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Abstract

An outstanding challenge in many problems throughout science and engineering is

to succinctly characterize the relationships among a large number of interacting enti-

ties. Models based on graphs form one major thrust in this thesis, as graphs often

provide a concise representation of the interactions among a large set of variables. A

second major emphasis of this thesis are classes of structured models that satisfy certain

algebraic constraints. The common theme underlying these approaches is the develop-

ment of computational methods based on convex optimization, which are in turn useful

in a broad array of problems in signal processing and machine learning. The specific

contributions are as follows:

• We propose a convex optimization method for decomposing the sum of a sparse

matrix and a low-rank matrix into the individual components. Based on new

rank-sparsity uncertainty principles, we give conditions under which the convex

program exactly recovers the underlying components.

• Building on the previous point, we describe a convex optimization approach to

latent variable Gaussian graphical model selection. We provide theoretical guar-

antees of the statistical consistency of this convex program in the high-dimensional

scaling regime in which the number of latent/observed variables grows with the

number of samples of the observed variables. The algebraic varieties of sparse and

low-rank matrices play a prominent role in this analysis.

• We present a general convex optimization formulation for linear inverse problems,

in which we have limited measurements in the form of linear functionals of a signal

or model of interest. When these underlying models have algebraic structure, the
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resulting convex programs can be solved exactly or approximately via semidefinite

programming. We provide sharp estimates (based on computing certain Gaussian

statistics related to the underlying model geometry) of the number of generic

linear measurements required for exact and robust recovery in a variety of settings.

• We present convex graph invariants, which are invariants of a graph that are con-

vex functions of the underlying adjacency matrix. Graph invariants characterize

structural properties of a graph that do not depend on the labeling of the nodes;

convex graph invariants constitute an important subclass, and they provide a sys-

tematic and unified computational framework based on convex optimization for

solving a number of interesting graph problems.

We emphasize a unified view of the underlying convex geometry common to these

different frameworks. We describe applications of these methods to problems in financial

modeling and network analysis, and conclude with a discussion of directions for future

research.

Thesis Supervisors: Alan S. Willsky and Pablo A. Parrilo

Title: Professors of Electrical Engineering and Computer Science
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Chapter 1

Introduction

An outstanding challenge in many applications throughout science and engineering is to

succinctly characterize the relationships among a large number of interacting entities.

In a statistical model selection setting we wish to learn a “simple” statistical model to

approximate the behavior observed in a collection of random variables. Modern data

analysis tasks in geophysics, economics, and image processing often involve learning sta-

tistical models over collections of random variables that may number in the hundreds of

thousands, or even a few million. In a computational biology setting a typical question

involving gene regulatory networks is to discover the interaction patterns among a col-

lection of genes in order to better understand how a gene influences or is influenced by

other genes. Similar problems also arise in the analysis of biological, social, or chemical

reaction networks in which one seeks to better understand a complicated network by

decomposing it into simpler networks. Models based on graphs offer a fruitful frame-

work to solve such problems, as graphs often provide a concise representation of the

interactions among a large set of variables.

In this thesis we explore a set of research directions at the intersection of graphs

and statistics. An important instance of a framework that lies in this intersection is

that of graphical models, in which a statistical model is defined with respect to a graph.

Another example is one in which we have statistical models over the space of graphs, so

that a graph itself is viewed as a sample drawn from a probability distribution defined

over some set of graphs. Natural questions that arise in standard statistical settings

such as deconvolution can then be posed in a deterministic framework in this graph

setting as well.

A common theme underlying our investigations is the development of tractable

computational tools based on convex optimization, which possess numerous favorable

properties. Due to their powerful modeling capabilities, convex optimization methods

13



14 CHAPTER 1. INTRODUCTION

can provide tractable formulations for solving difficult combinatorial problems exactly or

approximately. Further convex programs may often be solved effectively using general-

purpose off-the-shelf software. Finally one can also give conditions for the success of

these convex relaxations based on standard optimality results from convex analysis.

� 1.1 Main Contributions

In this section we outline the main contributions of this thesis. Details about related

previous work are given in the relevant chapters. The research and results of Chapters 3,

4, 5, and 6 correspond to the papers [37], [33], [36], and [34] respectively.

Rank-Sparsity Uncertainty Principles and Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to

an unknown low-rank matrix. The goal is to decompose the given matrix into its sparse

and low-rank components. Such a problem is intractable to solve in general, and arises

in a number of applications such as model selection in statistics, system identification

in control, optical system decomposition, and matrix rigidity in computer science. In-

deed sparse-plus-low-rank matrix decomposition is the main challenge in latent-variable

Gaussian graphical model selection, which is discussed next (and in greater detail in

Chapter 4). In Chapter 3, we propose a convex optimization formulation to splitting the

specified matrix into its components, by minimizing a linear combination of the `1 norm

and the nuclear norm (the sum of the singular values of a matrix) of the components.

We develop a notion of rank-sparsity incoherence, expressed as an uncertainty principle

between the sparsity pattern of a matrix and its row and column spaces, and use it to

characterize both fundamental identifiability as well as (deterministic) sufficient condi-

tions for exact recovery. The analysis is geometric in nature with the tangent spaces to

the algebraic varieties of sparse and low-rank matrices playing a prominent role.

Latent Variable Gaussian Graphical Model Selection

Graphical models are widely used in many applications throughout machine learning,

computational biology, statistical signal processing, and statistical physics as they offer a

compact representation for the statistical structure among a large collection of random

variables. Graphical models in which the underlying graph is sparse typically tend

to be better suited for efficiently performing tasks such as inference and estimation.
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In the setting of Gaussian graphical models where the random variables are jointly

Gaussian, sparsity in the graph structure corresponds to sparsity in the inverse of the

covariance matrix of the random variables, also called the concentration matrix. Thus

Gaussian graphical model selection is the problem of learning a model described by a

sparse concentration matrix to best approximate the observed statistics in a collection of

random variables [119]. However a significant difficulty arises if we do not have sample

observations of some of the relevant variables, because a whole set of extra correlations

are induced among the observed variables due to marginalization over the unobserved,

hidden variables. Is it possible to discover the number of hidden components, and to

learn a statistical model over the entire collection of variables? If only we realized that

much of the seemingly complicated correlation structure among the observed variables

can be explained as the effect of marginalization over a few hidden variables, we would

be able to learn a “simple” statistical model among the observed variables and a few

additional hidden variables.

In the Gaussian setting this problem reduces to one of approximating a given matrix

by the sum of a sparse matrix and a low-rank matrix: the low-rank matrix corresponds

to the correlations induced by marginalization over latent variables (it is low-rank as the

number of hidden variables is usually much smaller than the number of observed vari-

ables), and the sparse matrix corresponds to the conditional graphical model structure

among the observed variables conditioned on the latent variables. From a statistical

viewpoint this approach to modeling can be seen as a blend of dimensionality reduction

(to identify latent variables) and graphical modeling (to capture remaining statistical

structure not attributable to the latent variables). In Chapter 4, we propose a tractable

convex programming estimator for latent variable Gaussian graphical model selection

based on regularized maximum-likelihood; motivated by the results in Chapter 3 the

regularizer uses the `1 norm for the sparse component, and the nuclear norm for the

low-rank component. In addition to being computationally efficient to evaluate, this

estimator enjoys favorable statistical consistency properties. Indeed we show that con-

sistent model selection is possible under suitable identifiability conditions even if the

number of observed/latent variables is on the same order as the number of samples of

the observed variables. The rank-sparsity uncertainty principles of Chapter 3 described

above are fundamental to our analysis. Previous approaches to latent variable graphical

modeling using variants of the Expectation-Maximization (EM) algorithm do not share

these favorable properties, as they optimize non-convex functions (hence converging
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only to local optima) and have no high-dimensional consistency guarantees.

Convex Optimization for Inverse Problems

Many of the questions from the previous two sections can be viewed as instances of

inverse problems in which we wish to recover simple and structured models given limited

information. In Chapter 5 we study a general class of linear inverse problems in which

the goal is to recover a model given a small number of linear measurements. Such

problems are generally ill-posed as the number of measurements available is typically

smaller than the dimension of the model. However in many practical applications

of interest, models are often constrained structurally so that they only have a few

degrees of freedom relative to their ambient dimension. Exploiting such structure is

the key to making linear inverse problems well-posed. The class of simple models

that we consider in Chapter 5 are those formed as the sum of a few atoms from some

elementary atomic set; examples include well-studied cases such as sparse vectors (e.g.,

signal processing, statistics) and low-rank matrices (e.g., control, statistics), as well

as several others such as sums of a few permutations matrices (e.g., ranked elections,

multiobject tracking), low-rank tensors (e.g., vision, neuroscience), orthogonal matrices

(e.g., machine learning), and atomic measures (e.g., system identification). We describe

a general framework to convert such notions of simplicity into convex penalty functions,

which give rise to convex optimization solutions to linear inverse problems. These

convex programs can be solved via semidefinite programming under suitable conditions,

and they significantly generalize previous approaches based on `1 norm and nuclear

norm minimization for recovering sparse and low-rank models. Our results give general

conditions and bounds on the number generic measurements under which exact or

robust recovery of the underlying model is possible via convex optimization. Thus this

work extends the catalog of simple models (beyond sparse vectors, i.e., compressed

sensing, and low-rank matrices) that can be recovered from limited linear information

via tractable convex programming.

Convex Graph Invariants

Investigating graphs from the viewpoint of statistics provides a very fruitful research

agenda, as many questions from classical statistics can be posed in a deterministic

setting in which data are represented as graphs. As an example suppose that we have

a composite graph formed as the combination of two graphs G1 and G2 overlaid on
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the same set of nodes. We are only given the composite graph without any additional

information about the relative labeling of the nodes, which may reveal the structure of

the individual components. Can we deconvolve the composite graph into the individual

components? As discussed in Chapter 6 such a problem is of interest in network analysis

in social and biological networks in which one seeks to decompose a complex network

into simpler components to better understand the behavior of the composite network.

Other problems motivated by statistics include hypothesis testing between families of

graphs, and generating/sampling graphs with certain desired structural properties (see

Chapter 6 for details).

An important goal towards solving these and many other graph problems is to

characterize the underlying structural properties of a graph. Graph invariants play an

important role in describing such abstract structural features, as they do not depend

on the labeling of the nodes of the graph. Examples of commonly used graph invariants

include the spectrum of a graph (i.e., eigenvalues of the adjacency matrix), or the degree

sequence. In Chapter 6 we introduce and investigate convex graph invariants, which are

graph invariants that are convex functions of the adjacency matrix of a graph. Examples

of such functions of a graph include the maximum degree, the MAXCUT value (and its

semidefinite relaxation), the second smallest eigenvalue of the Laplacian, and spectral

invariants such as the sum of the k largest eigenvalues of the adjacency matrix. Convex

graph invariants provide a systematic and unified computational framework based on

convex optimization for solving a number of interesting graph problems such as those

described above.
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Chapter 2

Background

In this chapter we emphasize the main themes common to the rest of this thesis. Our

exposition is brief as we only provide the basic relevant technical background, and we

refer the reader to the texts [124] (on convex analysis) and [79] (on algebraic geometry)

for more details. The individual chapters also give more background pertaining to the

corresponding chapter.

� 2.1 Basics of Convex Analysis

A set C ⊆ Rp is a convex set if for any x,y ∈ C and any scalar λ ∈ [0, 1], we have that

λx + (1 − λ)y ∈ C. A convex set C is also a cone if it is closed under positive linear

combinations. Such convex cones are fundamental objects of study in convex analysis,

and play an important role in all the main chapters of this thesis.

The polar C∗ of a cone C is the cone

C∗ = {x ∈ Rp : 〈x, z〉 ≤ 0 ∀z ∈ C}.

Given a closed convex set C ∈ Rp and some nonzero x ∈ Rp we define the tangent cone

at x with respect to C as

TC(x) = cone{z− x : z ∈ C}. (2.1)

Here cone(·) refers to the conic hull of a set obtained by taking nonnegative linear

combinations of elements of the set. The cone TC(x) is the set of directions to points

in C from the point x. The normal cone NC(x) at x with respect to the convex set C
is defined to be the polar cone of the tangent cone TC(x), i.e., the normal cone consists

of vectors that form an obtuse angle with every vector in the tangent cone TC(x).

A real-valued function f defined on a convex set C is said to be a convex function

19
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if for any x,y ∈ C and any scalar λ ∈ [0, 1], we have that

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Following standard notation in convex analysis, we denote the subdifferential of a convex

function f at a point x̂ in its domain by ∂f(x̂). The subdifferential ∂f(x̂) consists of

all y such that

f(x) ≥ f(x̂) + 〈y,x− x̂〉, ∀x.

� 2.2 Representation of Convex Sets

Convex programs denote those optimization problems in which we seek to minimize

a convex function over a convex constraint set [24]. For example linear programming

and semidefinite programming form two prominent subclasses in which linear functions

are minimized over constraint sets given by affine spaces intersecting the nonnegative

orthant (in linear programming) and the positive-semidefinite cone (in semidefinite

programming) [11]. Roughly speaking convex programs are tractable to solve compu-

tationally if the convex objective function can be computed efficiently, and membership

in the convex constraint sets can be certified efficiently. Hence, the tractable represen-

tation of convex sets is an important point that must be addressed in order to develop

practically feasible computational solutions to convex optimization problems.

Any closed convex set has two dual representations. Specifically, an element x be-

longing to a convex set C is an extreme point if it cannot be expressed as the midpoint

of the line segment between some two points in C. With this definition the first repre-

sentation of a convex set is as the convex hull of all its extreme points. With respect to

this representation, certifying membership in a convex set means that we must produce

a representation of a point as the convex combination of (a subset of) extreme points. A

second representation of a convex set is as the intersection of (possibly infinitely many)

halfspaces. Here certifying membership of a point in a convex set means that we need

to verify that this point satisfies the constraints defining the convex set. Using the tools

of convex duality one can transform between these two alternate representations of a

convex set (see [124] for more details).

In this section we provide several examples of convex sets and their representations,

with the objective of highlighting the main ideas that lead to tractable representations.

In particular the concept of lift-and-project plays a central role in many examples of

efficient representations of convex sets. The lift-and-project concept is simple – we wish
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Figure 2.1. The cross-polytope in two dimensions.

to express a convex set C ∈ Rp as the projection of a convex set C′ ∈ Rp′ in some

higher-dimensional space (i.e., p′ > p). Such methods are useful if p′ is not too much

larger than p and if C′ has an efficient representation in the higher-dimensional space

Rp′ . Lift-and-project provides a very powerful representation tool, as will be seen in

the examples to follow.

� 2.2.1 Cross-polytope

The cross-polytope (see Figure 2.1) is the unit ball of the `1-norm:

Bp
`1

=

{
x ∈ Rp |

∑
i

|xi| ≤ 1

}
.

The `1-norm has been the focus of much attention recently due to its sparsity-inducing

properties [29,53,54].

In a statistical model selection setting sparsity corresponds to models that consist of

few nonzero parameters. Specialized to a linear regression or feature selection context,

penalty functions based on the `1-norm lead to parameter vectors that are sparse,

i.e., responses are expressed as the linear combination of a small number of features

[135]. Specialized to a covariance selection context, `1-norm penalty functions lead

to distributions defined by sparse covariance and concentration matrices [15, 16, 61].

Sparsity has also played a central role in signal processing as a variety of applications

exploit the expression of signals as the sum of few elements from a dictionary, e.g.,
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approximating natural images as the weighted sum of a few wavelet basis functions.

The benefits of such sparse approximations are clear for tasks such as compression, but

extend also to tasks such as signal denoising and classification.

How do we represent the p-dimensional cross-polytopeBp
`1

? While the cross-polytope

has 2p vertices, a direct specification in terms of halfspaces involves 2p inequalities:

Bp
`1

=

{
x ∈ Rp |

∑
i

zixi ≤ 1, ∀z ∈ {−1,+1}p
}
.

However we can obtain a tractable inequality representation by lifting to R2p and then

projecting onto the first p coordinates:

Bp
`1

=

{
x ∈ Rp | ∃z ∈ Rp s.t. − zi ≤ xi ≤ zi ∀i,

∑
i

zi ≤ 1, zi ≥ 0 ∀i

}
.

Note that in R2p with the additional variables z, we have only 3p+ 1 inequalities.

Next suppose x ∈ Bp
`1

is a point on the boundary of the cross-polytope, i.e., ‖x‖`1 =

1. Letting Ω ⊆ {1, . . . , p} denote the indices at which x is nonzero, the normal cone at

x with respect to Bp
`1

is given as:

NBp`1
(x) = {z | zi = tsgn(xi) for i ∈ Ω, |zi| ≤ t for i ∈ Ωc for some t ≥ 0} .

Here sgn(·) is the sign function.

� 2.2.2 Nuclear-norm ball

The nuclear norm of a matrix (see Figure 2.2 for the unit ball) is the sum of its singular

values:

‖X‖∗ =
∑
i

σi(X).

Analogous to the case of the `1-norm, the nuclear norm has received much attention

recently because it induces low-rank structure in matrices in a number of settings [30,

121].

In a statistics context low-rank covariance matrices are used in factor analysis, and

they represent the property that the corresponding random variables lie on or near a

low-dimensional subspace. In a control setting low-rank system matrices correspond to

systems with a low-dimensional state space, i.e., systems with small model order. In

optical system modeling low-rank matrices represent so-called coherent systems, which

correspond to low-pass optical filters.
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Figure 2.2. The nuclear-norm ball of 2× 2 symmetric matrices. Here x, y denote the diagonal entries,

and z the off-diagonal entry.

Unlike with the `1-norm the nuclear-norm of a matrix has no closed-form represen-

tation, but can instead be expressed variationally. Specifically, the spectral or operator

norm ‖ · ‖ of a matrix (the largest singular value) is the dual norm of the nuclear-norm

‖ · ‖∗ [82]:

‖X‖∗ = max{Tr(X ′Y )| ‖Y ‖ ≤ 1}.

Further, the spectral norm admits a simple semidefinite characterization:

‖Y ‖ = min
t

t s.t.

 tIn Y

Y ′ tIn

 � 0.

We then obtain the following SDP characterization of the nuclear-norm:

‖X‖∗ = min
W1,W2

1
2(trace(W1) + trace(W2))

s.t.

 W1 X

X ′ W2

 � 0.

This semidefinite characterization can in turn be used to specify the unit ball of the

nuclear-norm:

Bp×p
‖·‖∗ =

{
X ∈ Rp×p | ‖X‖∗ ≤ 1

}
.

Suppose X ∈ Bp×p
‖·‖∗ is a boundary point of the nuclear-norm ball, i.e., ‖X‖∗ = 1.

Let X = UΣV ′ be a singular value decomposition of X, such that U, V ∈ Rp×rank(X)
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Figure 2.3. The permutahedron generated by the vector [1, 2, 3, 4]′.

and Σ ∈ Rrank(X)×rank(X). Further let W ⊂ Rp×p denote the subspace of matrices given

by the span of matrices with either the same row space or the same column space as

X:

W =
{
UM ′ +NV ′ | M,N ∈ Rp×rank(X)

}
.

Then we have the following description of the normal cone at X with respect to Bp×p
‖·‖∗ :

NBp×p‖·‖∗
(X) =

{
tUV T +W ∈ Rp×p | W TU = 0,WV = 0, ‖W‖∗ ≤ t, t ≥ 0

}
.

Here P denotes the projection operator. Notice the parallels with the normal cone with

respect to the cross-polytope.

� 2.2.3 Permutahedron

The permutahedron (see Figure 2.3) generated by a vector x ∈ Rp is the convex hull of

all permutations of the vector x:

P p(x) = conv{Πx | ∀ permutation matrices Π}.

The set of permutations of the vector [1, . . . , p]′ represents the set of all rankings of

p objects. Consequently the permutahedron, and the related Birkhoff polytope (the

convex hull of permutation matrices), lead to useful convex relaxation approaches in

ranking and tracking problems (see Chapter 5).
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The permutahedron P p(x) of a vector composed of distinct entries consists of p!

extreme points and a direct halfspace representation requires 2p − 2 inequalities (one

for each proper subset of {1, . . . , p}). However the permutahedron still has a tractable

representation via lifting. Before describing this lifted specification, we require some

notation. For any vector y let ȳ denote the vector obtained by sorting the entries of y

in descending order. A vector y ∈ Rp is said to be majorized by a vector x ∈ Rp if the

following conditions hold:

k∑
i=1

ȳi ≤
k∑
i=1

x̄i, ∀k = 1, . . . , p− 1, and
∑
i

yi =
∑
i

xi. (2.2)

The majorization principle states that the permutahedron P p(x) is exactly the set of

vectors majorized by x [11]:

P p(x) = {y ∈ Rp | y majorized by x}.

Consequently a tractable description of the permutahedron can be obtained if the ma-

jorization inequalities of (2.2) can be expressed tractably. Since
∑k

i=1 x̄i is a fixed

quantity, we require a tractable expression for sets of the form

Qk(c) =

{
y ∈ Rp |

k∑
i=1

ȳi ≤ c

}
.

Letting e ∈ Rp denote the all-ones vector, we have that [11]

Qk(c) =
{
y ∈ Rp | ∃z ∈ Rp, s ∈ R s.t. c− ks− e′z ≥ 0, z ≥ 0, z− y + se ≥ 0

}
.

Here the last two inequalities are to be interpreted elementwise. Consequently we have

a tractable description of the permutahedron by lifting to Rp2+p−1 and using 2p2−2p−1

inequalities and one equation.

It turns out that a more efficient representation of the permutahedron can be spec-

ified by lifting to a space of dimension O(p log(p)) and using only O(p log(p)) inequal-

ities [71]. This representation is based on the structure of certain sorting networks,

and is in some sense the most efficient possible representation of the permutahedron

(see [71] for more details).

� 2.2.4 Schur-Horn orbitope

Let Sp denote the space of p × p symmetric matrices, and let λ(N) denote the sorted

(in descending order) eigenvalues of a symmetric matrix N . Given a symmetric matrix
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M ∈ Sp the Schur-Horn orbitope specified by M is defined as the convex hull of all

matrices with the same spectrum as that of M :

SHp(M) = conv{UMU ′ | U ∈ Rp×p orthogonal}.

The Schur-Horn orbitope is the spectral analog of the permutahedron, and the pro-

jection of SHp(M) onto the set of diagonal matrices is exactly the permutahedron

P p(λ(M)).

A spectral majorization principle can be used to give a tractable representation of

the Schur-Horn orbitope [11]. Specifically we have that

SHp(M) =
{
N ∈ Symp×p | λ(N) majorized by λ(M)

}
.

Again we have the following tractable representation of sets constraining the sum of

the top k eigenvalues of a matrix [11]:

Rk(c) = {N ∈ Symp×p |
k∑
i=1

λi(N) ≤ c}

= {N ∈ Symp×p | ∃Z � 0, s ∈ R s.t. c− ks− Tr(Z) ≥ 0, Z −N + sIp � 0}.

Here Ip represents the p× p identity matrix.

� 2.3 Semidefinite Relaxations using Theta Bodies

In many cases of interest convex sets may not be tractable to represent, and it is of

interest to develop tractable approximations. Here we describe a method to obtain a

hierarchy of (increasingly complex) representations for convex sets given as the convex

hulls of sets with algebraic structure. Specifically we focus on the setting in which our

convex bodies arise as the convex hulls of algebraic varieties, which play a prominent

role in this thesis. A real algebraic variety A ⊆ Rp is the set of real solutions of a system

of polynomial equations:

A = {x : gj(x) = 0, ∀j},

where {gj} is a finite collection of polynomials in p variables.

A basic question is to derive tractable representations of the convex hull conv(A) of

a variety A. All our discussion here is based on results described in [77] for semidefinite

relaxations of convex hulls of algebraic varieties using theta bodies. We only give a
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brief review of the relevant constructions, and refer the reader to the vast literature on

this subject for more details (see [77,114] and the references therein).

To begin with we note that a sum-of-squares (SOS) polynomial in R[x] (the ring

of polynomials in the variables x1, . . . ,xp) is a polynomial that can be written as the

(finite) sum of squares of other polynomials in R[x]. Verifying the nonnegativity of a

multivariate polynomial is intractable in general, and therefore SOS polynomials play

an important role in real algebraic geometry as an SOS polynomial is easily seen to be

nonnegative everywhere. Further checking whether a polynomial is an SOS polynomial

can be accomplished efficiently via semidefinite programming [114].

Turning our attention to the description of the convex hull of an algebraic variety,

we will assume for the sake of simplicity that the convex hull is closed. Let I ⊆ R[x]

be a polynomial ideal [79], and let VR(I) ∈ Rp be its real algebraic variety:

VR(I) = {x : f(x) = 0, ∀f ∈ I}.

One can then show that the convex hull conv(VR(I)) is given as:

conv(VR(I)) = {x : f(x) ≥ 0, ∀f linear and nonnegative on VR(I)}

= {x : f(x) ≥ 0, ∀f linear s.t. f = h+ g, ∀ h nonnegative, ∀ g ∈ I}

= {x : f(x) ≥ 0, ∀f linear s.t. f nonnegative modulo I}.

A linear polynomial here is one that has a maximum degree of one, and the meaning

of “modulo an ideal” is clear. As nonnegativity modulo an ideal may be intractable to

check, we can consider a relaxation to a polynomial being SOS modulo an ideal, i.e., a

polynomial that can be written as
∑q

i=1 h2
i + g for g in the ideal. Since it is tractable

to check via semidefinite programmming whether bounded-degree polynomials are SOS,

the k-th theta body of an ideal I is defined as follows in [77]:

THk(I) = {x : f(x) ≥ 0, ∀f linear s.t. f is k-sos modulo I}.

Here k-sos refers to an SOS polynomial in which the components in the SOS decom-

position have degree at most k. The k-th theta body THk(I) is a convex relaxation of

conv(VR(I)), and one can verify that

conv(VR(I)) ⊆ · · · ⊆ THk+1(I) ⊆ THk(VR(I)).

By the arguments given above (see also [77]) these theta bodies can be described us-

ing semidefinite programs of size polynomial in k. Hence by considering theta bodies



28 CHAPTER 2. BACKGROUND

THk(I) with increasingly larger k, one can obtain a hierarchy of tighter semidefinite

relaxations of conv(VR(I)). We also note that in many cases of interest such semidefi-

nite relaxations preserve low-dimensional faces of the convex hull of a variety, although

these properties are not known in general.

Example The cut polytope is defined as the convex hull of all symmetric rank-one

signed matrices:

CP p = conv{zzT : z ∈ {−1,+1}p}.

It is well-known that the cut polytope is intractable to characterize [47], and therefore

we need to use tractable relaxations instead. The following popular relaxation is used

in semidefinite approximations of the MAXCUT problem:

CP − SDP p1 = {M : M symmetric, M � 0, Mii = 1,∀i = 1, · · · , p}.

This is the well-studied elliptope [47], and can be interpreted as the second theta body

relaxation of the cut polytope CP p [77].



Chapter 3

Rank-Sparsity Uncertainty Principles

and Matrix Decomposition

� 3.1 Introduction

Complex systems and models arise in a variety of problems in science and engineering.

In many applications such complex systems and models are often composed of multiple

simpler systems and models. Therefore, in order to better understand the behavior and

properties of a complex system a natural approach is to decompose the system into

its simpler components. In this chapter we consider matrix representations of systems

and statistical models in which our matrices are formed by adding together sparse

and low-rank matrices. We study the problem of recovering the sparse and low-rank

components given no prior knowledge about the sparsity pattern of the sparse matrix,

or the rank of the low-rank matrix. We propose a tractable convex program to recover

these components, and provide sufficient conditions under which our procedure recovers

the sparse and low-rank matrices exactly.

Such a decomposition problem arises in a number of settings, with the sparse and

low-rank matrices having different interpretations depending on the application. In

a statistical model selection setting, the sparse matrix can correspond to a Gaussian

graphical model [93] and the low-rank matrix can summarize the effect of latent, un-

observed variables (see Chapter 4 for a detailed investigation). In computational com-

plexity, the notion of matrix rigidity [138] captures the smallest number of entries of a

matrix that must be changed in order to reduce the rank of the matrix below a specified

level (the changes can be of arbitrary magnitude). Bounds on the rigidity of a matrix

have several implications in complexity theory [99]. Similarly, in a system identifica-

tion setting the low-rank matrix represents a system with a small model order while

29
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the sparse matrix represents a system with a sparse impulse response. Decomposing a

system into such simpler components can be used to provide a simpler, more efficient

description.

� 3.1.1 Our results

Formally the decomposition problem in which we are interested can be defined as fol-

lows:

Problem Given C = A? + B? where A? is an unknown sparse matrix and B? is an

unknown low-rank matrix, recover A? and B? from C using no additional information

on the sparsity pattern and/or the rank of the components.

In the absence of any further assumptions, this decomposition problem is fundamen-

tally ill-posed. Indeed, there are a number of scenarios in which a unique splitting of

C into “low-rank” and “sparse” parts may not exist; for example, the low-rank matrix

may itself be very sparse leading to identifiability issues. In order to characterize when

a unique decomposition is possible we develop a notion of rank-sparsity incoherence,

an uncertainty principle between the sparsity pattern of a matrix and its row/column

spaces. This condition is based on quantities involving the tangent spaces to the al-

gebraic variety of sparse matrices and the algebraic variety of low-rank matrices [79].

Another point of ambiguity in the problem statement is that one could subtract a

nonzero entry from A? and add it to B?; the sparsity level of A? is strictly improved

while the rank of B? is increased by at most 1. Therefore it is in general unclear what

the “true” sparse and low-rank components are. We discuss this point in greater detail

in Section 3.4.2 following the statement of the main theorem. In particular we describe

how our identifiability and recovery results for the decomposition problem are to be

interpreted.

Two natural identifiability problems may arise. The first one occurs if the low-

rank matrix itself is very sparse. In order to avoid such a problem we impose certain

conditions on the row/column spaces of the low-rank matrix. Specifically, for a matrix

M let T (M) be the tangent space at M with respect to the variety of all matrices with

rank less than or equal to rank(M). Operationally, T (M) is the span of all matrices

with row-space contained in the row-space of M or with column-space contained in the

column-space of M ; see (3.7) for a formal characterization. Let ξ(M) be defined as
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follows:

ξ(M) , max
N∈T (M), ‖N‖≤1

‖N‖∞. (3.1)

Here ‖ · ‖ is the spectral norm (i.e., the largest singular value), and ‖ · ‖∞ denotes the

largest entry in magnitude. Thus ξ(M) being small implies that (appropriately scaled)

elements of the tangent space T (M) are “diffuse”, i.e., these elements are not too sparse;

as a result M cannot be very sparse. As shown in Proposition 3.4.3 (see Section 3.4.3)

a low-rank matrix M with row/column spaces that are not closely aligned with the

coordinate axes has small ξ(M).

The other identifiability problem may arise if the sparse matrix has all its support

concentrated in one column; the entries in this column could negate the entries of the

corresponding low-rank matrix, thus leaving the rank and the column space of the

low-rank matrix unchanged. To avoid such a situation, we impose conditions on the

sparsity pattern of the sparse matrix so that its support is not too concentrated in any

row/column. For a matrix M let Ω(M) be the tangent space at M with respect to the

variety of all matrices with number of nonzero entries less than or equal to |support(M)|.
The space Ω(M) is simply the set of all matrices that have support contained within

the support of M ; see (3.5). Let µ(M) be defined as follows:

µ(M) , max
N∈Ω(M), ‖N‖∞≤1

‖N‖. (3.2)

The quantity µ(M) being small for a matrix implies that the spectrum of any element

of the tangent space Ω(M) is “diffuse”, i.e., the singular values of these elements are

not too large. We show in Proposition 3.4.2 (see Section 3.4.3) that a sparse matrix M

with “bounded degree” (a small number of nonzeros per row/column) has small µ(M).

For a given matrix M , it is impossible for both quantities ξ(M) and µ(M) to be

simultaneously small. Indeed, we prove that for any matrix M 6= 0 we must have that

ξ(M)µ(M) ≥ 1 (see Theorem 3.3.1 in Section 3.3.3). Thus, this uncertainty principle

asserts that there is no nonzero matrix M with all elements in T (M) being diffuse and

all elements in Ω(M) having diffuse spectra. As we describe later, the quantities ξ and µ

are also used to characterize fundamental identifiability in the decomposition problem.

In general solving the decomposition problem is intractable; this is due to the fact

that it is intractable in general to compute the rigidity of a matrix (see Section 3.2.2),

which can be viewed as a special case of the sparse-plus-low-rank decomposition prob-

lem. Hence, we consider tractable approaches employing recently well-studied convex
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relaxations. We formulate a convex optimization problem for decomposition using a

combination of the `1 norm and the nuclear norm. For any matrix M the `1 norm is

given by

‖M‖1 =
∑
i,j

|Mi,j |,

and the nuclear norm, which is the sum of the singular values, is given by

‖M‖∗ =
∑
k

σk(M),

where {σk(M)} are the singular values of M . The `1 norm has been used as an effective

surrogate for the number of nonzero entries of a vector, and a number of results pro-

vide conditions under which this heuristic recovers sparse solutions to ill-posed inverse

problems [29, 53, 54]. More recently, the nuclear norm has been shown to be an effec-

tive surrogate for the rank of a matrix [64]. This relaxation is a generalization of the

previously studied trace-heuristic that was used to recover low-rank positive semidefi-

nite matrices [108]. Indeed, several papers demonstrate that the nuclear norm heuristic

recovers low-rank matrices in various rank minimization problems [30, 121]. Based on

these results, we propose the following optimization formulation to recover A? and B?

given C = A? +B?:

(Â, B̂) = arg min
A,B

γ‖A‖1 + ‖B‖∗

s.t. A+B = C.
(3.3)

Here γ is a parameter that provides a trade-off between the low-rank and sparse compo-

nents. This optimization problem is convex, and can in fact be rewritten as a semidef-

inite program (SDP) [139] (see Appendix A.1).

We prove that (Â, B̂) = (A?, B?) is the unique optimum of (3.3) for a range of γ if

µ(A?)ξ(B?) < 1
6 (see Theorem 3.4.1 in Section 3.4.2). Thus, the conditions for exact

recovery of the sparse and low-rank components via the convex program (3.3) involve the

tangent-space-based quantities defined in (3.1) and (3.2). Essentially these conditions

specify that each element of Ω(A?) must have a diffuse spectrum, and every element

of T (B?) must be diffuse. In a sense that will be made precise later, the condition

µ(A?)ξ(B?) < 1
6 required for the convex program (3.3) to provide exact recovery is

slightly tighter than that required for fundamental identifiability in the decomposition

problem. An important feature of our result is that it provides a simple deterministic

condition for exact recovery. In addition, note that the conditions only depend on the
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row/column spaces of the low-rank matrix B? and the support of the sparse matrix A?,

and not the magnitudes of the nonzero singular values of B? or the nonzero entries of

A?. The reason for this is that the magnitudes of the nonzero entries of A? and the

nonzero singular values of B? play no role in the subgradient conditions with respect

to the `1 norm and the nuclear norm.

In the sequel we discuss concrete classes of sparse and low-rank matrices that have

small µ and ξ respectively. We also show that when the sparse and low-rank matrices A?

and B? are drawn from certain natural random ensembles, then the sufficient conditions

of Theorem 3.4.1 are satisfied with high probability; consequently, (3.3) provides exact

recovery with high probability for such matrices.

� 3.1.2 Previous work using incoherence

The concept of incoherence was studied in the context of recovering sparse represen-

tations of vectors from a so-called “overcomplete dictionary” [52]. More concretely

consider a situation in which one is given a vector formed by a sparse linear combina-

tion of a few elements from a combined time-frequency dictionary, i.e., a vector formed

by adding a few sinusoids and a few “spikes”; the goal is to recover the spikes and

sinusoids that compose the vector from the infinitely many possible solutions. Based

on a notion of time-frequency incoherence, the `1 heuristic was shown to succeed in

recovering sparse solutions [51]. Incoherence is also a concept that is used in recent

work under the title of compressed sensing, which aims to recover “low-dimensional”

objects such as sparse vectors [29,54] and low-rank matrices [30,121] given incomplete

observations. Our work is closer in spirit to that in [52], and can be viewed as a method

to recover the “simplest explanation” of a matrix given an “overcomplete dictionary”

of sparse and low-rank matrix atoms.

� 3.1.3 Outline

In Section 3.2 we elaborate on the applications mentioned previously, and discuss the

implications of our results for each of these applications. Section 3.3 formally describes

conditions for fundamental identifiability in the decomposition problem based on the

quantities ξ and µ defined in (3.1) and (3.2). We also provide a proof of the rank-sparsity

uncertainty principle of Theorem 3.3.1. We prove Theorem 3.4.1 in Section 3.4, and

also provide concrete classes of sparse and low-rank matrices that satisfy the sufficient

conditions of Theorem 3.4.1. Section 3.5 describes the results of simulations of our
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approach applied to synthetic matrix decomposition problems. We conclude with a

discussion in Section 3.6. Appendix A provides additional details and proofs.

� 3.2 Applications

In this section we describe several applications that involve decomposing a matrix into

sparse and low-rank components.

� 3.2.1 Graphical modeling with latent variables

We begin with a problem in statistical model selection. In many applications large

covariance matrices are approximated as low-rank matrices based on the assumption

that a small number of latent factors explain most of the observed statistics (e.g.,

principal component analysis). Another well-studied class of models are those described

by graphical models [93] in which the inverse of the covariance matrix (also called the

precision or concentration or information matrix) is assumed to be sparse (typically

this sparsity is with respect to some graph). Consequently, a natural sparse-plus-low-

rank decomposition problem arises in latent-variable graphical model selection, which

we discuss in more detail in Chapter 4.

� 3.2.2 Matrix rigidity

The rigidity of a matrix M , denoted by RM (k), is the smallest number of entries that

need to be changed in order to reduce the rank of M below k. Obtaining bounds

on rigidity has a number of implications in complexity theory [99], such as the trade-

offs between size and depth in arithmetic circuits. However, computing the rigidity

of a matrix is intractable in general [38, 101]. For any M ∈ Rn×n one can check

that RM (k) ≤ (n − k)2 (this follows directly from a Schur complement argument).

Generically every M ∈ Rn×n is very rigid, i.e., RM (k) = (n−k)2 [138], although special

classes of matrices may be less rigid. We show that the SDP (3.3) can be used to

compute rigidity for certain matrices with sufficiently small rigidity (see Section 3.4.4

for more details). Indeed, this convex program (3.3) also provides a certificate of the

sparse and low-rank components that form such low-rigidity matrices; that is, the SDP

(3.3) not only enables us to compute the rigidity for certain matrices but additionally

provides the changes required in order to realize a matrix of lower rank.
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� 3.2.3 Composite system identification

A decomposition problem can also be posed in the system identification setting. Linear

time-invariant (LTI) systems can be represented by Hankel matrices, where the matrix

represents the input-output relationship of the system [131]. Thus, a sparse Hankel

matrix corresponds to an LTI system with a sparse impulse response. A low-rank

Hankel matrix corresponds to a system with small model order, and provides a minimal

realization for a system [65]. Given an LTI system H as follows

H = Hs +Hlr,

where Hs is sparse and Hlr is low-rank, obtaining a simple description of H requires

decomposing it into its simpler sparse and low-rank components. One can obtain these

components by solving our rank-sparsity decomposition problem. Note that in practice

one can impose in (3.3) the additional constraint that the sparse and low-rank matrices

have Hankel structure.

� 3.2.4 Partially coherent decomposition in optical systems

We outline an optics application that is described in greater detail in [63]. Optical

imaging systems are commonly modeled using the Hopkins integral [75], which gives the

output intensity at a point as a function of the input transmission via a quadratic form.

In many applications the operator in this quadratic form can be well-approximated by

a (finite) positive semi-definite matrix. Optical systems described by a low-pass filter

are called coherent imaging systems, and the corresponding system matrices have small

rank. For systems that are not perfectly coherent various methods have been proposed

to find an optimal coherent decomposition [115], and these essentially identify the best

approximation of the system matrix by a matrix of lower rank. At the other end

are incoherent optical systems that allow some high frequencies, and are characterized

by system matrices that are diagonal. As most real-world imaging systems are some

combination of coherent and incoherent, it was suggested in [63] that optical systems

are better described by a sum of coherent and incoherent systems rather than by the

best coherent (i.e., low-rank) approximation as in [115]. Thus, decomposing an imaging

system into coherent and incoherent components involves splitting the optical system

matrix into low-rank and diagonal components. Identifying these simpler components

has important applications in tasks such as optical microlithography [75,115].
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� 3.3 Rank-Sparsity Incoherence

Throughout this chapter, we restrict ourselves to square n×nmatrices to avoid cluttered

notation. All our analysis extends to rectangular n1×n2 matrices, if we simply replace

n by max(n1, n2).

� 3.3.1 Identifiability issues

As described in the introduction, the matrix decomposition problem can be fundamen-

tally ill-posed. We describe two situations in which identifiability issues arise. These

examples suggest the kinds of additional conditions that are required in order to ensure

that there exists a unique decomposition into sparse and low-rank matrices.

First, let A? be any sparse matrix and let B? = eie
T
j , where ei represents the i-th

standard basis vector. In this case, the low-rank matrix B? is also very sparse, and a

valid sparse-plus-low-rank decomposition might be Â = A? + eie
T
j and B̂ = 0. Thus,

we need conditions that ensure that the low-rank matrix is not too sparse. One way

to accomplish this is to require that the quantity ξ(B?) be small. As will be discussed

in Section 3.4.3), if the row and column spaces of B? are “incoherent” with respect to

the standard basis, i.e., the row/column spaces are not aligned closely with any of the

coordinate axes, then ξ(B?) is small.

Next, consider the scenario in which B? is any low-rank matrix and A? = −veT1
with v being the first column of B?. Thus, C = A? +B? has zeros in the first column,

rank(C) ≤ rank(B?), and C has the same column space as B?. Therefore, a reasonable

sparse-plus-low-rank decomposition in this case might be B̂ = B? + A? and Â = 0.

Here rank(B̂) = rank(B?). Requiring that a sparse matrix A? have small µ(A?) avoids

such identifiability issues. Indeed we show in Section 3.4.3 that sparse matrices with

“bounded degree” (i.e., few nonzero entries per row/column) have small µ.

� 3.3.2 Tangent-space identifiability

We begin by describing the sets of sparse and low-rank matrices. These sets can be

considered either as differentiable manifolds (away from their singularities) or as alge-

braic varieties; we emphasize the latter viewpoint here. Recall that an algebraic variety

is the solution set of a system of polynomial equations. The set of sparse matrices and

the set of low-rank matrices can be naturally viewed as algebraic varieties. Here we

describe these varieties, and discuss some of their properties. Of particular interest in
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this chapter are geometric properties of these varieties such as the tangent space at a

(smooth) point.

Let S(k) denote the set of matrices with at most k nonzeros:

S(k) , {M ∈ Rn×n | |support(M)| ≤ k}. (3.4)

The set S(k) is an algebraic variety, and can in fact be viewed as a union of
(
n2

k

)
subspaces in Rn×n. This variety has dimension k, and it is smooth everywhere except at

those matrices that have support size strictly smaller than k. For any matrix M ∈ Rn×n,

consider the variety S(|support(M)|); M is a smooth point of this variety, and the

tangent space at M is given by

Ω(M) = {N ∈ Rn×n | support(N) ⊆ support(M)}. (3.5)

In words the tangent space Ω(M) at a smooth point M is given by the set of all matrices

that have support contained within the support of M . We view Ω(M) as a subspace in

Rn×n.

Next let L(r) denote the algebraic variety of matrices with rank at most r:

L(r) , {M ∈ Rn×n | rank(M) ≤ r}. (3.6)

It is easily seen that L(r) is an algebraic variety because it can be defined through the

vanishing of all (r+ 1)× (r+ 1) minors. This variety has dimension equal to r(2n− r),
and it is smooth everywhere except at those matrices that have rank strictly smaller

than r. Consider a rank-r matrix M with SVD M = UDV T , where U, V ∈ Rn×r and

D ∈ Rr×r. The matrix M is a smooth point of the variety L(rank(M)), and the tangent

space at M with respect to this variety is given by

T (M) = {UY T
1 + Y2V

T | Y1, Y2 ∈ Rn×r}. (3.7)

In words the tangent space T (M) at a smooth point M is the span of all matrices that

have either the same row-space as M or the same column-space as M . As with Ω(M)

we view T (M) as a subspace in Rn×n.

