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Abstract

This note indicates an error in the proof of Theorem 3.1 in [T. Vidick, SIAM J. Comp. 45(3):1007–1063,
2016]. Due to an induction step in the soundness analysis not being carried out correctly, the analysis
fails to prove the claimed result. The error invalidates the proofs of the main computational hardness
results claimed in the paper.

We discuss implications for subsequent works. In some cases results can be partially recovered by
applying a weakened version of Theorem 3.1 shown in [Ji et al., arXiv:2009.12982] subsequently to the
discovery of the error. The validity of Theorem 3.1 as stated in the paper remains an open question.

The main result of the paper [Vid16] is a proof of soundness of a “plane-vs-point” low-degree test
introduced in [RS97] when the test is executed with three quantum players sharing entanglement. Soundness
of the test is used to establish the main results of the paper, which are lower bounds on the complexity of
approximating the entangled value of multiplayer games with quantum players sharing entanglement.

John Wright has discovered an error in the soundness analysis given in [Vid16] which invalidates the
main results of the paper. In this note we describe the error (Section 1), explain how it affects the results
claimed in [Vid16] and how they can be partially recovered using [JNV+20b] (Section 2), and discuss
consequences for subsequent works (Section 3).

1 Description of the error

The main technical result in [Vid16] is formulated as Theorem 3.1, which states soundness of the low-degree
plane-vs-point test against entangled players. For a description of the test, see [Vid16, Section 3.1.1]. For
convenience we recall the statement of the theorem, using the same notation as [Vid16].

(Retracted) Theorem 3.1. Let 0 < ε ≤ 1/2, d ≥ 1, m ≥ 2, r ≥ 3 integers, and Fq a finite field of size
|Fq| = q such that q ≥ (dm/ε)d1 , where d1 ≥ 1 is a universal constant. Let (|Ψ〉, A, C) be a strategy with
success 1− ε in the (d, m, r, Fq)-low-degree test. Then there exists a measurement {Mg} with outcomes
g ∈ pold(F

m
q ) such that

Ex∈Fm
q ∑

g∈pold(Fm
q )

∑
a∈Fq : g(x) 6=a

〈Aa
x, Mg〉Ψ ≤ C1εc1 , (1)

where 0 < c1 ≤ 1, C1 > 0 are universal constants.

In the theorem statement the notation pold(F
m
q ) refers to the set of multivariate polynomials on Fq with

m variables and of total degree at most d. The other notation is not important for our purposes, and we refer
to [Vid16] for details.
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The proof of Theorem 3.1 given in [Vid16] contains a mistake. The remainder of this section explains
the mistake. We note that no counter-example is known to the statement of Theorem 3.1, so that to the best
of our present knowledge either proving or disproving the (retracted) theorem is an open problem.

The proof of Theorem 3.1 is by induction on the number of variables m. The induction hypothesis is
essentially identical to the theorem statement for a given m and all d, ε and q satisfying the conditions stated
in the theorem. (For our purposes the parameter r can be ignored.)

Fix d, q and ε and suppose that one wants to show that the induction hypothesis is true for some m,
assuming that it is true for (m− 1) and all d′, q′ and ε′ that satisfy the conditions of the theorem. The first
step in doing so consists in applying the hypothesis for (m − 1) (and the same d, q and a closely related
ε) a total of (d + 1) times to various “restrictions” of the strategy (|Ψ〉, A, C) to (m − 1)-dimensional
hyperplanes in Fm

q . Each such inductive call returns a measurement {Mg
i } of the form given in the theorem

statement, where here i ranges in {1, . . . , d + 1}. The second steps consists in combining together these
(d + 1) measurements into a single measurement {Mg

pasted} (this step is called “pasting” in the paper) that
is shown to satisfy the requirements for the induction hypothesis for this m and d, q and ε.

As discussed in detail in the proof given in [Vid16] the second step induces an increase in “error”, where
by error we mean the best right-hand side that can be shown for (1). Whenever the inductive call returns
measurements {Mg

i } that satisfy the claimed bound, the combined measurement {Mg
pasted} will satisfy (1)

with a weaker error bound. For concreteness, let’s say that the error obtained is twice what is desired. The
key step that bootstraps the worse bound into the desired one is a so-called “consolidation procedure” that
restores any “good enough” error to some given target value independent of m and d; it is this step that
allows the theorem to claim constants C1 and c1 that do not depend on the other parameters of the problem.1

The consolidation procedure is described in [Vid16, Section 5]. The key step in its analysis is Proposition
5.8. Proposition 5.8 as stated in the paper is wrong. To explain the error, for convenience we re-state the
proposition.

Proposition 1.1 (Proposition 5.8 in [Vid16]). There exists a constant K > 0 such that the following holds.
Let r ≥ 3, H a symmetric r-player game, X a finite set, and for every x ∈ X, Gx = (Vx, Ex) a graph, Sx a
set, and Gx ⊆ {g : Vx → Sx}.

