf{P}\left\{\sum_{p=1}^{k}\mathbf{1}_{X_{\vec{i}_p}=A_p^{\text{seq}}}-\sum_{p=1}^{k}\mathbf{E}_{\vec{i}_p,X_{\vec{i}_p}}\left\{\mathbf{1}_{X_{\vec{i}_p}=A_p^{\text{seq}}}\middle|\vec{i}^{p-1}\vec{j}^{p-1}X_{\vec{i}^{p-1}}X_{\vec{j}^{p-1}}\right\}\geqslant \delta k\right\}\leqslant e^{-\frac{\delta^2k}{2}}$$

$$\mathbf{P}\left\{\sum_{p=1}^{k}\mathbf{E}_{\vec{j}_{p},X_{\vec{j}_{p}}}\left\{\mathbf{1}_{X_{\vec{j}_{p}}=\overline{A}_{p}}\left|\vec{i}^{p-1}\vec{j}^{p-1}X_{\vec{j}^{p}-1}X_{\vec{j}^{p-1}}\right.\right\}-\sum_{p=1}^{k}\mathbf{1}_{X_{\vec{j}_{p}}=\overline{A}_{p}}\geqslant\delta k\right\}\leqslant e^{-\frac{\delta^{2}k}{2}}$$

Observe:

$$\mathbf{E}\left\{\mathbf{1}_{X_{\vec{i}p}=A_{p}^{\text{seq}}}\middle|\vec{i}^{p-1}\vec{j}^{p-1}X_{\vec{i}^{p-1}}X_{\vec{j}^{p-1}}X_{\vec{j}^{p-1}}\right\} = \mathbf{E}\left\{\mathbf{1}_{X_{\vec{j}p}=\overline{A}_{p}}\middle|\vec{i}^{p-1}\vec{j}^{p-1}X_{\vec{i}^{p-1}}X_{\vec{j}^{p-1}}\right\}$$

$$\Rightarrow \qquad \mathbf{P}\left\{\sum_{p=1}^{k}\mathbf{1}_{X_{\vec{l}p}=A_{p}^{\text{seq}}}-\sum_{p=1}^{k}\mathbf{1}_{X_{\vec{l}p}=\overline{A}_{p}}\geqslant 2\delta k\right\}\leqslant 2e^{-\frac{\delta^{2}k}{2}}$$

Relating general to sequential strategies

Theorem

There exists A^{seq} such that for any $\{A^{\vec{i}}\}_{\vec{i}}$

$$\mathbf{P}\left\{\sum_{p=1}^{k}\mathbf{1}_{X_{\vec{i}_{p}}=A_{p}^{\vec{i}}}-\sum_{p=1}^{k}\mathbf{1}_{X_{\vec{i}_{p}}=A_{p}^{\text{seq}}}\geqslant\delta k\right\}\leqslant e^{-\frac{\delta^{2}k}{8}}$$

$$A^{\text{seq}}(\ell, \vec{i}^{p-1}, X_{\vec{i}^{p-1}}) \stackrel{\text{def}}{=} \text{best guess for } X_{\ell} \text{ given } B, \vec{i}^{p-1}, X_{\vec{i}^{p-1}}$$

Azuma
$$\Rightarrow \sum_{p=1}^{k} \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}}} \approx \sum_{p=1}^{k} \mathbf{E}_{\vec{i}_p, X_{\vec{i}_p}} \left\{ \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}}} \middle| \vec{t}^{p-1} X_{\vec{i}^{p-1}} (A^{\vec{i}})^{p-1} \right\}$$

Azuma
$$\Rightarrow \sum_{p=1}^{k} \mathbf{1}_{X_{\vec{i}_p} = A_p^{\text{seq}}} \approx \sum_{p=1}^{k} \mathbf{E}_{\vec{i}_p, X_{\vec{i}_p}} \left\{ \mathbf{1}_{X_{\vec{i}_p} = A_p^{\text{seq}}} \middle| \vec{i}^{p-1} X_{\vec{i}^{p-1}} (A^{\vec{i}})^{p-1} \right\}$$

For any fixed \vec{i}_p and B, $(A^{\vec{i}})^{p-1}$ cannot help in predicting $X_{\vec{i}}$.

$$\Longrightarrow \mathbf{E}_{\vec{i}_p, X_{\vec{i}_p}} \left\{ \mathbf{1}_{X_{\vec{i}_p} = A_p^{\text{seq}}} \middle| \vec{i}^{p-1} X_{\vec{i}^{p-1}} (A^{\vec{i}})^{p-1} \right\} \geqslant \mathbf{E}_{\vec{i}_p, X_{\vec{i}_p}} \left\{ \mathbf{1}_{X_{\vec{i}_p} = A_p^{\vec{i}}} \middle| \vec{i}^{p-1} X_{\vec{i}^{p-1}} (A^{\vec{i}})^{p-1} \right\}_{11/13}$$

Recap of the proof

Start with $\{A^{\vec{i}}\}_{\vec{i}}$

 $A^{\rm seq}$ (guesses optimally given past) is at least as good on exam \vec{i} . If $A^{\rm seq}$ works on \vec{i} , also works on rest

Theorem

For any strategy $\{A^{\vec{i}}\}_{\vec{i}}$, there exists an $\overline{A} = \overline{A}(B, \vec{i}, X_{\vec{i}})$ such that

$$\mathbf{P}\left\{\frac{\mathsf{G}_n(\overline{A})}{n} \leqslant \frac{\mathsf{G}_k(A^{\overline{i}})}{k} - \delta\right\} \leqslant e^{-\frac{\delta^2 k}{32}}$$

Quantum student B

System *B* is quantum

Important difficulty: Applying $A^{\vec{i}}(B, \vec{i})$ affects B Issues in the two steps of the classical proof

- For sequential strategies, measurement may lead to losses
- Cannot simultaneously define the two strategies

Quantum student B

System *B* is quantum

Important difficulty: Applying $A^{\vec{i}}(B, \vec{i})$ affects B Issues in the two steps of the classical proof

- For sequential strategies, measurement may lead to losses
- Cannot simultaneously define the two strategies

In fact, as is, just wrong \rightarrow QRAC example

Quantum student B

System *B* is quantum

Important difficulty: Applying $A^{\vec{i}}(B, \vec{i})$ affects B Issues in the two steps of the classical proof

- For sequential strategies, measurement may lead to losses
- 2 Cannot simultaneously define the two strategies

In fact, as is, just wrong \rightarrow QRAC example

Better way of quantifying correlation:

• Use $H_{\max}(X_1 ... X_n | B)$ (number of bits of hint for perfect recovery of $X_1 ... X_n$)