Before analyzing whether (A?, B?) can be recovered in general (for example, using

the SDP (3.3)), we ask a simpler question. Suppose that we had prior information

about the tangent spaces Ω(A?) and T (B?), in addition to being given C = A? + B?.

Can we then uniquely recover (A?, B?) from C? Assuming such prior knowledge of
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the tangent spaces is unrealistic in practice; however, we obtain useful insight into the

kinds of conditions required on sparse and low-rank matrices for exact decomposition.

A necessary and sufficient condition for unique identifiability of (A?, B?) with respect

to the tangent spaces Ω(A?) and T (B?) is that these spaces intersect transversally:

Ω(A?) ∩ T (B?) = {0}.

That is, the subspaces Ω(A?) and T (B?) have a trivial intersection. The sufficiency of

this condition for unique decomposition is easily seen. For the necessity part, suppose

for the sake of a contradiction that a nonzero matrix M belongs to Ω(A?) ∩ T (B?);

one can add and subtract M from A? and B? respectively while still having a valid

decomposition, which violates the uniqueness requirement. Therefore tangent space

transversality is equivalent to a “linearized” identifiability condition around (A?, B?).

Note that tangent space transversality is also a sufficient condition for local identifia-

bility around (A?, B?) with respect to the sparse and low-rank matrix varieties, based

on the inverse function theorem. The transversality condition does not, however, im-

ply global identifiability with respect to the sparse and low-rank matrix varieties. The

following proposition, proved in Appendix A.2, provides a simple condition in terms of

the quantities µ(A?) and ξ(B?) for the tangent spaces Ω(A?) and T (B?) to intersect

transversally.

Proposition 3.3.1. Given any two matrices A? and B?, we have that

µ(A?)ξ(B?) < 1 ⇒ Ω(A?) ∩ T (B?) = {0},

where ξ(B?) and µ(A?) are defined in (3.1) and (3.2), and the tangent spaces Ω(A?)

and T (B?) are defined in (3.5) and (3.7).

Thus, both µ(A?) and ξ(B?) being small implies that the tangent spaces Ω(A?) and

T (B?) intersect transversally; consequently, we can exactly recover (A?, B?) given Ω(A?)

and T (B?). As we shall see, the condition required in Theorem 3.4.1 (see Section 3.4.2)

for exact recovery using the convex program (3.3) will be simply a mild tightening of

the condition required above for unique decomposition given the tangent spaces.

� 3.3.3 Rank-sparsity uncertainty principle

Another important consequence of Proposition 3.3.1 is that we have an elementary

proof of the following rank-sparsity uncertainty principle.
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Theorem 3.3.1. For any matrix M 6= 0, we have that

ξ(M)µ(M) ≥ 1,

where ξ(M) and µ(M) are as defined in (3.1) and (3.2) respectively.

Proof : Given any M 6= 0 it is clear that M ∈ Ω(M) ∩ T (M), i.e., M is an element

of both tangent spaces. However µ(M)ξ(M) < 1 would imply from Proposition 3.3.1

that Ω(M) ∩ T (M) = {0}, which is a contradiction. Consequently, we must have that

µ(M)ξ(M) ≥ 1. �

Hence, for any matrix M 6= 0 both µ(M) and ξ(M) cannot be simultaneously

small. Note that Proposition 3.3.1 is an assertion involving µ and ξ for (in general)

different matrices, while Theorem 3.3.1 is a statement about µ and ξ for the same

matrix. Essentially the uncertainty principle asserts that no matrix can be too sparse

while having “diffuse” row and column spaces. An extreme example is the matrix eie
T
j ,

which has the property that µ(eie
T
j )ξ(eie

T
j ) = 1.

� 3.4 Exact Decomposition Using Semidefinite Programming

We begin this section by studying the optimality conditions of the convex program (3.3),

after which we provide a proof of Theorem 3.4.1 with simple conditions that guarantee

exact decomposition. Next we discuss concrete classes of sparse and low-rank matrices

that satisfy the conditions of Theorem 3.4.1, and can thus be uniquely decomposed

using (3.3).

� 3.4.1 Optimality conditions

The orthogonal projection onto the space Ω(A?) is denoted PΩ(A?), which simply sets

to zero those entries with support not inside support(A?). The subspace orthogonal to

Ω(A?) is denoted Ω(A?)c, and it consists of matrices with complementary support, i.e.,

supported on support(A?)c. The projection onto Ω(A?)c is denoted PΩ(A?)c .

Similarly the orthogonal projection onto the space T (B?) is denoted PT (B?). Letting

B? = UΣV T be the SVD of B?, we have the following explicit relation for PT (B?):

PT (B?)(M) = PUM +MPV − PUMPV . (3.8)

Here PU = UUT and PV = V V T . The space orthogonal to T (B?) is denoted T (B?)⊥,

and the corresponding projection is denoted PT (B?)⊥(M). The space T (B?)⊥ consists of
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matrices with row-space orthogonal to the row-space ofB? and column-space orthogonal

to the column-space of B?. We have that

PT (B?)⊥(M) = (In×n − PU )M(In×n − PV ), (3.9)

where In×n is the n× n identity matrix.

Following standard notation in convex analysis [124], we denote the subdifferential

of a convex function f at a point x̂ in its domain by ∂f(x̂). The subdifferential ∂f(x̂)

consists of all y such that

f(x) ≥ f(x̂) + 〈y, x− x̂〉, ∀x.

From the optimality conditions for a convex program [13], we have that (A?, B?) is an

optimum of (3.3) if and only if there exists a dual Q ∈ Rn×n such that

Q ∈ γ∂‖A?‖1 and Q ∈ ∂‖B?‖∗. (3.10)

From the characterization of the subdifferential of the `1 norm, we have that Q ∈
γ∂‖A?‖1 if and only if

PΩ(A?)(Q) = γ sign(A?), ‖PΩ(A?)c(Q)‖∞ ≤ γ. (3.11)

Here sign(A?i,j) equals +1 if A?i,j > 0, −1 if A?i,j < 0, and 0 if A?i,j = 0. We also have

that Q ∈ ∂‖B?‖∗ if and only if [142]

PT (B?)(Q) = UV ′, ‖PT (B?)⊥(Q)‖ ≤ 1. (3.12)

Note that these are necessary and sufficient conditions for (A?, B?) to be an optimum

of (3.3). The following proposition provides sufficient conditions for (A?, B?) to be the

unique optimum of (3.3), and it involves a slight tightening of the conditions (3.10),

(3.11), and (3.12).

Proposition 3.4.1. Suppose that C = A? +B?. Then (Â, B̂) = (A?, B?) is the unique

optimizer of (3.3) if the following conditions are satisfied:

1. Ω(A?) ∩ T (B?) = {0}.

2. There exists a dual Q ∈ Rn×n such that

(a) PT (B?)(Q) = UV ′
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Figure 3.1. Geometric representation of optimality conditions: Existence of a dual Q. The arrows de-

note orthogonal projections – every projection must satisfy a condition (according to Proposition 3.4.1),

which is described next to each arrow.

(b) PΩ(A?)(Q) = γsign(A?)

(c) ‖PT (B?)⊥(Q)‖ < 1

(d) ‖PΩ(A?)c(Q)‖∞ < γ

The proof of the proposition can be found in Appendix A.2. Figure 3.1 provides a

visual representation of these conditions. In particular, we see that the spaces Ω(A?)

and T (B?) intersect transversely (part (1) of Proposition 3.4.1). One can also intuitively

see that guaranteeing the existence of a dual Q with the requisite conditions (part (2) of

Proposition 3.4.1) is perhaps easier if the intersection between Ω(A?) and T (B?) is more

transverse. Note that condition (1) of this proposition essentially requires identifiability

with respect to the tangent spaces, as discussed in Section 3.3.2.

� 3.4.2 Sufficient conditions based on µ(A?) and ξ(B?)

Next we provide simple sufficient conditions on A? and B? that guarantee the existence

of an appropriate dual Q (as required by Proposition 3.4.1). Given matrices A? and

B? with µ(A?)ξ(B?) < 1, we have from Proposition 3.3.1 that Ω(A?) ∩ T (B?) = {0},
i.e., condition (1) of Proposition 3.4.1 is satisfied. We prove that if a slightly stronger

condition holds, there exists a dual Q that satisfies the requirements of condition (2) of

Proposition 3.4.1.
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Theorem 3.4.1. Given C = A? +B? with

µ(A?)ξ(B?) <
1

6

the unique optimum (Â, B̂) of (3.3) is (A?, B?) for the following range of γ:

γ ∈
(

ξ(B?)

1− 4µ(A?)ξ(B?)
,
1− 3µ(A?)ξ(B?)

µ(A?)

)
.

Specifically γ = (3ξ(B?))p

(2µ(A?))1−p for any choice of p ∈ [0, 1] is always inside the above range,

and thus guarantees exact recovery of (A?, B?). For example γ =
√

3ξ(B?)
2µ(A?) always

guarantees exact recovery of (A?, B?).

Recall from the discussion in Section 3.3.2 and from Proposition 3.3.1 that µ(A?)ξ(B?) <

1 is sufficient to ensure that the tangent spaces Ω(A?) and T (B?) have a transverse inter-

section, which implies that (A?, B?) are locally identifiable and can be recovered given

C = A? +B? along with side information about the tangent spaces Ω(A?) and T (B?).

Theorem 3.4.1 asserts that if µ(A?)ξ(B?) < 1
6 , i.e., if the tangent spaces Ω(A?) and

T (B?) are sufficiently transverse, then the SDP (3.3) succeeds in recovering (A?, B?)

without any information about the tangent spaces.

The proof of this theorem can be found in Appendix A.2. The main idea behind

the proof is that we only consider candidates for the dual Q that lie in the direct sum

Ω(A?) ⊕ T (B?) of the tangent spaces. Since µ(A?)ξ(B?) < 1
6 , we have from Proposi-

tion 3.3.1 that the tangent spaces Ω(A?) and T (B?) have a transverse intersection, i.e.,

Ω(A?) ∩ T (B?) = {0}. Therefore, there exists a unique element Q̂ ∈ Ω(A?) ⊕ T (B?)

that satisfies PT (B?)(Q̂) = UV ′ and PΩ(A?)(Q̂) = γsign(A?). The proof proceeds by

showing that if µ(A?)ξ(B?) < 1
6 then the projections of this Q̂ onto the orthogonal

spaces Ω(A?)c and T (B?)⊥ are small, thus satisfying condition (2) of Proposition 3.4.1.

Remarks We discuss here the manner in which our results are to be interpreted. Given

a matrix C = A?+B? with A? sparse and B? low-rank, there are a number of alternative

decompositions of C into “sparse” and “low-rank” components. For example, one could

subtract one of the nonzero entries from the matrix A? and add it to B?; thus, the

sparsity level of A? is strictly improved, while the rank of the modified B? increases by

at most 1. In fact one could construct many such alternative decompositions. Therefore,

it may a priori be unclear which of these many decompositions is the “correct” one.

To clarify this issue consider a matrix C = A? + B? that is composed of the sum
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of a sparse A? with small µ(A?) and a low-rank B? with small ξ(B?). Recall that a

sparse matrix having a small µ implies that the the sparsity pattern of the matrix is

“diffuse,” i.e., no row/column contains too many non-zeros (see Proposition 3.4.2 in

Section 3.4.3 for a precise characterization). Similarly, a low-rank matrix with small ξ

has “diffuse” row/column spaces, i.e., the row/column spaces are not aligned with any of

the coordinate axes and as a result do not contain sparse vectors (see Proposition 3.4.3

in Section 3.4.3 for a precise characterization). Now let C = A + B be an alternative

decomposition with some of the entries of A? moved to B?. Although the new A has

a smaller support contained strictly within the support of A? (and consequently, a

smaller µ(A)), the new low-rank matrix B has sparse vectors in its row and column

spaces. Consequently we have that ξ(B)� ξ(B?). Thus, while (A,B) is also a sparse-

plus-low-rank decomposition, it is not a diffuse sparse-plus-low-rank decomposition, in

that both the sparse matrix A and the low-rank matrix B do not simultaneously have

diffuse supports and row/column spaces respectively. Also the opposite situation of

removing a rank-1 term from the SVD of the low-rank matrix B? and moving it to

A? to form a new decomposition (A,B) (now with B having strictly smaller rank than

B?) faces a similar problem. In this case B has strictly smaller rank than B?, and also

by construction a smaller ξ(B). However the original low-rank matrix B? has a small

ξ(B?) and thus has diffuse row/column spaces; therefore the rank-1 term that is added

to A? will not be sparse, and consequently the new matrix A will have µ(A)� µ(A?).

Hence the key point is that these alternate decompositions (A,B) do not satisfy the

property that µ(A)ξ(B) < 1
6 . Thus, our result is to be interpreted as follows: Given

a matrix C = A? + B? formed by adding a sparse matrix A? with diffuse support

and a low-rank matrix B? with diffuse row/column spaces, the convex program that is

studied in this chapter will recover this diffuse decomposition over the many possible

alternative decompositions into sparse and low-rank components as none of these have

the property of both components being simultaneously diffuse. Indeed in applications

such as graphical model selection (see Section 3.2.1) it is precisely such a “diffuse”

decomposition that one seeks to recover.

A related question is given a decomposition C = A? + B? with µ(A?)ξ(B?) <
1
6 , do there exist small, local perturbations of A? and B? that give rise to alternate

decompositions (A,B) with µ(A)ξ(B) < 1
6? Suppose B? is slightly perturbed along the

variety of rank-constrained matrices to some B. This ensures that the tangent space

varies smoothly from T (B?) to T (B), and consequently that ξ(B) ≈ ξ(B?). However,
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compensating for this by changing A? to A?+ (B?−B) moves A? outside the variety of

sparse matrices. This is because B?−B is not sparse. Thus the dimension of the tangent

space Ω(A?+B?−B) is much greater than that of the tangent space Ω(A?), as a result

of which µ(A? + B? − B) � µ(A?); therefore we have that ξ(B)µ(A? + B? − B) � 1
6 .

The same reasoning holds in the opposite scenario. Consider perturbing A? slightly

along the variety of sparse matrices to some A. While this ensures that µ(A) ≈ µ(A?),

changing B? to B?+(A?−A) moves B? outside the variety of rank-constrained matrices.

Therefore the dimension of the tangent space T (B?+A?−A) is much greater than that of

T (B?), and also T (B?+A?−A) contains sparse matrices, resulting in ξ(B?+A?−A)�
ξ(B?); consequently we have that µ(A)ξ(B? +A? −A)� 1

6 .

� 3.4.3 Sparse and low-rank matrices with µ(A?)ξ(B?) < 1
6

We discuss concrete classes of sparse and low-rank matrices that satisfy the sufficient

condition of Theorem 3.4.1 for exact decomposition. We begin by showing that sparse

matrices with “bounded degree”, i.e., bounded number of nonzeros per row/column,

have small µ.

Proposition 3.4.2. Let A ∈ Rn×n be any matrix with at most degmax(A) nonzero

entries per row/column, and with at least degmin(A) nonzero entries per row/column.

With µ(A) as defined in (3.2), we have that

degmin(A) ≤ µ(A) ≤ degmax(A).

See Appendix A.2 for the proof. Note that if A ∈ Rn×n has full support, i.e.,

Ω(A) = Rn×n, then µ(A) = n. Therefore, a constraint on the number of zeros per

row/column provides a useful bound on µ. We emphasize here that simply bounding

the number of nonzero entries in A does not suffice; the sparsity pattern also plays a

role in determining the value of µ.

Next we consider low-rank matrices that have small ξ. Specifically, we show that

matrices with row and column spaces that are incoherent with respect to the standard

basis have small ξ. We measure the incoherence of a subspace S ⊆ Rn as follows:

β(S) , max
i
‖PSei‖2, (3.13)

where ei is the i’th standard basis vector, PS denotes the projection onto the subspace

S, and ‖ · ‖2 denotes the vector `2 norm. This definition of incoherence also played an
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important role in the results in [30]. A small value of β(S) implies that the subspace S

is not closely aligned with any of the coordinate axes. In general for any k-dimensional

subspace S, we have that √
k

n
≤ β(S) ≤ 1,

where the lower bound is achieved, for example, by a subspace that spans any k columns

of an n× n orthonormal Hadamard matrix, while the upper bound is achieved by any

subspace that contains a standard basis vector. Based on the definition of β(S), we

define the incoherence of the row/column spaces of a matrix B ∈ Rn×n as

inc(B) , max{β(row-space(B)), β(column-space(B))}. (3.14)

If the SVD of B = UΣV T then row-space(B) = span(V ) and column-space(B) =

span(U). We show in Appendix A.2 that matrices with incoherent row/column spaces

have small ξ; the proof technique for the lower bound here was suggested by Ben

Recht [120].

Proposition 3.4.3. Let B ∈ Rn×n be any matrix with inc(B) defined as in (3.14), and

ξ(B) defined as in (3.1). We have that

inc(B) ≤ ξ(B) ≤ 2 inc(B).

If B ∈ Rn×n is a full-rank matrix or a matrix such as e1e
T
1 , then ξ(B) = 1. Therefore,

a bound on the incoherence of the row/column spaces of B is important in order to

bound ξ. Using Propositions 3.4.2 and 3.4.3 along with Theorem 3.4.1 we have the

following corollary, which states that sparse bounded-degree matrices and low-rank

matrices with incoherent row/column spaces can be uniquely decomposed.

Corollary 3.4.1. Let C = A? + B? with degmax(A?) being the maximum number of

nonzero entries per row/column of A? and inc(B?) being the maximum incoherence of

the row/column spaces of B? (as defined by (3.14)). If we have that

degmax(A?) inc(B?) <
1

12
,

then the unique optimum of the convex program (3.3) is (Â, B̂) = (A?, B?) for a range

of values of γ:

γ ∈
(

2 inc(B?)

1− 8 degmax(A?) inc(B?)
,
1− 6 degmax(A?) inc(B?)

degmax(A?)

)
. (3.15)
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Specifically γ = (6 inc(B?))p

(2 degmax(A?))1−p for any choice of p ∈ [0, 1] is always inside the above

range, and thus guarantees exact recovery of (A?, B?).

We emphasize that this is a result with deterministic sufficient conditions on exact

decomposability.

� 3.4.4 Decomposing random sparse and low-rank matrices

Next we show that sparse and low-rank matrices drawn from certain natural random

ensembles satisfy the sufficient conditions of Corollary 3.4.1 with high probability. We

first consider random sparse matrices with a fixed number of nonzero entries.

Random sparsity model The matrix A? is such that support(A?) is chosen uniformly at

random from the collection of all support sets of size m. There is no assumption made

about the values of A? at locations specified by support(A?).

Lemma 3.4.1. Suppose that A? ∈ Rn×n is drawn according to the random sparsity

model with m nonzero entries. Let degmax(A?) be the maximum number of nonzero

entries in each row/column of A?. We have that

degmax(A?) ≤ m

n
log n,

with probability greater than 1−O(n−α) for m = O(αn).

The proof of this lemma follows from a standard balls and bins argument, and can

be found in several references (see for example [19]).

Next we consider low-rank matrices in which the singular vectors are chosen uni-

formly at random from the set of all partial isometries. Such a model was considered in

recent work on the matrix completion problem [30], which aims to recover a low-rank

matrix given observations of a subset of entries of the matrix.

Random orthogonal model [30] A rank-k matrix B? ∈ Rn×n with SVD B? = UΣV ′

is constructed as follows: The singular vectors U, V ∈ Rn×k are drawn uniformly at

random from the collection of rank-k partial isometries in Rn×k. The choices of U and

V need not be mutually independent. No restriction is placed on the singular values.

As shown in [30], low-rank matrices drawn from such a model have incoherent

row/column spaces.
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Lemma 3.4.2. Suppose that a rank-k matrix B? ∈ Rn×n is drawn according to the

random orthogonal model. Then we have that that inc(B?) (defined by (3.14)) is bounded

as

inc(B?) .

√
max(k, log n)

n
,

with probability greater than 1−O(n−3 log n).

Applying these two results in conjunction with Corollary 3.4.1, we have that sparse

and low-rank matrices drawn from the random sparsity model and the random orthog-

onal model can be uniquely decomposed with high probability.

Corollary 3.4.2. Suppose that a rank-k matrix B? ∈ Rn×n is drawn from the random

orthogonal model, and that A? ∈ Rn×n is drawn from the random sparsity model with

m nonzero entries. Given C = A? + B?, there exists a range of values for γ (given by

(3.15)) so that (Â, B̂) = (A?, B?) is the unique optimum of the SDP (3.3) with high

probability (given by the bounds in Lemma 3.4.1 and Lemma 3.4.2) provided

m .
n1.5

log n
√

max(k, log n)
.

In particular, γ ∼
(

max(k,logn)
m logn

) 1
3

guarantees exact recovery of (A?, B?).

Thus, for matrices B? with rank k smaller than n the SDP (3.3) yields exact recovery

with high probability even when the size of the support of A? is super-linear in n.

Implications for the matrix rigidity problem Corollary 3.4.2 has implications for the ma-

trix rigidity problem discussed in Section 3.2. Recall that RM (k) is the smallest num-

ber of entries of M that need to be changed to reduce the rank of M below k (the

changes can be of arbitrary magnitude). A generic matrix M ∈ Rn×n has rigidity

RM (k) = (n − k)2 [138]. However, special structured classes of matrices can have low

rigidity. Consider a matrix M formed by adding a sparse matrix drawn from the ran-

dom sparsity model with support size O( n
logn), and a low-rank matrix drawn from the

random orthogonal model with rank εn for some fixed ε > 0. Such a matrix has rigid-

ity RM (εn) = O( n
logn), and one can recover the sparse and low-rank components that

compose M with high probability by solving the SDP (3.3). To see this, note that

n

log n
.

n1.5

log n
√

max(εn, log n)
=

n1.5

log n
√
εn
,
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Figure 3.2. For each value of m, k, we generate 25× 25 random m-sparse A? and random rank-k B?

and attempt to recover (A?, B?) from C = A? + B? using (3.3). For each value of m, k we repeated

this procedure 10 times. The figure shows the probability of success in recovering (A?, B?) using (3.3)

for various values of m and k. White represents a probability of success of 1, while black represents a

probability of success of 0.

which satisfies the sufficient condition of Corollary 3.4.2 for exact recovery. Therefore,

while the rigidity of a matrix is intractable to compute in general [38, 101], for such

low-rigidity matrices M one can compute the rigidity RM (εn); in fact the SDP (3.3)

provides a certificate of the sparse and low-rank matrices that form the low rigidity

matrix M .

� 3.5 Simulation Results

We confirm the theoretical predictions in this chapter with some simple experimental

results. We also present a heuristic to choose the trade-off parameter γ. All our sim-

ulations were performed using YALMIP [98] and the SDPT3 software [136] for solving

SDPs.

In the first experiment we generate random 25× 25 matrices according to the ran-

dom sparsity and random orthogonal models described in Section 3.4.4. To generate

a random rank-k matrix B? according to the random orthogonal model, we generate

X,Y ∈ R25×k with i.i.d. Gaussian entries and set B? = XY T . To generate an m-sparse

matrix A? according to the random sparsity model, we choose a support set of size m

uniformly at random and the values within this support are i.i.d. Gaussian. The goal

is to recover (A?, B?) from C = A? +B? using the SDP (3.3). Let tolγ be defined as:

tolγ =
‖Â−A?‖F
‖A?‖F

+
‖B̂ −B?‖F
‖B?‖F

, (3.16)

where (Â, B̂) is the solution of (3.3), and ‖ · ‖F is the Frobenius norm. We declare

success in recovering (A?, B?) if tolγ < 10−3. (We discuss the issue of choosing γ in the
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Figure 3.3. Comparison between tolt and difft for a randomly generated example with n = 25,m =

25, k = 2.

next experiment.) Figure 3.2 shows the success rate in recovering (A?, B?) for various

values of m and k (averaged over 10 experiments for each m, k). Thus we see that one

can recover sufficiently sparse A? and sufficiently low-rank B? from C = A? +B? using

(3.3).

Next we consider the problem of choosing the trade-off parameter γ. Based on

Theorem 3.4.1 we know that exact recovery is possible for a range of γ. Therefore, one

can simply check the stability of the solution (Â, B̂) as γ is varied without knowing the

appropriate range for γ in advance. To formalize this scheme we consider the following

SDP for t ∈ [0, 1], which is a slightly modified version of (3.3):

(Ât, B̂t) = arg min
A,B

t‖A‖1 + (1− t)‖B‖∗

s.t. A+B = C. (3.17)

There is a one-to-one correspondence between (3.3) and (3.17) given by t = γ
1+γ . The

benefit in looking at (3.17) is that the range of valid parameters is compact, i.e., t ∈
[0, 1], as opposed to the situation in (3.3) where γ ∈ [0,∞). We compute the difference

between solutions for some t and t− ε as follows:

difft = (‖Ât−ε − Ât‖F ) + (‖B̂t−ε − B̂t‖F ), (3.18)

where ε > 0 is some small fixed constant, say ε = 0.01. We generate a random A? ∈
R25×25 that is 25-sparse and a random B? ∈ R25×25 with rank = 2 as described above.
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Given C = A? + B?, we solve (3.17) for various values of t. Figure 3.3 shows two

curves – one is tolt (which is defined analogous to tolγ in (3.16)) and the other is

difft. Clearly we do not have access to tolt in practice. However, we see that difft

is near zero in exactly three regions. For sufficiently small t the optimal solution to

(3.17) is (Ât, B̂t) = (A? + B?, 0), while for sufficiently large t the optimal solution is

(Ât, B̂t) = (0, A? +B?). As seen in the figure, difft stabilizes for small and large t. The

third “middle” range of stability is where we typically have (Ât, B̂t) = (A?, B?). Notice

that outside of these three regions difft is not close to 0 and in fact changes rapidly.

Therefore if a reasonable guess for t (or γ) is not available, one could solve (3.17) for

a range of t and choose a solution corresponding to the “middle” range in which difft

is stable and near zero. A related method to check for stability is to compute the

sensitivity of the cost of the optimal solution with respect to γ, which can be obtained

from the dual solution.

� 3.6 Discussion

We have studied the problem of exactly decomposing a given matrix C = A? +B? into

its sparse and low-rank components A? and B?. This problem arises in a number of

applications in model selection, system identification, complexity theory, and optics.

We characterized fundamental identifiability in the decomposition problem based on

a notion of rank-sparsity incoherence, which relates the sparsity pattern of a matrix

and its row/column spaces via an uncertainty principle. As the general decomposition

problem is intractable to solve, we propose a natural SDP relaxation (3.3) to solve

the problem, and provide sufficient conditions on sparse and low-rank matrices so that

the SDP exactly recovers such matrices. Our sufficient conditions are deterministic in

nature; they essentially require that the sparse matrix must have support that is not

too concentrated in any row/column, while the low-rank matrix must have row/column

spaces that are not closely aligned with the coordinate axes. Our analysis centers

around studying the tangent spaces with respect to the algebraic varieties of sparse

and low-rank matrices. Indeed the sufficient conditions for identifiability and for exact

recovery using the SDP can also be viewed as requiring that certain tangent spaces have

a transverse intersection. The implications of our results for the matrix rigidity problem

are also demonstrated. An interesting problem for further research is the development

of special-purpose algorithms that take advantage of structure in (3.3) to provide a
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more efficient solution than a general-purpose SDP solver.
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Chapter 4

Latent Variable Graphical Model

Selection via Convex Optimization

� 4.1 Introduction

Statistical model selection in the high-dimensional regime arises in a number of ap-

plications. In many data analysis problems in geophysics, radiology, genetics, climate

studies, and image processing, the number of samples available is comparable to or even

smaller than the number of variables. However, it is well-known that empirical statis-

tics such as sample covariance matrices are not well-behaved when both the number of

samples and the number of variables are large and comparable to each other (see [103]).

Model selection in such a setting is therefore both challenging and of great interest. In

order for model selection to be well-posed given limited information, a key assumption

that is often made is that the underlying model to be estimated only has a few de-

grees of freedom. Common assumptions are that the data are generated according to a

graphical model, or a stationary time-series model, or a simple factor model with a few

latent variables. Sometimes geometric assumptions are also made in which the data are

viewed as samples drawn according to a distribution supported on a low-dimensional

manifold.

A model selection problem that has received considerable attention recently is the

estimation of covariance matrices in the high-dimensional setting. As the sample co-

variance matrix is poorly behaved in such a regime [85,103], some form of regularization

of the sample covariance is adopted based on assumptions about the true underlying

covariance matrix. For example approaches based on banding the sample covariance

matrix [15] have been proposed for problems in which the variables have a natural or-

dering (e.g., times series), while “permutation-invariant” methods that use thresholding

53
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are useful when there is no natural variable ordering [16, 61]. These approaches pro-

vide consistency guarantees under various sparsity assumptions on the true covariance

matrix. Other techniques that have been studied include methods based on shrink-

age [94, 145] and factor analysis [62]. A number of papers have studied covariance

estimation in the context of Gaussian graphical model selection. In a Gaussian graphi-

cal model the inverse of the covariance matrix, also called the concentration matrix, is

assumed to be sparse, and the sparsity pattern reveals the conditional independence re-

lations satisfied by the variables. The model selection method usually studied in such a

setting is `1-regularized maximum-likelihood, with the `1 penalty applied to the entries

of the inverse covariance matrix to induce sparsity. The consistency properties of such

an estimator have been studied [92,119,126], and under suitable conditions [92,119] this

estimator is also “sparsistent”, i.e., the estimated concentration matrix has the same

sparsity pattern as the true model from which the samples are generated. An alterna-

tive approach to `1-regularized maximum-likelihood is to estimate the sparsity pattern

of the concentration matrix by performing regression separately on each variable [107];

while such a method consistently estimates the sparsity pattern, it does not directly

provide estimates of the covariance or concentration matrix.

In many applications throughout science and engineering, a challenge is that one

may not have access to observations of all the relevant phenomena, i.e., some of the

relevant variables may be hidden or unobserved. Such a scenario arises in data analysis

tasks in psychology, computational biology, and economics. In general latent variables

pose a significant difficulty for model selection because one may not know the number of

relevant latent variables, nor the relationship between these variables and the observed

variables. Typical algorithmic methods that try to get around this difficulty usually

fix the number of latent variables as well as the some structural relationship between

latent and observed variables (e.g., the graphical model structure between latent and

observed variables), and use the EM algorithm to fit parameters [44]. This approach

suffers from the problem that one optimizes non-convex functions, and thus one may get

stuck in sub-optimal local minima. An alternative method that has been suggested is

based on a greedy, local, combinatorial heuristic that assigns latent variables to groups

of observed variables, based on some form of clustering of the observed variables [60];

however, this approach has no consistency guarantees.

In this chapter we study the problem of latent-variable graphical model selection in

the setting where all the variables, both observed and hidden, are jointly Gaussian.
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More concretely let the covariance matrix of a finite collection of jointly Gaussian

random variables XO ∪XH be denoted by Σ(O H), where XO are the observed variables

and XH are the unobserved, hidden variables. The marginal statistics corresponding

to the observed variables XO are given by the marginal covariance matrix ΣO, which

is simply a submatrix of the full covariance matrix Σ(O H). However suppose that

we parameterize our model by the concentration matrix K(O H) = Σ−1
(O H), which as

discussed above reveals the connection to graphical models. In such a parametrization,

the marginal concentration matrix Σ−1
O corresponding to the observed variables XO is

given by the Schur complement [82] with respect to the block KH :

K̃O = Σ−1
O = KO −KO,HK

−1
H KH,O.

Thus if we only observe the variables XO, we only have access to ΣO (or K̃O). The two

terms that compose K̃O above have interesting properties. The matrix KO specifies the

concentration matrix of the conditional statistics of the observed variables given the

latent variables. If these conditional statistics are given by a sparse graphical model

then KO is sparse. On the other hand the matrix KO,HK
−1
H KH,O serves as a summary

of the effect of marginalization over the hidden variables H. This matrix has small

rank if the number of latent, unobserved variables H is small relative to the number of

observed variables O (the rank is equal to |H|). Therefore the marginal concentration

matrix K̃O of the observed variables XO is generally not sparse due to the additional

low-rank term KO,HK
−1
H KH,O. Hence standard graphical model selection techniques

applied directly to the observed variables XO are not useful.

A modeling paradigm that infers the effect of the latent variables XH would be more

suitable in order to provide a simple explanation of the underlying statistical structure.

Hence we decompose K̃O into the sparse and low-rank components, which reveals the

conditional graphical model structure in the observed variables as well as the number

of and effect due to the unobserved latent variables. Such a method can be viewed as

a blend of principal component analysis and graphical modeling. In standard graphical

modeling one would directly approximate a concentration matrix by a sparse matrix

in order to learn a sparse graphical model. On the other hand in principal component

analysis the goal is to explain the statistical structure underlying a set of observations

using a small number of latent variables (i.e., approximate a covariance matrix as a

low-rank matrix). In our framework based on decomposing a concentration matrix, we

learn a graphical model among the observed variables conditioned on a few (additional)
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latent variables. Notice that in our setting these latent variables are not principal

components, as the conditional statistics (conditioned on these latent variables) are

given by a graphical model. Therefore we refer to these latent variables informally as

hidden components.

Our first contribution in Section 4.3 is to address the fundamental question of iden-

tifiability of such latent-variable graphical models given the marginal statistics of only

the observed variables. The critical point is that we need to tease apart the correlations

induced due to marginalization over the latent variables from the conditional graphical

model structure among the observed variables. As the identifiability problem is one

of uniquely decomposing the sum of a sparse matrix and a low-rank matrix into the

individual components, we recall the conditions derived in Chapter 3 that relate unique

identifiability to properties of the tangent spaces to the algebraic varieties of sparse and

low-rank matrices. Specifically let Ω(KO) denote the tangent space at KO to the alge-

braic variety of sparse matrices, and let T (KO,HK
−1
H KH,O) denote the tangent space

at KO,HK
−1
H KH,O to the algebraic variety of low-rank matrices. Then the statistical

question of identifiability of KO and KO,HK
−1
H KH,O given K̃O is determined by the ge-

ometric notion of transversality of the tangent spaces Ω(KO) and T (KO,HK
−1
H KH,O).

The study of the transversality of these tangent spaces leads us to natural conditions

for identifiability. In particular we show that latent-variable models in which (1) the

sparse matrix KO has a small number of nonzeros per row/column, and (2) the low-

rank matrix KO,HK
−1
H KH,O has row/column spaces that are not closely aligned with

the coordinate axes, are identifiable. These two conditions have natural statistical inter-

pretations. The first condition ensures that there are no densely-connected subgraphs

in the conditional graphical model structure among the observed variables XO given

the hidden components, i.e., that these conditional statistics are indeed specified by a

sparse graphical model. Such statistical relationships may otherwise be mistakenly at-

tributed to the effect of marginalization over some latent variable. The second condition

ensures that the effect of marginalization over the latent variables is “spread out” over

many observed variables; thus, the effect of marginalization over a latent variable is not

confused with the conditional graphical model structure among the observed variables.

In fact the first condition is often assumed in some papers on standard graphical model

selection without latent variables (see for example [119]). We note here that question

of parameter identifiability was recently studied for models with discrete-valued latent

variables (i.e., mixture models, hidden Markov models) [2]. However, this work is not
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applicable to our setting in which both the latent and observed variables are assumed

to be jointly Gaussian.

As our next contribution we propose a regularized maximum-likelihood decomposi-

tion framework to approximate a given sample covariance matrix by a model in which

the concentration matrix decomposes into a sparse matrix and a low-rank matrix. Mo-

tivated by the combined `1 norm and nuclear norm heuristic proposed in Chapter 3 for

sparse/low-rank matrix decomposition, we propose the following penalized likelihood

method given a sample covariance matrix Σn
O formed from n samples of the observed

variables:

(Ŝn, L̂n) = arg min
S,L

− `(S − L; Σn
O) + λn (γ‖S‖1 + Tr(L))

s.t. S − L � 0, L � 0.
(4.1)

Here ` represents the Gaussian log-likelihood function and is given by `(K; Σ) =

log det(K)−Tr(KΣ) for K � 0, where Tr is the trace of a matrix and det is the deter-

minant. The matrix Ŝn provides an estimate of KO, which represents the conditional

concentration matrix of the observed variables; the matrix L̂n provides an estimate of

KO,HK
−1
H KH,O, which represents the effect of marginalization over the latent variables.

Notice that the regularization function is a combination of the `1 norm applied to S and

the nuclear norm applied to L (the nuclear norm reduces to the trace over the cone of

symmetric, positive-semidefinite matrices), with γ providing a tradeoff between the two

terms. This variational formulation is a convex optimization problem. In particular it

is a regularized max-det problem and can be solved in polynomial time using standard

off-the-shelf solvers.

Our main result in Section 4.4 is a proof of the consistency of the estimator (4.1) in

the high-dimensional regime in which both the number of observed variables and the

number of hidden components are allowed to grow with the number of samples (of the

observed variables). We show that for a suitable choice of the regularization parameter

λn, there exists a range of values of γ for which the estimates (Ŝn, L̂n) have the same

sparsity (and sign) pattern and rank as (KO,KO,H(KH)−1KH,O) with high probability

(see Theorem 4.4.1). The key technical requirement is an identifiability condition for

the two components of the marginal concentration matrix K̃O with respect to the

Fisher information (see Section 4.3.2). We make connections between our condition and

the irrepresentability conditions required for support/graphical-model recovery using

`1 regularization [119,148]. Our results provide numerous scaling regimes under which
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consistency holds in latent-variable graphical model selection. For example we show

that under suitable identifiability conditions consistent model selection is possible even

when the number of samples and the number of latent variables are on the same order

as the number of observed variables (see Section 4.4.3).

Related previous work The problem of decomposing the sum of a sparse matrix and a

low-rank matrix, with no additional noise, into the individual components was initially

studied in [37]; the results of that paper are described in Chapter 3. In subsequent

work Candès et al. [31] also studied this noise-free sparse-plus-low-rank decomposition

problem, and provided guarantees for exact recovery using the convex program proposed

in [37]. The problem setup considered in the present chapter is quite different and is

more challenging because we are only given access to an inexact sample covariance

matrix, and we are interested in recovering components that preserve both the sparsity

pattern and the rank of the components in the true underlying model. In addition to

proving such a consistency result for the estimator (4.1), we also provide a statistical

interpretation of our identifiability conditions and describe natural classes of latent-

variable Gaussian graphical models that satisfy these conditions. As such our work is

closer in spirit to the many recent papers on covariance selection, but with the important

difference that some of the variables are not observed.

Outline Section 4.2 gives some background on graphical models as well as the alge-

braic varieties of sparse and low-rank matrices. It also provides a formal statement

of the problem. Section 4.3 discusses conditions under which latent-variable models

are identifiable, and Section 4.4 states the main results of this chapter. We provide

experimental demonstration of the consistency of our estimator on synthetic data in

Section 4.5. Section 4.6 concludes the chapter with a brief discussion. Appendix B

include additional details and proofs of all of our technical results.

� 4.2 Background and Problem Statement

We briefly discuss concepts from graphical modeling and give a formal statement of

the latent-variable model selection problem. We also describe various properties of the

algebraic varieties of sparse matrices and of low-rank matrices. Although some of these

have been introduced previously, we emphasize again that the following matrix norms

are employed throughout this chapter:

• ‖M‖2: denotes the spectral norm, which is the largest singular value of M .
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• ‖M‖∞: denotes the largest entry in magnitude of M .

• ‖M‖F : denotes the Frobenius norm, which is the square-root of the sums of the

squares of the entries of M .

• ‖M‖∗: denotes the nuclear norm, which is the sum of the singular values of M .

This reduces to the trace for positive-semidefinite matrices.

• ‖M‖1: denotes the sum of the absolute values of the entries of M .

A number of matrix operator norms are also used. For example, let Z : Rp×p → Rp×p

be a linear operator acting on matrices. Then the induced operator norm ‖Z‖q→q is

defined as:

‖Z‖q→q , max
N∈Rp×p, ‖N‖q≤1

‖Z(N)‖q. (4.2)

Therefore, ‖Z‖F→F denotes the spectral norm of the matrix operator Z. The only

vector norm used is the Euclidean norm, which is denoted by ‖ · ‖.

� 4.2.1 Gaussian graphical models with latent variables

A graphical model [93] is a statistical model defined with respect to a graph (V, E) in

which the nodes index a collection of random variables {Xv}v∈V , and the edges rep-

resent the conditional independence relations (Markov structure) among the variables.

The absence of an edge between nodes i, j ∈ V implies that the variables Xi, Xj are

independent conditioned on all the other variables. A Gaussian graphical model (also

commonly referred to as a Gauss-Markov random field) is one in which all the variables

are jointly Gaussian [132]. In such models the sparsity pattern of the inverse of the

covariance matrix, or the concentration matrix, directly corresponds to the graphical

model structure. Specifically, consider a Gaussian graphical model in which the covari-

ance matrix is given by Σ � 0 and the concentration matrix is given by K = Σ−1. Then

an edge {i, j} ∈ E is present in the underlying graphical model if and only if Ki,j 6= 0.

Our focus in this chapter is on Gaussian models in which some of the variables

may not be observed. Suppose O represents the set of nodes corresponding to observed

variables XO, and H the set of nodes corresponding to unobserved, hidden variables XH

with O ∪H = V and O ∩H = ∅. The joint covariance is denoted by Σ(O H), and joint

concentration matrix by K(O H) = Σ−1
(O H). The submatrix ΣO represents the marginal

covariance of the observed variables XO, and the corresponding marginal concentration
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matrix is given by the Schur complement with respect to the block KH :

K̃O = Σ−1
O = KO −KO,HK

−1
H KH,O. (4.3)

The submatrix KO specifies the concentration matrix of the conditional statistics of

the observed variables conditioned on the hidden components. If these conditional

statistics are given by a sparse graphical model then KO is sparse. On the other hand

the marginal concentration matrix K̃O of the marginal distribution of XO is not sparse

in general due to the extra correlations induced from marginalization over the latent

variables XH , i.e., due to the presence of the additional term KO,HK
−1
H KH,O. Hence,

standard graphical model selection techniques in which the goal is to approximate a

sample covariance by a sparse graphical model are not well-suited for problems in which

some of the variables are hidden. However, the matrix KO,HK
−1
H KH,O is a low-rank

matrix if the number of hidden variables is much smaller than the number of observed

variables (i.e., |H| � |O|). Therefore, a more appropriate model selection method is

to approximate the sample covariance by a model in which the concentration matrix

decomposes into the sum of a sparse matrix and a low-rank matrix. The objective here

is to learn a sparse graphical model among the observed variables conditioned on some

latent variables, as such a model explicitly accounts for the extra correlations induced

due to unobserved, hidden components.

� 4.2.2 Problem statement

In order to analyze latent-variable model selection methods, we need to define an appro-

priate notion of model selection consistency for latent-variable graphical models. Notice

that given the two components KO and KO,HK
−1
H KH,O of the concentration matrix of

the marginal distribution (4.3), there are infinitely many configurations of the latent

variables (i.e., matrices KH � 0,KO,H = KT
H,O) that give rise to the same low-rank

matrix KO,HK
−1
H KH,O. Specifically for any non-singular matrix B ∈ R|H|×|H|, one can

apply the transformations KH → BKHB
T ,KO,H → KO,HB

T and still preserve the

low-rank matrix KO,HK
−1
H KH,O. In all of these models the marginal statistics of the

observed variables XO remain the same upon marginalization over the latent variables

XH . The key invariant is the low-rank matrix KO,HK
−1
H KH,O, which summarizes the

effect of marginalization over the latent variables. These observations give rise to the

following notion of consistency:

Definition 4.2.1. A pair of (symmetric) matrices (S,L) with S,L ∈ R|O|×|O| is an
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algebraically consistent estimate of a latent-variable Gaussian graphical model given by

the concentration matrix K(O H) if the following conditions hold:

1. The sign-pattern of S is the same as that of KO:

sign(Si,j) = sign((KO)i,j), ∀(i, j).

Here we assume that sign(0) = 0.

2. The rank of L is the same as the rank of KO,HK
−1
H KH,O:

rank(L) = rank(KO,HK
−1
H KH,O).