Suppose that for any 0 < ε < K and strategy (P, |Ψ〉) for the players that has success 1− ε in the game
H and is ε-self-consistent there exists a collection Ax = {Aa

x,v}a∈S of projective measurements defined for
every v ∈ Vx, possibly depending on P but independent of |Ψ〉, such that that for all x ∈ X, (Gx, Ax,Gx)Ψ
is a (δ, µ)-robust triple for some δ, µ > 0 such that η′(δ, µ) < 1/4, where η′ is as defined in Lemma 5.4.

Suppose further that for any ε′ > 0 there exists η = η(ε′) such that η → 0 as ε′ → 0, and whenever
(P′, |Ψ′〉) is a strategy with success 1− ε′ in H, there exists a family of sub-measurements {Qg

x}g∈G that is
η-consistent with A′x (obtained from P′) and η-complete, on average over x ∈ X.

Then for any small enough 0 < ε < K and strategy (P, |Ψ〉) for the players that has success 1− ε
in the game H and is ε-self-consistent there exists a family of (complete) measurements {Rg

x}g∈G that is
ηc-consistent with Ax for some ηc = O(r(η′)1/4), on average over x ∈ X.

For our purposes the contents of the first “Suppose that” in the proposition statement can be ignored,
except for the fact that the assumption is required to hold for all 0 < ε < K. The “Suppose further” part
formalizes the result of the induction and pasting steps as discussed above, which is that one is able to show
the desired equation (1) with some dependence η(ε′) that goes to 0 with ε′ but may not be as good as the

1For intuition, a combinatorial analogue of this step is the isoperimetric inequality, which states that a sufficiently small subset
of an expander graph that does not expand much must necessarily be extremely small, much smaller than it was necessary to assume
in the first place.
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one claimed in (1) (say, it is twice too big). (For our purposes, one may equate the condition of being
“η-consistent with A′x” to satisfying (1) with a right-hand side of η.)

In order to reach the conclusion claimed in the proposition, the proof makes use of the “Suppose fur-
ther” assumption twice. In the first application the strategy (P′, Ψ′) is (essentially) identical to the original
strategy,2 and ε′ is closely related to ε. This application does not create any issues. In the second application
the strategy (P′, |Ψ′〉) is derived from (P, |Ψ〉) after large modifications, including some form of “condi-
tioning” step that may blow up the error by some factor, i.e. in that application it may be the case that ε′ is
as large as 2ε.

In the text these two applications appear in the “Proof of Proposition 5.8” on p.1043. In the second
paragraph of the proof it is assumed that the error ε of the original strategy is not too large so that a certain
“self-improvement” lemma can be applied. Essentially, this requires that the quantity η(ε′) from the “Sup-
pose further” statement is smaller than some universal constant such as 1

10 . The text claims that, by taking ε
small enough, ε′ can be made sufficiently small for η(ε′) to be small enough.

Unfortunately, in general this requires the “constant” K in the last paragraph to depend on the function
η: the conclusion of the proposition only holds as long as η(ε′) ≤ 1

10 , where ε′ can be thought of as being
equal to 2ε. Unless η(2x) < x for small x, a condition that is not shown in the paper, this requires the
constant K to be chosen smaller in the conclusion part of the proposition than in the assumptions. As one
unwinds the way the proposition is used in the inductive argument explained above, one realizes that this
dependence eventually leads to a proof of the induction hypothesis that only applies for values of ε that are
exponentially small in m and d.

To summarize, Proposition 5.8 in [Vid16] is wrong. A correct version of the proposition can be obtained
where the constant K that appears in the last paragraph is made to depend on the function η from the second
paragraph. However, this modification eventually leads to a statement of Theorem 3.1 where the bound on
the right-hand side of (1) has an exponential dependence on m and d. Such a bound is not sufficient to yield
the applications claimed in the paper.

2 How other results in [Vid16] are affected

As explained in the preceding section, the main technical result, Theorem 3.1, does not hold as claimed.
Since all other results in the paper crucially rely on Theorem 3.1 they are invalidated as well. More precisely,
the straightforward weakening of Theorem 3.1 that still holds requires a right-hand side in (1) that includes
an exponential dependence on both m and d in the constant C1. This dependence means that in order to
obtain a meaningful hardness result one would have to employ a technique such as parallel repetition where
the number of repetitions is exponential in m and d. In e.g. the protocol for verifying instances of 3SAT
given in [Vid16, Figure 3] the parameters m and d are both poly-logarithmic in the instance size n. The
number of repetitions required would then be (super-)polynomial in the instance size, yielding a game with
questions and answers of (super-)polynomial length. That such a game can be used to verify 3-SAT is trivial,
since with such communication only one player is needed, and the player can send a satisfying assignment
as proof.