3. The concentration matrix S − L can be realized as the marginal concentration

matrix of an appropriate latent-variable model:

S − L � 0, L � 0.

The first condition ensures that S provides the correct structural estimate of the

conditional graphical model (given by KO) of the observed variables conditioned on the

hidden components. This property is the same as the “sparsistency” property studied

in standard graphical model selection [92, 119]. The second condition ensures that

the number of hidden components is correctly estimated. Finally, the third condition

ensures that the pair of matrices (S,L) leads to a realizable latent-variable model. In

particular this condition implies that there exists a valid latent-variable model on |O∪H|
variables in which (a) the conditional graphical model structure among the observed

variables is given by S, (b) the number of latent variables |H| is equal to the rank of L,

and (c) the extra correlations induced due to marginalization over the latent variables

is equal to L. Any method for matrix factorization (see for e.g., [143]) can be used to

factorize the low-rank matrix L, depending on the properties that one desires in the

factors (e.g., sparsity).

We also study parametric consistency in the usual sense, i.e., we show that one can

produce estimates (S,L) that converge in various norms to the matrices (KO,KO,HK
−1
H KH,O)

as the number of samples available goes to infinity. Notice that proving (S,L) is close

to (KO,KO,HK
−1
H KH,O) in some norm does not in general imply that the support/sign-

pattern and rank of (S,L) are the same as those of (KO,KO,HK
−1
H KH,O). Therefore

parametric consistency is different from algebraic consistency, which requires that (S,L)

have the same support/sign-pattern and rank as (KO,KO,HK
−1
H KH,O).



62 CHAPTER 4. LATENT VARIABLE GRAPHICAL MODEL SELECTION VIA CONVEX OPTIMIZATION

Goal Let K∗(O H) denote the concentration matrix of a Gaussian model. Suppose that

we have n samples {Xi
O}ni=1 of the observed variables XO. We would like to produce

estimates (Ŝn, L̂n) that, with high-probability, are both algebraically consistent and

consistent in the parametric sense (in some norm).

� 4.2.3 Likelihood function and Fisher information

Given n samples {Xi}ni=1 of a finite collection of jointly Gaussian zero-mean random

variables with concentration matrix K∗, we define the sample covariance as follows:

Σn ,
1

n

n∑
i=1

XiX
T
i . (4.4)

It is then easily seen that the log-likelihood function is given by:

`(K; Σn) = log det(K)− Tr(KΣn), (4.5)

where `(K; Σn) is a function of K. Notice that this function is strictly concave for

K � 0. Now consider the latent-variable modeling problem in which we wish to model

a collection of random variables XO (with sample covariance Σn
O) by adding some extra

variables XH . With respect to the parametrization (S,L) (with S representing the

conditional statistics of XO given XH , and L summarizing the effect of marginalization

over the additional variables XH), the likelihood function is given by:

¯̀(S,L; Σn
O) = `(S − L; Σn

O).

The function ¯̀is jointly concave with respect to the parameters (S,L) whenever S−L �
0, and it is this function that we use in our variational formulation (4.1) to learn a

latent-variable model.

In the analysis of a convex program involving the likelihood function, the Fisher

information plays an important role as it is the negative of the Hessian of the likelihood

function and thus controls the curvature. As the first term in the likelihood function

is linear, we need only study higher-order derivatives of the log-determinant function

in order to compute the Hessian. Letting I denote the Fisher information matrix, we

have that [24]

I(K∗) , −∇2
K log det(K)|K=K∗ = (K∗)−1 ⊗ (K∗)−1,

for K∗ � 0. If K∗ is a p× p concentration matrix, then the Fisher information matrix

I(K∗) has dimensions p2 × p2. Next consider the latent-variable situation with the
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variables indexed by O being observed and the the variables indexed by H being hidden.

The concentration matrix K̃∗O = (Σ∗O)−1 of the marginal distribution of the observed

variables O is given by the Schur complement (4.3), and the corresponding Fisher

information matrix is given by

I(K̃∗O) = (K̃∗O)−1 ⊗ (K̃∗O)−1 = Σ∗O ⊗ Σ∗O.

Notice that this is precisely the |O|2 × |O|2 submatrix of the full Fisher information

matrix I(K∗(O H)) = Σ∗(O H) ⊗ Σ∗(O H) with respect to all the parameters K∗(O H) =

(Σ∗(O H))
−1 (corresponding to the situation in which all the variables XO∪H are ob-

served). The matrix I(K∗(O H)) has dimensions |O ∪H|2× |O ∪H|2, while I(K̃∗O) is an

|O|2 × |O|2 matrix. To summarize, we have for all i, j, k, l ∈ O that:

I(K̃∗O)(i,j),(k,l) = [Σ∗(O H) ⊗ Σ∗(O H)](i,j),(k,l) = I(K∗(O H))(i,j),(k,l).

In Section 4.3.2 we impose various conditions on the Fisher information matrix I(K̃∗O)

under which our regularized maximum-likelihood formulation provides consistent esti-

mates with high probability.

� 4.2.4 Curvature of rank variety

Recall from Chapter 3 that S(k) denotes the algebraic variety of matrices with at most

k nonzero entries, and that L(r) denotes the algebraic variety of matrices with rank at

most r. The sparse matrix variety S(k) has the property that it has zero curvature at

any smooth point. Consequently the tangent space at a smooth point M is the same as

the tangent space at any point in a neighborhood of M . This property is implicitly used

in the analysis of `1 regularized methods for recovering sparse models. The situation is

more complicated for the low-rank matrix variety, because the curvature at any smooth

point is nonzero. Therefore we need to study how the tangent space changes from one

point to a neighboring point by analyzing how this variety curves locally. Indeed the

amount of curvature at a point is directly related to the “angle” between the tangent

space at that point and the tangent space at a neighboring point. For any subspace

T of matrices, let PT denote the projection onto T . Given two subspaces T1, T2 of the

same dimension, we measure the “twisting” between these subspaces by considering the

following quantity.

ρ(T1, T2) , ‖PT1 − PT2‖2→2 = max
‖N‖2≤1

‖[PT1 − PT2 ](N)‖2. (4.6)
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In Appendix B.1 we briefly review relevant results from matrix perturbation theory;

the key tool used to derive these results is the resolvent of a matrix [87]. Based on these

tools we prove the following two results in Appendix B.2, which bound the twisting

between the tangent spaces at nearby points. The first result provides a bound on the

quantity ρ between the tangent spaces at a point and at its neighbor.

Proposition 4.2.1. Let M ∈ Rp×p be a rank-r matrix with smallest non-zero singular

value equal to σ, and let ∆ be a perturbation to M such that ‖∆‖2 ≤ σ
8 . Further, let

M + ∆ be a rank-r matrix. Then we have that

ρ(T (M + ∆), T (M)) ≤ 2

σ
‖∆‖2.

The next result bounds the error between a point and its neighbor in the normal

direction.

Proposition 4.2.2. Let M ∈ Rp×p be a rank-r matrix with smallest non-zero singular

value equal to σ, and let ∆ be a perturbation to M such that ‖∆‖ ≤ σ
8 . Further, let

M + ∆ be a rank-r matrix. Then we have that

‖PT (M)⊥(∆)‖2 ≤
‖∆‖22
σ

.

These results suggest that the closer the smallest singular value is to zero, the more

curved the variety is locally. Therefore we control the twisting between tangent spaces

at nearby points by bounding the smallest singular value away from zero.

� 4.3 Identifiability

In the absence of additional conditions, the latent-variable model selection problem is

ill-posed. In this section we discuss a set of conditions on latent-variable models that

ensure that these models are identifiable given marginal statistics for a subset of the

variables. Recall that the identifiability conditions of Chapter 3 are directly applicable

here, and we rephrase these in the context of latent-variable graphical models.

Structure between latent and observed variables

Suppose that the low-rank matrix that summarizes the effect of the hidden components

is itself sparse. This leads to identifiability issues in the sparse-plus-low-rank decompo-

sition problem. Statistically the additional correlations induced due to marginalization
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over the latent variables could be mistaken for the conditional graphical model struc-

ture of the observed variables. In order to avoid such identifiability problems the effect

of the latent variables must be “diffuse” across the observed variables. To address this

point the quantity ξ(T (M)) was introduced in Chapter 3 (see also [37]) to measure the

incoherence of the row/column spaces of M with respect to the standard basis.

Curvature and change in ξ: As noted previously an important technical point

is that the algebraic variety of low-rank matrices is locally curved at any smooth point.

Consequently the quantity ξ changes as we move along the low-rank matrix variety

smoothly. The quantity ρ(T1, T2) introduced in (4.6) also allows us to bound the vari-

ation in ξ as follows.

Lemma 4.3.1. Let T1, T2 be two matrix subspaces of the same dimension with the

property that ρ(T1, T2) < 1, where ρ is defined in (4.6). Then we have that

ξ(T2) ≤ 1

1− ρ(T1, T2)
[ξ(T1) + ρ(T1, T2)].

This lemma is proved in Appendix B.2.

Structure among observed variables

An identifiability problem also arises if the conditional graphical model among the ob-

served variables contains a densely connected subgraph. These statistical relationships

might be mistaken as correlations induced by marginalization over latent variables.

Therefore we need to ensure that the conditional graphical model among the observed

variables is sparse. We impose the condition that this conditional graphical model must

have small “degree”, i.e., no observed variable is directly connected to too many other

observed variables conditioned on the hidden components. Notice that bounding the

degree is a more refined condition than simply bounding the total number of non-zeros

as the sparsity pattern also plays a role. As described in Chapter 3 (see also [37]), the

quantity µ(Ω(M)) provides an appropriate measure of the sparsity pattern of a matrix

for the purposes of unique identifiability.

� 4.3.1 Transversality of tangent spaces

From Chapter 3 we recall that the transversality of the tangent spaces at the sparse

and low-rank components with respect to the respective algebraic varieties governs their

identifiability. In order to quantify the level of transversality between the tangent spaces
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Ω and T we study the minimum gain with respect to some norm of the addition operator

restricted to the cartesian product Y = Ω× T . More concretely let A : Rp×p ×Rp×p →
Rp×p represent the addition operator, i.e., the operator that adds two matrices. Then

given any matrix norm ‖ · ‖ on Rp×p ×Rp×p, the minimum gain of A restricted to Y is

defined as follows:

ε(Ω, T, ‖ · ‖) , min
(S,L)∈Ω×T, ‖(S,L)‖=1

‖PYA†APY(S,L)‖,

where PY denotes the projection onto the space Y, and A† denotes the adjoint of the

addition operator (with respect to the standard Euclidean inner-product). The tangent

spaces Ω and T have a transverse intersection if and only if ε(Ω, T, ‖ · ‖) > 0. The

“level” of transversality is measured by the magnitude of ε(Ω, T, ‖ · ‖). Note that if the

norm ‖ · ‖ used is the Frobenius norm, then ε(Ω, T, ‖ · ‖F ) is the square of the minimum

singular value of the addition operator A restricted to Ω× T .

A natural norm with which to measure transversality is the dual norm of the regular-

ization function in (4.1), as the subdifferential of the regularization function is specified

in terms of its dual. The reasons for this will become clearer as we proceed through

this chapter. Recall that the regularization function used in the variational formulation

(4.1) is given by:

fγ(S,L) = γ‖S‖1 + ‖L‖∗,

where the nuclear norm ‖ · ‖∗ reduces to the trace function over the cone of positive-

semidefinite matrices. This function is a norm for all γ > 0. The dual norm of fγ is

given by

gγ(S,L) = max

{
‖S‖∞
γ

, ‖L‖2
}
.

The following simple lemma records a useful property of the gγ norm that is used several

times throughout this chapter.

Lemma 4.3.2. Let Ω and T be tangent spaces at any points with respect to the al-

gebraic varieties of sparse and low-rank matrices. Then for any matrix M , we have

that ‖PΩ(M)‖∞ ≤ ‖M‖∞ and that ‖PT (M)‖2 ≤ 2‖M‖2. Further we also have that

‖PΩ⊥(M)‖∞ ≤ ‖M‖∞ and that ‖PT⊥(M)‖2 ≤ ‖M‖2. Thus for any matrices M,N and

for Y = Ω×T , one can check that gγ(PY(M,N)) ≤ 2gγ(M,N) and that gγ(PY⊥(M,N)) ≤
gγ(M,N).
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Next we define the quantity χ(Ω, T, γ) as follows in order to study the transversality

of the spaces Ω and T with respect to the gγ norm:

χ(Ω, T, γ) , max

{
ξ(T )

γ
, 2µ(Ω)γ

}
(4.7)

Here µ and ξ are defined in Chapter 3. We then have the following result (proved in

Appendix B.3):

Lemma 4.3.3. Let S ∈ Ω, L ∈ T be matrices such that ‖S‖∞ = γ and let ‖L‖2 = 1.

Then we have that gγ(PYA†APY(S,L)) ∈ [1 − χ(Ω, T, γ), 1 + χ(Ω, T, γ)], where Y =

Ω × T and χ(Ω, T, γ) is defined in (4.7). In particular we have that 1 − χ(Ω, T, γ) ≤
ε(Ω, T, gγ).

The quantity χ(Ω, T, γ) being small implies that the addition operator is essentially

isometric when restricted to Y = Ω× T . Stated differently the magnitude of χ(Ω, T, γ)

is a measure of the level of transversality of the spaces Ω and T . If µ(Ω)ξ(T ) < 1
2 then

γ ∈ (ξ(T ), 1
2µ(Ω)) ensures that χ(Ω, T, γ) < 1, which in turn implies that the tangent

spaces Ω and T have a transverse intersection.

Observation: Thus we have that the smaller the quantities µ(Ω) and ξ(T ), the

more transverse the intersection of the spaces Ω and T .

� 4.3.2 Conditions on Fisher information

The main focus of Section 4.4 is to analyze the regularized maximum-likelihood convex

program (4.1) by studying its optimality conditions. The log-likelihood function is well-

approximated in a neighborhood by a quadratic form given by the Fisher information

(which measures the curvature, as discussed in Section 4.2.3). Let I∗ = I(K̃∗O) denote

the Fisher information evaluated at the true marginal concentration matrix K̃∗O =

K∗O −K∗O,H(K∗H)−1K∗H,O, where K∗(O H) represents the concentration matrix of the full

model (see equation (4.3)). The appropriate measure of transversality between the

tangent spaces1 Ω = Ω(K∗O) and T = T (K∗O,H(K∗H)−1K∗H,O) is then in a space in which

the inner-product is given by I∗. Specifically, we need to analyze the minimum gain

of the operator PYA†I∗APY restricted to the space Y = Ω × T . Therefore we impose

several conditions on the Fisher information I∗. We define quantities that control the

gains of I∗ restricted to Ω and T separately; these ensure that elements of Ω and

1We implicitly assume that these tangent spaces are subspaces of the space of symmetric matrices.
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elements of T are individually identifiable under the map I∗. In addition we define

quantities that, in conjunction with bounds on µ(Ω) and ξ(T ), allow us to control the

gain of I∗ restricted to the direct-sum Ω⊕ T .

I∗ restricted to Ω: The minimum gain of the operator PΩI∗PΩ restricted to Ω is

given by

αΩ , min
M∈Ω,‖M‖∞=1

‖PΩI∗PΩ(M)‖∞.

The maximum effect of elements in Ω in the orthogonal direction Ω⊥ is given by

δΩ , max
M∈Ω,‖M‖∞=1

‖PΩ⊥I∗PΩ(M)‖∞.

The operator I∗ is injective on Ω if αΩ > 0. The ratio δΩ
αΩ
≤ 1 − ν implies the

irrepresentability condition imposed in [119], which gives a sufficient condition for con-

sistent recovery of graphical model structure using `1-regularized maximum-likelihood.

Notice that this condition is a generalization of the usual Lasso irrepresentability con-

ditions [148], which are typically imposed on the covariance matrix. Finally we also

consider the following quantity, which controls the behavior of I∗ restricted to Ω in the

spectral norm:

βΩ , max
M∈Ω,‖M‖2=1

‖I∗(M)‖2.

I∗ restricted to T : Analogous to the case of Ω one could control the gains of the

operators PT⊥I∗PT and PTI∗PT . However as discussed previously one complication

is that the tangent spaces at nearby smooth points on the rank variety are in general

different, and the amount of twisting between these spaces is governed by the local

curvature. Therefore we control the gains of the operators PT ′⊥I∗PT ′ and PT ′I∗PT ′ for

all tangent spaces T ′ that are “close to” the nominal T (at the true underlying low-rank

matrix), measured by ρ(T, T ′) (4.6) being small. The minimum gain of the operator

PT ′I∗PT ′ restricted to T ′ (close to T ) is given by

αT , min
ρ(T ′,T )≤ ξ(T )

2

min
M∈T ′,‖M‖2=1

‖PT ′I∗PT ′(M)‖2.

Similarly the maximum effect of elements in T ′ in the orthogonal direction T ′⊥ (for T ′

close to T ) is given by

δT , max
ρ(T ′,T )≤ ξ(T )

2

max
M∈T ′,‖M‖2=1

‖PT ′⊥I∗PT ′(M)‖2.
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Implicit in the definition of αT and δT is the fact that the outer minimum and max-

imum are only taken over spaces T ′ that are tangent spaces to the rank-variety. The

operator I∗ is injective on all tangent spaces T ′ such that ρ(T ′, T ) ≤ ξ(T )
2 if αT > 0.

An irrepresentability condition (analogous to those developed for the sparse case) for

tangent spaces near T to the rank variety would be that δT
αT
≤ 1 − ν. Finally we also

control the behavior of I∗ restricted to T ′ close to T in the `∞ norm:

βT , max
ρ(T ′,T )≤ ξ(T )

2

max
M∈T,‖M‖∞=1

‖I∗(M)‖∞.

The two sets of quantities (αΩ, δΩ) and (αT , δT ) essentially control how I∗ behaves

when restricted to the spaces Ω and T separately (in the natural norms). The quantities

βΩ and βT are useful in order to control the gains of the operator I∗ restricted to

the direct sum Ω ⊕ T . Notice that although the magnitudes of elements in Ω are

measured most naturally in the `∞ norm, the quantity βΩ is specified with respect to

the spectral norm. Similarly elements of the tangent spaces T ′ to the rank variety are

most naturally measured in the spectral norm, but βT provides control in the `∞ norm.

These quantities, combined with µ(Ω) and ξ(T ), provide the “coupling” necessary to

control the behavior of I∗ restricted to elements in the direct sum Ω ⊕ T . In order to

keep track of fewer quantities, we summarize the six quantities as follows:

α , min(αΩ, αT )

δ , max(δΩ, δT )

β , max(βΩ, βT ).

Main assumption There exists a ν ∈ (0, 1
2 ] such that:

δ

α
≤ 1− 2ν.

This assumption is to be viewed as a generalization of the irrepresentability condi-

tions imposed on the covariance matrix [148] or the Fisher information matrix [119] in

order to provide consistency guarantees for sparse model selection using the `1 norm.

With this assumption we have the following proposition, proved in Appendix B.3, about

the gains of the operator I∗ restricted to Ω⊕ T . This proposition plays a fundamental

role in the analysis of the performance of the regularized maximum-likelihood procedure

(4.1).
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Proposition 4.3.1. Let Ω and T be the tangent spaces defined in this section, and

let I∗ be the Fisher information evaluated at the true marginal concentration matrix.

Further let α, δ, β be as defined above. Suppose that

µ(Ω)ξ(T ) ≤ 1

6

(
να

β(2− ν)

)2

,

and that γ is in the following range:

γ ∈
[

3β(2− ν)ξ(T )

να
,

να

2β(2− ν)µ(Ω)

]
.

Then we have the following two conclusions for Y = Ω× T ′ with ρ(T ′, T ) ≤ ξ(T )
2 :

1. The minimum gain of I∗ restricted to Ω⊕ T ′ is bounded below:

min
(S,L)∈Y, ‖S‖∞=γ, ‖L‖2=1

gγ(PYA†I∗APY(S,L)) ≥ α

2
.

Specifically this implies that for all (S,L) ∈ Y

gγ(PYA†I∗APY(S,L)) ≥ α

2
gγ(S,L).

2. The effect of elements in Y = Ω×T ′ on the orthogonal complement Y⊥ = Ω⊥×T ′⊥

is bounded above:∥∥∥∥PY⊥A†I∗APY (PYA†I∗APY)−1
∥∥∥∥
gγ→gγ

≤ 1− ν.

Specifically this implies that for all (S,L) ∈ Y

gγ(PY⊥A†I∗APY(S,L)) ≤ (1− ν)gγ(PYA†I∗APY(S,L)).

The last quantity we consider is the spectral norm of the marginal covariance matrix

Σ∗O = (K̃∗O)−1:

ψ , ‖Σ∗O‖2 = ‖(K̃∗O)−1‖2. (4.8)

A bound on ψ is useful in the probabilistic component of our analysis, in order to derive

convergence rates of the sample covariance matrix to the true covariance matrix. We

also observe that

‖I∗‖2→2 = ‖(K̃∗O)−1 ⊗ (K̃∗O)−1‖2→2 = ψ2.
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� 4.4 Regularized Maximum-Likelihood Convex Program and Consistency

� 4.4.1 Setup

Let K∗(O H) denote the full concentration matrix of a collection of zero-mean jointly-

Gaussian observed and latent variables, let p = |O| denote the number of observed

variables, and let h = |H| denote the number of latent variables. We are given n sam-

ples {Xi
O}ni=1 of the observed variables XO. We consider the high-dimensional setting

in which (p, h, n) are all allowed to grow simultaneously. The quantities α, δ, β, ν, ψ

defined in the previous section are accounted for in our analysis, although we suppress

the dependence on these quantities in the statement of our main result. We explicitly

keep track of the quantities µ(Ω(K∗O)) and ξ(T (K∗O,H(K∗H)−1K∗H,O)) as these control

the complexity of the latent-variable model given by K∗(O H). In particular µ controls

the sparsity of the conditional graphical model among the observed variables, while

ξ controls the incoherence or “diffusivity” of the extra correlations induced due to

marginalization over the hidden variables. Based on the tradeoff between these two

quantities, we obtain a number of classes of latent-variable graphical models (and cor-

responding scalings of (p, h, n)) that can be consistently recovered using the regularized

maximum-likelihood convex program (4.1) (see Section 4.4.3 for details). Specifically

we show that consistent model selection is possible even when the number of samples

and the number of latent variables are on the same order as the number of observed

variables. We present our main result next demonstrating the consistency of the es-

timator (4.1), and then discuss classes of latent-variable graphical models and various

scaling regimes in which our estimator is consistent.

� 4.4.2 Main results

Given n samples {Xi
O}ni=1 of the observed variables XO, the sample covariance is defined

as:

Σn
O =

1

n

n∑
i=1

Xi
O(Xi

O)T .

As discussed in Section 4.2.2 the goal is to produce an estimate given by a pair of

matrices (S,L) of the latent-variable model represented by K∗(O H). We study the

consistency properties of the following regularized maximum-likelihood convex program:

(Ŝn, L̂n) = arg min
S,L

Tr[(S − L) Σn
O]− log det(S − L) + λn[γ‖S‖1 + Tr(L)]

s.t. S − L � 0, L � 0.
(4.9)
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Here λn is a regularization parameter, and γ is a tradeoff parameter between the rank

and sparsity terms. Notice from Proposition 4.3.1 that the choice of γ depends on the

values of µ(Ω(K∗O)) and ξ(T (K∗O,H(K∗H)−1K∗H,O)); essentially these quantities corre-

spond to the degree of the conditional graphical model structure of the observed vari-

ables and the incoherence of the low-rank matrix summarizing the effect of the latent

variables (see Section 4.3). While these quantities may not be known a priori, we discuss

a method to choose γ numerically in our experimental results (see Section 4.5). The fol-

lowing theorem shows that the estimates (Ŝn, L̂n) provided by the convex program (4.9)

are consistent for a suitable choice of λn. In addition to the appropriate identifiability

conditions (as specified by Proposition 4.3.1), we also impose lower bounds on the min-

imum nonzero entry of the sparse conditional graphical model matrix K∗O and on the

minimum nonzero singular value of the low-rank matrix K∗O,H(K∗H)−1K∗H,O summariz-

ing the effect of the hidden variables. We suppress the dependence on α, β, δ, ν, ψ, and

emphasize the dependence on µ(Ω(K∗O)) and ξ(T (K∗O,H(K∗H)−1K∗H,O)) because these

control the complexity of the underlying latent-variable graphical model as discussed

above.

Theorem 4.4.1. Let K∗(O H) denote the concentration matrix of a Gaussian model. We

have n samples {Xi
O}ni=1 of the p observed variables denoted by O. Let Ω = Ω(K∗O) and

T = T (K∗O,H(K∗H)−1K∗H,O) denote the tangent spaces at K∗O and at K∗O,H(K∗H)−1K∗H,O

with respect to the sparse and low-rank matrix varieties respectively.

Assumptions: Suppose that the following conditions hold:

1. The quantities µ(Ω) and ξ(T ) satisfy the assumption of Proposition 4.3.1 for

identifiability, and γ is chosen in the range specified by Proposition 4.3.1.

2. The number of samples n available is such that

n &
p

ξ(T )4
.

3. The regularization parameter λn is chosen as

λn �
1

ξ(T )

√
p

n
.

4. The minimum nonzero singular value σ of K∗O,H(K∗H)−1K∗H,O is bounded as

σ &
1

ξ(T )3

√
p

n
.
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5. The minimum magnitude nonzero entry of θ of K∗O is bounded as

θ &
1

ξ(T )µ(Ω)

√
p

n
.

Conclusions: Then with probability greater than 1− 2 exp{−p} we have:

1. Algebraic consistency: The estimate (Ŝn, L̂n) given by the convex program (4.9)

is algebraically consistent, i.e., the support and sign pattern of Ŝn is the same as

that of K∗O, and the rank of L̂n is the same as that of K∗O,H(K∗H)−1K∗H,O.

2. Parametric consistency: The estimate (Ŝn, L̂n) given by the convex program (4.9)

is parametrically consistent:

gγ(Ŝn −K∗O, L̂n −K∗O,H(K∗H)−1K∗H,O) .
1

ξ(T )

√
p

n
.

The proof of this theorem is given in Appendix B.4. The theorem essentially states

that if the minimum nonzero singular value of the low-rank piece K∗O,H(K∗H)−1K∗H,O

and minimum nonzero entry of the sparse piece K∗O are bounded away from zero, then

the convex program (4.9) provides estimates that are both algebraically consistent and

parametrically consistent (in the `∞ and spectral norms). In Section 4.4.4 we also show

that these results easily lead to parametric consistency rates for the corresponding

estimate (Ŝn − L̂n)−1 of the marginal covariance Σ∗O of the observed variables.

Remarks Notice that the condition on the minimum singular value ofK∗O,H(K∗H)−1K∗H,O

is more stringent than on the minimum nonzero entry of K∗O. One role played by

these conditions is to ensure that the estimates (Ŝn, L̂n) do not have smaller sup-

port size/rank than (K∗O,K
∗
O,H(K∗H)−1K∗H,O). However the minimum singular value

bound plays the additional role of bounding the curvature of the low-rank matrix va-

riety around the point K∗O,H(K∗H)−1K∗H,O, which is the reason for this condition being

more stringent. Notice also that the number of hidden variables h does not explic-

itly appear in the sample complexity bound in Theorem 4.4.1, which only depends on

p, µ(Ω(K∗O)), ξ(T (K∗O,H(K∗H)−1K∗H,O)). However the dependence on h is implicit in the

dependence on ξ(T (K∗O,H(K∗H)−1K∗H,O)), and we discuss this point in greater detail in

the following section.

Finally we remark that algebraic and parametric consistency hold under the as-

sumptions of Theorem 4.4.1 for a range of values of γ:

γ ∈
[

3β(2− ν)ξ(T )

να
,

να

2β(2− ν)µ(Ω)

]
.
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In particular the assumptions on the sample complexity, the minimum nonzero singular

value of K∗O,H(K∗H)−1K∗H,O, and the minimum magnitude nonzero entry of K∗O are

governed by the lower end of this range for γ. These assumptions can be weakened if

we only require consistency for a smaller range of values of γ. The following corollary

conveys this point with a specific example:

Corollary 4.4.1. Consider the same setup and notation as in Theorem 4.4.1. Sup-

pose that the quantities µ(Ω) and ξ(T ) satisfy the assumption of Proposition 4.3.1 for

identifiability. Suppose that we make the following assumptions:

1. Let γ be chosen to be equal to να
2β(2−ν)µ(Ω) (the upper end of the range specified in

Proposition 4.3.1), i.e., γ � 1
µ(Ω) .

2. n & µ(Ω)4 p.

3. σ & µ(Ω)2

ξ(T )

√
p
n .

4. θ &
√

p
n .

5. λn � µ(Ω)
√

p
n .

Then with probability greater than 1 − 2 exp{−p} we have estimates (Ŝn, L̂n) that are

algebraically consistent, and parametrically consistent with the error bounded as

gγ(Ŝn −K∗O, L̂n −K∗O,H(K∗H)−1K∗H,O) . µ(Ω)

√
p

n
.

The proof of this corollary is analogous to that of Theorem 4.4.1. We emphasize

that in practice it is often beneficial to have consistent estimates for a range of val-

ues of γ (as in Theorem 4.4.1). Specifically the stability of the sparsity pattern and

rank of the estimates (Ŝn, L̂n) for a range of tradeoff parameters is useful in order to

choose a suitable value of γ, as prior information about the quantities µ(Ω(K∗O)) and

ξ(T (K∗O,H(K∗H)−1K∗H,O)) is not typically available (see Section 4.5).

� 4.4.3 Scaling regimes

Next we consider classes of latent-variable models that satisfy the conditions of The-

orem 4.4.1. Recall that n denotes the number of samples, p denotes the number of

observed variables, and h denotes the number of latent variables. We assume that the
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parameters α, β, δ, ν, ψ defined in Section 4.3.2 remain constant, and do not scale with

the other parameters such as (p, h, n) or ξ(T (K∗O,H(K∗H)−1K∗H,O)) or µ(Ω(K∗O)). In

particular we focus on the tradeoff between ξ(T (K∗O,H(K∗H)−1K∗H,O)) and µ(Ω(K∗O))

(the quantities that control the complexity of a latent-variable graphical model), and

the resulting scaling regimes for consistent estimation. Let d = deg(K∗O) denote

the degree of the conditional graphical model among the observed variables, and let

i = inc(K∗O,H(K∗H)−1K∗H,O) denote the incoherence of the correlations induced due to

marginalization over the latent variables (we suppress the dependence on n). These

quantities are defined in Chapter 3, and we have from the propositions therein that

µ(Ω(K∗O)) ≤ d, ξ(T (K∗O,H(K∗H)−1K∗H,O)) ≤ 2i.

Since α, β, δ, ν, ψ do not scale with the other parameters, we also have from Proposi-

tion 4.3.1 that the product of µ and ξ must be bounded by a constant. Thus, we study

latent-variable models in which

d i = O(1).

As we describe next, there are non-trivial classes of latent-variable graphical models in

which this condition holds.

Bounded degree and incoherence: The first class of latent-variable models that

we consider are those in which the conditional graphical model among the observed

variables (given by K∗O) has constant degree d. Recall from Chapter 3 that the inco-

herence i of the effect of the latent variables (given by K∗O,H(K∗H)−1K∗H,O) can be as

small as
√

h
p . Consequently latent-variable models in which

d = O(1), h = O(p),

can be estimated consistently from n = O(p) samples as long as the low-rank matrix

K∗O,H(K∗H)−1K∗H,O is almost maximally incoherent, i.e., i = O(
√

h
p ) so the effect of

marginalization over the latent variables is diffuse across almost all the observed vari-

ables. Thus consistent model selection is possible even when the number of samples

and the number of latent variables are on the same order as the number of observed

variables.

Polylogarithmic degree models The next class of models that we study are

those in which the degree d of the conditional graphical model of the observed vari-

ables grows poly-logarithmically with p. Consequently, the incoherence i of the matrix
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K∗O,H(K∗H)−1K∗H,O must decay as the inverse of poly-log(p). Using the fact that max-

imally incoherent low-rank matrices K∗O,H(K∗H)−1K∗H,O can have incoherence as small

as
√

h
p , latent-variable models in which

d = O(log(p)q), h = O
(

p

log(p)2q

)
,

can be consistently estimated as long as n = OP (p poly-log(p)).

� 4.4.4 Rates for covariance matrix estimation

The main result Theorem 4.4.1 gives the number of samples required for consistent

estimation of the sparse and low-rank parts that compose the marginal concentration

matrix K̃∗O. Here we prove a corollary that gives rates for covariance matrix estima-

tion, i.e., the quality of the estimate (Ŝn − L̂n)−1 with respect to the “true” marginal

covariance matrix Σ∗O.

Corollary 4.4.2. Under the same conditions as in Theorem 4.4.1, we have with prob-

ability greater than 1− 2 exp{−p} that

gγ(A†[(Ŝn − L̂n)−1 − Σ∗O]) .
1

ξ(T )

√
p

n
.

Specifically this implies that ‖(Ŝn − L̂n)−1 − Σ∗O‖2 .
1

ξ(T )

√
p
n .

Proof : The proof of this lemma follows directly from duality. Based on the analysis

in Appendix B.4 (in particular using the optimality conditions of the modified convex

program (B.14)), we have that

gγ(A†[(Ŝn − L̂n)−1 − Σn
O]) ≤ λn.

We also have from the bound on the number of samples n that (see Appendix B.4.7)

gγ(A†[Σ∗O − Σn
O]) . λn

Based on the choice of λn in Theorem 4.4.1, we then have the desired bound. �

� 4.4.5 Proof strategy for Theorem 4.4.1

Standard results from convex analysis [124] state that (Ŝn, L̂n) is a minimum of the

convex program (4.9) if the zero matrix belongs to the subdifferential of the objective
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function evaluated at (Ŝn, L̂n) (in addition to (Ŝn, L̂n) satisfying the constraints). The

subdifferential of the `1 norm at a matrix M is given by

N ∈ ∂‖M‖1 ⇔ PΩ(M)(N) = sign(M), ‖PΩ(M)⊥(N)‖∞ ≤ 1.

For a symmetric positive semidefinite matrix M with SVD M = UDUT , the subdiffer-

ential of the trace function restricted to the cone of positive semidefinite matrices (i.e.,

the nuclear norm over this set) is given by:

N ∈ ∂[Tr(M) + IM�0] ⇔ PT (M)(N) = UUT , PT (M)⊥(N) � I,

where IM�0 denotes the characteristic function of the set of positive semidefinite ma-

trices (i.e., the convex function that evaluates to 0 over this set and ∞ outside). The

key point is that elements of the subdifferential decompose with respect to the tangent

spaces Ω(M) and T (M). This decomposition property plays a critical role in our anal-

ysis. In particular it states that the optimality conditions consist of two parts, one part

corresponding to the tangent spaces Ω and T and another corresponding to the normal

spaces Ω⊥ and T⊥.

Consider the optimization problem (4.9) with the additional (non-convex) con-

straints that the variable S belongs to the algebraic variety of sparse matrices and

that the variables L belongs to the algebraic variety of low-rank matrices. While this

new optimization problem is non-convex, it has a very interesting property. At a glob-

ally optimal solution (and indeed at any locally optimal solution) (S̃, L̃) such that S̃

and L̃ are smooth points of the algebraic varieties of sparse and low-rank matrices, the

first-order optimality conditions state that the Lagrange multipliers corresponding to

the additional variety constraints must lie in the normal spaces Ω(S̃)⊥ and T (L̃)⊥. This

fundamental observation, combined with the decomposition property of the subdiffer-

entials of the `1 and nuclear norms, suggests the following high-level proof strategy.

1. Let (S̃, L̃) be the globally optimal solution of the optimization problem (4.9)

with the additional constraints that (S,L) belong to the algebraic varieties of

sparse/low-rank matrices; specifically constrain S to lie in S(|support(K∗O)|) and

constrain L to lie in L(rank(K∗O,H(K∗H)−1K∗H,O)). Show first that (S̃, L̃) are

smooth points of these varieties.

2. The first part of the subgradient optimality conditions of the original convex

program (4.9) corresponding to components on the tangent spaces Ω(S̃) and T (L̃)
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is satisfied. This conclusion can be reached because the additional Lagrange

multipliers due to the variety constraints lie in the normal spaces Ω(S̃)⊥ and

T (L̃)⊥.

3. Finally show that the second part of the subgradient optimality conditions of

(4.9) corresponding to components in the normal spaces Ω(S̃)⊥ and T (L̃)⊥ is also

satisfied.

Combining these steps together we show that (S̃, L̃) satisfy the optimality conditions

of the original convex program (4.9). Consequently (S̃, L̃) is also the optimum of the

convex program (4.9). As this estimate is also the solution to the problem with the

variety constraints, the algebraic consistency of (S̃, L̃) can be directly concluded. We

emphasize here that the variety-constrained optimization problem is used solely as an

analysis tool in order to prove consistency of the estimates provided by the convex

program (4.9). These steps describe our broad strategy, and we refer the reader to

Appendix B.4 for details. The key technical complication is that the tangent spaces

at L̃ and K∗O,H(K∗H)−1K∗H,O are in general different. We bound the twisting between

these tangent spaces by using the fact that the minimum non-zero singular value of

K∗O,H(K∗H)−1K∗H,O is bounded away from zero (as assumed in Theorem 4.4.1 and using

Proposition 4.2.1).

� 4.5 Simulation Results

In this section we give experimental demonstration of the consistency of our estimator

(4.9) on synthetic examples, and its effectiveness in modeling real-world stock return

data. Our choices of λn and γ are guided by Theorem 4.4.1. Specifically, we choose λn

to be proportional to
√

p
n . For γ we observe that the support/sign-pattern and the rank

of the solution (Ŝn, L̂n) are the same for a range of values of γ. Therefore one could solve

the convex program (4.9) for several values of γ, and choose a solution in a suitable range

in which the sign-pattern and rank of the solution are stable. In practical problems with

real-world data these parameters may be chosen via cross-validation. For small problem

instances we solve the convex program (4.9) using a combination of YALMIP [98] and

SDPT3 [136], which are standard off-the-shelf packages for solving convex programs. For

larger problem instances we use the special purpose solver LogdetPPA [141] developed

for log-determinant semidefinite programs.
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Figure 4.1. Synthetic experiments: Plot showing probability of consistent estimation of the number

of latent variables, and the conditional graphical model structure of the observed variables. the three

models studied are (a) 36-node conditional graphical model given by a cycle with h = 2 latent variables,

(b) 36-node conditional graphical model given by a cycle with h = 3 latent variables, and (c) 36-node

conditional graphical model given by a 6 × 6 grid with h = 1 latent variable. For each plotted point,

the probability of consistent estimation is obtained over 50 random trials.

� 4.5.1 Synthetic data

In the first set of experiments we consider a setting in which we have access to samples

of the observed variables of a latent-variable graphical model. We consider several

latent-variable Gaussian graphical models. The first model consists of p = 36 observed

variables and h = 2 hidden variables. The conditional graphical model structure of the

observed variables is a cycle with the edge partial correlation coefficients equal to 0.25;

thus, this conditional model is specified by a sparse graphical model with degree 2. The

second model is the same as the first one, but with h = 3 latent variables. The third

model consists of h = 1 latent variable, and the conditional graphical model structure

of the observed variables is given by a 6 × 6 nearest-neighbor grid (i.e., p = 36 and

degree 4) with the partial correlation coefficients of the edges equal to 0.15. In all three

of these models each latent variable is connected to a random subset of 80% of the

observed variables (and the partial correlation coefficients corresponding to these edges

are also random). Therefore the effect of the latent variables is “spread out” over most

of the observed variables, i.e., the low-rank matrix summarizing the effect of the latent

variables is incoherent.
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Figure 4.2. Stock returns: The figure on the left shows the sparsity pattern (black denotes an edge,

and white denotes no edge) of the concentration matrix of the conditional graphical model (135 edges)

of the stock returns, conditioned on 5 latent variables, in a latent-variable graphical model (number of

parameters equals 639). This model is learned using (4.9), and the KL divergence with respect to a

Gaussian distribution specified by the sample covariance is 17.7. The figure on the left shows the con-

centration matrix of the graphical model (646 edges) of the stock returns, learned using standard sparse

graphical model selection based on solving an `1-regularized maximum-likelihood program (number of

parameters equals 730). The KL divergence between this distribution and a Gaussian distribution

specified by the sample covariance is 44.4.

For each model we generate n samples of the observed variables, and use the resulting

sample covariance matrix Σn
O as input to our convex program (4.9). Figure 4.1 shows the

probability of recovery of the support/sign-pattern of the conditional graphical model

structure in the observed variables and the number of latent variables (i.e., probability

of obtaining algebraically consistent estimates) as a function of n. This probability is

evaluated over 50 experiments for each value of n.

In all of these cases standard graphical model selection applied directly to the ob-

served variables is not useful as the marginal concentration matrix of the observed

variables is not well-approximated by a sparse matrix. Both these sets of experiments

agree with our theoretical results that the convex program (4.9) is an algebraically con-

sistent estimator of a latent-variable model given (sufficiently many) samples of only

the observed variables.

� 4.5.2 Stock return data

In the next experiment we model the statistical structure of monthly stock returns of

84 companies in the S&P 100 index from 1990 to 2007; we disregard 16 companies that

were listed after 1990. The number of samples n is equal to 216. We compute the
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sample covariance based on these returns and use this as input to (4.9).

The model learned using (4.9) for suitable values of λn, γ consists of h = 5 latent

variables, and the conditional graphical model structure of the stock returns conditioned

on these hidden components consists of 135 edges. Therefore the number of parameters

in the model is 84 + 135 + (5 × 84) = 639. The resulting KL divergence between the

distribution specified by this model and a Gaussian distribution specified by the sample

covariance is 17.7. Figure 4.2 (left) shows the conditional graphical model structure.

The strongest edges in this conditional graphical model, as measured by partial corre-

lation, are between Baker Hughes - Schlumberger, A.T.&T. - Verizon, Merrill Lynch -

Morgan Stanley, Halliburton - Baker Hughes, Intel - Texas Instruments, Apple - Dell,

and Microsoft - Dell. It is of interest to note that in the Standard Industrial Classi-

fication2 system for grouping these companies, several of these pairs are in different

classes.

We compare these results to those obtained using a sparse graphical model learned

using `1-regularized maximum-likelihood (see for example [119]), without introducing

any latent variables. Figure 4.2 (right) shows this graphical model structure. The

number of edges in this model is 646 (the total number of parameters is equal to

646 + 84 = 730), and the resulting KL divergence between this distribution and a

Gaussian distribution specified by the sample covariance is 44.4. Indeed to obtain a

comparable KL divergence to that of the latent-variable model described above, one

would require a graphical model with over 3000 edges.

These results suggest that a latent-variable graphical model is better suited than

a standard sparse graphical model for modeling the statistical structure among stock

returns. This is likely due to the presence of global, long-range correlations in stock

return data that are better modeled via latent variables.

� 4.6 Discussion

We have studied the problem of modeling the statistical structure of a collection of

random variables as a sparse graphical model conditioned on a few additional hidden

components. As a first contribution we described conditions under which such latent-

variable graphical models are identifiable given samples of only the observed variables.

2See the United States Securities and Exchange Commission website at

http://www.sec.gov/info/edgar/siccodes.htm
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We also proposed a convex program based on regularized maximum-likelihood for latent-

variable graphical model selection; the regularization function is a combination of the `1

norm and the nuclear norm. Given samples of the observed variables of a latent-variable

Gaussian model we proved that this convex program provides consistent estimates of

the number of hidden components as well as the conditional graphical model structure

among the observed variables conditioned on the hidden components. Our analysis

holds in the high-dimensional regime in which the number of observed/latent variables

are allowed to grow with the number of samples of the observed variables. In particular

we discuss certain scaling regimes in which consistent model selection is possible even

when the number of samples and the number of latent variables are on the same order

as the number of observed variables. These theoretical predictions are verified via a set

of experiments on synthetic data.



Chapter 5

Convex Geometry of Linear Inverse

Problems

� 5.1 Introduction

Deducing the state or structure of a system from partial, noisy measurements is a

fundamental task throughout the sciences and engineering. A commonly encountered

difficulty that arises in such inverse problems is the very limited availability of data

relative to the ambient dimension of the signal to be estimated. However many in-

teresting signals or models in practice contain few degrees of freedom relative to their

ambient dimension. For instance a small number of genes may constitute a signature

for disease, very few parameters may be required to specify the correlation structure in

a time series, or a sparse collection of geometric constraints might completely specify

a molecular configuration. Such low-dimensional structure plays an important role in

making inverse problems well-posed. In this chapter we propose a unified approach to

transform notions of simplicity into convex penalty functions, thus obtaining convex

optimization formulations for inverse problems.

We describe a model as simple if it can be written as a linear combination of a few

elements from an atomic set. Concretely let x ∈ Rp be formed as follows:

x =
k∑
i=1

ciai, ai ∈ A, ci ≥ 0, (5.1)

where A is a set of atoms that constitute simple building blocks of general signals.

Here we assume that x is simple so that k is relatively small. For example A could

be the finite set of unit-norm one-sparse vectors in which case x is a sparse vector,

or A could be the infinite set of unit-norm rank-one matrices in which case x is a

low-rank matrix. These two cases arise in many applications, and have received a

83
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tremendous amount of attention recently as several authors have shown that sparse

vectors and low-rank matrices can be recovered from highly incomplete information

[29, 30, 53, 54, 121]. However a number of other structured mathematical objects also

fit the notion of simplicity described in (5.1). The set A could be the collection of

unit-norm rank-one tensors, in which case x is a low-rank tensor and we are faced

with the familiar challenge of low-rank tensor decomposition. Such problems arise in

numerous applications in computer vision and image processing [1], and in neuroscience

[9]. AlternativelyA could be the set of permutation matrices; sums of a few permutation

matrices are objects of interest in ranking [84] and multi-object tracking. As yet another

example, A could consist of measures supported at a single point so that x is an atomic

measure supported at just a few points. This notion of simplicity arises in problems in

system identification and statistics.

In each of these examples as well as several others, a fundamental problem of in-

terest is to recover x given limited linear measurements. For instance the question of

recovering a sparse function over the group of permutations (i.e., the sum of a few per-

mutation matrices) given linear measurements in the form of partial Fourier information

was investigated in the context of ranked election problems [84]. Similar linear inverse

problems arise with atomic measures in system identification, with orthogonal matrices

in machine learning, and with simple models formed from several other atomic sets (see

Section 5.2.2 for more examples). Hence we seek tractable computational tools to solve

such problems. When A is the collection of one-sparse vectors, a method of choice is to

use the `1 norm to induce sparse solutions. This method, as mentioned previously, has

seen a surge interest in the last few years as it provides a tractable convex optimization

formulation to exactly recover sparse vectors under various conditions [29,53,54]. Also

as discussed before, the nuclear norm has been proposed more recently as an effec-

tive convex surrogate for solving rank minimization problems subject to various affine

constraints [30,121].

Motivated by the success of these methods we propose a general convex optimization

framework in Section 5.2 in order to recover objects with structure of the form (5.1)

from limited linear measurements. The guiding question behind our framework is: how

do we take a concept of simplicity such as sparsity and derive the `1 norm as a convex

heuristic? In other words what is the natural procedure to go from the set of one-sparse

vectors A to the `1 norm? We observe that the convex hull of (unit-Euclidean-norm)

one-sparse vectors is the unit ball of the `1 norm, or the cross-polytope. Similarly the
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convex hull of the (unit-Euclidean-norm) rank-one matrices is the nuclear norm ball;

see Chapter 2 for illustrations. These constructions suggest a natural generalization

to other settings. Under suitable conditions the convex hull conv(A) defines the unit

ball of a norm, which is called the atomic norm induced by the atomic set A. We can

then minimize the atomic norm subject to measurement constraints, which results in a

convex programming heuristic for recovering simple models given linear measurements.

As an example suppose we wish to recover the sum of a few permutation matrices given

linear measurements. The convex hull of the set of permutation matrices is the Birkhoff

polytope of doubly stochastic matrices [149], and our proposal is to solve a convex

program that minimizes the norm induced by this polytope. Similarly if we wish to

recover an orthogonal matrix from linear measurements we would solve a spectral norm

minimization problem, as the spectral norm ball is the convex hull of all orthogonal

matrices. As discussed in Section 5.2.5 the atomic norm minimization problem is the

best convex heuristic for recovering simple models with respect to a given atomic set.

We give general conditions for exact and robust recovery using the atomic norm

heuristic. In Section 5.3 we provide concrete bounds on the number of generic linear

measurements required for the atomic norm heuristic to succeed. This analysis is based

on computing certain Gaussian widths of tangent cones with respect to the unit balls of

the atomic norm [76]. Arguments based on Gaussian width have been fruitfully applied

to obtain bounds on the number of Gaussian measurements for the special case of recov-

ering sparse vectors via `1 norm minimization [127,134], but computing Gaussian widths

of general cones is not easy. Therefore it is important to exploit the special structure

in atomic norms, while still obtaining sufficiently general results that are broadly appli-

cable. An important theme in this chapter is the connection between Gaussian widths

and various notions of symmetry. Specifically by exploiting symmetry structure in cer-

tain atomic norms as well as convex duality properties, we give bounds on the number

of measurements required for recovery using very general atomic norm heuristics. For

example we provide precise estimates of the number of generic measurements required

for exact recovery of an orthogonal matrix via spectral norm minimization, and the

number of generic measurements required for exact recovery of a permutation matrix

by minimizing the norm induced by the Birkhoff polytope. While these results corre-

spond to the recovery of individual atoms from random measurements, our techniques

are more generally applicable to the recovery of models formed as sums of a few atoms

as well. We also give tighter bounds than those previously obtained on the number of
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Underlying model Convex heuristic # Gaussian measurements

s-sparse vector in Rp `1 norm 2s(log(p/s− 1) + 1)

m×m rank-r matrix nuclear norm 3r(2m− r)
sign-vector {−1,+1}p `∞ norm p/2

m×m permutation matrix norm induced by Birkhoff polytope 9m log(m)

m×m orthogonal matrix spectral norm (3m2 −m)/4

Table 5.1. A summary of the recovery bounds obtained using Gaussian width arguments.

measurements required to robustly recover sparse vectors and low-rank matrices via `1

norm and nuclear norm minimization. In all of the cases we investigate, we find that

the number of measurements required to reconstruct an object is proportional to its

intrinsic dimension rather than the ambient dimension, thus confirming prior folklore.

See Table 5.1 for a summary of these results.

Although our conditions for recovery and bounds on the number of measurements

hold generally, we note that it may not be possible to obtain a computable representa-

tion for the convex hull conv(A) of an arbitrary set of atoms A. This leads us to another

important theme of this chapter, which we discuss in Section 5.4, on the connection

between algebraic structure in A and the semidefinite representability of the convex

hull conv(A). In particular when A is an algebraic variety the convex hull conv(A) can

be approximated as (the projection of) a set defined by linear matrix inequalities. Thus

the resulting atomic norm minimization heuristic can be solved via semidefinite pro-

gramming. A second issue that arises in practice is that even with algebraic structure

in A the semidefinite representation of conv(A) may not be computable in polyno-

mial time, which makes the atomic norm minimization problem intractable to solve. A

prominent example here is the tensor nuclear norm ball, which is obtained by taking

the convex hull of the rank-one tensors. In order to address this problem we study a

hierarchy of semidefinite relaxations using theta bodies [77] (described in Chapter 2),

which approximate the original (intractable) atomic norm minimization problem. A

third point we highlight is that while these semidefinite relaxations are more tractable

to solve, we require more measurements for exact recovery of the underlying model

than if we solve the original intractable atomic norm minimization problem. Hence we

have a tradeoff between the complexity of the recovery algorithm and the number of

measurements required for recovery. We illustrate this tradeoff with the cut polytope,
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which is intractable to compute, and its relaxations.

Outline Section 5.2 describes the construction of the atomic norm, gives several ex-

amples of applications in which these norms may be useful to recover simple models, and

provides general conditions for recovery by minimizing the atomic norm. In Section 5.3

we investigate the number of generic measurements for exact or robust recovery using

atomic norm minimization, and give estimates in a number of settings by analyzing

the Gaussian width of certain tangent cones. We address the problem of semidefinite

representability and tractable relaxations of the atomic norm in Section 5.4. Section 5.5

describes some algorithmic issues as well as a few simulation results, and we conclude

with a discussion in Section 5.6.

� 5.2 Atomic Norms and Convex Geometry

In this section we describe the construction of an atomic norm from a collection of

simple atoms. In addition we give several examples of atomic norms, and discuss their

properties in the context of solving ill-posed linear inverse problems. We denote the

Euclidean norm by ‖ · ‖.

� 5.2.1 Definition

Let A be a collection of atoms that is a compact subset of Rp. We will assume through-

out this chapter that no element a ∈ A lies in the convex hull of the other elements

conv(A\a), i.e., the elements of A are the extreme points of conv(A). Let ‖x‖A denote

the gauge of A [124]:

‖x‖A = inf{t > 0 : x ∈ t conv(A)}. (5.2)

Note that the gauge is always a convex, extended-real valued function for any set A. By

convention this function evaluates to +∞ if x does not lie in the affine hull of conv(A).

We will assume without loss of generality that the centroid of conv(A) is at the origin,

as this can be achieved by appropriate recentering. With this assumption the gauge

function can be rewritten as:

‖x‖A = inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A

}
,

with the sum being replaced by an integral when A is uncountable. If A is centrally

symmetric about the origin (i.e., a ∈ A if and only if −a ∈ A) we have that ‖ · ‖A is
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a norm, which we call the atomic norm induced by A. The support function of A is

given as:

‖x‖∗A = sup {〈x,a〉 : a ∈ A} . (5.3)

If ‖·‖A is a norm the support function ‖·‖∗A is the dual norm of this atomic norm. From

this definition we see that the unit ball of ‖ · ‖A is equal to conv(A). In many examples

of interest the set A is not centrally symmetric, so that the gauge function does not

define a norm. However our analysis is based on the underlying convex geometry of

conv(A), and our results are applicable even if ‖ ·‖A does not define a norm. Therefore,

with an abuse of terminology we generally refer to ‖ · ‖A as the atomic norm of the

set A even if ‖ · ‖A is not a norm. We note that the duality characterization between

(5.2) and (5.3) when ‖ · ‖A is a norm is in fact applicable even in infinite-dimensional

Banach spaces by Bonsall’s atomic decomposition theorem [21], but our focus is on

the finite-dimensional case in this work. We investigate in greater detail the issues of

representability and efficient approximation of these atomic norms in Section 5.4.

Equipped with a convex penalty function given a set of atoms, we propose a convex

optimization method to recover a “simple” model give limited linear measurements.

Specifically suppose that x? is formed according to (5.1) from a set of atoms A. Further

suppose that we have a known linear map Φ : Rp → Rn, and we have linear information

about x? as follows:

y = Φx?. (5.4)

The goal is to reconstruct x? given y. We consider the following convex formulation to

accomplish this task:

x̂ = arg min
x

‖x‖A

s.t. y = Φx.
(5.5)

When A is the set of one-sparse atoms this problem reduces to standard `1 norm

minimization. Similarly when A is the set of rank-one matrices this problem reduces

to nuclear norm minimization. More generally if the atomic norm ‖ · ‖A is tractable to

evaluate, then (5.5) potentially offers an efficient convex programming formulation for

reconstructing x? from the limited information y. The dual problem of (5.5) is given

as follows:
max

z
yT z

s.t. ‖Φ†z‖∗A ≤ 1.
(5.6)

Here Φ† denotes the adjoint (or transpose) of the linear measurement map Φ.
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The convex formulation (5.5) can be suitably modified in case we only have access

to inaccurate, noisy information. Specifically suppose that we have noisy measurements

y = Φx?+ω where ω represents the noise term. A natural convex formulation is one in

which the constraint y = Φx of (5.5) is replaced by the relaxed constraint ‖y−Φx‖ ≤ δ,
where δ is an upper bound on the size of the noise ω:

x̂ = arg min
x

‖x‖A

s.t. ‖y − Φx‖ ≤ δ.
(5.7)

We say that we have exact recovery in the noise-free case if x̂ = x? in (5.5), and robust

recovery in the noisy case if the error ‖x̂ − x?‖ is small in (5.7). In Section 5.2.4 and

Section 5.3 we give conditions under which the atomic norm heuristics (5.5) and (5.7)

recover x? exactly or approximately. Atomic norms have found fruitful applications in

problems in approximation theory of various function classes [8, 46, 86, 116]. However

this prior body of work was concerned with infinite-dimensional Banach spaces, and

none of these references consider nor provide recovery guarantees that are applicable in

our setting.

� 5.2.2 Examples

Next we provide several examples of atomic norms that can be viewed as special cases

of the construction above. These norms are obtained by convexifying atomic sets that

are of interest in various applications.

Sparse vectors. The problem of recovering sparse vectors from limited measure-

ments has received a great deal of attention, with applications in many problem do-

mains. In this case the atomic set A ⊂ Rp can be viewed as the set of unit-norm

one-sparse vectors {±ei}pi=1, and k-sparse vectors in Rp can be constructed using a

linear combination of k elements of the atomic set. In this case it is easily seen that the

convex hull conv(A) is given by the cross-polytope (i.e., the unit ball of the `1 norm;

see Chapter 2), and the atomic norm ‖ · ‖A corresponds to the `1 norm in Rp.
Low-rank matrices. Recovering low-rank matrices from limited information is also

a problem that has received considerable attention as it finds applications in problems

in statistics, control, and machine learning. The atomic set A here can be viewed as

the set of rank-one matrices of unit-Euclidean-norm. The convex hull conv(A) is the

nuclear norm ball of matrices in which the sum of the singular values is less than or

equal to one (see Chapter 2).
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Permutation matrices. A problem of interest in a ranking context [84] or an

object tracking context is that of recovering permutation matrices from partial infor-

mation. Suppose that a small number k of rankings of m candidates is preferred by a

population. Such preferences can be modeled as the sum of a few m×m permutation

matrices, with each permutation corresponding to a particular ranking. By conducting

surveys of the population one can obtain partial linear information of these preferred

rankings. The set A here is the collection of permutation matrices (consisting of m!

elements), and the convex hull conv(A) is the Birkhoff polytope or the set of doubly

stochastic matrices [149]. The centroid of the Birkhoff polytope is the matrix 11T /m,

so it needs to be recentered appropriately. We mention here recent work by Jagabathula

and Shah [84] on recovering a sparse function over the symmetric group (i.e., the sum of

a few permutation matrices) given partial Fourier information; although the algorithm

proposed in [84] is tractable it is not based on convex optimization.

Binary vectors. In integer programming one is often interested in recovering

vectors in which the entries take on values of ±1. Suppose that there exists such a sign-

vector, and we wish to recover this vector given linear measurements. This corresponds

to a version of the multi-knapsack problem [102]. In this case A is the set of all sign-

vectors, and the convex hull conv(A) is the hypercube or the unit ball of the `∞ norm.

The image of this hypercube under a linear map is also referred to as a zonotope [149].

Vectors from lists. Suppose there is an unknown vector x ∈ Rp, and that we

are given the entries of this vector without any information about the locations of

these entries. For example if x = [3 1 2 2 4]′, then we are only given the list of

numbers {1, 2, 2, 3, 4} without their positions in x. Further suppose that we have access

to a few linear measurements of x. Can we recover x by solving a convex program?

Such a problem is of interest in recovering partial rankings of elements of a set. An

extreme case is one in which we only have two preferences for rankings, i.e., a vector

in {1, 2}p composed only of one’s and two’s, which reduces to a special case of the

problem above of recovering binary vectors (in which the number of entries of each

sign is fixed). For this problem the set A is the set of all permutations of x (which we

know since we have the list of numbers that compose x), and the convex hull conv(A)

is the permutahedron [129, 149] (see Chapter 2). As with the Birkhoff polytope, the

permutahedron also needs to be recentered about the point 1Tx/p.

Matrices constrained by eigenvalues. This problem is in a sense the non-

commutative analog of the one above. Suppose that we are given the eigenvalues λ of
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a symmetric matrix, but no information about the eigenvectors. Can we recover such

a matrix given some additional linear measurements? In this case the set A is the set

of all symmetric matrices with eigenvalues λ, and the convex hull conv(A) is given by

the Schur-Horn orbitope [129] (see Chapter 2).

Orthogonal matrices. In many applications matrix variables are constrained to be

orthogonal, which is a non-convex constraint and may lead to computational difficulties.

We consider one such simple setting in which we wish to recover an orthogonal matrix

given limited information in the form of linear measurements. In this example the set

A is the set of m×m orthogonal matrices, and conv(A) is the spectral norm ball.

Measures. Recovering a measure given its moments is another question of interest

that arises in system identification and statistics. Suppose one is given access to a linear

combination of moments of an atomically supported measure. How can we reconstruct

the support of the measure? The set A here is the moment curve, and its convex hull

conv(A) goes by several names including the Caratheodory orbitope [129]. Discretized

versions of this problem correspond to the set A being a finite number of points on the

moment curve; the convex hull conv(A) is then a cyclic polytope [149].

Cut matrices. In some problems one may wish to recover low-rank matrices in

which the entries are constrained to take on values of ±1. Such matrices can be used

to model basic user preferences, and are of interest in problems such as collaborative

filtering [133]. The set of atoms A could be the set of rank-one signed matrices, i.e.,

matrices of the form zzT with the entries of z being ±1. The convex hull conv(A) of

such matrices is the cut polytope [47]. An interesting issue that arises here is that the

cut polytope is in general intractable to characterize. However there exist several well-

known tractable semidefinite relaxations to this polytope [47, 72], and one can employ

these in constructing efficient convex programs for recovering cut matrices. We discuss

this point in greater detail in Section 5.4.3.

Low-rank tensors. Low-rank tensor decompositions play an important role in

numerous applications throughout signal processing and machine learning [91]. De-

veloping computational tools to recover low-rank tensors is therefore of great interest.

In principle we could solve a tensor nuclear norm minimization problem, in which the

tensor nuclear norm ball is obtained by taking the convex hull of rank-one tensors. A

computational challenge here is that the tensor nuclear norm is in general intractable

to compute; in order to address this problem we discuss further convex relaxations to

the tensor nuclear norm using theta bodies in Section 5.4. A number of additional
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technical issues also arise with low-rank tensors including the non-existence in general

of a singular value decomposition analogous to that for matrices [90], and the difference

between the rank of a tensor and its border rank [45].

Nonorthogonal factor analysis. Suppose that a data matrix admits a factor-

ization X = AB. The matrix nuclear norm heuristic will find a factorization into

orthogonal factors in which the columns of A and rows of B are mutually orthogonal.

However if a priori information is available about the factors, precision and recall could

be improved by enforcing such priors. These priors may sacrifice orthogonality, but the

factors might better conform with assumptions about how the data are generated. For

instance in some applications one might know in advance that the factors should only

take on a discrete set of values [133]. In this case, we might try to fit a sum of rank-one

matrices that are bounded in `∞ norm rather than in `2 norm. Another prior that

commonly arises in practice is that the factors are non-negative (i.e., in non-negative

matrix factorization). These and other priors on the basic rank-one summands induce

different norms on low-rank models than the standard nuclear norm [64], and may be

better suited to specific applications.

� 5.2.3 Background on tangent and normal cones

In order to properly state our results, we recall some basic concepts from convex anal-

ysis. A convex set C is a cone if it is closed under positive linear combinations. The

polar C∗ of a cone C is the cone

C∗ = {x ∈ Rp : 〈x, z〉 ≤ 0 ∀z ∈ C}.

Given some nonzero x ∈ Rp we define the tangent cone at x with respect to the scaled

unit ball ‖x‖Aconv(A) as

TA(x) = cone{z− x : ‖z‖A ≤ ‖x‖A}. (5.8)

The cone TA(x) is equal to the set of descent directions of the atomic norm ‖ ·‖A at the

point x, i.e., the set of all directions d such that the directional derivative is negative.

This notation is slightly overloaded relative to the notation in Chapter 2.

The normal cone NA(x) at x with respect to the scaled unit ball ‖x‖Aconv(A) is

defined to be the set of all directions s that form obtuse angles with every descent

direction of the atomic norm ‖ · ‖A at the point x:

NA(x) = {s : 〈s, z− x〉 ≤ 0 ∀z s.t. ‖z‖A ≤ ‖x‖A}. (5.9)
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The normal cone is equal to the set of all hyperplanes given by normal vectors s that

support the scaled unit ball ‖x‖Aconv(A) at x. Observe that the polar cone of the

tangent cone TA(x) is the normal cone NA(x) and vice-versa. Moreover we have the

following basic characterization

NA(x) = cone(∂‖x‖A),

which states that the normal cone NA(x) is the conic hull of the subdifferential of the

atomic norm at x.

� 5.2.4 Recovery condition

The following result gives a characterization of the favorable underlying geometry re-

quired for exact recovery. Let null(Φ) denote the nullspace of the operator Φ.

Proposition 5.2.1. We have that x̂ = x? is the unique optimal solution of (5.5) if

and only if null(Φ) ∩ TA(x?) = {0}.

Proof. Eliminating the equality constraints in (5.5) we have the equivalent optimization

problem

min
d
‖x? + d‖A s.t. d ∈ null(Φ).

Suppose null(Φ) ∩ TA(x?) = 0. Since ‖x? + d‖A ≤ ‖x?‖ implies d ∈ TA(x?), we have

that ‖x? + d‖A > ‖x?‖A for all d ∈ null(Φ) \ {0}. Conversely x? is the unique optimal

solution of (5.5) if ‖x? + d‖A > ‖x?‖A for all d ∈ null(Φ) \ {0}, which implies that

d 6∈ TA(x?).

Proposition 5.2.1 asserts that the atomic norm heuristic succeeds if the nullspace of

the sampling operator does not intersect the tangent cone TA(x?) at x?. In Section 5.3

we provide a characterization of tangent cones that determines the number of Gaussian

measurements required to guarantee such an empty intersection.

A tightening of this empty intersection condition can also be used to address the

noisy approximation problem. The following proposition characterizes when x? can be

well-approximated using the convex program (5.7).

Proposition 5.2.2. Suppose that we are given n noisy measurements y = Φx? + ω

where ‖ω‖ ≤ δ, and Φ : Rp → Rn. Let x̂ denote an optimal solution of (5.7). Further

suppose for all z ∈ TA(x?) that we have ‖Φz‖ ≥ ε‖z‖. Then ‖x̂− x?‖ ≤ 2δ
ε .
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Proof. The set of descent directions at x? with respect to the atomic norm ball is given

by the tangent cone TA(x?). The error vector x̂ − x? lies in TA(x?) because x̂ is a

minimal atomic norm solution, and hence ‖x̂‖A ≤ ‖x?‖A. It follows by the triangle

inequality that

‖Φ(x̂− x?)‖ ≤ ‖Φx̂− y‖+ ‖Φx? − y‖ ≤ 2δ. (5.10)

By assumption we have that

‖Φ(x̂− x?)‖ ≥ ε‖x̂− x?‖, (5.11)

which allows us to conclude that ‖x̂− x?‖ ≤ 2δ
ε .

Therefore, we need only concern ourselves with estimating the minimum value of
‖Φz‖
‖z‖ for non-zero z ∈ TA(x?). We denote this quantity as the minimum gain of the

measurement operator Φ restricted to the cone TA(x?). In particular if this minimum

gain is bounded away from zero, then the atomic norm heuristic also provides robust

recovery when we have access to noisy linear measurements of x?.

� 5.2.5 Why atomic norm?

The atomic norm induced by a set A possesses a number of favorable properties that

are useful for recovering “simple” models from limited linear measurements. The key

point to note from Section 5.2.4 is that the smaller the tangent cone at a point x?

with respect to conv(A), the easier it is to satisfy the empty-intersection condition of

Proposition 5.2.1.

Based on this observation it is desirable that points in conv(A) with smaller tangent

cones correspond to simpler models, while points in conv(A) with larger tangent cones

generally correspond to more complicated models. The construction of conv(A) by

taking the convex hull of A ensures that this is the case. The extreme points of conv(A)

correspond to the simplest models, i.e., those models formed from a single element of A.

Further the low-dimensional faces of conv(A) consist of those elements that are obtained

by taking linear combinations of a few basic atoms from A. These are precisely the

properties desired as points lying in these low-dimensional faces of conv(A) have smaller

tangent cones than those lying on larger faces.

We also note that the atomic norm is in some sense the best possible convex heuristic

for recovering simple models. Specifically the unit ball of any convex penalty heuristic

must satisfy a key property: the tangent cone at any a ∈ A with respect to this unit ball
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must contain the vectors a′ − a for all a′ ∈ A. The best convex penalty function is one

in which the tangent cones at a ∈ A to the unit ball are the smallest possible, while still

satisfying this requirement. This is because, as described above, smaller tangent cones

are more likely to satisfy the empty intersection condition required for exact recovery.

It is clear that the smallest such convex set is precisely conv(A), hence implying that

the atomic norm is the best convex heuristic for recovering simple models.

Our reasons for proposing the atomic norm as a useful convex heuristic are quite

different from previous justifications of the `1 norm and the nuclear norm. In particular

let f : Rp → R denote the cardinality function that counts the number of nonzero

entries of a vector. Then the `1 norm is the convex envelope of f restricted to the

unit ball of the `∞ norm, i.e., the best convex underestimator of f restricted to vectors

in the `∞-norm ball. This view of the `1 norm in relation to the function f is often

given as a justification for its effectiveness in recovering sparse vectors. However if

we consider the convex envelope of f restricted to the Euclidean norm ball, then we

obtain a very different convex function than the `1 norm! With more general atomic

sets, it may not be clear a priori what the bounding set should be in deriving the

convex envelope. In contrast the viewpoint adopted in this chapter leads to a natural,

unambiguous construction of the `1 norm and other general atomic norms. Further

as explained above it is the favorable facial structure of the atomic norm ball that

makes the atomic norm a suitable convex heuristic to recover simple models, and this

connection is transparent in the definition of the atomic norm.

� 5.3 Recovery from Generic Measurements

We consider the question of using the convex program (5.5) to recover “simple” models

formed according to (5.1) from a generic measurement operator or map Φ : Rp → Rn.

Specifically, we wish to compute estimates on the number of measurements n so that

we have exact recovery using (5.5) for most operators comprising of n measurements.

That is, the measure of n-measurement operators for which recovery fails using (5.5)

must be exponentially small. In order to conduct such an analysis we study random

Gaussian maps Φ, in which the entries are independent and identically distributed

Gaussians. These measurement operators have the property that the nullspace null(Φ)

is uniformly distributed among the set of all (p − n)-dimensional subspaces in Rp. In

particular we analyze when such operators satisfy the conditions of Proposition 5.2.1
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and Proposition 5.2.2 for exact recovery.

� 5.3.1 Recovery conditions based on Gaussian width

Proposition 5.2.1 requires that the nullspace of the measurement operator Φ must miss

the tangent cone TA(x?). Gordon [76] gave a solution to the problem of characterizing

the probability that a random subspace (of some fixed dimension) distributed uniformly

misses a cone. We begin by defining the Gaussian width of a set, which plays a key role

in Gordon’s analysis.

Definition 5.3.1. The Gaussian width of a set S ⊂ Rp is defined as:

w(S) := Eg

[
sup
z∈S

gT z

]
,

where g ∼ N (0, I) is a vector of independent zero-mean unit-variance Gaussians.

Gordon characterized the likelihood that a random subspace misses a cone C purely

in terms of the dimension of the subspace and the Gaussian width w(C ∩ Sp−1), where

Sp−1 ⊂ Rp is the unit sphere. Before describing Gordon’s result formally, we introduce

some notation. Let λk denote the expected length of a k-dimensional Gaussian random

vector. By elementary integration, we have that λk =
√

2Γ(k+1
2 )/Γ(k2 ). Further by

induction one can show that λk is tightly bounded as k√
k+1
≤ λk ≤

√
k.

The main idea underlying Gordon’s theorem is a bound on the minimum gain of

an operator restricted to a set. Specifically, recall that null(Φ) ∩ TA(x?) = {0} is the

condition required for recovery by Proposition 5.2.1. Thus if we have that the minimum

gain of Φ restricted to vectors in the set TA(x?)∩Sp−1 is bounded away from zero, then

it is clear that null(Φ) ∩ TA(x?) = ∅. We refer to such minimum gains restricted to a

subset of the sphere as restricted minimum singular values, and the following theorem

of Gordon gives a bound these quantities [76]:

Theorem 5.3.1 (Gordon’s Minimum Restricted Singular Values Theorem). Let Ω be

a closed subset of Sp−1. Let Φ : Rp → Rn be a random map with i.i.d. zero-mean

Gaussian entries having variance one. Then provided that λk ≥ w(Ω) + ε, we have

P
[
min
z∈Ω
‖Φz‖2 ≥ ε

]
≥ 1− 5

2
exp

(
− 1

18
(λk − w(Ω)− ε)2

)
. (5.12)

This theorem is not explicitly stated as such in [76] but the proof follows directly as a

result of Gordon’s arguments. Theorem 5.3.1 allows us to characterize exact recovery in
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the noise-free case using the convex program (5.5), and robust recovery in the noisy case

using the convex program (5.7). Specifically, we consider the number of measurements

required for exact or robust recovery when the measurement map Φ : Rp → Rn consists

of i.i.d. zero-mean Gaussian entries having variance 1/n. The normalization of the

variance ensures that the columns of Φ are approximately unit-norm, and is necessary

in order to properly define a signal-to-noise ratio. The following corollary summarizes

the main results of interest in our setting:

Corollary 5.3.1. Let Φ : Rp → Rn be a random map with i.i.d. zero-mean Gaussian

entries having variance 1/n. Further let Ω = TA(x?) ∩ Sp−1 denote the spherical part

of the tangent cone TA(x?).

1. Suppose that we have measurements y = Φx?, and we solve the convex program

(5.5). Then x? is the unique optimum of (5.5) with high probability provided that

n ≥ w(Ω)2 +O(1).

2. Suppose that we have noisy measurements y = Φx?+ω, with the noise ω bounded

as ‖ω‖ ≤ δ, and that we solve the convex program (5.7). Letting x̂ denote the

optimal solution of (5.7), we have that ‖x?−x̂‖ ≤ 2δ
ε with high probability provided

n ≥ w(Ω)2

(1− ε)2
+O(1).

Proof. The two results are simple consequences of Theorem 5.3.1:

1. The first part follows by setting ε = 0 in Theorem 5.3.1.

2. For ε ∈ (0, 1) we have from Theorem 5.3.1 that

‖Φ(z)‖ = ‖z‖
∥∥∥∥Φ

(
z

‖z‖

)∥∥∥∥ ≥ ε√
n
‖z‖ (5.13)

for all z ∈ TA(x?) with high probability. Therefore we can apply Proposition 5.2.2

to conclude that ‖x̂− x?‖ ≤ 2δ
ε with high probability, provided that n ≥ w(Ω)2

(1−ε)2 +

O(1).
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Gordon’s theorem thus provides a simple characterization of the number of measure-

ments required for reconstruction with the atomic norm. Indeed the Gaussian width

of Ω = TA(x?) ∩ Sp−1 is the only quantity that we need to compute in order to obtain

bounds for both exact and robust recovery. Unfortunately it is in general not easy to

compute Gaussian widths. Rudelson and Vershynin [127] have worked out Gaussian

widths for the special case of tangent cones at sparse vectors on the boundary of the `1

ball, and derived results for sparse vector recovery using `1 minimization that improve

upon previous results. In the next section we give various well-known properties of the

Gaussian width that are useful in some computations. In Section 5.3.3 we discuss a new

approach to width computations that gives near-optimal recovery bounds in a variety

of settings.

� 5.3.2 Properties of Gaussian width

In this section we record several elementary properties of the Gaussian width that are

useful for computation. We begin by making some basic observations, which are easily

derived.

First we note that the width is monotonic. If S1 ⊆ S2 ⊆ Rp, then it is clear from

the definition of the Gaussian width that

w(S1) ≤ w(S2).

Second we note that if we have a set S ⊆ Rp, then the Gaussian width of S is equal to

the Gaussian width of the convex hull of S:

w(S) = w(conv(S)).

This result follows from the basic fact in convex analysis that the maximum of a convex

function over a convex set is achieved at an extreme point of the convex set. Third if

V ⊂ Rp is a subspace in Rp, then we have that

w(V ∩ Sp−1) =
√

dim(V ),

which follows from standard results on random Gaussians. This result also agrees with

the intuition that a random Gaussian map Φ misses a k-dimensional subspace with

high probability as long as dim(null(Φ)) ≥ k+ 1. Finally, if a cone S ⊂ Rp is such that

S = S1 ⊕ S2, where S1 ⊂ Rp is a k-dimensional cone, S2 ⊂ Rp is a (p− k)-dimensional
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cone that is orthogonal to S1, and ⊕ denotes the direct sum operation, then the width

can be decomposed as follows:

w(S ∩ Sp−1)2 ≤ w(S1 ∩ Sp−1)2 + w(S2 ∩ Sp−1)2.

These observations are useful in a variety of situations. For example a width compu-

tation that frequently arises is one in which S = S1 ⊕ S2 as described above, with S1

being a k-dimensional subspace. It follows that the width of S ∩ Sp−1 is bounded as

w(S ∩ Sp−1)2 ≤ k + w(S2 ∩ Sp−1)2.

These basic operations involving Gaussian widths were used by Rudelson and Vershynin

[127] to compute the Gaussian widths of tangent cones at sparse vectors with respect

to the `1 norm ball.

Another tool for computing Gaussian widths is based on Dudley’s inequality [57,96],

which bounds the width of a set in terms of the covering number of the set at all scales.

Definition 5.3.2. Let S be an arbitrary compact subset of Rp. The covering number

of S in the Euclidean norm at resolution ε is the smallest number, N(S, ε), such that

N(S, ε) Euclidean balls of radius ε cover S.

Theorem 5.3.2 (Dudley’s Inequality). Let S be an arbitrary compact subset of Rp, and

let g be a random vector with i.i.d. zero-mean, unit-variance Gaussian entries. Then

w(S) ≤ 24

∫ ∞
0

√
log(N(S, ε))dε. (5.14)

We note here that a weak converse to Dudley’s inequality can be obtained via Su-

dakov’s Minoration [96] by using the covering number for just a single scale. Specifically,

we have the following lower bound on the Gaussian width of a compact subset S ⊂ Rp

for any ε > 0:

w(S) ≥ cε
√

log(N(S, ε)).

Here c > 0 is some universal constant.

Although Dudley’s inequality can be applied quite generally, estimating covering

numbers is difficult in most instances. There are a few simple characterizations avail-

able for spheres and Sobolev spaces, and some tractable arguments based on Maurey’s

empirical method [96]. However it is not evident how to compute these numbers for

general convex cones. Also, in order to apply Dudley’s inequality we need to estimate
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the covering number at all scales. Further Dudley’s inequality can be quite loose in

its estimates, and it often introduces extraneous polylogarithmic factors. In the next

section we describe a new mechanism for estimating Gaussian widths, which provides

near-optimal guarantees for recovery of sparse vectors and low-rank matrices, as well

as for several of the recovery problems discussed in Section 5.3.4.

� 5.3.3 New results on Gaussian width

We discuss a new dual framework for computing Gaussian widths. In particular we

express the Gaussian width of a cone in terms of the dual of the cone. To be fully

general let C be a non-empty convex cone in Rp, and let C∗ denote the polar of C. We

can then upper bound the Gaussian width of any cone C in terms of the polar cone C∗:

Proposition 5.3.1. Let C be any non-empty convex cone in Rp, and let g ∼ N (0, I)

be a random Gaussian vector. Then we have the following bound:

w(C ∩ Sp−1) ≤ Eg [dist(g, C∗)] ,

where dist here denotes the Euclidean distance between a point and a set.

The proof is given in Appendix C.1, and it follows from an appeal to convex duality.

Proposition 5.3.1 is more or less a restatement of the fact that the support function

of a convex cone is equal to the distance to its polar cone. As it is the square of the

Gaussian width that is of interest to us (see Corollary 5.3.1), it is often useful to apply

Jensen’s inequality to make the following approximation:

Eg[dist(g, C∗)]2 ≤ Eg[dist(g, C∗)2]. (5.15)

The inspiration for our characterization in Proposition 5.3.1 of the width of a cone

in terms of the expected distance to its dual came from the work of Stojnic [134],

who used linear programming duality to construct Gaussian-width-based estimates for

analyzing recovery in sparse reconstruction problems. Specifically, Stojnic’s relatively

simple approach recovered well-known phase transitions in sparse signal recovery [55],

and also generalized to block sparse signals and other forms of structured sparsity.

This new dual characterization yields a number of useful bounds on the Gaussian

width, which we describe here. In the following section we use these bounds to derive

new recovery results. The first result is a bound on the Gaussian width of a cone in

terms of the Gaussian width of its polar.
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Lemma 5.3.1. Let C ⊆ Rp be a non-empty closed, convex cone. Then we have that

w(C ∩ Sp−1)2 + w(C∗ ∩ Sp−1)2 ≤ p.

Proof. Combining Proposition 5.3.1 and (5.15), we have that

w(C ∩ Sp−1)2 ≤ Eg

[
dist(g, C∗)2

]
,

where as before g ∼ N (0, I). For any z ∈ Rp we let ΠC(z) = arg infu∈C ‖z− u‖ denote

the projection of z onto C. From standard results in convex analysis [124], we note that

one can decompose any z ∈ Rp into orthogonal components as follows:

z = ΠC(z) + ΠC∗(z), 〈ΠC(z),ΠC∗(z)〉 = 0.

Therefore we have the following sequence of bounds:

w(C ∩ Sp−1)2 ≤ Eg

[
dist(g, C∗)2

]
= Eg

[
‖ΠC(g)‖2

]
= Eg

[
‖g‖2 − ‖ΠC∗(g)‖2

]
= p− Eg

[
‖ΠC∗(g)‖2

]
= p− Eg

[
dist(g, C)2

]
≤ p− w(C∗ ∩ Sp−1)2.

In many recovery problems one is interested in computing the width of a self-dual

cone. For such cones the following corollary to Lemma 5.3.1 gives a simple solution:

Corollary 5.3.2. Let C ⊂ Rp be a self-dual cone, i.e., C = −C∗. Then we have that

w(C ∩ Sp−1)2 ≤ p

2
.

Proof. The proof follows directly from Lemma 5.3.1 as w(C∩Sp−1)2 = w(C∗∩Sp−1)2.

Our next bound for the width of a cone C is based on the volume of its polar

C∗∩Sp−1. The volume of a measurable subset of the sphere is the fraction of the sphere

Sp−1 covered by the subset. Thus it is a quantity between zero and one.
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Theorem 5.3.3 (Gaussian width from volume of the polar). Let C ⊆ Rp be any closed,

convex, solid cone, and suppose that its polar C∗ is such that C∗ ∩ Sp−1 has a volume of

Θ ∈ [0, 1]. Then for p ≥ 9 we have that

w(C ∩ Sp−1) ≤ 3

√
log

(
4

Θ

)
.

The proof of this theorem is given in Appendix C.2. The main property that we

appeal to in the proof is Gaussian isoperimetry. In particular there is a formal sense

in which a spherical cap1 is the “extremal case” among all subsets of the sphere with

a given volume Θ. Other than this observation the proof mainly involves a sequence of

integral calculations.

Note that if we are given a specification of a cone C ⊂ Rp in terms of a membership

oracle, it is possible to efficiently obtain good numerical estimates of the volume of

C ∩ Sp−1 [58]. Moreover, simple symmetry arguments often give relatively accurate

estimates of these volumes. Such estimates can then be plugged into Theorem 5.3.3 to

yield bounds on the width.

� 5.3.4 New recovery bounds

We use the bounds derived in the last section to obtain new recovery results. First

using the dual characterization of the Gaussian width in Proposition 5.3.1, we are

able to obtain sharp bounds on the number of measurements required for recovering

sparse vectors and low-rank matrices from random Gaussian measurements using convex

optimization (i.e., `1-norm and nuclear norm minimization).

Proposition 5.3.2. Let x? ∈ Rp be an s-sparse vector. Letting A denote the set of

unit-Euclidean-norm one-sparse vectors, we have that

w(TA(x?))2 ≤

2s
(
log
(p−s

s

)
+ 1
)
) s < 1

1+ep

2s(log(p− s) + 1) otherwise.

Thus, when s < 0.26p, 2s(log(p/s− 1) + 1) random Gaussian measurements suffice to

recover x? via `1 norm minimization with high probability. Moreover, 2s(log(p− s) + 1)

measurements suffice for any value of s.

1A spherical cap is a subset of the sphere obtained by intersecting the sphere Sp−1 with a halfspace.
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Proposition 5.3.3. Let x? be an m1 ×m2 rank-r matrix with m1 ≤ m2. Letting A
denote the set of unit-Euclidean-norm rank-one matrices, we have that

w(TA(x?))2 ≤ 3r(m1 +m2 − r).

Thus 3r(m1 +m2− r) random Gaussian measurements suffice to recover x? via nuclear

norm minimization with high probability.

The proofs of these propositions are given in Appendix C.3. The number of mea-

surements required by these bounds is on the same order as previously known re-

sults [28,53], but with improved constants. We also note that we have robust recovery

at these thresholds. Further these results do not require explicit recourse to any type

of restricted isometry property [28], and the proofs are simple and based on elementary

integrals.

Next we obtain a set of recovery results by appealing to Corollary 5.3.2 on the width

of a self-dual cone. These examples correspond to the recovery of individual atoms (i.e.,

the extreme points of the set conv(A)), although the same machinery is applicable in

principle to estimate the number of measurements required to recover models formed

as sums of a few atoms (i.e., points lying on low-dimensional faces of conv(A)). We

first obtain a well-known result on the number of measurements required for recovering

sign-vectors via `∞ norm minimization.

Proposition 5.3.4. Let x? ∈ {−1,+1}p be a sign-vector in Rp, and let A be the set of

all such sign-vectors. Then we have that

w(TA(x?))2 ≤ p

2
.

Thus p
2 random Gaussian measurements suffice to recover x? via `∞-norm minimization

with high probability.

Proof. The tangent cone at any signed vector x? with respect to the `∞ ball is a

rotation of the nonnegative orthant. Thus we only need to compute the Gaussian

width of an orthant in Rp. As the orthant is self-dual, we have the required bound from

Corollary 5.3.2.

This result agrees with previously computed bounds in [56, 102], which relied on

a more complicated combinatorial argument. Next we compute the number of mea-

surements required to recover orthogonal matrices via spectral-norm minimization (see
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Section 5.2.2). Let O(m) denote the group of m×m orthogonal matrices, viewed as a

subgroup of the set of nonsingular matrices in Rm×m.

Proposition 5.3.5. Let x? ∈ Rm×m be an orthogonal matrix, and let A be the set of

all orthogonal matrices. Then we have that

w(TA(x?))2 ≤ 3m2 −m
4

.

Thus 3m2−m
4 random Gaussian measurements suffice to recover x? via spectral-norm

minimization with high probability.

Proof. Due to the symmetry of the orthogonal group, it suffices to consider the tangent

cone at the identity matrix I with respect to the spectral norm ball. Recall that the

spectral norm ball is the convex hull of the orthogonal matrices. Therefore the tangent

space at the identity matrix with respect to the orthogonal group O(m) is a subset of

the tangent cone TA(I). It is well-known that this tangent space is the set of all m×m
skew-symmetric matrices. Thus we only need to compute the component S of TA(I)

that lies in the subspace of symmetric matrices:

S = cone{M − I : ‖M‖A ≤ 1, M symmetric}

= cone{UDUT − UUT : ‖D‖A ≤ 1, D diagonal, U ∈ O(m)}

= cone{U(D − I)UT : ‖D‖A ≤ 1, D diagonal, U ∈ O(m)}

= −PSDm.

Here PSDm denotes the set of m×m symmetric positive-semidefinite matrices. As this

cone is self-dual, we can apply Corollary 5.3.2 in conjunction with the observations in

Section 5.3.2 to conclude that

w(TA(I))2 ≤
(
m

2

)
+

1

2

(
m+ 1

2

)
=

3m2 −m
4

.

We note that the number of degrees of freedom in an m×m orthogonal matrix (i.e.,

the dimension of the manifold of orthogonal matrices) is m(m−1)
2 . Proposition 5.3.4

and Proposition 5.3.5 point to the importance of obtaining recovery bounds with sharp

constants. Larger constants in either result would imply that the number of measure-

ments required exceeds the ambient dimension of the underlying x?. In these and many
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other cases of interest Gaussian width arguments not only give order-optimal recovery

results, but also provide precise constants that result in sharp recovery thresholds.