To the best of our knowledge the derivation of the hardness results presented in [Vid16, Section 4]
from Theorem 3.1 is by itself not flawed. Therefore, were a replacement for Theorem 3.1 to be shown, the
hardness results would follow. In work completed subsequently to the discovery of the error, the author
together with Ji, Natarajan, Wright and Yuen established a weaker variant of the main result, available

2By “original strategy” we mean the one to which the proposition is applied: the (P, |ψ〉) which appears in the last paragraph.
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as [JNV+20b]. We refer to [JNV+20b] for a precise statement of their result and a comparison with [Vid16,
Theorem 3.1] and give an informal comparison here.

The main result of [JNV+20b] is a variant of Theorem 3.1 with two main differences. First, the low-
degree test is replaced by a low individual-degree test. In this variant of the low-degree test the verifier only
queries the players for the restriction of a polynomial to either an axis-parallel line or a point (in contrast
the low-degree test queries them for the restriction to an arbitrary plane or a point). In the classical setting,
soundness of this test is a straightforward extension of the multilinearity test from [BFL91].

The second, more important, difference is that the use of the low-individual degree test yields a weaker
soundness guarantee. In particular, the poly(ε) bound claimed on the right-hand side of (1) is weakened to
a bound that scales as poly(m) · poly(ε). As explained in [JNV+20b], a polynomial dependence on m is
unavoidable for the low individual-degree test.

Replacing the use of the low-degree test in [Vid16] by the low individual-degree test from [JNV+20b]
leads to a suitably weakened version of the hardness results claimed in the paper. In particular, results
in [Vid16, Section 3] that compose the low-degree test first with itself, then with other tests to further reduce
the answer size and eventually lead to an XOR game, can be applied starting from the low individual-degree
test.

Recall that the NP-hardness results for the entangled value of certain restricted classes of 3-player entan-
gled games derived in [Vid16, Section 4] are obtained by setting m = O(log n), with n the input size. Thus
replacing the use of Theorem 3.1 by the main result in [JNV+20b] and employing parallel repetition would
enable one to recover the hardness results in a weakened form, where the games for which NP-hardness is
claimed have questions of length poly log(n) instead of O(log(n)). Equivalently, the hardness for games of
size n is weakened from NTIME(poly(n)) to NTIME(2O(logc n)) for some 0 < c < 1. While we believe
this application to be a straightforward consequence of [JNV+20b] and the analysis given in [Vid16] we do
not show nor claim the results in this erratum.

3 Consequences for subsequent work

Since the publication of [Vid16] a number of works have built on the results announced therein. We discuss
consequences of the error on the three principal such works that we are aware of.

Consequences on [NV18b]. The main result of [NV18b] is a two-prover analogue of [Vid16, Theorem
3.1]. The proof re-uses most steps of the proof of Theorem 3.1, and in particular the consolidation procedure,
as a black box. As a result, the main result of [NV18b] is invalidated and the paper has been withdrawn.
A weaker version of that result, keeping the two provers but weakening the soundness guarantees, follows
from [JNV+20b] as discussed in the previous section.

Consequences on [NV18a]. The main result of [NV18a] is a quantum analogue of [Vid16, Theorem 3.1],
and uses [Vid16, Theorem 3.1] as a black-box in its proof. Replacing the use of [Vid16, Theorem 3.1]
by [JNV+20b] leads to a weakening of the main result of [NV18a]. A precise formulation of this weakening
is stated as [JNV+20a, Theorem 7.16] and a full proof is given in [JNV+20a, Appendix A]. Analogously
to the weakened hardness results described in the previous section, the weakened version of the quantum
low-degree test from [NV18a] (i.e. [JNV+20a, Theorem 7.16]) leads to a weakened “quantum games PCP”
where the size of the games is quasi-polynomial in the input size, as opposed to polynomial as claimed
in [NV18a].
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Consequences on [JNV+20a]. An initial version of [JNV+20a] posted on the arXiv (version 1) made
use of [Vid16, Theorem 3.1] in an essential way. Subsequently to the discovery of the error in that result
reported here, the authors established the weaker version given in [JNV+20b] and showed that it is sufficient
to establish the main results from [JNV+20a], and in particular the equality MIP∗ = RE, in their original
form. (The main result of [NW19], the inclusion NEEXP ⊆ MIP∗, also holds in its original form.)

The characterization MIP∗ = RE supersedes the main hardness results from [Vid16] (and also [NV18a])
in many but not all ways. In particular, we believe (but do not prove here) that combining MIP∗ = RE with
the standard answer-reduction techniques described in [Vid16] it is possible to show that the class of entan-
gled three-prover interactive proof systems based on XOR games equals RE. From a purely complexity-
theoretic point of view this result is stronger than the NP-hardness claimed in [Vid16]. However, there are
ways in which such a result would be weaker than e.g. the version of the hardness from [Vid16, NV18a]
described in Section 1 of this erratum and in the previous paragraph respectively. The main way in which the
result would be weaker is that, at least in a black-box way, it would not suffice to establish that for languages
in NP (resp. QMA) it suffices for the provers to have the power of BPP (resp. BQP) together with suitable
access to a witness in order to succeed in the protocol, for the case of a YES-instance.
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