Finally we give a third set of recovery results that appeal to the Gaussian width

bound of Theorem 5.3.3. The following measurement bound applies to cases when

conv(A) is a symmetric polytope (roughly speaking, all the vertices are “equivalent”),

and is a simple corollary of Theorem 5.3.3.

Corollary 5.3.3. Suppose that the set A is a finite collection of m points, with the con-

vex hull conv(A) being a vertex-transitive polytope [149] whose vertices are the points in

A. Using the convex program (5.5) we have that 9 log(m) random Gaussian measure-

ments suffice, with high probability, for exact recovery of a point in A, i.e., a vertex of

conv(A).

Proof. We recall the basic fact from convex analysis that the normal cones at the vertices

of a convex polytope in Rp provide a partitioning of Rp. As conv(A) is a vertex-transitive

polytope, the normal cone at a vertex covers 1
m fraction of Rp. Applying Theorem 5.3.3,

we have the desired result.

Clearly we require the number of vertices to be bounded as m ≤ exp{p9}, so that

the estimate of the number of measurements is not vacuously true. This result has

useful consequences in settings in which conv(A) is a combinatorial polytope, as such

polytopes are often vertex-transitive. We have the following example on the number of

measurements required to recover permutation matrices:

Proposition 5.3.6. Let x? ∈ Rm×m be a permutation matrix, and let A be the set

of all m×m permutation matrices. Then 9m log(m) random Gaussian measurements

suffice, with high probability, to recover x? by solving the optimization problem (5.5),

which minimizes the norm induced by the Birkhoff polytope of doubly stochastic matrices.

Proof. This result follows from Corollary 5.3.3 by noting that there are m! permutation

matrices of size m×m.

� 5.4 Representability and Algebraic Geometry of Atomic Norms

� 5.4.1 Role of algebraic structure

All of our discussion thus far has focussed on arbitrary atomic sets A. As seen in

Section 5.2 the geometry of the convex hull conv(A) completely determines conditions
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under which exact recovery is possible using the convex program (5.5). In this section

we address the question of computationally representing the convex hull conv(A) (or

equivalently of computing the atomic norm ‖ · ‖A). These issues are critical in order

to be able to solve the convex optimization problem (5.5). Although the convex hull

conv(A) is a well-defined object, in general we may not even be able to computationally

represent it (for example, if A is a fractal). In order to obtain exact or approximate

representations (analogous to the cases of the `1 norm and the nuclear norm) it is

important to impose some structure on the atomic set A. We focus on cases in which

the set A has algebraic structure. Specifically let the ring of multivariate polynomials

in p variables be denoted by R[x] = R[x1, . . . ,xp]. We then consider real algebraic

varieties [18]:

Definition 5.4.1. A real algebraic variety S ⊆ Rp is the set of real solutions of a

system of polynomial equations:

S = {x : gj(x) = 0, ∀j},

where {gj} is a finite collection of polynomials in R[x].

Indeed all of the atomic sets A considered in this chapter are examples of alge-

braic varieties. Algebraic varieties have the remarkable property that (the closure of)

their convex hull can be arbitrarily well-approximated in a constructive manner as (the

projection of) a set defined by linear matrix inequality constraints. A potential com-

plication may arise, however, if these semidefinite representations are intractable to

compute in polynomial time. In such cases it is possible to approximate the convex

hulls via a hierarchy of tractable semidefinite relaxations. We describe these results in

more detail in Section 5.4.2. Therefore the atomic norm minimization problems such as

(5.7) arising in such situations can be solved exactly or approximately via semidefinite

programming.

Algebraic structure also plays a second important role in atomic norm minimization

problems. If an atomic norm ‖·‖A is intractable to compute, we may approximate it via

a more tractable norm ‖ · ‖app. However not every approximation of the atomic norm is

equally good for solving inverse problems. As illustrated in Figure 5.1 we can construct

approximations of the `1 ball that are tight in a metric sense, with (1 − ε)‖ · ‖app ≤
‖ · ‖`1 ≤ (1 + ε)‖ · ‖app, but where the tangent cones at sparse vectors in the new

norm are halfspaces. In such a case, the number of measurements required to recover
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Figure 5.1. The convex body given by the dotted line is a good metric approximation to the `1 ball.

However as its “corners” are “smoothed out”, the tangent cone at x? goes from being a proper cone

(with respect to the `1 ball) to a halfspace (with respect to the approximation).

the sparse vector ends up being on the same order as the ambient dimension. (Note

that the `1-norm is in fact tractable to compute; we simply use it here for illustrative

purposes.) The key property that we seek in approximations to an atomic norm ‖ · ‖A
is that they preserve algebraic structure such as the vertices/extreme points and more

generally the low-dimensional faces of the conv(A). As discussed in Section 5.2.5 points

on such low-dimensional faces correspond to simple models, and algebraic-structure

preserving approximations ensure that the tangent cones at simple models with respect

to the approximations are not too much larger than the corresponding tangent cones

with respect to the original atomic norms.

� 5.4.2 Semidefinite relaxations using Theta bodies – an example

In this section we give an example of a family of semidefinite relaxations to the atomic

norm minimization problem; the hierarchy of relaxations is obtained using the Theta-

bodies construction of [77] (see Chapter 2 for a brief summary), and is applicable

whenever the atomic set has algebraic structure. To begin with if we approximate the

atomic norm ‖ · ‖A by another atomic norm ‖ · ‖Ã defined using a larger collection of

atoms A ⊆ Ã, it is clear that

‖ · ‖Ã ≤ ‖ · ‖A.

Consequently outer approximations of the atomic set give rise to approximate norms

that provide lower bounds on the optimal value of the problem (5.5).

In order to provide such lower bounds on the optimal value of (5.5), we discuss

semidefinite relaxations of the convex hull conv(A) based on Theta bodies. Specifically
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we discuss an example application of these relaxations to the problem of approximating

the tensor nuclear norm. We focus on the case of tensors of order three that lie in

Rm×m×m, i.e., tensors indexed by three numbers, for notational simplicity, although

our discussion is applicable more generally. In particular the atomic set A is the set of

unit-Euclidean-norm rank-one tensors:

A = {u⊗ v ⊗w : u,v,w ∈ Rm, ‖u‖ = ‖v‖ = ‖w‖ = 1}

= {N ∈ Rm
3

: N = u⊗ v ⊗w, u,v,w ∈ Rm, ‖u‖ = ‖v‖ = ‖w‖ = 1},

where u⊗v⊗w is the tensor product of three vectors. Note that the second description

is written as the projection onto Rm3
of a variety defined in Rm3+3m. The nuclear norm

is then given by (5.2), and is intractable to compute in general. Now let IA denote a

polynomial ideal of polynomial maps from Rm3+m to R:

IA = {g : g =
m∑

i,j,k=1

gijk(Nijk−uivjwk)+gu(uTu−1)+gv(v
Tv−1)+gw(wTw−1),∀gijk, gu, gv, gw}.

Here gu, gv, gw, {gijk}i,j,k are polynomials in the variables N,u,v,w. Following the

program described above for constructing approximations, a family of semidefinite re-

laxations to the tensor nuclear norm ball can be prescribed in this manner via the theta

bodies THk(IA).

� 5.4.3 Tradeoff between relaxation and number of measurements

As discussed in Section 5.2.5 the atomic norm is the best convex heuristic for solving

ill-posed linear inverse problems of the type considered in this chapter. However we may

wish to approximate the atomic norm in cases when it is intractable to compute exactly,

and the discussion in the preceding section provides one approach to constructing a

family of relaxations. As one might expect the tradeoff for using such approximations,

i.e., a weaker convex heuristic than the atomic norm, is an increase in the number of

measurements required for exact or robust recovery. The reason for this is that the

approximate norms have larger tangent cones at their extreme points, which makes it

harder to satisfy the empty intersection condition of Proposition 5.2.1. We highlight

this tradeoff here with an illustrative example involving the cut polytope.

The cut polytope is defined as the convex hull of all cut matrices:

P = conv{zzT : z ∈ {−1,+1}m}.
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As described in Section 5.2.2 low-rank matrices that are composed of ±1’s as entries

are of interest in collaborative filtering [133], and the norm induced by the cut polytope

is a potential convex heuristic for recovering such matrices from limited measurements.

However it is well-known that the cut polytope is intractable to characterize [47], and

therefore we need to use tractable relaxations instead. We consider the following two

relaxations of the cut polytope. The first is the popular relaxation that is used in

semidefinite approximations of the MAXCUT problem:

P1 = {M : M symmetric, M � 0, Mii = 1, ∀i = 1, · · · , p}.

This is the well-studied elliptope [47], and can also be interpreted as the second theta

body relaxation (see Chapter 2) of the cut polytope P [77]. We also investigate the

performance of a second, weaker relaxation:

P2 = {M : M symmetric, Mii = 1,∀i, |Mij | ≤ ±1, ∀i 6= j}.

This polytope is simply the convex hull of symmetric matrices with ±1’s in the off-

diagonal entries, and 1’s on the diagonal. We note that P2 is an extremely weak

relaxation of P, but we use it here only for illustrative purposes. It is easily seen that

P ⊂ P1 ⊂ P2,

with all the inclusions being strict. Figure 5.2 gives a toy sketch that highlights all the

main geometric aspects of these relaxations. In particular P1 has many more extreme

points that P, although the set of vertices of P1, i.e., points that have full-dimensional

normal cones, are precisely the cut matrices (which are the vertices of P) [47]. The

convex polytope P2 contains many more vertices compared to P as shown in Figure 5.2.

As expected the tangent cones at vertices of P become increasingly larger as we use

successively weaker relaxations. The following result summarizes the number of random

measurements required for recovering a cut matrix, i.e., a rank-one sign matrix, using

the norms induced by each of these convex bodies.

Proposition 5.4.1. Suppose x? ∈ Rm×m is a rank-one sign matrix, i.e., a cut matrix,

and we are given n random Gaussian measurements of x?. We wish to recover x? by

solving a convex program based on the norms induced by each of P,P1,P2. We have

exact recovery of x? in each of these cases with high probability under the following

conditions on the number of measurements:
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Figure 5.2. A toy sketch illustrating the cut polytope P, and the two approximations P1 and P2.

Note that P1 is a sketch of the standard semidefinite relaxation that has the same vertices as P. On

the other hand P2 is a polyhedral approximation to P that has many more vertices as shown in this

sketch.

1. Using P: n = O(m).

2. Using P1: n = O(m).

3. Using P2: n = m2−m
4 .

Proof. For the first part, we note that P is a symmetric polytope with 2m−1 vertices.

Therefore we can apply Corollary 5.3.3 to conclude that n = O(m) measurements

suffices for exact recovery.

For the second part we note that the tangent cone at x? with respect to the nuclear

norm ball of m × m matrices contains within it the tangent cone at x? with respect

to the polytope P1. Hence we appeal to Proposition 5.3.3 to conclude that n = O(m)

measurements suffices for exact recovery.

Finally, we note that P2 is essentially the hypercube in
(
m
2

)
dimensions. Appealing

to Proposition 5.3.4, we conclude that n = m2−m
4 measurements suffices for exact

recovery.

It is not too hard to show that these bounds are order-optimal, and that they

cannot be improved. Thus we have a rigorous demonstration in this particular instance

of the fact that the number of measurements required for exact recovery increases as the

relaxations get weaker (and as the tangent cones get larger). The principle underlying

this illustration holds more generally, namely that there exists a tradeoff between the

complexity of the convex heuristic and the number of measurements required for exact

or robust recovery. It would be of interest to quantify this tradeoff in other settings,
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for example, in problems in which we use increasingly tighter relaxations of the atomic

norm via theta bodies.

We also note that the tractable relaxation based on P1 is only off by a constant

factor with respect to the optimal heuristic based on the cut polytope P. This suggests

the potential for tractable heuristics to approximate hard atomic norms with provable

approximation ratios, akin to methods developed in the literature on approximation

algorithms for hard combinatorial optimization problems.

� 5.4.4 Terracini’s lemma and lower bounds on recovery

Algebraic structure in the atomic set A provides yet another interesting insight, namely

for giving lower bounds on the number of measurements required for exact recovery.

The recovery condition of Proposition 5.2.1 states that the nullspace null(Φ) of the

measurement operator Φ : Rp → Rn must miss the tangent cone TA(x?) at the point of

interest x?. Suppose that this tangent cone contains a q-dimensional subspace. It is then

clear from straightforward linear algebra arguments that the number of measurements n

must exceed q. Indeed this bound must hold for any linear measurement scheme. Thus

the dimension of the subspace contained inside the tangent cone provides a simple lower

bound on the number of linear measurements.

In this section we discuss a method to obtain estimates of the dimension of a sub-

space component of the tangent cone. We focus again on the setting in which A is an

algebraic variety. Indeed in all of the examples of Section 5.2.2, the atomic set A is

an algebraic variety. In such cases simple models x? formed according to (5.1) can be

viewed as elements of secant varieties.

Definition 5.4.2. Let A ∈ Rp be an algebraic variety. Then the k’th secant variety

Ak is defined as the union of all affine spaces passing through any k + 1 points of A.

Algebraic geometry has a long history of investigations of secant varieties, as well

as tangent spaces to these secant varieties [79]. In particular a question of interest is

to characterize the dimensions of secant varieties and tangent spaces. In our context,

estimates of these dimensions are useful in giving lower bounds on the number of mea-

surements required for recovery. Specifically we have the following result, which states

that certain linear spaces must lie in the tangent cone at x? with respect to conv(A):

Proposition 5.4.2. Let A ⊂ Rp be a smooth variety, and let T (u,A) denote the

tangent space at any u ∈ A with respect to A. Suppose x =
∑k

i=1 ciai, ∀ai ∈ A, ci ≥ 0,
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such that

‖x‖A =

k∑
i=1

ci.

Then the tangent cone TA(x?) contains the following linear space:

T (a1,A)⊕ · · · ⊕ T (ak,A) ⊂ TA(x?),

where ⊕ denotes the direct sum of subspaces.

Proof. We note that if we perturb a1 slightly to any neighboring a′1 so that a′1 ∈ A,

then the resulting x′ = c1a
′
1 +

∑k
i=2 c2ai is such that ‖x′‖A ≤ ‖x‖A. The proposition

follows directly from this observation.

By Terracini’s lemma [79] from algebraic geometry the subspace T (a1,A) ⊕ · · · ⊕
T (ak,A) is in fact the estimate for the tangent space T (x,Ak−1) at x with respect to

the (k − 1)’th secant variety Ak−1:

Proposition 5.4.3 (Terracini’s Lemma). Let A ⊂ Rp be a smooth affine variety, and

let T (u,A) denote the tangent space at any u ∈ A with respect to A. Suppose x ∈ Ak−1

is a generic point such that x =
∑k

i=1 ciai, ∀ai ∈ A, ci ≥ 0. Then the tangent space

T (x,Ak−1) at x with respect to the secant variety Ak−1 is given by T (a1,A) ⊕ · · · ⊕
T (ak,A). Moreover the dimension of T (x,Ak−1) is at most (and is expected to be)

min{p, (k + 1)dim(A) + k}.

Combining these results we have that estimates of the dimension of the tangent space

T (x,Ak−1) lead directly to lower bounds on the number of measurements required for

recovery. The intuition here is clear as the number of measurements required must

be bounded below by the number of “degrees of freedom,” which is captured by the

dimension of the tangent space T (x,Ak−1). However Terracini’s lemma provides us with

general estimates of the dimension of T (x,Ak−1) for generic points x. Therefore we can

directly obtain lower bounds on the number of measurements, purely by considering the

dimension of the variety A and the number of elements from A used to construct x (i.e.,

the order of the secant variety in which x lies). As an example the dimension of the

base variety of normalized order-three tensors in Rm×m×m is 3(m− 1). Consequently if

we were to in principle solve the tensor nuclear norm minimization problem, we should

expect to require at least O(km) measurements to recover a rank-k tensor.
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� 5.5 Computational Experiments

� 5.5.1 Algorithmic considerations

While a variety of atomic norms can be represented or approximated by linear matrix

inequalities, these representations do not necessarily translate into practical implemen-

tations. Semidefinite programming can be technically solved in polynomial time, but

general interior point solvers typically only scale to problems with a few hundred vari-

ables. For larger scale problems, it is often preferable to exploit structure in the atomic

set A to develop fast, first-order algorithms.

A starting point for first-order algorithm design lies in determining the structure of

the proximity operator (or Moreau envelope) associated with the atomic norm,

ΠA(x;µ) := arg min
z

1
2‖z− x‖2 + µ‖z‖A . (5.16)

Here µ is some positive parameter. Proximity operators have already been harnessed

for fast algorithms involving the `1 norm [39, 40, 66, 78, 144] and the nuclear norm

[26, 100, 137] where these maps can be quickly computed in closed form. For the `1

norm, the ith component of ΠA(x;µ) is given by

ΠA(x;µ)i =


xi + µ xi < −µ

0 −µ ≤ xi ≤ µ

xi − µ xi > µ

. (5.17)

This is the so-called soft thresholding operator. For the nuclear norm, ΠA soft thresholds

the singular values. In either case, the only structure necessary for the cited algorithms

to converge is the convexity of the norm. Indeed, essentially any algorithm developed

for `1 or nuclear norm minimization can in principle be adapted for atomic norm min-

imization. One simply needs to apply the operator ΠA wherever a shrinkage operation

was previously applied.

For a concrete example, suppose f is a smooth function, and consider the optimiza-

tion problem

min
x

f(x) + µ‖x‖A . (5.18)

The classical projected gradient method for this problem alternates between taking

steps along the gradient of f and then applying the proximity operator associated with

the atomic norm. Explicitly, the algorithm consists of the iterative procedure

xk+1 = ΠA(xk − αk∇f(xk);αkλ) (5.19)
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where {αk} is a sequence of positive stepsizes. Under very mild assumptions, this

iteration can be shown to converge to a stationary point of (5.18) [68]. When f is

convex, the returned stationary point is a globally optimal solution. Recently, Nesterov

has described a particular variant of this algorithm that is guaranteed to converge at a

rate no worse than O(k−1), where k is the iteration counter [112]. Moreover, he proposes

simple enhancements of the standard iteration to achieve an O(k−2) convergence rate

for convex f and a linear rate of convergence for strongly convex f .

If we apply the projected gradient method to the regularized inverse problem

min
x
‖Φx− y‖2 + λ‖x‖A (5.20)

then the algorithm reduces to the straightforward iteration

xk+1 = ΠA(xk + αkΦ
†(y − Φxk);αkλ) . (5.21)

Here (5.20) is equivalent to (5.7) for an appropriately chosen λ > 0 and is useful for

estimation from noisy measurements.

The basic (noiseless) atomic norm minimization problem (5.5) can be solved by

minimizing a sequence of instances of (5.20) with monotonically decreasing values of

λ. Each subsequent minimization is initialized from the point returned by the previous

step. Such an approach corresponds to the classic Method of Multipliers [12] and has

proven effective for solving problems regularized by the `1 norm and for total variation

denoising [27,146].

This discussion demonstrates that when the proximity operator associated with

some atomic set A can be easily computed, then efficient first-order algorithms are

immediate. For novel atomic norm applications, one can thus focus on algorithms and

techniques to compute proximity operators associated. We note that, from a computa-

tional perspective, it may be easier to compute the proximity operator via dual atomic

norm. Associated to each proximity operator is the dual operator

ΛA(x;µ) = arg min
y

1
2‖y − x‖2 s.t. ‖y‖∗A ≤ µ (5.22)

By an appropriate change of variables, ΛA is nothing more than the projection of µ−1x

onto the unit ball in the dual atomic norm:

ΛA(x;µ) = arg min
y

1
2‖y − µ

−1x‖2 s.t. ‖y‖∗A ≤ 1 (5.23)
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From convex programming duality, we have x = ΠA(x;µ) + ΛA(x;µ). This can be

seen by observing

min
z

1
2‖z− x‖2 + µ‖z‖A = min

z
max
‖y‖∗A≤µ

1
2‖z− x‖2 + 〈y, z〉 (5.24)

= max
‖y‖∗A≤µ

min
z

1
2‖z− x‖2 + 〈y, z〉 (5.25)

= max
‖y‖∗A≤µ

−1
2‖y − x‖2 + 1

2‖x‖
2 (5.26)

In particular, ΠA(x;µ) and ΛA(x;µ) form a complementary primal-dual pair for this

optimization problem. Hence, we only need to able to efficiently compute the Euclidean

projection onto the dual norm ball to compute the proximity operator associated with

the atomic norm.

Finally, though the proximity operator provides an elegant framework for algorithm

generation, there are many other possible algorithmic approaches that may be employed

to take advantage of the particular structure of an atomic set A. For instance, we can

rewrite (5.22) as

ΛA(x;µ) = arg min
y

1
2‖y − µ

−1x‖2 s.t. 〈y,a〉 ≤ 1 ∀a ∈ A (5.27)

Suppose we have access to a procedure that, given z ∈ Rn, can decide whether 〈z,a〉 ≤ 1

for all a ∈ A, or can find a violated constraint where 〈z, â〉 > 1. In this case, we can

apply a cutting plane method or ellipsoid method to solve (5.22) or (5.6) [111, 117].

Similarly, if it is simpler to compute a subgradient of the atomic norm than it is to

compute a proximity operator, then the standard subgradient method [13, 111] can be

applied to solve problems of the form (5.20). Each computational scheme will have

different advantages and drawbacks for specific atomic sets, and relative effectiveness

needs to be evaluated on a case-by-case basis.

� 5.5.2 Simulation results

We describe the results of numerical experiments in recovering orthogonal matrices,

permutation matrices, and rank-one sign matrices (i.e., cut matrices) from random

linear measurements by solving convex optimization problems. All the atomic norm

minimization problems in these experiments are solved using a combination of the

SDPT3 package [136] and the YALMIP parser [98].

Orthogonal matrices. We consider the recovery of 20 × 20 orthogonal matrices

from random Gaussian measurements via spectral norm minimization. Specifically we
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Figure 5.3. Plots of the number of measurements available versus the probability of exact recovery

(computed over 50 trials) for various models.

solve the convex program (5.5), with the atomic norm being the spectral norm. Fig-

ure 5.3 gives a plot of the probability of exact recovery (computed over 50 random

trials) versus the number of measurements required.

Permutation matrices. We consider the recovery of 20×20 permutation matrices

from random Gaussian measurements. We solve the convex program (5.5), with the

atomic norm being the norm induced by the Birkhoff polytope of 20×20 doubly stochas-

tic matrices. Figure 5.3 gives a plot of the probability of exact recovery (computed over

50 random trials) versus the number of measurements required.

Cut matrices. We consider the recovery of 20 × 20 cut matrices from random

Gaussian measurements. As the cut polytope is intractable to characterize, we solve the

convex program (5.5) with the atomic norm being approximated by the norm induced

by the semidefinite relaxation P1 described in Section 5.4.3. Figure 5.3 gives a plot of

the probability of exact recovery (computed over 50 random trials) versus the number

of measurements required.

In each of these experiments we see agreement between the observed phase transi-

tions, and the theoretical predictions (Propositions 5.3.5, 5.3.6, and 5.4.1) of the number

of measurements required for exact recovery. In particular note that the phase transi-

tion in Figure 5.3 for the number of measurements required for recovering an orthogonal

matrix is very close to the prediction n ≈ 3m2−m
4 = 295 of Proposition 5.3.5. We re-

fer the reader to [55, 102, 121] for similar phase transition plots for recovering sparse
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vectors, low-rank matrices, and signed vectors from random measurements via convex

optimization.

� 5.6 Discussion

This chapter has illustrated that for a fixed set of base atoms, the atomic norm is the

best choice of a convex regularizer for solving ill-posed inverse problems with the pre-

scribed priors. With this in mind, our results in Section 5.3 and Section 5.4 outline

methods for computing hard limits on the number of measurements required for recov-

ery from any convex heuristic. Using the calculus of Gaussian widths, such bounds

can be computed in a relatively straightforward fashion, especially if one can appeal to

notions of convex duality and symmetry. This computational machinery of widths and

dimension counting is surprisingly powerful: near-optimal bounds on estimating sparse

vectors and low-rank matrices from partial information follow from elementary inte-

gration. Thus we expect that our new bounds concerning symmetric, vertex-transitive

polytopes are also nearly tight. Moreover, algebraic reasoning allowed us to explore the

inherent trade-offs between computational efficiency and measurement demands. More

complicated algorithms for atomic norm regularization might extract structure from

less information, but approximation algorithms are often sufficient for near optimal

reconstructions.

This chapter serves as a foundation for many new exciting directions in inverse

problems, and we close our discussion with a description of several natural possibilities

for future work:

Width calculations for more atomic sets. The calculus of Gaussian widths described in

Section 5.3 provides the building blocks for computing the Gaussian widths for the

application examples discussed in Section 5.2. We have not yet exhaustively estimated

the widths in all of these examples, and a thorough cataloging of the measurement

demands associated with different prior information would provide a more complete

understanding of the fundamental limits of solving underdetermined inverse problems.

Moreover, our list of examples is by no means exhaustive. The framework developed in

this chapter provides a compact and efficient methodology for constructing regularizers

from very general prior information, and new regularizers can be easily created by

translating grounded expert knowledge into new atomic norms.
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Atomic norm decompositions. While the techniques of Section 5.3 and Section 5.4 pro-

vide bounds on the estimation of points in low-dimensional secant varieties of atomic

sets, they do not provide a procedure for actually constructing decompositions. That

is, we have provided bounds on the number of measurements required to recover points

x of the form

x =
∑
a∈A

caa

when the coefficient sequence {ca} is sparse, but we do not provide any methods for

actually recovering c itself. These decompositions are useful, for instance, in actually

computing the rank-one binary vectors optimized in semidefinite relaxations of com-

binatorial algorithms [3, 72, 110], or in the computation of tensor decompositions from

incomplete data [91]. Is it possible to use algebraic structure to generate determin-

istic or randomized algorithms for reconstructing the atoms that underlie a vector x,

especially when approximate norms are used?

Large-scale algorithms. Finally, we think that the most fruitful extensions of this work

lie in a thorough exploration of the empirical performance and efficacy of atomic norms

on large-scale inverse problems. The proposed algorithms in Section 5.5 require only

the knowledge of the proximity operator of an atomic norm, or a Euclidean projection

operator onto the dual norm ball. Using these design principles and the geometry of

particular atomic norms should enable the scaling of atomic norm techniques to massive

data sets.



Chapter 6

Convex Graph Invariants

� 6.1 Introduction

Graphs are useful in many applications throughout science and engineering as they

offer a concise model for relationships among a large number of interacting entities.

These relationships are often best understood using structural properties of graphs.

Graph invariants play an important role in characterizing abstract structural features

of a graph, as they do not depend on the labeling of the nodes of the graph. Indeed

families of graphs that share common structural attributes are often specified via graph

invariants. For example bipartite graphs can be defined by the property that they

contain no cycles of odd length, while the family of regular graphs consists of graphs in

which all nodes have the same degree. Such descriptions of classes of graphs in terms

of invariants have found applications in areas as varied as combinatorics [48], network

analysis in chemistry [21] and in biology [105], and in machine learning [93]. For instance

the treewidth [123] of a graph is a basic invariant that governs the complexity of various

algorithms for graph problems.

We begin by introducing three canonical problems involving structural properties of

graphs, and the development of a unified solution framework to address these questions

serves as motivation for our discussion throughout this chapter.

• Graph deconvolution. Suppose we are given a graph that is the combination of

two known graphs overlaid on the same set of nodes. How do we recover the indi-

vidual components from the composite graph? For example in Figure 6.1 we are

given a composite graph that is formed by adding a cycle and the Clebsch graph.

Given no extra knowledge of any labeling of the nodes, can we “deconvolve” the

composite graph into the individual cycle/Clebsch graph components?

• Graph generation. Given certain structural constraints specified by invariants

119



120 CHAPTER 6. CONVEX GRAPH INVARIANTS

how do we produce a graph that satisfies these constraints? A well-studied exam-

ple is the question of constructing expander graphs. Another example may be that

we wish to recover a graph given constraints, for instance, on certain subgraphs

being forbidden, on the degree distribution, and on the spectral distribution.

• Graph hypothesis testing. Suppose we have two families of graphs, each char-

acterized by some common structural properties specified by a set of invariants;

given a new sample graph which of the two families offers a “better explanation”

of the sample graph (see Figure 6.2)?

In Section 6.2 we describe these problems in more detail, and also give some concrete

applications in network analysis and modeling in which such questions are of interest.

To efficiently solve problems such as these we wish to develop a collection of tractable

computational tools. Convex relaxation techniques offer a candidate framework as they

possess numerous favorable properties. Due to their powerful modeling capabilities,

convex optimization methods can provide tractable formulations for solving difficult

combinatorial problems exactly or approximately. Further convex programs may often

be solved effectively using general-purpose off-the-shelf software. Finally one can also

give conditions for the success of these convex relaxations based on standard optimality

results from convex analysis.

Motivated by these considerations we introduce and study convex graph invariants

in Section 6.3. These invariants are convex functions of the adjacency matrix of a graph.

More formally letting A denote the adjacency matrix of a (weighted) graph, a convex

graph invariant is a convex function f such that f(A) = f(ΠAΠT ) for all permutation

matrices Π. Examples include functions of a graph such as the maximum degree, the

MAXCUT value (and its semidefinite relaxation), the second smallest eigenvalue of the

Laplacian (a concave invariant), and spectral invariants such as the sum of the k largest

eigenvalues; see Section 6.3.3 for a more comprehensive list. As some of these invariants

may possibly be hard to compute, we discuss in the sequel the question of approximating

intractable convex invariants. We also study invariant convex sets, which are convex

sets with the property that a symmetric matrix A is a member of such a set if and

only if ΠAΠT is also a member of the set for all permutations Π. Such convex sets

are useful in order to impose various structural constraints on graphs. For example

invariant convex sets can be used to express forbidden subgraph constraints (i.e., that

a graph does not contain a particular subgraph such as a triangle), or require that a
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graph be connected; see Section 6.3.4 for more examples. We compare the strengths and

weaknesses of convex graph invariants versus more general non-convex graph invariants.

Finally we also provide a robust optimization perspective of invariant convex sets. In

particular we make connections between our work and the data-driven perspective on

robust optimization studied in [14].

In order to systematically evaluate the expressive power of convex graph invariants

we analyze elementary convex graph invariants, which serve as a basis for constructing

arbitrary convex invariants. Given a symmetric matrix P , these elementary invariants

(again, possibly hard to compute depending on the choice of P ) are defined as follows:

ΘP (A) = max
Π

Tr(PΠAΠT ), (6.1)

where A represents the adjacency matrix of a graph, and the maximum is taken over all

permutation matrices Π. It is clear that ΘP is a convex graph invariant, because it is

expressed as the maximum over a set of linear functions. Indeed several simple convex

graph invariants can be expressed using functions of the form (6.1). For example P = I

gives us the total sum of the node weights, while P = 11T − I gives us twice the total

(weighted) degree. Our main theoretical results in Section 6.3 can be summarized as

follows: First we give a representation theorem stating that any convex graph invariant

can be expressed as the supremum over elementary convex graph invariants (6.1) (see

Theorem 6.3.1). Second we have a similar result stating that any invariant convex set

can be expressed as the intersection of convex sets given by level sets of the elementary

invariants (6.1) (see Proposition 6.3.1). These results follow as a consequence of the

separation theorem from convex analysis. Finally we also show that for any two non-

isomorphic graphs given by adjacency matrices A1 and A2, there exists a P such that

ΘP (A1) 6= ΘP (A2) (see Lemma 6.3.1). Hence convex graph invariants offer a complete

set of invariants as they can distinguish between non-isomorphic graphs.

In Section 6.3.7 we discuss an important subclass of convex graph invariants, namely

the set of convex spectral invariants. These are convex functions of symmetric matrices

that depend only on the eigenvalues, and can equivalently be expressed as the set

of convex functions of symmetric matrices that are invariant under conjugation by

orthogonal matrices (note that convex graph invariants are only required to be invariant

with respect to conjugation by permutation matrices) [42]. The properties of convex

spectral invariants are well-understood, and they are useful in a number of practically

relevant problems (e.g., characterizing the subdifferential of a unitarily invariant matrix
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norm [142]). These invariants play a prominent role in our experimental demonstrations

in Section 6.5.

As noted above convex graph invariants, and even elementary invariants, may in

general be hard to compute. In Section 6.4 we investigate the question of approxi-

mately computing these invariants in a tractable manner. For many interesting special

cases such as the MAXCUT value of a graph, or (the inverse of) the stability number,

there exist well-known tractable semidefinite programming (SDP) relaxations that can

be used as surrogates instead [72, 109]. More generally functions of the form of our

elementary convex invariants (6.1) have appeared previously in the literature; see [32]

for a survey. Specifically we note that evaluating the function ΘP (A) for any fixed A,P

is equivalent to solving the so-called Quadratic Assignment Problem (QAP), and thus

we can employ various tractable linear programming, spectral, and SDP relaxations

of QAP [32, 122, 147]. In particular we discuss recent work [43] on exploiting group

symmetry in SDP relaxations of QAP, which is useful for approximately computing

elementary convex graph invariants in many interesting cases.

Finally in Section 6.5 we return to the motivating problems described previously,

and give solutions to these questions. These solutions are based on convex program-

ming formulations, with convex graph invariants playing a fundamental role. We give

theoretical conditions for the success of these convex formulations in solving the prob-

lems discussed above, and experimental demonstration for their effectiveness in practice.

Indeed the framework provided by convex graph invariants allows for a unified inves-

tigation of our proposed solutions. As an example result we give a tractable convex

program (in fact an SDP) in Section 6.5.1 to “deconvolve” the cycle and the Clebsch

graph from a composite graph consisting of these components (see Figure 6.1); a salient

feature of this convex program is that it only uses spectral invariants to perform the

decomposition.

Summary of contributions We emphasize again the main contributions of this chapter.

We begin by introducing three canonical problems involving structural properties of

graphs. These problems arise in various applications (see Section 6.2), and serve as

a motivation for our discussion in this chapter. In order to solve these problems we

introduce convex graph invariants, and investigate their properties (see Section 6.3).

Specifically we provide a representation theorem of convex graph invariants in terms

of elementary invariants, and we make connections between these ideas and concepts

from other areas such as robust optimization. Finally we describe tractable convex
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programming solutions to the motivating problems based on convex graph invariants

(see Section 6.5). Therefore, convex graph invariants provide a useful computational

framework based on convex optimization for graph problems.

Related previous work We note that convex optimization methods have been used previ-

ously to solve various graph-related problems. We would particularly like to emphasize

a body of work on convex programming formulations to optimize convex functions of

the Laplacian eigenvalues of graphs [22, 23] subject to various constraints. Although

our objective is similar in that we seek solutions based on convex optimization to graph

problems, our work is different in several respects from these previous approaches. While

the problems discussed in [22] explicitly involved the optimization of spectral functions,

other graph problems such as those described in Section 6.2 may require non-spectral

approaches (for example, hypothesis testing between two families of graphs that are

isospectral, i.e., have the same spectrum, but are distinguished by other structural

properties). As convex spectral invariants form a subset of convex graph invariants,

the framework proposed in this chapter offers a larger suite of convex programming

methods for graph problems. More broadly our work is the first to formally introduce

and characterize convex graph invariants, and to investigate their properties as natural

mathematical objects of independent interest.

Outline In Section 6.2 we give more details of the questions that motivate our study

of convex graph invariants. Section 6.3 gives the definition of convex graph invariants

and invariant convex sets, as well as several examples of these such functions and

sets. We also discuss various properties of convex graph invariants in this section.

In Section 6.4 we investigate the question of efficiently computing approximations to

intractable convex graph invariants. We give detailed solutions using convex graph

invariants to each of our motivating problems in Section 6.5, and we conclude with a

brief discussion in Section 6.6.

� 6.2 Applications

In this section we describe three problems involving structural properties of graphs,

which serve as a motivation for our investigation of convex graph invariants. In Sec-

tion 6.5 we give solutions to these problems using convex graph invariants.
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� 6.2.1 Graph deconvolution

Suppose we are given a graph that is formed by overlaying two graphs on the same set

of nodes. More formally we have a graph whose adjacency matrix is formed by adding

the adjacency matrices of two known graphs. However, we do not have any information

about the relative labeling of the nodes in the two component graphs. Can we recover

the individual components from the composite graph? As an example suppose we are

given the combination of a cycle and a grid, or a cycle and the Clebsch graph, on

the same set of nodes. Without any additional information about the labeling of the

nodes, which may reveal the cycle/grid or cycle/Clebsch graph structure, the goal is

to recover the individual components. Figure 6.1 gives a graphical illustration of this

question. In general such decomposition problems may be ill-posed, and it is of interest

to give conditions under which unique deconvolution is possible as well as to provide

tractable computational methods to recover the individual components. In Section 6.5.1

we describe an approach based on convex optimization for graph deconvolution; for

example this method decomposes the cycle and the Clebsch graph from a composite

graph consisting of these components (see Figure 6.1) using only the spectral properties

of the two graphs.

Well-known problems that have the flavor of graph deconvolution include the planted

clique problem, which involves identifying hidden cliques embedded inside a larger

graph, and the clustering problem in which the goal is to decompose a large graph

into smaller densely connected clusters by removing just a few edges. Convex optimiza-

tion approaches for solving such problems have been proposed recently [4, 5]. Graph

deconvolution more generally may include other kinds of embedded structures beyond

cliques.

Applications of graph deconvolution arise in network analysis in which one seeks

to better understand a complex network by decomposing it into simpler components.

Graphs play an important role in modeling, for example, biological networks [105] and

social networks [59, 83], and lead to natural graph deconvolution problems in these

areas. For instance graphs are useful for describing social exchange networks of in-

teractions of multiple agents, and graph decompositions are useful for describing the

structure of optimal bargaining solutions in such networks [89]. In a biological network

setting, transcriptional regulatory networks of bacteria have been observed to consist

of small subgraphs with specific structure (called motifs) that are connected together

using a “backbone” [49]. Decomposing such regulatory networks into the component
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Figure 6.1. An instance of a deconvolution problem: Given a composite graph formed by adding the

16-cycle and the Clebsch graph, we wish to recover the individual components. The Clebsch graph is

an example of a strongly regular graph on 16 nodes [70]; see Section 6.5.1 for more details about the

properties of such graphs.

structures is useful for obtaining a better understanding of the high-level properties of

the composite network.

� 6.2.2 Generating graphs with desired structural properties

Suppose we wish to construct a graph with certain prescribed structural constraints. A

very simple example may be the problem of constructing a graph in which each node

has degree equal to two. A graph given by a single cycle satisfies this constraint. A

less trivial problem is one in which the objective may be to build a connected graph

with constraints on the spectrum of the adjacency matrix, the degree distribution,

and the additional requirements that the graph be triangle-free and square-free. Of

course such graph reconstruction problems may be infeasible in general, as there may

be no graph consistent with the given constraints. Therefore it is of interest to derive

suitable conditions under which this problem may be well-posed, and to develop a

suitably flexible yet tractable computational framework to incorporate any structural

information available about a graph.

A prominent instance of a graph construction problem that has received much at-

tention is the question of generating expander graphs [81]. Expanders are, roughly

speaking, sparse graphs that are well-connected, and they have found applications

in numerous areas of computer science. Methods used to construct expanders range

from random sampling approaches to deterministic constructions based on Ramanujan
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Figure 6.2. An instance of a hypothesis testing problem: We wish to decide which family of graphs

offers a “better explanation” for a given candidate sample graph.

graphs [81]. In Section 6.5.2 we describe an approach based on convex optimization to

generate sparse, weighted graphs with small degree and large spectral gap.

� 6.2.3 Graph hypothesis testing

As our third problem we consider a more statistically motivated question. Suppose we

have two families of graphs each characterized by some common structural properties

specified by certain invariants. Given a new sample graph which of these two families

offers a “better explanation” for the sample graph? For example as illustrated in Fig-

ure 6.2 we may have two families of graphs – one being the collection of cycles, and

the other being the set of sparse, well-connected graphs. If a new sample graph is a

path (i.e., a cycle with an edge removed), we would expect that the family of cycles

should be a better explanation. On the other hand if the sample is a cycle plus some

edges connecting diametrically opposite nodes, then the second family of sparse, well-

connected graphs offers a more plausible fit. Notice that these classes of graphs may

often be specified in terms of different sets of invariants, and it is of interest to develop a

suitable framework in which we can incorporate diverse structural information provided

about graph families.

We differentiate this problem from the well-studied question of testing properties of

graphs [73]. Examples of property testing include testing whether a graph is 3-colorable,

or whether it is close to being bipartite. An important goal in property testing is that

one wishes to test for graph properties by only making a small number of “queries” of
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a graph. We do not explicitly seek such an objective in our algorithms for hypothesis

testing. We also note that hypothesis testing can be posed more generally than a yes/no

question as in property testing, and as mentioned above the two families in hypothesis

testing may be specified in terms of very different sets of invariants.

In order to address the hypothesis testing question in a statistical framework, we

would need a statistical theory for graphs and appropriate error metrics with respect

to which one could devise optimal decision rules. In Section 6.5.3 we discuss a com-

putational approach to the hypothesis testing problem using convex graph invariants

that gives good empirical performance, and we defer the issue of developing a formal

statistical framework to future work.

� 6.3 Convex Graph Invariants

In this section we define convex graph invariants, and discuss their properties. Through-

out this chapter we denote as before the space of n × n symmetric matrices by Sn '
R(n+1

2 ). All our definitions of convexity are with respect to the space Sn. We consider

undirected graphs that do not have multiple edges and no self-loops; these are repre-

sented by adjacency matrices that lie in Sn. Therefore a graph may possibly have node

weights and edge weights. A graph is said to be unweighted if its node weights are

zero, and if each edge has a weight of one (non-edges have a weight of zero); otherwise

a graph is said to be weighted. Let ei ∈ Rn denote the vector with a one in the i’th

entry and zero elsewhere, let I denote the n × n identity matrix, let 1 ∈ Rn denote

the all-ones vector, and let J = 11T ∈ Sn denote the all-ones matrix. Further we let

A = {A : A ∈ Sn, 0 ≤ Ai,j ≤ 1 ∀i, j}; we will sometimes find it useful in our examples

in Section 6.3.4 to restrict our attention to graphs with adjacency matrices in A. Next

let Sym(n) denote the symmetric group over n elements, i.e., the group of permutations

of n elements. Elements of this group are represented by n× n permutation matrices.

Let O(n) represent the orthogonal group of n× n orthogonal matrices. Finally given a

vector x ∈ Rn we recall that x denotes the vector obtained by sorting the entries of x

in descending order.

� 6.3.1 Motivation: Graphs and adjacency matrices

Matrix representations of graphs in terms of adjacency matrices and Laplacians have

been used widely both in applications as well as in the analysis of the structure of graphs
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based on algebraic properties of these matrices [17]. For example the spectrum of the

Laplacian of a graph reveals whether a graph is “diffusive” [81], or whether it is even

connected. The degree sequence, which may be obtained from the adjacency matrix or

the Laplacian, reveals whether a graph is regular, and it plays a role in a number of

real-world investigations of graphs arising in social networks and the Internet.

Given a graph G defined on n nodes, a labeling of the nodes of G is a function ` that

maps the nodes of G onto distinct integers in {1, . . . , n}. An adjacency matrix A ∈ Sn

is then said to represent or specify G if there exists a labeling ` of the nodes of G so that

the weight of the edge between nodes i and j equals A`(i)`(j) for all pairs {i, j} and the

weight of node i equals A`(i)`(i) for all i. However an adjacency matrix representation

A of the graph G is not unique. In particular ΠAΠT also specifies G for all Π ∈ Sym(n).

All these alternative adjacency matrices correspond to different labelings of the nodes of

G. Thus the graph G is specified by the matrix A only up to a relabeling of the indices of

A. Our objective is to describe abstract structural properties of G that do not depend

on a choice of labeling of the nodes. In order to characterize such unlabeled graphs

in which the nodes have no distinct identity except through their connections to other

nodes, it is important that any function of an adjacency matrix representation of a

graph not depend on the particular choice of indices of A. Therefore we seek functions

of adjacency matrices that are invariant under conjugation by permutation matrices,

and denote such functions as graph invariants.

� 6.3.2 Definition of convex invariants

A convex graph invariant is an invariant that is a convex function of the adjacency

matrix of a graph. Specifically we have the following definition:

Definition 6.3.1. A function f : Sn → R is a convex graph invariant if it is convex,

and if for any A ∈ Sn it holds that f(ΠAΠT ) = f(A) for all permutation matrices

Π ∈ Sym(n).

Thus convex graph invariants are convex functions that are constant over orbits of

the symmetric group acting on symmetric matrices by conjugation. As described above

the motivation behind the invariance property is clear. The motivation behind the

convexity property is that we wish to construct solutions based on convex programming

formulations in order to solve problems such as those listed in Section 6.2. We present

several examples of convex graph invariants in Section 6.3.3. We note that a concave
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graph invariant is a real-valued function over Sn that is the negative of a convex graph

invariant.

We also consider invariant convex sets, which are defined in an analogous manner

to convex graph invariants:

Definition 6.3.2. A set C ⊆ Sn is said to be an invariant convex set if it is convex and

if for any A ∈ C it is the case that ΠAΠT ∈ C for all permutation matrices Π ∈ Sym(n).

In Section 6.3.4 we present examples in which graphs can be constrained to have

various properties by requiring that adjacency matrices belong to such convex invariant

sets. We also make connections between robust optimization and invariant convex sets

in Section 6.3.6.

In order to systematically study convex graph invariants, we analyze certain ele-

mentary invariants that serve as a basis for constructing arbitrary convex invariants.

These elementary invariants are defined as follows:

Definition 6.3.3. An elementary convex graph invariant is a function ΘP : Sn → R
of the form

ΘP (A) = max
Π∈Sym(n)

Tr(PΠAΠT ),

for any P ∈ Sn.

It is clear that an elementary invariant is also a convex graph invariant, as it is

expressed as the maximum over a set of convex functions (in fact linear functions). We

describe various properties of convex graph invariants in Sections 6.3.5. One useful con-

struction that we give is the expression of arbitrary convex graph invariants as suprema

over elementary invariants. We also discuss convex spectral invariants in Section 6.3.7,

which are convex functions of a symmetric matrix that depend purely on its spectrum.

Finally an important point is that convex graph invariants may in general be hard to

compute. In Section 6.4 we discuss this problem and propose further tractable convex

relaxations for cases in which a convex graph invariant may be intractable to compute.

In the Appendix we describe convex functions defined on Rn that are invariant

with respect to any permutation of the argument. Such functions have been analyzed

previously, and we provide a list of their well-known properties. We contrast these

properties with those of convex graph invariants throughout the rest of this section.
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� 6.3.3 Examples of convex graph invariants

We list several examples of convex graph invariants. As mentioned previously some

of these invariants may possibly be difficult to compute, but we defer discussion of

computational issues to Section 6.4. A useful property that we exploit in several of

these examples is that a function defined as the supremum over a set of convex functions

is itself convex [124].

Number of edges. The total number of edges (or sum of edge weights) is an

elementary convex graph invariant with P = 1
2(11T − I).

Node weight. The maximum node weight of a graph, which corresponds to the

maximum diagonal entry of the adjacency matrix of the graph, is an elementary convex

graph invariant with P = e1e
T
1 . The maximum diagonal entry in magnitude of an

adjacency matrix is a convex graph invariant, and can be expressed as follows with

P = e1e
T
1 :

max. node weight(A) = max{ΘP (A),Θ−P (A)}.

Similarly the sum of all the node weights, which is the sum of the diagonal entries of an

adjacency matrix of a graph, can be expressed as an elementary convex graph invariant

with P being the identity matrix.

Maximum degree. The maximum (weighted) degree of a node of a graph is also

an elementary convex graph invariant with P1,i = Pi,1 = 1, ∀i 6= 1, and all the other

entries of P set to zero.

Largest cut. The value of the largest weighted cut of a graph specified by an

adjacency matrix A ∈ Sn can be written as follows:

max. cut(A) = max
y∈{−1,+1}n

1

4

∑
i,j

Ai,j(1− yiyj).

As this function is a maximum over a set of linear functions, it is a convex function

of A. Further it is also clear that max. cut(A) = max. cut(ΠAΠT ) for all permutation

matrices Π. Consequently the value of the largest cut of a graph is a convex graph

invariant. We note here that computing this invariant is intractable in general. In

practice one could instead employ the following well-known tractable SDP relaxation
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[72], which is related to the MAXCUT value by an appropriate shift and rescaling:

f(A) = min
X∈Sn

Tr(XA)

s.t. Xii = 1, ∀i

X � 0.

(6.2)

As this relaxation is expressed as the minimum over a set of linear functions, it is a con-

cave graph invariant. In Section 6.4.2 we discuss in greater detail tractable relaxations

for invariants that are difficult to compute.

Isoperimetric number (Cheeger constant). The isoperimetric number, also

known as the Cheeger constant [50], of a graph specified by adjacency matrix A ∈ Sn

is defined as follows:

isoperimetric number(A) = min
U⊂{1,...,n},|U |≤n2 ,y∈R

n,yU=1,yUc=−1

∑
i,j

Ai,j(1− yiyj)

4|U |
.

Here U c = {1, . . . , n}\U denotes the complement of the set U , and yU is the subset of

the entries of the vector y indexed by U . As with the last example, it is again clear

that this function is a concave graph invariant as it is expressed as the minimum over

a set of linear functions. In particular it can be viewed as measuring the value of a

“normalized” cut, and plays an important role in several aspects of graph theory [81].

Degree sequence invariants. Given a graph specified by adjacency matrix A

(assume for simplicity that the node weights are zero), the weighted degree sequence is

given by the vector d(A) = A1, i.e., the vector obtained by sorting the entries of A1

in descending order. It is easily seen that d(A) is a graph invariant. Consequently any

function of d(A) is also a graph invariant. However our interest is in obtaining convex

functions of the adjacency matrix A. An important class of functions of d(A) that are

convex functions of A, and therefore are convex graph invariants, are of the form:

f(A) = vTd(A),

for v ∈ Rn such that v1 ≥ · · · ≥ vn. This function can also be expressed as the

maximum over all permutations Π ∈ Sym(n) of the inner-product vTΠA1. As described

in the Appendix such linear monotone functionals can be used to express all convex

functions over Rn that are invariant with respect to permutations of the argument.

Consequently these monotone functions serve as building blocks for constructing all

convex graph invariants that are functions of d(A).
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Spectral invariants. Let the eigenvalues of the adjacency matrix A of a graph be

denoted as λ1(A) ≥ · · · ≥ λn(A), and let λ(A) = [λ1(A), . . . , λn(A)]. These eigenvalues

form the spectrum of the graph specified by A, and clearly remain unchanged under

transformations of the form A → V AV T for any orthogonal matrix V ∈ O(n) (and

therefore for any permutation matrix). Hence any function of the spectrum of a graph

is a graph invariant. Analogous to the previous example, an important class of spectral

functions that are also convex are of the form:

f(A) = vTλ(A),

for v ∈ Rn such that v1 ≥ · · · ≥ vn. We denote spectral invariants that are also

convex functions as convex spectral invariants. As with convex invariants of the degree

sequence, all convex spectral invariants can be constructed using monotone functions

of the type described here (see the Appendix).

Second-smallest eigenvalue of Laplacian. This example is only meaningful

for weighted graphs in which the node and edge weights are non-negative. For such a

graph specified by adjacency matrix A, let DA = diag(A1), where diag takes as input a

vector and forms a diagonal matrix with the entries of the vector on the diagonal. The

Laplacian of a graph is then defined as follows:

LA = DA −A.

If A ∈ Sn consists of nonnegative entries, then LA � 0. In this setting we denote the

eigenvalues of LA as λ1(LA) ≥ · · · ≥ λn(LA). It is easily seen that λn(LA) = 0 as the

all-ones vector 1 lies in the kernel of LA. The second-smallest eigenvalue λn−1(LA) of

the Laplacian is a concave invariant function of A. It plays an important role as the

graph specified by A is connected if and only if λn−1(LA) > 0.

Inverse of Stability Number. A stable set of an unweighted graph G is a subset

of the nodes of G such that no two nodes in the subset are adjacent. The stability

number is the size of the largest stable set of G, and is denoted by α(G). By a result of

Motzkin and Straus [109], the inverse of the stability number can be written as follows:

1

α(G)
= min

x
xT (I +A)x

s.t. xi ≥ 0, ∀i,
∑
i

xi = 1.
(6.3)

Here A is any adjacency matrix representing the graph G. Although this formulation

is for unweighted graphs with edge weights being either one or zero, we note that
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the definition can in fact be extended to all weighted graphs, i.e., for graphs with

adjacency matrix given by any A ∈ Sn. Consequently, the inverse of this extended

stability number of a graph is a concave graph invariant over Sn as it is expressed as

the minimum over a set of linear functions. As this function is difficult to compute in

general (because the stability number of a graph is intractable to compute), one could

employ the following tractable relaxation:

f(A) = min
X∈Sn

Tr(X(I +A))

s.t. X ≥ 0, X � 0, 1TX1 = 1.
(6.4)

This relaxation is also a concave graph invariant as it is expressed as the minimum over

a set of affine functions.

� 6.3.4 Examples of invariant convex sets

Next we provide examples of invariant convex sets. As described below constraints

expressed using such sets are useful in order to require that graphs have certain prop-

erties. Note that a sublevel set {A : f(A) ≤ α} for any convex graph invariant f is an

invariant convex set. Therefore all the examples of convex graph invariants given above

can be used to construct invariant convex set constraints.

Algebraic connectivity and diffusion. As mentioned in Section 6.3.3 a graph

represented by adjacency matrix A ∈ A has the property that the second-smallest

eigenvalue λn−1(LA) of the Laplacian of the graph is a concave graph invariant. The

constraint set {A : A ∈ A, λn−1(LA) ≥ ε} for any ε > 0 expresses the property that a

graph must be connected. Further if we set ε to be relatively large, we can require that

a graph has good diffusion properties.

Largest clique constraint. Let Kk ∈ Sn denote the adjacency matrix of an

unweighted k-clique. Note that Kk is only nonzero within a k × k submatrix, and is

zero-padded to lie in Sn. Consider the following invariant convex set for ε > 0:

{A : A ∈ A, ΘKk(A) ≤ (k2 − k)− ε}.

This constraint set expresses the property that a graph cannot have a clique of size

k (or larger), with the edge weights of all edges in the clique being close to one. For

example we can use this constraint set to require that a graph has no triangles (with

large edge weights). It is important to note that triangles (and cliques more generally)

are forbidden only with the qualification that all the edge weights in the triangle cannot
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be close to one. For example a graph may contain a triangle with each edge having

weight equal to 1
2 . In this case the function ΘK3 evaluates to 3, which is much smaller

than the maximum value of 6 that ΘK3 can take for matrices in A that contain a

triangle with edge weights equal to one.

Girth constraint. The girth of a graph is the length of the shortest cycle. Let

Ck ∈ Sn denote the adjacency matrix of an unweighted k-cycle for k ≤ n. As with the

k-clique note that Ck is nonzero only within a k × k submatrix, and is zero-padded so

that it lies in Sn. In order to express the property that a graph has no small cycles,

consider the following invariant convex set for ε > 0:

{A : A ∈ A, ΘCk(A) ≤ 2k − ε ∀k ≤ k0}.

Graphs belonging to this set cannot have cycles of length less than or equal to k0, with

the weights of edges in the cycle being close to one. Thus we can impose a lower bound

on a weighted version of the girth of a graph.

Forbidden subgraph constraint. The previous two examples can be viewed as

special cases of a more general constraint involving forbidden subgraphs. Specifically

let Ak denote the adjacency matrix of an unweighted graph on k nodes that consists

of Ek edges. As before Ak is zero-padded to ensure that it lies in Sn. Consider the

following invariant convex set for ε > 0:

{A : A ∈ A, ΘAk(A) ≤ 2Ek − ε}.

This constraint set requires that a graph not contain the subgraph given by the adja-

cency matrix Ak, with edge weights close to one.

Degree distribution. Using the notation described previously, let d(A) = A1

denote the sorted degree sequence (d(A)1 ≥ · · · ≥ d(A)n) of a graph specified by

adjacency matrix A. We wish to consider the set of all graphs that have degree sequence

d(A). This set is in general not convex unless A represents a (weighted) regular graph,

i.e., d(A) = α1 for some constant α. Therefore we consider the convex hull of all graphs

that have degree sequence given by d:

D(A) = conv{B : B ∈ Sn, B1 = d(A)}.

This set is in fact tractable to represent, and is given by the set of graphs whose degree

sequence is majorized by d:

D(A) =

{
B : B ∈ Sn, 1TB1 = 1Td(A),

k∑
i=1

(B1)i ≤
k∑
i=1

d(A)i ∀k = 1, . . . , n− 1

}
.
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By the majorization principle [11] another representation for this convex set is as the

set of graphs whose degree sequence lies in the permutahedron generated by d [149];

the permutahedron generated by a vector is the convex hull of all permutations of the

vector. The notion of majorization is sometimes also referred to as Lorenz dominance

(see the Appendix for more details).

Spectral distribution. Let λ(A) denote the spectrum of a graph represented by

adjacency matrix A. As before we are interested in the set of all graphs that have

spectrum λ(A). This set is nonconvex in general, unless A is a multiple of the identity

matrix in which case all the eigenvalues are the same. Therefore we consider the convex

hull of all graphs (i.e., symmetric adjacency matrices) that have spectrum equal to

λ(A):

E(A) = conv{B : B ∈ Sn, λ(B) = λ(A)}.

This convex hull also has a tractable semidefinite representation analogous to the de-

scription above [11]:

E(A) =

{
B : B ∈ Sn, Tr(B) = Tr(A),

k∑
i=1

λ(B)i ≤
k∑
i=1

λ(A)i ∀k = 1, . . . , n− 1

}
.

Note that eigenvalues are specified in descending order, so that
∑k

i=1 λ(B)i represents

the sum of the k-largest eigenvalues of B.

� 6.3.5 Representation of convex graph invariants

All invariant convex sets and convex graph invariants can be represented using elemen-

tary convex graph invariants. In this section we describe both these representation

results. Representation theorems in mathematics give expressions of complicated sets

or functions in terms of simpler, basic objects. In functional analysis the Riesz represen-

tation theorem relates elements in a Hilbert space and its dual, by uniquely associating

each element of the Hilbert space to a linear functional [128]. In probability theory

de Finetti’s theorem states that a collection of exchangeable random variables can be

expressed as a mixture of independent, identically distributed random variables. In

convex analysis every closed convex set can be expressed as the intersection of halfs-

paces [124]. In each of these cases representation theorems provide a powerful analysis

tool as they give a canonical expression for complicated mathematical objects in terms

of elementary sets/functions.
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First we give a representation result for convex graph invariants. In order to get

a flavor of this result consider the maximum absolute-value node weight invariant of

Section 6.3.3, which is represented as the supremum over two elementary convex graph

invariants. The following theorem states that in fact any convex graph invariant can

be expressed as a supremum over elementary invariants:

Theorem 6.3.1. Let f be any convex graph invariant. Then f can be expressed as

follows:

f(A) = sup
P∈P

ΘP (A)− αP ,

for αP ∈ R and for some subset P ⊂ Sn.

Proof. Since f is a convex function, it can be expressed as the supremum over linear

functionals as follows:

f(A) = sup
P∈P⊆Sn

Tr(PA)− αP ,

for αP ∈ R. This conclusion follows directly from the separation theorem in convex

analysis [124]; in particular this description of the convex function f can be viewed as a

specification in terms of supporting hyperplanes of the epigraph of f , which is a convex

subset of Sn×R. However as f is also a graph invariant, we have that f(A) = f(ΠAΠT )

for any permutation Π and for all A ∈ Sn. Consequently for any permutation Π and

for any P ∈ P,

f(A) = f(ΠAΠT ) ≥ Tr(PΠAΠT )− αP .

Thus we have that

f(A) ≥ sup
P∈P

ΘP (A)− αP . (6.5)

However it also clear that for each P ∈ P

ΘP (A)− αP ≥ Tr(PA)− αP ,

which allows us to conclude that

sup
P∈P

ΘP (A)− αP ≥ sup
P∈P

Tr(PA)− αP = f(A). (6.6)

Combining equations (6.5) and (6.6) we have the desired result.

Remark 6.3.2. This result can be strengthened in the sense that one need only consider

elements in P that lie in different equivalence classes up to conjugation by permutation
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matrices Π ∈ Sym(n). In each equivalence class the representative functional is the one

with the smallest value of αP . This idea can be formalized as follows. Consider the

group action ρ : (M,Π) � ΠMΠT that conjugates elements in Sn by a permutation

matrix in Sym(n). With this notation we may restrict our attention in Theorem 6.3.1

to P ⊂ Sn/Sym(n), where Sn/Sym(n) represents the quotient space under the group

action ρ. Such a mathematical object obtained by taking the quotient of a Euclidean

space (or more generally a smooth manifold) under the action of a finite group is called

an orbifold. With this strengthening one can show that there exists a unique, minimal

representation set P ⊂ Sn/Sym(n). We however do not emphasize such refinements in

subsequent results, and stick with the weaker statement that P ⊆ Sn for notational and

conceptual simplicity.

As our next result we show that any invariant convex set can be represented as the

intersection of sublevel sets of elementary convex graph invariants:

Proposition 6.3.1. Let S ⊆ Sn be an invariant convex set. Then there exists a

representation of S as follows:

S =
⋂
P∈P

{A : A ∈ Sn, ΘP (A) ≤ αP },

for some P ⊆ Sn and for αP ∈ R.

Proof. The proof of this statement proceeds in an analogous manner to that of Theo-

rem 6.3.1, and is again essentially a consequence of the separation theorem in convex

analysis.

� 6.3.6 A Robust Optimization view of invariant convex sets

Uncertainty arises in many real-world problems. An important goal in robust opti-

mization (see [10] and the reference therein) is to translate formal notions of measures

of uncertainty into convex constraint sets. Convexity is important in order to obtain

optimization formulations that are tractable.

The representation of a graph via an adjacency matrix in Sn is inherently uncertain

as we have no information about the specific labeling of the nodes of the graph. In this

section we associate to each graph a convex polytope, which represents the best convex

uncertainty set given a graph:
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Definition 6.3.4. Let G be a graph that is represented by an adjacency matrix A ∈ Sn

(any choice of representation is suitable). The convex hull of the graph G is defined as

the following convex polytope:

C(G) = conv{ΠAΠT : Π ∈ Sym(n)}.

Recall that Sym(n) is the symmetric group of n×n permutation matrices. One can

check that the convex hull of a graph is an invariant convex set, and that its extreme

points are the matrices ΠAΠT for all Π ∈ Sym(n). Note that this convex hull may in

general be intractable to characterize; if these polytopes were tractable to characterize

we would be able to solve the graph isomorphism problem in polynomial time.

The convex hull of a graph is the smallest convex set that contains all the adjacency

matrices that represent the graph. Therefore C(G) is in some sense the “best convex

characterization” of the graph G. This notion is related to the concept of risk measures

studied in [6], and the construction of convex uncertainty sets based on these risk

measures studied in [14]. In particular we recall the following definition from [14]:

Definition 6.3.5. Let Z = {Z1, . . . , Zk} be any finite collection of elements with Zi ∈
Sn. Let q ∈ Rk be a probability distribution, i.e.,

∑
i qi = 1 and qi ≥ 0, ∀i. Then the

q-permutohull is the polytope in Sn defined as follows:

Bq(Z) = conv

{∑
i

(Πq)iZi : Π ∈ Sym(k)

}
.

Convex uncertainty sets given by permutohulls emphasize a data-driven view of ro-

bust optimization as adopted in [14]. Specifically the only information available about

an uncertain set in many settings is a finite collection of data vectors Z, and the prob-

ability distribution q expresses preferences over such an unordered data set. Therefore

given a data set and a probability distribution that quantifies uncertainty with respect

to elements of this data set, the q-permutohull is the smallest convex set expressing

these uncertainty preferences. We note that an important property of a permutohull is

that it is invariant with respect to relabeling of the data vectors in Z.

The convex hull of a graph C(G) is a simple example of a permutohull Bq(Z), with

the distribution being q = (1, 0, . . . , 0) and the set Z = {ΠAΠT : Π ∈ Sym(n)} where

A ∈ Sn represents the graph G. More complicated permutohulls of graphs may be of

interest in several applications but we do not pursue these generalizations here, and

instead focus on the case of the convex hull of a graph as defined above.
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The convex hull of a graph is itself an invariant convex set by definition. Therefore

we can appeal to Proposition 6.3.1 to give a representation of this set in terms of

sublevel sets of elementary convex graph invariants. As our next result we show that

the values of all elementary convex graph invariants of G can be used to produce such

a representation:

Proposition 6.3.2. Let G be a graph and let A ∈ Sn be an adjacency matrix repre-

senting G. We then have that

C(G) =
⋂
P∈Sn

{B : B ∈ Sn, ΘP (B) ≤ ΘP (A)}.

Proof. One direction of inclusion in this result is easily seen. Indeed we have that for

any Π ∈ Sym(n)

ΠAΠT ∈
⋂
P∈Sn

{B : B ∈ Sn, ΘP (B) ≤ ΘP (A)}.

As the right-hand-side is a convex set it is clear that the convex hull C(G) belongs to

the set on the right-hand-side:

C(G) ⊆
⋂
P∈Sn

{B : B ∈ Sn, ΘP (B) ≤ ΘP (A)}.

For the other direction suppose for the sake of a contradiction that we have a point

M 6∈ C(G) but with ΘP (M) ≤ ΘP (A) for all P ∈ Sn. As M 6∈ C(G) we appeal to the

separation theorem from convex analysis [124] to produce a strict separating hyperplane

between M and C(G), i.e., a P̃ ∈ Sn such that

Tr(P̃B) < α, ∀B ∈ C(G), and Tr(P̃M) > α.

Further as C(G) is an invariant convex set, it must be the case that

ΘP̃ (B) < α, ∀B ∈ C(G).

On the other hand as Tr(P̃M) > α we also have that ΘP̃ (M) > α. It is thus clear that

ΘP̃ (A) < α < ΘP̃ (M),

which leads us to a contradiction and concludes the proof.
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Therefore elementary convex graph invariants are useful for representing all the

“convex properties” of a graph. This result agrees with the intuition that the “maximum

amount of information” that one can hope to obtain from convex graph invariants about

a graph should be limited fundamentally by the convex hull of the graph.

As mentioned previously in many cases the convex hull of a graph may be intractable

to characterize. One can obtain outer bounds to this convex hull by using a tractable

subset of elementary convex graph invariants; therefore we may obtain tractable but

weaker convex uncertainty sets than the convex hull of a graph. From Proposition 6.3.2

such approximations can be refined as we use additional elementary convex graph in-

variants. As an example the spectral convex constraint sets described in Section 6.3.4

provide a tractable relaxation that plays a prominent role in our experiments in Sec-

tion 6.4.

� 6.3.7 Comparison with spectral invariants

Convex functions that are invariant under certain group actions have been studied

previously. The most prominent among these is the set of convex functions of symmetric

matrices that are invariant under conjugation by orthogonal matrices [42]:

f(M) = f(VMV T ), ∀ M ∈ Sn, ∀ V ∈ O(n).

It is clear that such functions depend only on the spectrum of a symmetric matrix, and

therefore we refer to them as convex spectral invariants:

f(M) = f̃(λ(M)),

where f̃ : Rn → R. It is shown in [42] that f is convex if and only if f̃ is a convex

function that is symmetric in its argument:

f̃(x) = f̃(Πx), ∀x ∈ Rn, ∀Π ∈ Sym(n).

One can check that any convex spectral invariant can be represented as the supremum

over monotone functionals of the spectrum of the form:

f̃(x) = vTx− α,

for v ∈ Rn such that v1 ≥ · · · ≥ vn. See the Appendix for more details.

A convex spectral invariant is also a convex graph invariant as invariance with re-

spect to conjugation by any orthogonal matrix is a stronger requirement than invariance
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with respect to conjugation by any permutation matrix. As many convex spectral in-

variants are tractable to compute, they form an important subclass of convex graph

invariants. In Section 6.4.1 we discuss a natural approximation to elementary convex

graph invariants using convex spectral invariants by replacing the symmetric group

Sym(n) in the maximization by the orthogonal group O(n). Finally one can define a

spectrally invariant convex set S (analogous to invariant convex sets defined in Sec-

tion 6.3.2) in which M ∈ S if and only if VMV T ∈ S for all V ∈ O(n). Such sets are

very useful in order to impose various spectral constraints on graphs, and often have

tractable semidefinite representations.

� 6.3.8 Convex versus non-convex invariants

There are many graph invariants that are not convex. In this section we give two ex-

amples that serve to illustrate the strengths and weaknesses of convex graph invariants.

First consider the spectral invariant given by the fifth largest eigenvalue of a graph, i.e.,

λ5(A) for a graph specified by adjacency matrix A. This function is a graph invariant

but it is not convex. However from Section 6.3.3 we have that the sum of the first five

eigenvalues of a graph is a convex graph invariant. More generally any function of the

form v1λ1 + · · ·+v5λ5 with v1 ≥ · · · ≥ v5 is a convex graph invariant. Thus information

about the fifth eigenvalue can be obtained in a “convex manner” only by including in-

formation about all the top five eigenvalues (or all the bottom n− 4 eigenvalues). As a

second example consider the (weighted) sum of the total number of triangles that occur

as subgraphs in a graph. This function is again a non-convex graph invariant. However

recall from the forbidden subgraph example in Section 6.3.4 that we can use elementary

convex graph invariants to test whether a graph contains a triangle as a subgraph (with

the edges of the triangle having large weights). Therefore, roughly speaking convex

graph invariants can be used to decide whether a graph contains a triangle, while gen-

eral non-convex graph invariants can provide more information about the total number

of triangles in a graph. These examples demonstrate that convex graph invariants have

certain limitations in terms of the type of information that they can convey about a

graph.

The weaker form of information about a graph conveyed by convex graph invari-

ants is nonetheless still useful in distinguishing between graphs. As the next result

demonstrates convex graph invariants are strong enough to distinguish between non-

isomorphic graphs. This lemma follows from a straightforward application of Proposi-
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tion 6.3.2:

Lemma 6.3.1. Let G1,G2 be two non-isomorphic graphs represented by adjacency ma-

trices A1, A2 ∈ Sn, i.e., there exists no permutation Π ∈ Sym(n) such that A1 =

ΠA2ΠT . Then there exists a P ∈ Sn such that ΘP (A1) 6= ΘP (A2).

Proof. Assume for the sake of a contradiction that ΘP (A1) = ΘP (A2) for all P ∈ Sn.

Then we have from Proposition 6.3.2 that C(G1) = C(G2). As the extreme points of

these polytopes must be the same, there must exist a permutation Π ∈ Sym(n) such

that A1 = ΠA2ΠT . This leads to a contradiction.

Hence for any two given non-isomorphic graphs there exists an elementary convex

graph invariant that evaluates to different values for these two graphs. Consequently

elementary convex graph invariants form a complete set of graph invariants as they can

distinguish between any two non-isomorphic graphs.

� 6.4 Computing Convex Graph Invariants

In this section we focus on efficiently computing and approximating convex graph invari-

ants, and on tractable representations of invariant convex sets. We begin by studying

the question of computing elementary convex graph invariants, before moving on to

more general convex invariants.

� 6.4.1 Elementary invariants and the Quadratic Assignment problem

As all convex graph invariants can be represented using only elementary invariants, we

initially focus on computing the latter. Computing an elementary convex graph invari-

ant ΘP (A) for general A,P is equivalent to solving the so-called Quadratic Assignment

Problem (QAP) [32]. Solving QAP is hard in general, because it includes as a special

case the Hamiltonian cycle problem; if P is the adjacency matrix of the n-cycle, then for

an unweighted graph specified by adjacency matrix A we have that ΘP (A) is equal to

2n if and only if the graph contains a Hamiltonian cycle. However there are well-studied

spectral and semidefinite relaxations for QAP, which we discuss next.

The spectral relaxation of ΘP (A) is obtained by replacing the symmetric group

Sym(n) in the definition by the orthogonal group O(n):

ΛP (A) = max
V ∈O(n)

Tr(PV AV T ). (6.7)
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Clearly ΘP (A) ≤ ΛP (A) for all A,P ∈ Sn. As one might expect ΛP (A) has a simple

closed-form solution [67]:

ΛP (A) = λ(P )Tλ(A), (6.8)

where λ(A), λ(P ) are the eigenvalues of A,P sorted in descending order.

The spectral relaxation offers a simple bound, but is quite weak in many instances.

Next we consider the well-studied semidefinite relaxation for the QAP, which offers a

tighter relaxation [147]. The main idea behind the semidefinite relaxation is that we

can linearize ΘP (A) as follows:

ΘP (A) = max
Π∈Sym(n)

Tr(PΠAΠT )

= max
x∈Rn2 ,x=vec(Π),Π∈Sym(n)

〈x, (A⊗ P )x〉

= max
x∈Rn2 ,x=vec(Π),Π∈Sym(n)

Tr((A⊗ P )xxT ).

Here A⊗P denotes the tensor product between A and P , and vec denotes the operation

that stacks the columns of a matrix into a single vector. Consequently it is of interest

to characterize the following convex hull:

conv{xxT : x ∈ Rn
2
, x = vec(Π), Π ∈ Sym(n)}.

There is no known tractable characterization of this set, and by considering tractable

approximations the semidefinite relaxation to ΘP (A) is then obtained as follows:

ΩP (A) = max
y∈Rn2 , Y ∈S(n2)

Tr(P ⊗A)

s.t. Tr((I ⊗ (J − I))Y + ((J − I)⊗ I)Y ) = 0

Tr(Y )− 2yT1 = −n

Y ≥ 0,

(
1 yT

y Y

)
� 0.

(6.9)

We refer the reader to [147] for the detailed steps involved in the construction of this

relaxation. This SDP relaxation gives an upper bound to ΘP (A), i.e., ΩP (A) ≥ ΘP (A).

One can show that if the extra rank constraint

rank

(
1 yT

y Y

)
= 1
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is added to the SDP (6.9), then ΩP (A) = ΘP (A). Therefore if the optimal value of the

SDP (6.9) is achieved at some ŷ, Ŷ such that this rank-one constraint is satisfied, then

the relaxation is tight, i.e., we would have that ΩP (A) = ΘP (A).

While the semidefinite relaxation (6.9) can in principle be computed in polynomial-

time, the size of the variable Y ∈ S(n2) means that even moderate size problem in-

stances are not well-suited to solution by interior-point methods. In many practical

situations however, we often have that the matrix P ∈ Sn represents the adjacency ma-

trix of some small graph on k nodes with k � n, i.e., P is nonzero only inside a k × k
submatrix and is zero-padded elsewhere so that it lies in Sn. For example as discussed

in Section 6.3.4, P may represent the adjacency matrix of a triangle in a constraint ex-

pressing that a graph is triangle-free. In such cases computing or approximating ΘP (A)

may be done more efficiently as follows:

1. Combinatorial enumeration. For very small values of k it is possible to com-

pute ΘP (A) efficiently even by explicit combinatorial enumeration. The complex-

ity of such a procedure scales as O(nk). This approach may be suitable if, for

example, P represents the adjacency matrix of a triangle.

2. Symmetry reduction. For larger values of k, combinatorial enumeration may

no longer be appropriate. In these cases the special structure in P can be exploited

to reduce the size of the SDP relaxation (6.9). Specifically, using the methods

described in [43] it is possible to reduce the size of the matrix variables from

O(n2)×O(n2) to size O(kn)×O(kn). More generally, it is also possible to exploit

group symmetry in P to similarly reduce the size of the SDP (6.9) (see [43] for

details).

� 6.4.2 Other methods and computational issues

In many special cases in which computing convex graph invariants may be intractable,

it is also possible to use other types of tractable semidefinite relaxations. As described

in Section 6.3.3 the MAXCUT value and the inverse stability number of graphs are

invariants that are respectively convex and concave. However both of these are in-

tractable to compute, and as a result we must employ the SDP relaxations for these

invariants as discussed in Section 6.3.3.

Another issue that arises in practice is the representation of invariant convex sets.

As an example, let f(A) denote the SDP relaxation of the MAXCUT value as defined
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in (6.2). As f(A) is a concave graph invariant, we may be interested in representing

convex constraint sets as follows:

{A : A ∈ Sn, f(A) ≥ α} = {A : A ∈ Sn, Tr(XA) ≥ α ∀X ∈ Sn s.t. Xii = 1, X � 0}.

In order to computationally represent such a set specified in terms of a universal quan-

tifier, we appeal to convex duality. Using the standard dual formulation of (6.2), we

have that:

{A : A ∈ Sn, f(A) ≥ α} = {A : A ∈ Sn, ∃Y diagonal s.t. A � Y, Tr(Y ) ≥ α}.

This reformulation provides a description in terms of existential quantifiers that is more

suitable for practical representation. Such reformulations using convex duality are well-

known, and can be employed more generally (e.g., for invariant convex sets specified by

sublevel sets of the inverse stability number or its relaxations in Section 6.3.3)

� 6.5 Using Convex Graph Invariants in Applications

In this section we give solutions to the stylized problems of Section 6.2 using convex

graph invariants. In order to properly state our results we begin with a few definitions.

All the convex programs in our numerical experiments are solved using a combination

of the SDPT3 package [136] and the YALMIP parser [98]. Finally a key property of

normal cones that we use in stating our results is that for any convex set C ⊆ Sn, the

normal cones at all the extreme points of C form a partition1 of Sn [124].

� 6.5.1 Application: Graph deconvolution

Given a combination of two graphs overlaid on the same set of nodes, the graph decon-

volution problem is to recover the individual graphs (as introduced in Section 6.2.1).

Problem 1. Let G1 and G2 be two graphs specified by particular adjacency matrices

A∗1, A
∗
2 ∈ Sn. We are given the sum A = A∗1 + A∗2, and the additional information that

A∗1, A
∗
2 correspond to particular realizations (labelings of nodes) of G1,G2. The goal is

to recover A∗1 and A∗2 from A.

See Figure 6.1 for an example illustrating this problem. The key unknown in this

problem is the specific labeling of the nodes of G1 and G2 relative to each other in

1Note that there may be overlap on the boundaries of the normal cones at the extreme points, but

these overlaps have smaller dimension than those of the normal cones.
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the composite graph represented by A. As described in Section 6.3.6, the best convex

constraints that express this uncertainty are the convex hulls of the graphs G1,G2.

Therefore we consider the following natural solution based on convex optimization to

solve the deconvolution problem:

Solution 1. Recall that C(G1) and C(G2) are the convex hulls of the unlabeled graphs

G1,G2 (which we are given), and that ‖ · ‖F denotes the Euclidean (Frobenius) norm.

We propose the following convex program to recover A1, A2:

(Â1, Â2) = arg min
A1,A2∈Sn

‖A−A1 −A2‖F

s.t. A1 ∈ C(G1), A2 ∈ C(G2).
(6.10)

One could also use in the objective any other norm that is invariant under conjugation

by permutation matrices. This program is convex, although it may not be tractable if

the sets C(G1), C(G2) cannot be efficiently represented. Therefore it may be desirable to

use tractable convex relaxations C1, C2 of the sets C(G1), C(G2), i.e., C(G1) ⊆ C1 ⊂ Sn

and C(G2) ⊆ C2 ⊂ Sn:

(Â1, Â2) = arg min
A1,A2∈Sn

‖A−A1 −A2‖F

s.t. A1 ∈ C1, A2 ∈ C2.
(6.11)

Recall from Proposition 6.3.2 that we can represent C(G) using all the elementary

convex graph invariants. Tractable relaxations to this convex hull may be obtained,

for example, by just using spectral invariants, degree-sequence invariants, or any other

subset of invariant convex set constraints that can be expressed efficiently. We give

numerical examples later in this section. The following result gives conditions under

which we can exactly recover A∗1, A
∗
2 using the convex program (6.11):

Proposition 6.5.1. Given the problem setup as described above, we have that (Â1, Â2) =

(A∗1, A
∗
2) is the unique optimum of (6.11) if and only if:

TC1(A∗1) ∩ −TC2(A∗2) = {0},

where −TC2(A∗2) denotes the negative of the tangent cone TC2(A∗2).

Proof. Note that in the setup described above (A∗1, A
∗
2) is an optimal solution of the

convex program (6.11) as this point is feasible (since by construction A∗1 ∈ C(G1) ⊆ C1
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Figure 6.3. The three graphs used in the deconvolution experiments of Section 6.5.1. The Cleb-

sch graph and the Shrikhande graph are examples of strongly regular graphs on 16 nodes [70]; see

Section 6.5.1 for more details about the properties of such graphs.

and A∗2 ∈ C(G2) ⊆ C2), and the cost function achieves its minimum at this point. This

result is concerned with (A∗1, A
∗
2) being the unique optimal solution.

For one direction suppose that TC1(A∗1) ∩ −TC2(A∗2) = {0}. Then there exists no

Z1 ∈ TC1(A∗1), Z2 ∈ TC2(A∗2) such that Z1 + Z2 = 0 with Z1 6= 0, Z2 6= 0. Consequently

every feasible direction from (A∗1, A
∗
2) into C1 × C2 would increase the value of the

objective. Thus (A∗1, A
∗
2) is the unique optimum of (6.11).

For the other direction suppose that (A∗1, A
∗
2) is the unique optimum of (6.11), and

assume for the sake of a contradiction that TC1(A∗1) ∩ −TC2(A∗2) contains a nonzero

element, which we’ll denote by Z. There exists a scalar α > 0 such that A∗1 + αZ ∈ C1

and A∗2 − αZ ∈ C2. Consequently (A∗1 + αZ,A∗2 − αZ) is also a feasible solution that

achieves the lowest possible cost of zero. This contradicts the assumption that (A∗1, A
∗
2)

is the unique optimum.

Thus we have that transverse intersection of the tangent cones TC1(A∗1) and−TC2(A∗2)

is equivalent to exact recovery of (A∗1, A
∗
2) given the sum A = A∗1 +A∗2. As C(G1) ⊆ C1

and C(G2) ⊆ C2, we have that TC(G1)(A
∗
1) ⊆ TC1(A∗1) and TC(G2) ⊆ TC2(A∗2). These

relations follow from the fact that the set of feasible directions from A∗1 and A∗2 into the

respective convex sets is enlarged. Therefore the tangent cone transversality condition

of Proposition 6.5.1 is generally more difficult to satisfy if we use relaxations C1, C2 to

the convex hulls C(G1), C(G2). Consequently we have a tradeoff between the complexity

of solving the convex program, and the possibility of exactly recovering (A∗1, A
∗
2). How-

ever the following example suggests that it is possible to obtain tractable relaxations

that still allow for perfect recovery.
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Example. We consider the 16-cycle, the Shrikhande graph, and the Clebsch graph

(see Figure 6.3), and investigate the deconvolution problem for all three pairings of these

graphs. For illustration purposes suppose A∗1 is an adjacency matrix of the unweighted

16-node cycle denoted G1, and that A∗2 is an adjacency matrix of the 16-node Clebsch

graph denoted G2 (see Figure 6.1). These adjacency matrices are random instances

chosen from the set of all valid adjacency matrices that represent the graphs G1,G2.

Given the sum A = A∗1 +A∗2, we construct convex constraint sets C1, C2 as follows:

C1 = A ∩ E(A∗1)

C2 = A ∩ E(A∗2).

Here E(A) represents the spectral constraints of Section 6.3.4. Therefore the graphs G1

and G2 are characterized purely by their spectral properties. By running the convex

program described above for 100 random choices of labelings of the vertices of the graphs

G1,G2, we obtained exact recovery of the adjacency matrices (A∗1, A
∗
2) in all cases (see

Table 6.1). Thus we have exact decomposition based only on convex spectral constraints,

in which the only invariant information used to characterize the component graphs G1,G2

are the spectra of G1,G2. Similarly successful decomposition results using only spectral

invariants are also seen in the cycle/Shrikhande graph deconvolution problem, and

the Clebsch graph/Shrikhande graph deconvolution problem; Table 6.1 gives complete

results.

The inspiration for using the Clebsch graph and the Shrikhande graph as examples

for deconvolution is based on Proposition 6.5.1. Specifically, a graph for which the

tangent cone with respect to the corresponding spectral constraint set E(A) (defined

in Section 6.3.4) is small is well-suited to being deconvolved from other graphs using

spectral invariants. This is because the tangent cone being smaller implies that the

transversality condition of Proposition 6.5.1 is easier to satisfy. In order to obtain

small tangent cones with respect to spectral constraint sets, we seek graphs that have

many repeated eigenvalues. Strongly regular graphs, such as the Clebsch graph and the

Shrikhande graph, are prominent examples of graphs with repeated eigenvalues as they

have only three distinct eigenvalues. A strongly regular graph is an unweighted regular

graph (i.e., each node has the same degree) in which every pair of adjacent vertices have

the same number of common neighbors, and every pair of non-adjacent vertices have

the same number of common neighbors [70]. We explore in more detail the properties

of these and other graph classes in a separate report [35], where we characterize families
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Underlying graphs # successes in 100 random trials

The 16-cycle and the Clebsch graph 100

The 16-cycle and the Shrikhande graph 96

The Clebsch graph and the Shrikhande graph 94

Table 6.1. A summary of the results of graph deconvolution via convex optimization: We generated 100

random instances of each deconvolution problem by randomizing over the labelings of the components.

The convex program uses only spectral invariants to characterize the convex hulls of the component

graphs, as described in Section 6.5.1.

of graphs for which the transverse intersection condition of Proposition 6.5.1 provably

holds for constraint sets C1, C2 constructed using tractable graph invariants.

� 6.5.2 Application: Generating graphs with desired properties

We first consider the problem of constructing a graph with certain desired structural

properties.

Problem 2. Suppose we are given structural constraints on a graph in terms of a

collection of (possibly nonconvex) graph invariants {hj(A) = αj}. Can we recover a

graph that is consistent with these constraints? For example we may be given constraints

on the spectrum, the degree distribution, the girth, and the MAXCUT value. Can we

construct some graph G that is consistent with this knowledge?

This problem may be infeasible in that there may no graph consistent with the given

information. We do not address this feasibility question here, and instead focus only

on the computational problem of generating graphs that satisfy the given constraints

assuming such graphs do exist. Next we propose a convex programming approach using

invariant convex sets to construct a graph G, specified by an adjacency matrix A, which

satisfies the required constraints. Both the problem as well the solution can be suitably

modified to include inequality constraints.

Solution 2. We combine information from all the invariants to construct an invariant

convex set C. Given a constraint of the form hj(A) = αj, we consider the following

convex set:

Cj = conv{A : A ∈ Sn, hj(A) = αj}.

This set is convex by construction, and is an invariant convex set if hj is a graph

invariant. If hj is a convex graph invariant this set is equal to the sublevel set {A :
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A ∈ Sn, hj(A) ≤ αj}. Given a collection of constraints {hj(A) = αj} we then form an

invariant convex constraint set as follows:

C = ∩j Cj .

Therefore any invariant information that is amenable to approximation as a convex

constraint set can be incorporated in such a framework. For example constraints on

the degree distribution or the spectrum can be naturally relaxed to tractable convex con-

straints, as described in Section 6.3.4. If the set C as defined above is intractable to

compute, one may further relax C to obtain efficient approximations. In many cases

of interest a subset of the boundary of C corresponds to points at which all the con-

straints are active {A : hj(A) = αj}. In order to recover one of these extreme points,

we maximize a random linear functional defined by M ∈ Sn (with the entries in the

upper-triangular part chosen to be independent and identically distributed to zero-mean,

variance-one standard Gaussians) over the set C:

Â = arg max
A∈Sn

Tr(MA)

s.t. A ∈ C.
(6.12)

This convex program is successful if Â is indeed an extreme point at which all the

constraints {hj(A) = αj} are satisfied.

Clearly this approach is well-suited for constructing constrained graphs only if the

convex set C described in the solution scheme contains many extreme points at which

all the constraints are satisfied. The next result gives conditions under which the convex

program recovers an Â that satisfies all the given constraints:

Proposition 6.5.2. Consider the problem and solution setup as defined above. Define

the set N as follows:

N =
⋃

{A : A∈C, hj(A)=αj ∀j}

NC(A).

If M ∈ N then the optimum Â of the convex program (6.12) satisfies all the specified

constraints exactly. In particular if M is chosen uniformly at random as described

above, then the probability of success is equal to the fraction of Sn covered by the union

of the normal cones N .
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Figure 6.4. An adjacency matrix of a sparse, well-connected graph example obtained using the

approach described in Section 6.5.2: The weights of this graph lie in the range [0, 1], the black points

represent edges with nonzero weight, and the white points denote absence of edges. The (weighted)

degree of each node is 8, the average number of nonzero (weighted) edges per node is 8.4, the second-

smallest eigenvalue of the Laplacian is 4, and the weighted diameter is 3.

Proof. The proof follows from standard results in convex analysis. In particular we

appeal to the fact that a linear functional defined by M achieves its maximum at

Â ∈ C if and only if M ∈ NC(Â).

As a corollary of this result we observe that if the invariant information provided

exactly characterizes the convex hull of a graph G, then the set C above is the convex

hull C(G) of the graph G. In such cases the convex program given by (6.12) produces an

adjacency matrix representing G with probability one. Next we provide the results of

a simple experiment that demonstrates the effectiveness of our approach in generating

sparse graphs with large spectral gap.

Example. In this example we aim to construct graphs on n = 40 nodes with

adjacency matrices in A that have degree d = 8, node weights equal to zero, and

the second-smallest eigenvalue of the Laplacian being larger than ε = 4. The goal is to

produce relatively sparse graphs that satisfy these constraints. The specified constraints

can be used to construct a convex set as follows:

C = {A : A ∈ A, 1
8A1 = 1, λn−1(LA) ≥ 4, Aii = 0 ∀i}.

By maximizing 100 random linear functionals over this set we obtained graphs in all

100 cases with total degree equal to 8, and in 98 of the 100 cases with the minimum

eigenvalue of the Laplacian equal to 4 (it is greater than 4 in the remaining two cases).
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Interestingly the average number of edges with nonzero weight incident on each node

is 8.8 over these 100 trials, thus providing very sparse graphs that are well-connected.

Figure 6.4 gives an example of a graph generated randomly using this procedure; the

average number of nonzero (weighted) edges per node of this graph is 8.4, and its

(weighted) diameter is 3. Therefore this approach empirically yields sparse graphs that

are well-connected (i.e., with a large spectral gap).

We would like to point out here a different approach to constructing well-connected

graphs, which tries to add edges from a subset of candidate edges to maximize the

second eigenvalue of the graph Laplacian [69]. An interesting question is to understand

the structure of the extreme points of the set C in this example as the graph size and

the degree (n, d) grow large, with ε held constant. For example it may be useful to

compute the fraction of the normal cones at those extreme points corresponding to

expander graphs. More generally it is of interest to give conditions on constraint sets

under which the procedure described above is successful in providing graphs that satisfy

all the constraints with high probability.

� 6.5.3 Application: Graph hypothesis testing

Finally we give a solution to the hypothesis testing problem in which we have two

families of graphs, and the goal is to decide which of these families offers a “better

explanation” for a given candidate “sample” graph.

Problem 3. Let F1 and F2 denote two families of graphs characterized in terms of in-

variants {h1
j} and {h2

j} respectively; for example, a family could be specified as some set

of graphs that have similar spectral distributions, similar degree sequences, and similar

girths. Given a graph G, which of the two families F1,F2 of graphs is more similar to

G?

We emphasize that the sets of invariants that characterize F1,F2 may in general be

very different. Note that this question is not completely well-posed, as there may be

different answers depending on one’s notion of similarity. In order to address this point,

we need to develop a statistical theory for graphs. In such a setting one could phrase

this question formally as a statistical hypothesis testing problem with appropriate error

metrics. Our focus in the present chapter is on proposing a convex optimization solution

to the hypothesis testing based on convex graph invariants, and using a reasonable

notion of similarity.
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Solution 3. Let A ∈ Sn be an adjacency matrix that represents the graph G. We con-

struct invariant convex sets C1 and C2 based on the sets of invariants {h1
j}, {h2

j} in an

analogous manner to the construction described in the solution to the graph construc-

tion problem of Section 6.5.2. As before one could employ further tractable relaxations

of these sets if they are intractable to compute. Assuming that these convex constraint

sets that summarize the families F1 and F2 are compact, we declare that F1 is closer

to G than F2 if the following holds:

max
M∈C1

Tr(AM) ≥ max
M∈C2

Tr(AM). (6.13)

Naturally we declare the opposite result if the inequality is switched. Computing the two

sides in this test can be done via convex optimization, and this computation is tractable

if C1, C2 are tractable to characterize.

Our choice of the function to be maximized over C1, C2 is motivated by a similar

procedure in statistics and signal processing, which goes by the name of “matched

filtering.” Of course other (convex invariant) cost functions can also be optimized

depending on one’s notion of similarity. We point out two advantages of this approach

to hypothesis testing. First the two families of graphs can be specified in terms of

different sets of invariants, as seen in these examples. Second the optimal solutions

of the convex programs in (6.13) in fact provide approximations to the graph G by

elements in the families F1,F2. We give illustrations of these points in our examples,

which we describe next.

Example. Let Acycle denote the adjacency matrix of a 16-node unweighted cycle.

As our first family we consider the set of cycles on 16 nodes. We approximate this family

by the set of graphs that are triangle-free (in the sense described in Section 6.3.4), have

degree equal to 2, and have the same spectrum as a 16-node unweighted cycle. Therefore

the set C1 is defined as follows:

C1 = {A : A ∈ A, Aii = 0 ∀i, 1
2A1 = 1, ΘK3(A) ≤ 4} ∩ E(Acycle).

As our second family, we consider sparse well-connected graphs on 16 nodes with maxi-

mum weighted degree less than or equal to 2.5, and with the second-smallest eigenvalue

of the Laplacian bounded below by 1.1:

C2 = {A : A ∈ A, Aii = 0 ∀i, (A1)i ≤ 2.5 ∀i, λn−1(LA) ≥ 1.1}.
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Applying the solution described above to a test graph given by a 16-node unweighted

path graph (i.e., an unweighted cycle with an edge removed, see Figure 6.2), we find

that the path graph is “closer” to the family F1 of cycles approximated by the set C1

than it is to the family F2. This agrees with the intuition that a path graph is not

well-connected, and is only one edge away from being a cycle. We also point out that

the optimal solution to the convex program on the left-hand-side of the test (6.13) is

in fact an unweighted 16-node cycle with the missing edge in the path graph added

as an extra edge. Next we consider a different test graph – a 16-node cycle with two

additional edges across diametrically opposite nodes, i.e., assuming we label the nodes

of the 16-node cycle we add edges between nodes 1 and 9, and between nodes 5 and 13

(again see Figure 6.2). While this graph is only two edges away from being a cycle, the

edges connecting far away nodes dramatically increase the connectivity of the graph. In

this case we find using the convex programming hypothesis test (6.13) that the family

F2 is in fact closer than F1 to the sample graph. Interestingly, the optimal solution

to the convex program on the left-hand-side of the test (6.13) is again an unweighted

16-node cycle, this time with the two additional edges removed.

In order to thoroughly address the graph hypothesis testing problem, we need to de-

velop a framework of statistical models over spaces of graphs. With a proper statistical

framework in place we can evaluate the probability of error achieved by a hypothesis-

testing algorithm with respect to a suitable error-metric, analogous to similar methods

developed in other classical decision-theoretic problems in statistics. We defer these

questions to a separate paper.

� 6.6 Discussion

In this chapter we introduced and studied convex graph invariants, which are graph

invariants that are convex functions of the adjacency matrix. Convex invariants form

a rich subset of the set of all graph invariants, and they are useful in developing a

unified computational framework based on convex optimization to solve a number of

graph problems. In particular we described three canonical problems involving the

structural properties of graphs, namely, graph construction given constraints, graph

deconvolution of a composite graph into individual components, and graph hypothesis

testing in which the objective is decide which of two given families of graphs offers a

better explanation for a new sample graph. We presented convex optimization solutions
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to all of these problems, with convex graph invariants playing a prominent role. These

solutions provided attractive empirical performance, and the resulting convex programs

are tractable and can be solved using general-purpose off-the-shelf software for moderate

size instances.
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Chapter 7

Conclusion

The central theme of this thesis is to provide solutions to address some of the challenges

that arise in modeling the interactions among a large collection of variables. Here we

describe the main contributions, and discuss some future research directions.

� 7.1 Summary of Contributions

Rank-Sparsity Uncertainty Principles and Matrix Decomposition

In Chapter 3 we studied the question of decomposing the sum of a sparse matrix and

a low-rank matrix into the individual components. Such a decomposition problem

arises in a number of applications in system identification, computational complexity,

and statistical model selection. Indeed sparse-plus-low-rank matrix decomposition is

central to Gaussian latent-variable graphical model selection addressed in Chapter 4.

We proposed a tractable convex program to solve the decomposition problem, and gave

conditions under which it exactly identifies the correct components. Fundamental to the

analysis in Chapter 3 is a new rank-sparsity uncertainty principle relating the sparsity

pattern of a matrix to its row and column spaces.

Latent Variable Graphical Model Selection via Convex Optimization

Latent variable model selection is a major challenge in statistics, and is also a problem

of fundamental interest because the discovery of hidden causes affecting some observed

phenomena is important in many scientific endeavors. Our main contribution in this

area is a new convex optimization method with theoretical consistency guarantees for

graphical model selection with latent variables. Specifically this convex program builds

upon the framework in Chapter 3, and our analysis gives conditions under which the

program consistently estimates model structure in the high-dimensional scaling regime.
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The Convex Geometry of Linear Inverse Problems

The abstract mathematical formulations underlying many problems involving graphs

and graphical models can in fact be viewed as instances of inverse problems in which

we wish to learn/reconstruct structured graphs and simple statistical models given

inexact or incomplete information. Chapter 5 develops tractable convex relaxations

for a general class of inverse problems in which the objective is to recover certain

“simple” models given a limited number of linear measurements. In situations when

the underlying models have algebraic structure, the resulting convex programs can be

solved or approximated by semidefinite programming. We provide sharp estimates of

the number of generic measurements required for exact and robust recovery in a variety

of settings. These estimates are based on computing certain Gaussian statistics related

to the underlying model geometry.

Convex Graph Invariants

Finally we consider questions motivated by statistical models over the space of graphs,

so that a graph itself is viewed as a sample drawn from a probability distribution defined

over some set of graphs. Natural questions that arise in standard statistical settings

can then be posed in a deterministic framework in this graph setting as well. For

example we consider problems such as graph deconvolution, graph sampling, and graph

hypothesis testing. In order to develop a unified computational framework to solve

these problems, we introduce convex graph invariants in Chapter 6. We also discuss

connections to other concepts such as majorization, robust optimization, and graph

isomorphism.

� 7.2 Future Directions

Special-Purpose Computational Methods

Many of the convex programs proposed in this thesis can be solved in polynomial-time

using general-purpose software for moderate-size problem instances. However it is of

interest to apply some of the convex programs (e.g., latent-variable graphical model

selection in Chapter 4, or the computation of some subset of convex graph invariants

in Chapter 6) to large-scale problems instances. Therefore special-purpose algorithms

tailored to specific structured convex programs must be developed to scale to massive

problem sizes.
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Non-Gaussian Latent-Variable Modeling

The methods and analysis in Chapter 4 are relevant for Gaussian model selection. In

many applications of interest, e.g., in computational biology, the random variables of

interest are fundamentally non-Gaussian. Therefore it is important to develop a similar

convex optimization formulation with consistency guarantees for latent-variable models

with non-Gaussian variables, e.g., for categorical data.

Computational Approximations and Tradeoffs

Some of the convex programs proposed in Chapter 5 and in Chapter 6 cannot be

solved in polynomial-time, and therefore we proposed in those chapters further convex

relaxations which are tractable to solve. A basic question of interest in several settings

is the tradeoff incurred due to these tractable relaxations. For example in Chapter 5

the tradeoff can be specified in terms of the increased number of linear measurements

required for guaranteed recovery via convex optimization.

Non-Gaussian Linear Measurement Models

In Chapter 5 we analyze the recovery guarantees of convex relaxation methods in ex-

tracting structured models given linear measurements specified by random Gaussian

functionals. While such an analysis is useful for general atomic sets, particular appli-

cations often necessitate the study of structured measurement matrices, e.g., partial

Fourier measurements of sparse vectors or partial entrywise sampling of low-rank ma-

trices. It is of interest to develop a unified framework based on a notion of incoherence

that is general enough to encompass most interesting applications.

Conditions for Graph Deconvolution and Graph Generation

A further challenge that we are presently working to address is to provide theoretical

guarantees on the performance of our convex programs described in Chapter 6. For ex-

ample which families of graphs can be deconvolved via the tractable spectral relaxation?

Which classes of structured graphs can be generated efficiently via convex optimization?
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Appendix A

Proofs of Chapter 3

� A.1 SDP Formulation

The problem (3.3) can be recast as a semidefinite program (SDP). Using the variational

characterizations of the `1 norm and the nuclear norm from Chapter 2, (3.3) can be

rewritten as

min
A,B,W1,W2,Z

γ1TnZ1n +
1

2
(trace(W1) + trace(W2))

s.t.

 W1 B

B′ W2

 � 0

−Zi,j ≤ Ai,j ≤ Zi,j , ∀(i, j)

A+B = C.

(A.1)

Here, 1n ∈ Rn refers to the vector that has 1 in every entry.

� A.2 Proofs

Proof of Proposition 3.3.1

We begin by establishing that

max
N∈T (B?), ‖N‖≤1

‖PΩ(A?)(N)‖ < 1 ⇒ Ω(A?) ∩ T (B?) = {0}, (A.2)

where PΩ(A?)(N) denotes the projection onto the space Ω(A?). Assume for the sake

of a contradiction that this assertion is not true. Thus, there exists N 6= 0 such that

N ∈ Ω(A?)∩ T (B?). Scale N appropriately such that ‖N‖ = 1. Thus N ∈ T (B?) with

‖N‖ = 1, but we also have that ‖PΩ(A?)(N)‖ = ‖N‖ = 1 as N ∈ Ω(A?). This leads to

a contradiction.
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Next, we show that

max
N∈T (B?), ‖N‖≤1

‖PΩ(A?)(N)‖ ≤ µ(A?)ξ(B?),

which would allow us to conclude the proof of this proposition. We have the following

sequence of inequalities

max
N∈T (B?), ‖N‖≤1

‖PΩ(A?)(N)‖ ≤ max
N∈T (B?), ‖N‖≤1

µ(A?)‖PΩ(A?)(N)‖∞

≤ max
N∈T (B?), ‖N‖≤1

µ(A?)‖N‖∞

≤ µ(A?)ξ(B?).

Here the first inequality follows from the definition (3.2) of µ(A?) as PΩ(A?)(N) ∈ Ω(A?),

the second inequality is due to the fact that ‖PΩ(A?)(N)‖∞ ≤ ‖N‖∞, and the final

inequality follows from the definition (3.1) of ξ(B?). �

Proof of Proposition 3.4.1

We first show that (A?, B?) is an optimum of (3.3), before moving on to showing

uniqueness. Based on subgradient optimality conditions applied at (A?, B?), there

must exist a dual Q such that

Q ∈ γ∂‖A?‖1 and Q ∈ ∂‖B?‖∗.

The second condition in this proposition guarantees the existence of a dual Q that

satisfies both these conditions simultaneously (see (3.11) and (3.12)). Therefore, we

have that (A?, B?) is an optimum. Next we show that under the conditions specified

in the lemma, (A?, B?) is also a unique optimum. To avoid cluttered notation, in the

rest of this proof we let Ω = Ω(A?), T = T (B?), Ωc(A?) = Ωc, and T⊥(B?) = T⊥.

Suppose that there is another feasible solution (A? + NA, B
? + NB) that is also a

minimizer. We must have that NA+NB = 0 because A?+B? = C = (A?+NA)+(B?+

NB). Applying the subgradient property at (A?, B?), we have that for any subgradient

(QA, QB) of the function γ‖A‖1 + ‖B‖∗ at (A?, B?)

γ‖A? +NA‖1 + ‖B? +NB‖∗ ≥ γ‖A?‖1 + ‖B?‖∗ + 〈QA, NA〉+ 〈QB, NB〉. (A.3)

Since (QA, QB) is a subgradient of the function γ‖A‖1 + ‖B‖∗ at (A?, B?), we must

have from (3.11) and (3.12) that



Sec. A.2. Proofs 163

• QA = γsign(A?) + PΩc(QA), with ‖PΩc(QA)‖∞ ≤ γ.

• QB = UV ′ + PT⊥(QB), with ‖PT⊥(QB)‖ ≤ 1.

Using these conditions we rewrite 〈QA, NA〉 and 〈QB, NB〉. Based on the existence of

the dual Q as described in the lemma, we have that

〈QA, NA〉 = 〈γsign(A?) + PΩc(QA), NA〉

= 〈Q− PΩc(Q) + PΩc(QA), NA〉

= 〈PΩc(QA)− PΩc(Q), NA〉+ 〈Q,NA〉, (A.4)

where we have used the fact that Q = γsign(A?) + PΩc(Q). Similarly, we have that

〈QB, NB〉 = 〈UV ′ + PT⊥(QB), NB〉

= 〈Q− PT⊥(Q) + PT⊥(QB), NB〉

= 〈PT⊥(QB)− PT⊥(Q), NB〉+ 〈Q,NB〉, (A.5)

where we have used the fact that Q = UV ′+PT⊥(Q). Putting (A.4) and (A.5) together,

we have that

〈QA, NA〉+ 〈QB, NB〉 = 〈PΩc(QA)− PΩc(Q), NA〉

+〈PT⊥(QB)− PT⊥(Q), NB〉

+〈Q,NA +NB〉

= 〈PΩc(QA)− PΩc(Q), NA〉

+〈PT⊥(QB)− PT⊥(Q), NB〉

= 〈PΩc(QA)− PΩc(Q), PΩc(NA)〉

+〈PT⊥(QB)− PT⊥(Q), PT⊥(NB)〉. (A.6)

In the second equality, we used the fact that NA +NB = 0.

Since (QA, QB) is any subgradient of the function γ‖A‖1 + ‖B‖∗ at (A?, B?), we

have some freedom in selecting PΩc(QA) and PT⊥(QB) as long as they still satisfy the

subgradient conditions ‖PΩc(QA)‖∞ ≤ γ and ‖PT⊥(QB)‖ ≤ 1. We set PΩc(QA) =

γsign(PΩc(NA)) so that ‖PΩc(QA)‖∞ = γ and 〈PΩc(QA), PΩc(NA)〉 = γ‖PΩc(NA)‖1.

Letting PT⊥(NB) = Ũ Σ̃Ṽ T be the singular value decomposition of PT⊥(NB), we set

PT⊥(QB) = Ũ Ṽ T so that ‖PT⊥(QB)‖ = 1 and 〈PT⊥(QB), PT⊥(NB)〉 = ‖PT⊥(NB)‖∗.
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With this choice of (QA, QB), we can simplify (A.6) as follows:

〈QA, NA〉+ 〈QB, NB〉 ≥ (γ − ‖PΩc(Q)‖∞)(‖PΩc(NA)‖1)

+(1− ‖PT⊥(Q)‖)(‖PT⊥(NB)‖∗).

Since ‖PΩc(Q)‖∞ < γ and ‖PT⊥(Q)‖ < 1, we have that 〈QA, NA〉+ 〈QB, NB〉 is strictly

positive unless PΩc(NA) = 0 and PT⊥(NB) = 0. Thus, γ‖A? +NA‖1 + ‖B? +NB‖∗ >
γ‖A?‖1 +‖B?‖∗ if PΩc(NA) 6= 0 and PT⊥(NB) 6= 0. However, if PΩc(NA) = PT⊥(NB) =

0, then PΩ(NA) + PT (NB) = 0 because we also have that NA + NB = 0. In other

words, PΩ(NA) = −PT (NB). This can only be possible if PΩ(NA) = PT (NB) = 0 (as

Ω ∩ T = {0}), which in turn implies that NA = NB = 0. Therefore, γ‖A? + NA‖1 +

‖B? +NB‖∗ > γ‖A?‖1 + ‖B?‖∗ unless NA = NB = 0. �

Proof of Theorem 3.4.1

As with the previous proof, we avoid cluttered notation by letting Ω = Ω(A?), T =

T (B?), Ωc(A?) = Ωc, and T⊥(B?) = T⊥. One can check that

ξ(B?)µ(A?) <
1

6
⇒ ξ(B?)

1− 4ξ(B?)µ(A?)
<

1− 3ξ(B?)µ(A?)

µ(A?)
. (A.7)

Thus, we show that if ξ(B?)µ(A?) < 1
6 then there exists a range of γ for which a dual

Q with the requisite properties exists. Also note that plugging in ξ(B?)µ(A?) = 1
6 in

the above range gives the strictly smaller range [3ξ(B?), 1
2µ(A?) ] for γ; for any choice of

p ∈ [0, 1] we have that γ = (3ξ(B?))p

(2µ(A?))1−p is always within the above range.

We aim to construct a dual Q by considering candidates in the direct sum Ω⊕ T of

the tangent spaces. Since µ(A?)ξ(B?) < 1
6 , we can conclude from Proposition 3.3.1 that

there exists a unique Q̂ ∈ Ω⊕T such that PΩ(Q̂) = γsign(A?) and PT (Q̂) = UV ′ (recall

that these are conditions that a dual must satisfy according to Proposition 3.4.1), as

Ω ∩ T = {0}. The rest of this proof shows that if µ(A?)ξ(B?) < 1
6 then the projections

of such a Q̂ onto T⊥ and onto Ωc will be small, i.e., we show that ‖PΩc(Q̂)‖∞ < γ and

‖PT⊥(Q̂)‖ < 1.

We note here that Q̂ can be uniquely expressed as the sum of an element of T and

an element of Ω, i.e., Q̂ = QΩ + QT with QΩ ∈ Ω and QT ∈ T . The uniqueness of

the splitting can be concluded because Ω ∩ T = {0}. Let QΩ = γsign(A?) + εΩ and

QT = UV ′ + εT . We then have

PΩ(Q̂) = γsign(A?) + εΩ + PΩ(QT ) = γsign(A?) + εΩ + PΩ(UV ′ + εT ).
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Since PΩ(Q̂) = γsign(A?),

εΩ = −PΩ(UV ′ + εT ). (A.8)

Similarly,

εT = −PT (γsign(A?) + εΩ). (A.9)

Next, we obtain the following bound on ‖PΩc(Q̂)‖∞:

‖PΩc(Q̂)‖∞ = ‖PΩc(UV
′ + εT )‖∞

≤ ‖UV ′ + εT ‖∞
≤ ξ(B?)‖UV ′ + εT ‖

≤ ξ(B?)(1 + ‖εT ‖), (A.10)

where we obtain the second inequality based on the definition of ξ(B?) (since UV ′+εT ∈
T ). Similarly, we can obtain the following bound on ‖PT⊥(Q̂)‖

‖PT⊥(Q̂)‖ = ‖PT⊥(γsign(A?) + εΩ)‖

≤ ‖γsign(A?) + εΩ‖

≤ µ(A?)‖γsign(A?) + εΩ‖∞
≤ µ(A?)(γ + ‖εΩ‖∞), (A.11)

where we obtain the second inequality based on the definition of µ(A?) (since γsign(A?)+

εΩ ∈ Ω). Thus, we can bound ‖PΩc(Q̂)‖∞ and ‖PT⊥(Q̂)‖ by bounding ‖εT ‖ and ‖εΩ‖∞
respectively (using the relations (A.9) and (A.8)).

By definition of ξ(B?) and using (A.8),

‖εΩ‖∞ = ‖PΩ(UV ′ + εT )‖∞
≤ ‖UV ′ + εT ‖∞
≤ ξ(B?)‖UV ′ + εT ‖

≤ ξ(B?)(1 + ‖εT ‖), (A.12)

where the second inequality is obtained because UV ′ + εT ∈ T . Similarly, by definition

of µ(A?) and using (A.9)

‖εT ‖ = ‖PT (γsign(A?) + εΩ)‖

≤ 2‖γsign(A?) + εΩ‖

≤ 2µ(A?)‖γsign(A?) + εΩ‖∞
≤ 2µ(A?)(γ + ‖εΩ‖∞), (A.13)
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where the first inequality is obtained because ‖PT (M)‖ ≤ 2‖M‖, and the second in-

equality is obtained because γsign(A?) + εΩ ∈ Ω.

Putting (A.12) in (A.13), we have that

‖εT ‖ ≤ 2µ(A?)(γ + ξ(B?)(1 + ‖εT ‖))

⇒ ‖εT ‖ ≤
2γµ(A?) + 2ξ(B?)µ(A?)

1− 2ξ(B?)µ(A?)
. (A.14)

Similarly, putting (A.13) in (A.12), we have that

‖εΩ‖∞ ≤ ξ(B?)(1 + 2µ(A?)(γ + ‖εΩ‖∞))

⇒ ‖εΩ‖∞ ≤ ξ(B?) + 2γξ(B?)µ(A?)

1− 2ξ(B?)µ(A?)
. (A.15)

We now show that ‖PT⊥(Q̂)‖ < 1. Combining (A.15) and (A.11),

‖PT⊥(Q̂)‖ ≤ µ(A?)

(
γ +

ξ(B?) + 2γξ(B?)µ(A?)

1− 2ξ(B?)µ(A?)

)
= µ(A?)

(
γ + ξ(B?)

1− 2ξ(B?)µ(A?)

)

< µ(A?)

 1−3ξ(B?)µ(A?)
µ(A?) + ξ(B?)

1− 2ξ(B?)µ(A?)


= 1,

since γ < 1−3ξ(B?)µ(A?)
µ(A?) by assumption.

Finally, we show that ‖PΩc(Q̂)‖∞ < γ. Combining (A.14) and (A.10),

‖PΩc(Q̂)‖∞ ≤ ξ(B?)

(
1 +

2γµ(A?) + 2ξ(B?)µ(A?)

1− 2ξ(B?)µ(A?)

)
= ξ(B?)

(
1 + 2γµ(A?)

1− 2ξ(B?)µ(A?)

)
=

[
ξ(B?)

(
1 + 2γµ(A?)

1− 2ξ(B?)µ(A?)

)
− γ
]

+ γ

=

[
ξ(B?) + 2γξ(B?)µ(A?)− γ + 2γξ(B?)µ(A?)

1− 2ξ(B?)µ(A?)

]
+ γ

=

[
ξ(B?)− γ(1− 4ξ(B?)µ(A?))

1− 2ξ(B?)µ(A?)

]
+ γ

<

[
ξ(B?)− ξ(B?)

1− 2ξ(B?)µ(A?)

]
+ γ

= γ.

Here, we used the fact that ξ(B?)
1−4ξ(B?)µ(A?) < γ in the second inequality. �
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Proof of Proposition 3.4.2

Based on the Perron-Frobenius theorem [82], one can conclude that ‖P‖ ≥ ‖Q‖ if

Pi,j ≥ |Qi,j |, ∀ i, j. Thus, we need only consider the matrix that has 1 in every location

in the support set Ω(A) and 0 everywhere else. Based on the definition of the spectral

norm, we can re-write µ(A) as follows:

µ(A) = max
‖x‖2=1,‖y‖2=1

∑
(i,j)∈Ω(A)

xiyj . (A.16)

Upper bound For any matrix M , we have from the results in [130] that

‖M‖2 ≤ max
i,j

ricj , (A.17)

where ri =
∑

k |Mi,k| denotes the absolute row-sum of row i and cj =
∑

k |Mk,j | denotes

the absolute column-sum of column j. Let MΩ(A) be a matrix defined as follows:

M
Ω(A)
i,j =

{
1, (i, j) ∈ Ω(A)

0, otherwise.

Based on the reformulation of µ(A) above (A.16), it is clear that

µ(A) = ‖MΩ(A)‖.

From the bound (A.17), we have that

‖MΩ(A)‖ ≤ degmax(A).

Lower bound Now suppose that each row/column of A has at least degmin(A) nonzero

entries. Using the reformulation (A.16) of µ(A) above, we have that

µ(A) ≥
∑

(i,j)∈Ω(A)

1√
n

1√
n

=
|support(A)|

n
≥ degmin(A).

Here we set x = y = 1√
n
1, with 1 representing the all-ones vector, as candidates in the

optimization problem (A.16). �

Proof of Proposition 3.4.3

Let B = UΣV T be the SVD of B.



168 APPENDIX A. PROOFS OF CHAPTER 3

Upper bound We can upper-bound ξ(B) as follows

ξ(B) = max
M∈T (B),‖M‖≤1

‖M‖∞

= max
M∈T (B),‖M‖≤1

‖PT (B)(M)‖∞

≤ max
‖M‖≤1

‖PT (B)(M)‖∞

≤ max
M orthogonal

‖PT (B)(M)‖∞

≤ max
M orthogonal

‖PUM‖∞ + max
M orthogonal

‖(In×n − PU )MPV ‖∞.

For the second inequality, we have used the fact that the maximum of a convex function

over a convex set is achieved at one of the extreme points of the constraint set. The

orthogonal matrices are the extreme points of the set of contractions (i.e., matrices with

spectral norm ≤ 1). Note that for the non-square case we would need to consider partial

isometries; the rest of the proof remains unchanged. We have used PT (B)(M) = PUM+

MPV − PUMPV from (3.8) in the last inequality, where PU = UUT and PV = V V T

denote the projections onto the spaces spanned by U and V respectively.

We have the following simple bound for ‖PUM‖∞ with M orthogonal:

max
M orthogonal

‖PUM‖∞ = max
M orthogonal

max
i,j

eTi PUMej

≤ max
M orthogonal

max
i,j
‖PUei‖2 ‖Mej‖2

= max
i
‖PUei‖2 × max

M orthogonal
max
j
‖Mej‖2

= β(U). (A.18)

Here we used the Cauchy-Schwartz inequality in the second line, and the definition of

β from (3.13) in the last line.

Similarly, we have that

max
M orthogonal

‖(In×n − PU )MPV ‖∞ = max
M orthogonal

max
i,j

eTi (In×n − PU )MPV ej

≤ max
M orthogonal

max
i,j
‖(In×n − PU )ei‖2 ‖MPV ej‖2

= max
i
‖(In×n − PU )ei‖2 × max

M orthogonal
max
j
‖MPV ej‖2

≤ 1×max
j
‖PV ej‖2

= β(V ). (A.19)

Using the definition of inc(B) from (3.14) along with (A.18) and (A.19), we have



Sec. A.2. Proofs 169

that

ξ(B) ≤ β(U) + β(V ) ≤ 2 inc(B).

Lower bound Next we prove a lower bound on ξ(B). Recall the definition of the tangent

space T (B) from (3.7). We restrict our attention to elements of the tangent space T (B)

of the form PUM = UUTM for M orthogonal (an analogous argument follows for

elements of the form PVM for M orthogonal). One can check that

‖PUM‖ = max
‖x‖2=1,‖y‖2=1

xTPUMy ≤ max
‖x‖2=1

‖PUx‖2 max
‖y‖2=1

‖My‖2 ≤ 1.

Therefore,

ξ(B) ≥ max
M orthogonal

‖PUM‖∞.

Thus, we only need to show that the inequality in line (2) of (A.18) is achieved by

some orthogonal matrix M in order to conclude that ξ(B) ≥ β(U). Define the “most

aligned” basis vector with the subspace U as follows:

i∗ = arg max
i
‖PUei‖2.

Let M be any orthogonal matrix with one of its columns equal to 1
β(U)PUei∗ , i.e., a nor-

malized version of the projection onto U of the most aligned basis vector. One can check

that such a orthogonal matrix achieves equality in line (2) of (A.18). Consequently, we

have that

ξ(B) ≥ max
M orthogonal

‖PUM‖∞ = β(U).

By a similar argument with respect to V , we have the lower bound as claimed in the

proposition. �
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Appendix B

Proofs of Chapter 4

� B.1 Matrix Perturbation Bounds

Given a low-rank matrix we consider what happens to the invariant subspaces when the

matrix is perturbed by a small amount. We assume without loss of generality that the

matrix under consideration is square and symmetric, and our methods can be extended

to the general non-symmetric non-square case. We refer the interested reader to [7,87]

for more details, as the results presented here are only a brief summary of what is

relevant for this Appendix. In particular the arguments presented here are along the

lines of those presented in [7]. The appendices in [7] also provide a more refined analysis

of second-order perturbation errors.

The resolvent of a matrix M is given by (M − ζI)−1 [87], and it is well-defined for

all ζ ∈ C that do not coincide with an eigenvalue of M . If M has no eigenvalue with

magnitude equal to η, then we have by the Cauchy residue formula that the projector

onto the invariant subspace of a matrix M corresponding to all singular values smaller

than η is given by

PM,η =
−1

2πi

∮
Cη

(M − ζI)−1dζ, (B.1)

where Cη denotes the positively-oriented circle of radius η centered at the origin. Sim-

ilarly, we have that the weighted projection onto the smallest singular values is given

by

PwM,η = MPM,η =
−1

2πi

∮
Cη
ζ (M − ζI)−1dζ, (B.2)

Suppose that M is a low-rank matrix with smallest non-zero singular value σ, and

let ∆ be a perturbation of M such that ‖∆‖2 ≤ κ < σ
2 . We have the following identity

for any |ζ| = κ, which will be used repeatedly:

[(M + ∆)− ζI]−1 − [M − ζI]−1 = −[M − ζI]−1∆[(M + ∆)− ζI]−1. (B.3)

171
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We then have that

PM+∆,κ − PM,κ =
−1

2πi

∮
Cκ

[(M + ∆)− ζI]−1 − [M − ζI]−1dζ

=
1

2πi

∮
Cκ

[M − ζI]−1∆[(M + ∆)− ζI]−1dζ. (B.4)

Similarly, we have the following for PwM,κ:

PwM+∆,κ − PwM,κ =
−1

2πi

∮
Cκ
ζ
{

[(M + ∆)− ζI]−1 − [M − ζI]−1
}
dζ

=
1

2πi

∮
Cκ
ζ
{

[M − ζI]−1∆[(M + ∆)− ζI]−1
}
dζ

=
1

2πi

∮
Cκ
ζ [M − ζI]−1∆[M − ζI]−1dζ

− 1

2πi

∮
Cκ
ζ [M − ζI]−1∆[M − ζI]−1∆[(M + ∆)− ζI]−1dζ.

(B.5)

Given these expressions, we have the following two results.

Proposition B.1.1. Let M ∈ Rp×p be a rank-r matrix with smallest non-zero singular

value equal to σ, and let ∆ be a perturbation to M such that ‖∆‖2 ≤ κ
2 with κ < σ

2 .

Then we have that

‖PM+∆,κ − PM,κ‖2 ≤
κ

(σ − κ)(σ − 3κ
2 )
‖∆‖2.

Proof : This result follows directly from the expression (B.4), and the sub-multiplicative

property of the spectral norm:

‖PM+∆,κ − PM,κ‖2 ≤ 1

2π
2π κ

1

σ − κ
‖∆‖2

1

σ − 3κ
2

=
κ

(σ − κ)(σ − 3κ
2 )
‖∆‖2.

Here, we used the fact that ‖[M − ζI]−1‖2 ≤ 1
σ−κ and ‖[(M + ∆)− ζI]−1‖2 ≤ 1

σ− 3κ
2

for

|ζ| = κ. �

Next, we develop a similar bound for PwM,κ. Let U(M) denote the invariant subspace of

M corresponding to the non-zero singular values, and let PU(M) denote the projector

onto this subspace.
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Proposition B.1.2. Let M ∈ Rp×p be a rank-r matrix with smallest non-zero singular

value equal to σ, and let ∆ be a perturbation to M such that ‖∆‖2 ≤ κ
2 with κ < σ

2 .

Then we have that

‖PwM+∆,κ − PwM,κ − (I − PU(M))∆(I − PU(M))‖2 ≤
κ2

(σ − κ)2(σ − 3κ
2 )
‖∆‖22.

Proof : One can check that

1

2πi

∮
Cκ
ζ [M − ζI]−1∆[M − ζI]−1dζ = (I − PU(M))∆(I − PU(M)).

Next we use the expression (B.5), and the sub-multiplicative property of the spectral

norm:

‖PwM+∆,κ − PwM,κ − (I − PU(M))∆(I − PU(M))‖2

≤ 1

2π
2π κ κ

1

σ − κ
‖∆‖2

1

σ − κ
‖∆‖2

1

σ − 3κ
2

=
κ2

(σ − κ)2(σ − 3κ
2 )
‖∆‖22.

As with the previous proof, we used the fact that ‖[M − ζI]−1‖2 ≤ 1
σ−κ and ‖[(M +

∆)− ζI]−1‖2 ≤ 1
σ− 3κ

2

for |ζ| = κ. �

We will use these expressions to derive bounds on the “twisting” between the tangent

spaces at M and at M + ∆ with respect to the rank variety.

� B.2 Curvature of Rank Variety

For a symmetric rank-r matrix M , the projection onto the tangent space T (M) (re-

stricted to the variety of symmetric matrices with rank less than or equal to r) can be

written in terms of the projection PU(M) onto the row space U(M). For any matrix N

PT (M)(N) = PU(M)N +NPU(M) − PU(M)NPU(M).

One can then check that the projection onto the normal space T (M)⊥

PT (M)⊥(N) = [I − PT (M)](N) = (I − PU(M)) N (I − PU(M)).

Proof of Proposition 4.2.1: For any matrix N , we have that

[PT (M+∆) − PT (M)](N) =

[PU(M+∆) − PU(M)] N [I − PU(M)] + [I − PU(M+∆)] N [PU(M+∆) − PU(M)].
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Further, we note that for κ < σ
2

PU(M+∆) − PU(M) = [I − PU(M)]− [I − PU(M+∆)]

= PM,κ − PM+∆,κ,

where PM,κ is defined in the previous section. Thus, we have the following sequence of

inequalities for κ = σ
4 :

ρ(T (M + ∆), T (M)) = max
‖N‖2≤1

‖[PU(M+∆) − PU(M)] N [I − PU(M)]

+ [I − PU(M+∆)] N [PU(M+∆) − PU(M)]‖2
≤ max

‖N‖2≤1
‖[PU(M+∆) − PU(M)] N [I − PU(M)]‖2

+ max
‖N‖2≤1

‖[I − PU(M+∆)] N [PU(M+∆) − PU(M)]‖2

≤ 2 ‖PM+∆,σ
4
− PM,σ

4
‖2

≤ 2

σ
‖∆‖2,

where we obtain the last inequality from Proposition B.1.1. �

Proof of Proposition 4.2.2: Since both M and M + ∆ are rank-r matrices, we

have that PwM+∆,κ = PwM,κ = 0. Consequently,

‖PT (M)⊥(∆)‖2 = ‖(I − PU(M)) ∆ (I − PU(M))‖2

≤ ‖∆‖22
σ

,

where we obtain the last inequality from Proposition B.1.2 with κ = σ
4 . �

Proof of Lemma 4.3.1: Since ρ(T1, T2) < 1 one can check that the largest principal

angle between T1 and T2 is strictly less than π
2 . Consequently, the mapping PT2 : T1 →

T2 restricted to T1 is bijective (as it is injective, and the spaces T1, T2 have the same

dimension). Consider the maximum and minimum gain of the operator PT2 restricted

to T1; for any M ∈ T1, ‖M‖2 = 1:

‖PT2(M)‖2 = ‖M + [PT2 − PT1 ](M)‖2
∈ [1− ρ(T1, T2), 1 + ρ(T1, T2)].
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Therefore, we can rewrite ξ(T2) as follows:

ξ(T2) = max
N∈T2,‖N‖2≤1

‖N‖∞

= max
N∈T2,‖N‖2≤1

‖PT2(N)‖∞

≤ max
N∈T1,‖N‖2≤ 1

1−ρ(T1,T2)

‖PT2(N)‖∞

≤ max
N∈T1,‖N‖2≤ 1

1−ρ(T1,T2)

[‖N‖∞ + ‖[PT1 − PT2 ](N)‖∞]

≤ 1

1 − ρ(T1, T2)

[
ξ(T1) + max

N∈T1,‖N‖2≤1
‖[PT1 − PT2 ](N)‖∞

]
≤ 1

1 − ρ(T1, T2)

[
ξ(T1) + max

‖N‖2≤1
‖[PT1 − PT2 ](N)‖2

]
≤ 1

1 − ρ(T1, T2)
[ξ(T1) + ρ(T1, T2)] .

This concludes the proof of the lemma. �

� B.3 Transversality and Identifiability

Proof of Lemma 4.3.3: We have that A†A(S,L) = (S + L, S + L); therefore,

PYA†APY(S,L) = (S + PΩ(L),PT (S) + L). We need to bound ‖S + PΩ(L)‖∞ and

‖PT (S) + L‖2. First, we have

‖S + PΩ(L)‖∞ ∈ [‖S‖∞ − ‖PΩ(L)‖∞, ‖S‖∞ + ‖PΩ(L)‖∞]

⊆ [‖S‖∞ − ‖L‖∞, ‖S‖∞ + ‖L‖∞]

⊆ [γ − ξ(T ), γ + ξ(T )].

Similarly, one can check that

‖PT (S) + L‖2 ∈ [−‖PT (S)‖2 + ‖L‖2, ‖PT (S)‖2 + ‖L‖2]

⊆ [1− 2‖S‖2, 1 + 2‖S‖2]

⊆ [1− 2γµ(Ω), 1 + 2γµ(Ω)].

Thus, we can conclude that

gγ(PYA†APY(S,L)) ∈ [1− χ(Ω, T, γ), 1 + χ(Ω, T, γ)].

where χ(Ω, T, γ) is defined in (4.7). �
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Proof of Proposition 4.3.1: Before proving the two parts of this proposition we

make a simple observation about ξ(T ′) using the condition that ρ(T, T ′) ≤ ξ(T )
2 :

ξ(T ′) ≤ ξ(T ) + ρ(T, T ′)

1− ρ(T, T ′)

≤
3ξ(T )

2

1− ξ(T )
2

≤ 3ξ(T ).

Here we used the property that ξ(T ) ≤ 1 in obtaining the final inequality. Consequently,

noting that γ ∈ [3β(2−ν)ξ(T )
να , να

2β(2−ν)µ(Ω) ] implies that

χ(Ω, T ′, γ) = max

{
ξ(T ′)

γ
, 2µ(Ω)γ

}
≤ να

β(2− ν)
. (B.6)

Part 1: The proof of this step proceeds in a similar manner to that of Lemma 4.3.3.

First we have for S ∈ Ω, L ∈ T ′ with ‖S‖∞ = γ, ‖L‖2 = 1:

‖PΩI∗(S + L)‖∞ ≥ ‖PΩI∗S‖∞ − ‖PΩI∗L‖∞
≥ αγ − ‖I∗L‖∞
≥ αγ − βξ(T ′).

Next under the same conditions on S,L,

‖PT ′I∗(S + L)‖2 ≥ ‖PT ′I∗L‖2 − ‖PT ′I∗S‖2
≥ α− 2‖I∗S‖2
≥ α− 2βµ(Ω)γ.

Combining these last two bounds with (B.6), we conclude that

min
(S,L)∈Y, ‖S‖∞=γ, ‖L‖2=1

gγ(PYA†I∗APY(S,L)) ≥ α− βmax

{
ξ(T ′)

γ
, 2µ(Ω)γ

}
≥ α− να

2− ν

=
2α(1− ν)

2− ν
≥ α

2
,

where the final inequality follows from the assumption that ν ∈ (0, 1
2 ].
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Part 2: Note that for S ∈ Ω, L ∈ T ′ with ‖S‖∞ ≤ γ, ‖L‖2 ≤ 1

‖PΩ⊥I∗(S + L)‖∞ ≤ ‖PΩ⊥I∗S‖∞ + ‖PΩ⊥I∗L‖∞
≤ δγ + βξ(T ′).

Similarly

‖PT ′⊥I∗(S + L)‖2 ≤ ‖PT ′⊥I∗S‖2 + ‖PT ′⊥I∗L‖2
≤ δ + βγµ(Ω).

Combining these last two bounds with the bounds from the first part, we have that

∥∥∥∥PY⊥A†I∗APY (PYA†I∗APY)−1
∥∥∥∥
gγ→gγ

≤
δ + βmax

{
ξ(T ′)
γ , 2µ(Ω)γ

}
α− βmax

{
ξ(T ′)
γ , 2µ(Ω)γ

}
≤

δ + να
2−ν

α− να
2−ν

≤
(1− 2ν)α+ να

2−ν
α− να

2−ν
= 1− ν.

This concludes the proof of the proposition. �

� B.4 Proof of Main Result

Here we prove Theorem 4.4.1. Throughout this section we denote m = max{1, 1
γ }.

Further Ω = Ω(K∗O) and T = T (K∗O,H(K∗H)−1K∗H,O) denote the tangent spaces at the

“true” sparse matrix S∗ = K∗O and low-rank matrix L∗ = K∗O,H(K∗H)−1K∗H,O. We

assume that

γ ∈
[

3β(2− ν)ξ(T )

να
,

να

2β(2− ν)µ(Ω)

]
(B.7)

We also let En = Σn
O −Σ∗O denote the difference between the true marginal covariance

and the sample covariance. Finally we let D = max{1, να
3β(2−ν)} throughout this section.

For γ in the above range we note that

m ≤ D

ξ(T )
. (B.8)

Standard facts that we use throughout this section are that ξ(T ) ≤ 1 and that ‖M‖∞ ≤
‖M‖2 for any matrix M .
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We study the following convex program:

(S̄n, L̄n) = arg min
S,L

Tr[(S − L) Σn
O]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]

s.t. S − L � 0.
(B.9)

Comparing (B.9) with the convex program (4.9), the main difference is that we do not

constraint the variable L to be positive semidefinite in (B.9) (recall that the nuclear

norm of a positive semidefinite matrix is equal to its trace). However we show that the

unique optimum (S̄n, L̄n) of (B.9) under the hypotheses of Theorem 4.4.1 is such that

L̄n � 0 (with high probability). Therefore we conclude that (S̄n, L̄n) is also the unique

optimum of (4.9). The subdifferential with respect to the nuclear norm at a matrix M

with (reduced) SVD given by M = UDV T is as follows:

N ∈ ∂‖M‖∗ ⇔ PT (M)(N) = UV T , ‖PT (M)⊥(N)‖2 ≤ 1.

The proof of this theorem consists of a number of steps, each of which is analyzed

in separate sections below. We explicitly keep track of the constants α, β, ν, ψ. The key

ideas are as follows:

1. We show that if we solve the convex program (B.9) subject to the additional

constraints that S ∈ Ω and L ∈ T ′ for some T ′ “close to” T (measured by ρ(T ′, T )),

then the error between the optimal solution (S̄n, L̄n) and the underlying matrices

(S∗, L∗) is small. This result is discussed in Appendix B.4.2.

2. We analyze the optimization problem (B.9) with the additional constraint that

the variables S and L belong to the algebraic varieties of sparse and low-rank

matrices respectively, and that the corresponding tangent spaces are close to the

tangent spaces at (S∗, L∗). We show that under suitable conditions on the min-

imum nonzero singular value of the true low-rank matrix L∗ and on the mini-

mum magnitude nonzero entry of the true sparse matrix S∗, the optimum of this

modified program is achieved at a smooth point of the underlying varieties. In

particular the bound on the minimum nonzero singular value of L∗ helps bound

the curvature of the low-rank matrix variety locally around L∗ (we use the results

described in Appendix B.2). Further we also show that the tangent-spaces at the

solution to this variety-constrained problem are close to the tangent spaces at the

true underlying matrices (S∗, L∗). These results are described in Appendix B.4.3.
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3. The next step is to show that the variety constraint can be linearized and changed

to a tangent-space constraint (see Appendix B.4.4), thus giving us a convex pro-

gram. Under suitable conditions this tangent-space constrained program also has

an optimum that has the same support/rank as the true (S∗, L∗). Based on the

previous step these tangent spaces in the constraints are close to the tangent

spaces at the true (S∗, L∗). Therefore we use the first step to conclude that the

resulting error in the estimate is small.

4. Finally we show that under the identifiability conditions of Section 4.3 these

tangent-space constraints are inactive at the optimum (see Appendix B.4.7).

Therefore we conclude with the statement that the optimum of the convex pro-

gram (B.9) without any variety constraints is achieved at a pair of matrices that

have the same support/rank as the true (S∗, L∗) (with high probability). Further

the low-rank component of the solution is positive semidefinite, thus allowing us

to conclude that the original convex program (4.9) also provides estimates that

are consistent.

� B.4.1 Bounded curvature of matrix inverse

Consider the Taylor series of the inverse of a matrix:

(M + ∆)−1 = M−1 −M−1∆M−1 +RM−1(∆),

where

RM−1(∆) = M−1

[ ∞∑
k=2

(−∆M−1)k

]
.

This infinite sum converges for ∆ sufficiently small. The following proposition provides

a bound on the second-order term specialized to our setting:

Proposition B.4.1. Suppose that γ is in the range given by (B.7). Let gγ(∆S ,∆L) ≤
1

2C1
for C1 = ψ(1 + α

6β ), and for any (∆S ,∆L) with ∆S ∈ Ω. Then we have that

gγ(A†RΣ∗O
A(∆S ,∆L)) ≤ 2DψC2

1gγ(∆S ,∆L)2

ξ(T )
.
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Proof : We have that

‖A(∆S ,∆L)‖2 ≤ ‖∆S‖2 + ‖∆L‖2

≤ γµ(Ω)
‖∆S‖∞

γ
+ ‖∆L‖2

≤ (1 + γµ(Ω))gγ(∆S ,∆L)

≤ (1 +
α

6β
)gγ(∆S ,∆L)

≤ 1

2ψ
,

where the second-to-last inequality follows from the range for γ (B.7), and the final

inequality follows from the bound on gγ(∆S ,∆L). Therefore,

‖RΣ∗O
(A(∆S ,∆L))‖2 ≤ ψ

∞∑
k=2

(‖∆S + ∆L‖2ψ)k

≤ ψ3‖∆S + ∆L‖22
1

1− ‖∆S + ∆L‖2ψ

≤ 2ψ3(1 +
α

6β
)2gγ(∆S ,∆L)2

= 2ψC2
1gγ(∆S ,∆L)2.

Here we apply the last two inequalities from above. Since the ‖ · ‖∞-norm is bounded

above by the spectral norm ‖ · ‖2, we have the desired result. �

� B.4.2 Bounded errors

Next we analyze the following convex program subject to certain additional tangent-

space constraints:

(ŜΩ, L̂T ′) = arg min
S,L

Tr[(S − L) Σn
O]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]

s.t. S − L � 0, S ∈ Ω, L ∈ T ′,
(B.10)

for some subspace T ′. We show that if T ′ is any tangent space to the low-rank matrix

variety such that ρ(T, T ′) ≤ ξ(T )
2 , then we can bound the error (∆S ,∆L) = (ŜΩ −

S∗, L∗ − L̂T ′). Let CT ′ = PT ′⊥(L∗) denote the orthogonal component of the true low-

rank matrix, and recall that En = Σn
O − Σ∗O denotes the difference between the true

marginal covariance and the sample covariance. The proof of the following result uses

Brouwer’s fixed-point theorem [113], and is inspired by the proof of a similar result

in [119] for standard sparse graphical model recovery without latent variables.
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Proposition B.4.2. Let the error (∆S ,∆L) in the solution of the convex program

(B.10) (with T ′ such that ρ(T ′, T ) ≤ ξ(T )
2 ) be as defined above. Further let C1 =

ψ(1 + α
6β ), and define

r = max

{
8

α

[
gγ(A†En) + gγ(A†I∗CT ′) + λn

]
, ‖CT ′‖2

}
.

If we have that

r ≤ min

{
1

4C1
,
αξ(T )

64DψC2
1

}
,

for γ in the range given by (B.7), then

gγ(∆S ,∆L) ≤ 2r.

Proof : Based on Proposition 4.3.1 we note that the convex program (B.10) is

strictly convex (because the negative log-likelihood term has a strictly positive-definite

Hessian due to the constraints involving transverse tangent spaces), and therefore

the optimum is unique. Applying the optimality conditions of the convex program

(B.10) at the optimum (ŜΩ, L̂T ′), we have that there exist Lagrange multipliers QΩ⊥ ∈
Ω⊥, QT ′⊥ ∈ T ′⊥ such that

Σn
O − (ŜΩ − L̂T ′)−1 +QΩ⊥ ∈ −λnγ∂‖ŜΩ‖1, Σn

O − (ŜΩ − L̂T ′)−1 +QT ′⊥ ∈ λn∂‖L̂T ′‖∗.

Restricting these conditions to the space Y = Ω× T ′, one can check that

PΩ[Σn
O − (ŜΩ − L̂T ′)−1] = ZΩ, PT ′ [Σn

O − (ŜΩ − L̂T ′)−1] = ZT ′ ,

where ZΩ ∈ Ω, ZT ′ ∈ T ′ and ‖ZΩ‖∞ = λnγ, ‖ZT ′‖2 ≤ 2λn (we use here the fact that

projecting onto a tangent space T ′ increases the spectral norm by at most a factor of

two). Denoting Z = [ZΩ, ZT ′ ], we conclude that

PYA†[Σn
O − (ŜΩ − L̂T ′)−1] = Z, (B.11)

with gγ(Z) ≤ 2λn. Since the optimum (ŜΩ, L̂T ′) is unique, one can check using La-

grangian duality theory [124] that (ŜΩ, L̂T ′) is the unique solution of the equation

(B.11). Rewriting Σn
O − (ŜΩ − L̂T ′)−1 in terms of the errors (∆S ,∆L), we have using

the Taylor series of the matrix inverse that

Σn
O − (ŜΩ − L̂T ′)−1 = Σn

O − [A(∆S ,∆L) + (Σ∗O)−1]−1

= En −RΣ∗O
(A(∆S ,∆L)) + I∗A(∆S ,∆L)

= En −RΣ∗O
(A(∆S ,∆L)) + I∗APY(∆S ,∆L) + I∗CT ′ .(B.12)
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Since T ′ is a tangent space such that ρ(T ′, T ) ≤ ξ(T )
2 , we have from Proposition 4.3.1

that the operator B =
(
PYA†I∗APY

)−1
from Y to Y is bijective and is well-defined.

Now consider the following matrix-valued function from (δS , δL) ∈ Y to Y:

F (δS , δL) = (δS , δL)−B
{
PYA†[En −RΣ∗O

(A(δS , δL + CT ′)) + I∗APY(δS , δL) + I∗CT ′ ]− Z
}
.

A point (δS , δL) ∈ Y is a fixed-point of F if and only if PYA†[En−RΣ∗O
(A(δS , δL+CT ′))+

I∗APY(δS , δL) +I∗CT ′ ] = Z. Applying equations (B.11) and (B.12) above, we then see

that the only fixed-point of F by construction is the “true” error PY(∆S ,∆L) restricted

to Y. The reason for this is that, as discussed above, (ŜΩ, L̂T ′) is the unique optimum

of (B.10) and therefore is the unique solution of (B.11). Next we show that this unique

fixed-point of F lies in the ball Br = {(δS , δL) | gγ(δS , δL) ≤ r, (δS , δL) ∈ Y}.
In order to prove this step, we resort to Brouwer’s fixed point theorem [113]. In

particular we show that the function F maps the ball Br onto itself. Since F is a con-

tinuous function and Br is a compact set, we can conclude the proof of this proposition.

Simplifying the function F , we have that

F (δS , δL) = B
{
PYA†[−En +RΣ∗O

(A(δS , δL + CT ′))− I∗CT ′ ] + Z
}
.

Consequently, we have from Proposition 4.3.1 that

gγ(F (δS , δL)) ≤ 2

α
gγ

(
PYA†[En −RΣ∗O

(A(δS , δL + CT ′)) + I∗CT ′ ]− Z
)

≤ 4

α

{
gγ(A†[En −RΣ∗O

(A(δS , δL + CT ′)) + I∗CT ′ ]) + λn

}
≤ r

2
+

4

α
gγ(A†RΣ∗O

(A(δS , δL + CT ′))),

where in the second inequality we use the fact that gγ(PY(·, ·)) ≤ 2gγ(·, ·) and that

gγ(Z) ≤ 2λn, and in the final inequality we use the assumption on r.

We now focus on the term gγ(A†RΣ∗O
(A(δS , δL))):

4

α
gγ(A†RΣ∗O

(A(δS , δL + CT ′))) ≤
8DψC2

1 (gγ(δS , δL) + ‖CT ′‖2)2

ξ(T )α

≤ 32DψC2
1r

2

ξ(T )α

≤ 32DψC2
1r

ξ(T )α

αξ(T )

64DψC2
1

≤ r

2
,
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where we have used the fact that r ≤ αξ(T )
64DψC2

1
. Hence gγ(PY(∆S ,∆L)) ≤ r by Brouwer’s

fixed-point theorem. Finally we observe that

gγ(∆S ,∆L) ≤ gγ(PY(∆S ,∆L)) + ‖CT ′‖2
≤ 2r.

�

� B.4.3 Solving a variety-constrained problem

In order to prove that the solution (S̄n, L̄n) of (B.9) has the same sparsity pattern/rank

as (S∗, L∗), we will study an optimization problem that explicitly enforces these con-

straints. Specifically, we consider the following non-convex constraint set:

M = {(S,L) | S ∈ Ω(S∗), rank(L) ≤ rank(L∗),

‖PT⊥(L− L∗)‖2 ≤
ξ(T )λn
Dψ2

, gγ(A†I∗A(S − S∗, L∗ − L)) ≤ 11λn}

Recall that S∗ = K∗O and L∗ = K∗O,H(K∗H)−1K∗H,O. The first constraint ensures that the

tangent space at S is the same as the tangent space at S∗; therefore the support of S is

contained in the support of S∗. The second and third constraints ensure that L lives in

the appropriate low-rank variety, but has a tangent space “close” to the tangent space

T . The final constraint roughly bounds the sum of the errors (S−S∗) + (L∗−L); note

that this does not necessarily bound the individual errors. Notice that the only non-

convex constraint is that rank(L) ≤ rank(L∗). We then have the following nonlinear

program:

(ŜM, L̂M) = arg min
S,L

Tr[(S − L) Σn
O]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]

s.t. S − L � 0, (S,L) ∈M.
(B.13)

Under suitable conditions this nonlinear program is shown to have a unique solution.

Each of the constraints in M is useful for proving the consistency of the solution of

the convex program (B.9). We show that under suitable conditions the constraints in

M are actually inactive at the optimal (ŜM, L̂M), thus allowing us to conclude that

the solution of (B.9) is also equal to (ŜM, L̂M); hence the solution of (B.9) shares the

consistency properties of (ŜM, L̂M). A number of interesting properties can be derived

simply by studying the constraint set M.
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Proposition B.4.3. Consider any (S,L) ∈M, and let ∆S = S−S∗,∆L = L∗−L. For

γ in the range specified by (B.7) and letting C2 = 48
α + 1

ψ2 , we have that gγ(∆S ,∆L) ≤
C2λn.

Proof : We have by the triangle inequality that

gγ(A†I∗A(PΩ(∆S),PT (∆L))) ≤ 11λn + gγ(A†I∗A(PΩ⊥(∆S),PT⊥(∆L)))

≤ 11λn +mψ2‖PT⊥(∆L)‖2
≤ 12λn,

as m ≤ D
ξ(T ) . Therefore, we have that gγ(PYA†I∗APY(∆S ,∆L)) ≤ 24λn, where Y =

Ω× T . Consequently, we can apply Proposition 4.3.1 to conclude that

gγ(PY(∆S ,∆L)) ≤ 48λn
α

.

Finally, we use the triangle inequality again to conclude that

gγ(∆S ,∆L) ≤ gγ(PY(∆S ,∆L)) + gγ(PY⊥(∆S ,∆L))

≤ 48λn
α

+m‖PT⊥(∆L)‖2
≤ C2λn.

�

This simple result immediately leads to a number of useful corollaries. For exam-

ple we have that under a suitable bound on the minimum nonzero singular value of

L∗ = K∗O,H(K∗H)−1K∗H,O, the constraint in M along the normal direction T⊥ is locally

inactive. Next we list several useful consequences of Proposition B.4.3.

Corollary B.4.1. Consider any (S,L) ∈ M, and let ∆S = S − S∗,∆L = L∗ − L.

Suppose γ is in the range specified by (B.7), and let C3 =
(

6(2−ν)
ν + 1

)
C2

2ψ
2D and

C4 = C2 +
3αC2

2 (2−ν)
16(3−ν) (where C2 is as defined in Proposition B.4.3). Let the minimum

nonzero singular value σ of L∗ = K∗O,H(K∗H)−1K∗H,O be such that σ ≥ C5λn
ξ(T )2 for C5 =

max{C3, C4}, and suppose that the smallest magnitude nonzero entry of S∗ is greater

than C6λn
µ(Ω) for C6 = C2να

β(2−ν) . Setting T ′ = T (L) and CT ′ = PT ′⊥(L∗), we then have that:

1. L has rank equal to rank(L∗), i.e., L is a smooth point of the variety of matrices

with rank less than or equal to rank(L∗). In particular L has the same inertia as

L∗.
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2. ‖PT⊥(∆L)‖2 ≤ ξ(T )λn
19Dψ2 .

3. ρ(T, T ′) ≤ ξ(T )
4 .

4. gγ(A†I∗CT ′) ≤ λnν
6(2−ν) .

5. ‖CT ′‖2 ≤ 16(3−ν)λn
3α(2−ν) .

6. sign(S) = sign(S∗).

Proof : We note the following facts before proving each step. First C2 ≥ 1
ψ2 ≥

1
mψ2 ≥ ξ(T )

Dψ2 . Second ξ(T ) ≤ 1. Third we have from Proposition B.4.3 that ‖∆L‖2 ≤
C2λn. Finally 6(2−ν)

ν ≥ 18 for ν ∈ (0, 1
2 ]. We prove each step separately.

For the first step, we note that

σ ≥ C3λn
ξ(T )2

≥ 19C2
2ψ

2Dλn
ξ(T )2

≥ 19C2λn
ξ(T )

≥ 8C2λn ≥ 8‖∆L‖2.

Hence L is a smooth point with rank equal to rank(L∗), and specifically has the same

inertia as L∗.

For the second step, we use the fact that σ ≥ 8‖∆L‖2 to apply Proposition 4.2.2:

‖PT⊥(∆L)‖ ≤ ‖∆L‖22
σ

≤ C2
2ξ(T )2λ2

n

C3λn
≤ ξ(T )λn

19Dψ2
.

For the third step we apply Proposition 4.2.1 (by using the conclusion from above

that σ ≥ 8‖∆L‖2) so that

ρ(T, T ′) ≤ 2‖∆L‖2
σ

≤ 2C2ξ(T )2

C3
≤ 2ξ(T )2

19C2Dψ2
≤ ξ(T )

4
.

For the fourth step let σ′ denote the minimum singular value of L. Consequently,

σ′ ≥ C3λn
ξ(T )2

− C2λn ≥ C2λn

[
19C2Dψ

2

ξ(T )2
− 1

]
≥ 8‖∆L‖2.

Using the same reasoning as in the proof of the second step, we have that

‖CT ′‖2 ≤
‖∆L‖22
σ′

≤ C2
2λ

2
n

( C3
ξ(T )2 − C2)λn

≤ C2
2ξ(T )2λn

C2
2Dψ

2(6(2−ν)
ν )

≤ νξ(T )λn
6(2− ν)Dψ2

.

Hence

gγ(A†I∗CT ′) ≤ mψ2‖CT ′‖2 ≤
λnν

6(2− ν)
.
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For the fifth step the bound on σ′ implies that

σ′ ≥ C4λn
ξ(T )2

− C2λn ≥
3C2

2α(2− ν)

16(3− ν)
λn

Since σ′ ≥ 8‖∆L‖2, we have from Proposition 4.2.2 and some algebra that

‖CT ′‖2 ≤
C2

2λ
2
n

σ′
≤ 16(3− ν)λn

3α(2− ν)
.

For the final step since ‖∆S‖∞ ≤ γC2λn, the assumed lower bound on the minimum

magnitude nonzero entry of S∗ guarantees that sign(S) = sign(S∗). �

Notice that this corollary applies to any (S,L) ∈ M, and is hence applicable to

any solution (ŜM, L̂M) of the M-constrained program (B.13). For now we choose an

arbitrary solution (ŜM, L̂M) and proceed. In the next steps we show that (ŜM, L̂M) is

the unique solution to the convex program (B.9), thus showing that (ŜM, L̂M) is also

the unique solution to (B.13).

� B.4.4 From variety constraint to tangent-space constraint

Given the solution (ŜM, L̂M), we show that the solution to the convex program (B.10)

with the tangent space constraint L ∈ TM , T (L̂M) is the same as (ŜM, L̂M) under

suitable conditions:

(ŜΩ, L̂TM) = arg min
S,L

Tr[(S − L) Σn
O]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]

s.t. S − L � 0, S ∈ Ω, L ∈ TM.
(B.14)

Assuming the bound of Corollary B.4.1 on the minimum singular value of L∗ the

uniqueness of the solution (ŜΩ, L̂TM) is assured. This is because we have from Proposi-

tion 4.3.1 and from Corollary B.4.1 that I∗ is injective on Ω⊕TM. Therefore the Hessian

of the convex objective function of (B.14) is strictly positive-definite at (ŜΩ, L̂TM).

We let CM = PT⊥M(L∗). Recall that En = Σn
O − Σ∗O denotes the difference between

the sample covariance matrix and the marginal covariance matrix of the observed vari-

ables.

Proposition B.4.4. Let γ be in the range specified by (B.7). Suppose that the minimum

nonzero singular value σ of L∗ = K∗O,H(K∗H)−1K∗H,O is such that σ ≥ C5λn
ξ(T )2 (C5 is

defined in Corollary B.4.1). Suppose also that the minimum magnitude nonzero entry
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of S∗ is greater than or equal to C6λn
µ(Ω) (C6 is defined in Corollary B.4.1). Let gγ(A†En) ≤

λnν
6(2−ν) . Further suppose that

λn ≤
3α(2− ν)

16(3− ν)
min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

Then we have that

(ŜΩ, L̂TM) = (ŜM, L̂M).

Proof : Note first that the condition on the minimum singular value of L∗ in Corol-

lary B.4.1 is satisfied. Therefore we proceed with the following two steps:

1. First we can change the non-convex constraint rank(L) ≤ rank(L∗) to the linear

constraint L ∈ T (L̂M). This is because the lower bound assumed for σ implies

that L is a smooth point of the algebraic variety of matrices with rank less than

or equal to rank(L∗) (from Corollary B.4.1). Due to the convexity of all the other

constraints and the objective, the optimum of this “linearized” convex program

will still be (ŜM, L̂M).

2. Next we can again apply Corollary B.4.1 (based on the bound on σ) to conclude

that the constraint ‖PT⊥(L − L∗)‖2 ≤ ξ(T )λn
Dψ2 is locally inactive at the point

(ŜM, L̂M).

Consequently, we have that (ŜM, L̂M) can be written as the solution of a convex

program:

(ŜM, L̂M) = arg min
S,L

Tr[(S − L) Σn
O]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]

s.t. S − L � 0, S ∈ Ω, L ∈ TM,

gγ(A†I∗A(S − S∗, L∗ − L)) ≤ 11λn.

(B.15)

We now need to argue that the constraint gγ(A†I∗A(S − S∗, L∗ − L)) ≤ 11λn is

also inactive in the convex program (B.15). We proceed by showing that the solution

(ŜΩ, L̂TM) of the convex program (B.14) has the property that gγ(A†I∗A(ŜΩ−S∗, L∗−
L̂TM)) < 11λn, which concludes the proof of this proposition. We have from Corol-

lary B.4.1 that gγ(A†I∗CTM) ≤ λnν
6(2−ν) . Since gγ(A†En) ≤ λnν

6(2−ν) by assumption, one
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can verify that

8

α

[
λn + gγ(A†En) + gγ(A†I∗CTM)

]
≤ 8λn

α

[
1 +

ν

3(2− ν)

]
≤ 16(3− ν)λn

3α(2− ν)

≤ min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

The last line follows from the assumption on λn. We also note that ‖CTM‖2 ≤
16(3−ν)λn
3α(2−ν) from Corollary B.4.1, which implies that ‖CTM‖2 ≤ min

{
1

4C1
, αξ(T )

64DψC2
1

}
. Let-

ting (∆S ,∆L) = (SΩ − S∗, L∗ − LTM), we can conclude from Proposition B.4.2 that

gγ(∆L,∆S) ≤ 32(3−ν)λn
3α(2−ν) . Next we apply Proposition B.4.1 (as gγ(∆L,∆S) ≤ 1

2C1
) to

conclude that

gγ(A†RΣ∗O
(∆S + ∆L)) ≤ 2DψC2

1gγ(∆S ,∆L)2

ξ(T )

≤ 2DψC2
1

ξ(T )

32(3− ν)λn
3α(2− ν)

αξ(T )

32DψC2
1

≤ 2(3− ν)λn
3(2− ν)

. (B.16)

From the optimality conditions of (B.14) one can also check that,

gγ(PYA†I∗APY(∆S ,∆L)) ≤ 2λn + gγ(PYA†RΣ∗O
(∆S + ∆L))

+gγ(PYA†I∗CTM) + gγ(PYA†En)

≤ 2[λn + gγ(A†RΣ∗O
(∆S + ∆L))

+gγ(A†En) + gγ(A†I∗CTM)]

≤ 4

[
2(3− ν)λn
3(2− ν)

]
.

Here we used (B.16) in the last inequality, and also that gγ(A†I∗CTM) ≤ λnν
6(2−ν) (as

noted above from Corollary B.4.1) and that gγ(A†En) ≤ λnν
6(2−ν) . Therefore,

gγ(PYA†I∗APY(∆S ,∆L)) ≤ 16λn
3

, (B.17)

because ν ∈ (0, 1
2 ]. Based on Proposition 4.3.1 (the second part), we also have that

gγ(PY⊥A†I∗APY(∆S ,∆L)) ≤ (1− ν)
16λn

3
≤ 16λn

3
. (B.18)
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Summarizing steps (B.17) and (B.18),

gγ(A†I∗A(∆S ,∆L)) ≤ gγ(PYA†I∗APY(∆S ,∆L))

+gγ(PY⊥A†I∗APY(∆S ,∆L)) + gγ(A†I∗CTM)

≤ 16λn
3

+
16λn

3
+

λν

6(2− ν)

≤ 32λ

3
+
λn
18

< 11λn.

This concludes the proof of the proposition. �

This proposition has the following important consequence.

Corollary B.4.2. Under the assumptions of Proposition B.4.4 we have that rank(L̂TM) =

rank(L∗) and that T (L̂TM) = TM. Moreover, L̂TM actually has the same inertia as L∗.

We also have that sign(ŜΩ) = sign(S∗).

� B.4.5 Removing the tangent-space constraints

The following lemma provides a simple set of sufficient conditions under which the

optimal solution (ŜΩ, L̂TM) of (B.14) satisfies the optimality conditions of the convex

program (B.9) (without the tangent space constraints).

Lemma B.4.1. Let (ŜΩ, L̂TM) be the solution to the tangent-space constrained convex

program (B.14). Suppose that the assumptions of Proposition B.4.4 hold. If in addition

we have that

gγ(A†RΣ∗O
A(∆S ,∆L)) ≤ λnν

6(2− ν)
,

then (ŜΩ, L̂TM) is also the unique optimum of the convex program (B.9).

Proof : Recall from Corollary B.4.2 that the tangent space at L̂TM is equal to

T (L∗). Applying the optimality conditions of the convex program (B.14) at the opti-

mum (ŜΩ, L̂TM), we have that there exist Lagrange multipliers QΩ⊥ ∈ Ω⊥, QT⊥M
∈ T⊥M

such that

Σn
O− (ŜΩ− L̂TM)−1 +QΩ⊥ ∈ −λnγ∂‖ŜΩ‖1, Σn

O− (ŜΩ− L̂TM)−1 +QT⊥M
∈ λn∂‖L̂TM‖∗.

Restricting these conditions to the space Y = Ω× TM, one can check that

PΩ[Σn
O − (ŜΩ − L̂TM)−1] = −λnγsign(S∗), PTM [Σn

O − (ŜΩ − L̂TM)−1] = λnUV
T ,
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where L̂TM = UDV T is a reduced SVD of L̂TM . Denoting Z = [−λnγsign(S∗), λnUV
T ],

we conclude that

PYA†[Σn
O − (ŜΩ − L̂TM)−1] = Z, (B.19)

with gγ(Z) = λn. It is clear that the optimality condition of the convex program (B.9)

(without the tangent-space constraints) on Y is satisfied. All we need to show is that

gγ(PY⊥A†[Σn
O − (ŜΩ − L̂TM)−1]) < λn. (B.20)

Rewriting Σn
O−(ŜΩ−L̂TM)−1 in terms of the error (∆S ,∆L) = (ŜΩ−S∗, L∗−L̂TM),

we have that

Σn
O − (ŜΩ − L̂TM)−1 = En −RΣ∗O

A(∆S ,∆L) + I∗A(∆S ,∆L).

Restating the condition (B.19) on Y, we have that

PYA†I∗APY(∆S ,∆L) = Z + PYA†[−En +RΣ∗O
A(∆S ,∆L)− I∗CTM ]. (B.21)

(Recall that CTM = PT⊥M(L∗).) A sufficient condition to show (B.20) and complete the

proof of this lemma is that

gγ(PY⊥A†I∗APY(∆S ,∆L)) < λn − gγ(PY⊥A†[−En +RΣ∗O
A(∆S ,∆L)− I∗CTM ]).

We prove this inequality next. Recall from Corollary B.4.1 that gγ(A†I∗CTM) ≤ λnν
6(2−ν) .

Therefore, from equation (B.21) we can conclude that

gγ(PYA†I∗APY(∆S ,∆L)) ≤ λn + 2(gγ(A†[−En +RΣ∗O
A(∆S ,∆L)− I∗CTM ]))

≤ λn + 2

[
3λnν

6(2− ν)

]
≤ 2λn

2− ν
.

Here we used the bounds assumed on gγ(A†En) and on gγ(A†RΣ∗O
A(∆S ,∆L)).

Applying the second part of Proposition 4.3.1, we have that

gγ(PY⊥A†I∗APY(∆S ,∆L)) ≤ 2λn(1− ν)

2− ν

≤ λn −
νλn

2− ν

< λn −
νλn

2(2− ν)

≤ λn − gγ(A†[−En +RΣ∗O
A(∆S ,∆L)− I∗CTM ])

≤ λn − gγ(PY⊥A†[−En +RΣ∗O
A(∆S ,∆L)− I∗CTM ]).
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This concludes the proof of the lemma. �

One can check that as (ŜΩ, L̂TM) is also the unique solution to the convex program

(B.9) without the tangent-space constraints.

� B.4.6 Probabilistic analysis

All the analysis described so far in this section has been completely deterministic in

nature. Here we present the probabilistic component of our proof. Specifically, we

study the rate at which the sample covariance matrix converges to the true covariance

matrix. The following result from [41] plays a key role in our analysis:

Theorem B.4.1. Given natural numbers n, p with p ≤ n, let Γ be a p × n matrix

with i.i.d. Gaussian entries that have zero-mean and variance 1
n . Then the largest and

smallest singular values s1(Γ) and sp(Γ) of Γ are such that

max
{

Pr
[
s1(Γ) ≥ 1 +

√
p
n + t

]
,Pr

[
sp(Γ) ≤ 1−

√
p
n − t

]}
≤ exp

{
−nt2

2

}
,

for any t > 0.

Using this result the next lemma provides a probabilistic bound between the sample

covariance Σn
O formed using n samples and the true covariance Σ∗O in spectral norm.

This result is well-known, and we mainly discuss it here for completeness and also to

show explicitly the dependence on ψ = ‖Σ∗O‖2 (4.8).

Lemma B.4.2. Let ψ = ‖Σ∗O‖2. Given any δ > 0 with δ ≤ 8ψ, let the number of

samples n be such that n ≥ 64pψ2

δ2 . Then we have that

Pr [‖Σn
O − Σ∗O‖2 ≥ δ] ≤ 2 exp

{
− nδ2

128ψ2

}
.

Proof : Since the spectral norm is unitarily invariant, we can assume that Σ∗O is

diagonal without loss of generality. Let Σ̄n = (Σ∗O)−
1
2 Σn

O(Σ∗O)−
1
2 , and let s1(Σ̄n), sp(Σ̄

n)

denote the largest/smallest singular values of Σ̄n. Note that Σ̄n can be viewed as the

sample covariance matrix formed from n independent samples drawn from a model with

identity covariance, i.e., Σ̄n = ΓΓT where Γ denotes a p×n matrix with i.i.d. Gaussian
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entries that have zero-mean and variance 1
n . We then have that

Pr [‖Σn
O − Σ∗O‖2 ≥ δ] ≤ Pr

[
‖Σ̄n − I‖2 ≥ δ

ψ

]
≤ Pr

[
s1(Σ̄n) ≥ 1 + δ

ψ

]
+ Pr

[
sp(Σ̄

n) ≤ 1− δ
ψ

]
= Pr

[
s1(Γ)2 ≥ 1 + δ

ψ

]
+ Pr

[
sp(Γ)2 ≤ 1− δ

ψ

]
≤ Pr

[
s1(Γ) ≥ 1 + δ

4ψ

]
+ Pr

[
sp(Γ) ≤ 1− δ

4ψ

]
≤ Pr

[
s1(Γ) ≥ 1 +

√
p
n + δ

8ψ

]
+ Pr

[
sp(Γ) ≤ 1−

√
p
n −

δ
8ψ

]
≤ 2 exp

{
− nδ2

128ψ2

}
.

Here we used the fact that n ≥ 64pψ2

δ2 in the fourth inequality, and we applied Theo-

rem B.4.1 to obtain the final inequality by setting t = δ
8ψ . �

The following corollary describes relates the number of samples required for an error

bound to hold with probability 1− 2 exp{−p}.

Corollary B.4.3. Let Σn
O be the sample covariance formed from n samples of the

observed variables. Set δn =

√
128pψ2

n . If n ≥ 2p, then we have with probability greater

than 1− 2 exp{−p} that

Pr [‖Σn
O − Σ∗O‖2 ≤ δn] ≥ 1− 2 exp{−p}.

Proof : We note that n ≥ 2p implies that δn ≤ 8ψ, and apply Lemma B.4.2. �

� B.4.7 Putting it all together

In this section we tie together the results obtained thus far to conclude the proof of

Theorem 4.4.1. We only need to show that the sufficient conditions of Lemma B.4.1

are satisfied. It follows directly from Corollary B.4.2 that the low-rank part L̂TM is

positive semidefinite, which implies that (ŜΩ, L̂TM) is also the solution to the original

regularized maximum-likelihood convex program (4.9) with the positive-semidefinite

constraint. As usual set (∆S ,∆L) = (ŜΩ − S∗, L∗ − L̂TM), and set En = Σn
O − Σ∗O.

Assumptions: We specify here the constants that were suppressed in the statement

of Theorem 4.4.1:

1. Let C7 = αν
32(3−ν)D min

{
1

4C1
, αν

256D(3−ν)ψC2
1

}
, and let the number of samples n be

such that

n ≥ p

ξ(T )4
max

{
128ψ2

C2
7

, 2

}
.
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Note that n & p
ξ(T )4 .

2. Set δn =

√
128pψ2

n , and then set λn as follows:

λn =
6Dδn(2− ν)

ξ(T )ν
.

Note that λn � 1
ξ(T )

√
p
n .

3. Let the minimum nonzero singular value σ of L∗ be such that

σ ≥ C5λn
ξ(T )2

,

where C5 is defined in Corollary B.4.1. Note that σ & 1
ξ(T )3

√
p
n .

4. Let the minimum magnitude nonzero entry θ of S∗ be such that

θ ≥ C6λn
µ(Ω)

,

where C6 is defined in Corollary B.4.1. Note that θ & 1
ξ(T )µ(Ω)

√
p
n .

Proof of Theorem 4.4.1: We condition on the event that ‖En‖2 ≤ δn, which

holds with probability greater than 1 − 2 exp{−p} from Corollary B.4.3 as n ≥ 2p by

assumption. We note that based on the bound on n, we also have that

δn ≤ ξ(T )2

[
αν

32(3− ν)D
min

{
1

4C1
,

αν

256D(3− ν)ψC2
1

}]
.

In particular, these bounds imply that

δn ≤
αξ(T )ν

32(3− ν)D
min

{
1

4C1
,
αξ(T )

64DψC2
1

}
(B.22)

and that

δn ≤
α2ξ(T )2ν2

8192ψC2
1 (3− ν)2D2

. (B.23)

Both these weaker bounds are used later.

Based on the assumptions above, the requirements of Lemma B.4.1 on the minimum

nonzero singular value of L∗ and the minimum magnitude nonzero entry of S∗ are

satisfied. We only need to verify the bounds on λn and gγ(A†En) from Proposition B.4.4,

and the bound on gγ(A†RA(∆S ,∆L)) from Lemma B.4.1.
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First we verify the bound on λn. Based on the setting of λn above and bound on

δn from (B.22), we have that

λn =
6D(2− ν)δn

ξ(T )ν

≤ 3α(2− ν)

16(3− ν)
min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

Next we combine the facts that λn = 6Dδn(2−ν)
ξ(T )ν , and that ‖En‖2 ≤ δn to conclude

that

gγ(A†En) ≤ Dδn
ξ(T )

≤ λnν

6(2− ν)
.

Finally we provide a bound on the remainder by applying Propositions B.4.2 and

B.4.1, which would satisfy the last remaining condition of Lemma B.4.1. In order to

apply Proposition B.4.2, we note that

8

α

[
gγ(A†En) + gγ(A†I∗CTM) + λn

]
≤ 8

α

[
ν

3(2− ν)
+ 1

]
λn

=
16(3− ν)λn
3α(2− ν)

=
32(3− ν)D

αξ(T )ν
δn (B.24)

≤ min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

In the first inequality we used the fact that gγ(A†En) ≤ λnν
6(2−ν) (from above) and that

gγ(A†I∗CTM) is similarly bounded (from Corollary B.4.1 due to the bound on σ). In the

second equality we used the relation λn = 6Dδn(2−ν)
ξ(T )ν . In the final inequality we used the

bound on δn from (B.22). This satisfies one of the requirements of Proposition B.4.2.

The other condition on ‖CTM‖2 is also similarly satisfied due to the bound on σ from

Corollary B.4.1. Specifically, we have that ‖CTM‖2 ≤
16(3−ν)λn
3α(2−ν) from Corollary B.4.1,

and use the same sequence of inequalities as above to satisfy the second requirement of

Proposition B.4.2. Thus we conclude from Proposition B.4.2 and from (B.24) that

gγ(∆S ,∆L) ≤ 64(3− ν)D

αξ(T )ν
δn. (B.25)

This bound implies that gγ(∆S ,∆L) . 1
ξ(T )

√
p
n , which proves the parametric consis-

tency part of the theorem.
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Since the bound (B.25) also satisfies the condition of Proposition B.4.1 (from the

inequality following (B.24) above we see that gγ(∆S ,∆L) ≤ 1
2C1

), we have that

gγ(A†R(∆S + ∆L)) ≤ 2DψC2
1

ξ(T )
gγ(∆S ,∆L)2

≤ 2DψC2
1

ξ(T )

(
64(3− ν)D

αξ(T )ν

)2

δ2
n

=

[
8192ψC2

1 (3− ν)2D2

α2ξ(T )2ν2
δn

]
Dδn
ξ(T )

≤ Dδn
ξ(T )

=
λnν

6(2− ν)
.

In the final inequality we used the bound (B.23) on δn, and in the final equality we

used the relation λn = 6Dδn(2−ν)
ξ(T )ν . This concludes the algebraic consistency part of the

theorem. �
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Appendix C

Proofs of Chapter 5

� C.1 Proof of Proposition 5.3.1

Proof. First note that the Gaussian width can be upper-bounded as follows:

w(C ∩ Sp−1) ≤ Eg

[
sup

z∈C∩B(0,1)
gT z

]
, (C.1)

where B(0, 1) denotes the unit Euclidean ball. The expression on the right hand side

inside the expected value can be expressed as the optimal value of the following convex

optimization problem for each g ∈ Rp:

maxz gT z

s.t. z ∈ C
‖z‖2 ≤ 1

(C.2)

We now proceed to form the dual problem of (C.2) by first introducing the Lagrangian

L(z,u, γ) = gT z + γ(1− zT z)− uT z

where u ∈ C∗ and γ ≥ 0 is a scalar. To obtain the dual problem we maximize the

Lagrangian with respect to z, which amounts to setting

z =
1

2γ
(g − u).

Plugging this into the Lagrangian above gives the dual problem

min γ + 1
4γ ‖g − u‖2

s.t. u ∈ C∗

γ ≥ 0.

197
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Solving this optimization with respect to γ we find that γ = 1
2‖g− u‖, which gives the

dual problem to (C.2)

min ‖g − u‖
s.t. u ∈ C∗

(C.3)

Under very mild assumptions about C, the optimal value of (C.3) is equal to that of

(C.2) (for example as long as C has a non-empty relative interior, strong duality holds).

Hence we have derived

Eg

[
sup

z∈C∩B(0,1)
gT z

]
= Eg [dist(g, C∗)] . (C.4)

This equation combined with the bound (C.1) gives us the desired result.

� C.2 Proof of Theorem 5.3.3

Proof. We set β = 1
Θ . First note that if β ≥ exp{p9} then the width bound exceeds

√
p, which is the maximal possible value for the width of C. Thus, we will assume

throughout that β ≤ exp{ p36}.
Using Proposition 5.3.1 we need to upper bound the expected distance to the polar

cone. Let g ∼ N (0, I) be a normally distributed random vector. Then the norm of g is

independent from the angle of g. That is, ‖g‖ is independent from g/‖g‖. Moreover,

g/‖g‖ is distributed as a uniform sample on Sp−1, and Eg[‖g‖] ≤ √p. Thus we have

Eg[dist(g, C∗)] ≤ Eg[‖g‖ · dist(g/‖g‖, C∗ ∩ Sp−1)] ≤ √pEu[dist(u, C∗ ∩ Sp−1)] (C.5)

where u is sampled uniformly on Sp−1.

To bound the latter quantity, we will use isoperimetry. Suppose A is a subset of

Sp−1 and B is a spherical cap with the same volume as A. Let N(A, r) denote the locus

of all points in the sphere of Euclidean distance at most r from the set A. Let µ denote

the Haar measure on Sp−1 and µ(A; r) denote the measure of N(A, r). Then spherical

isoperimetry states that µ(A; r) ≥ µ(B; r) for all r ≥ 0 (see, for example [95,106]).

Let B now denote a spherical cap with µ(B) = µ(C∗ ∩ Sp−1). Then we have

Eu[dist(u, C∗ ∩ Sp−1)] =

∫ ∞
0

P[dist(u, C∗ ∩ Sp−1) > t]dt (C.6)

=

∫ ∞
0

(1− µ(C∗ ∩ Sp−1; t))dt (C.7)

≤
∫ ∞

0
(1− µ(B; t))dt (C.8)
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where the first equality is the integral form of the expected value and the last inequality

follows by isoperimetry. Hence we can bound the expected distance to the polar cone

intersecting the sphere using only knowledge of the volume of spherical caps on Sp−1.

To proceed let v(ϕ) denote the volume of a spherical cap subtending a solid angle

ϕ. An explicit formula for v(ϕ) is

v(ϕ) = z−1
p

∫ ϕ

0
sinp−1(ϑ)dϑ (C.9)

where zp =
∫ π

0 sinp−1(ϑ)dϑ [88]. Let ϕ(β) denote the minimal solid angle of a cap

such that β copies of that cap cover Sp−1. Since the geodesic distance on the sphere is

always greater than or equal to Euclidean distance, if K is a spherical cap subtending

ψ radians, µ(K; t) ≥ v(ψ + t). Therefore∫ ∞
0

(1− µ(B; t))dt ≤
∫ ∞

0
(1− v(ϕ(β) + t))dt . (C.10)

We can proceed to simplify the right-hand-side integral:∫ ∞
0

(1− v(ϕ(β) + t))dt =

∫ π−ϕ(β)

0
(1− v(ϕ(β) + t))dt (C.11)

= π − ϕ(β)−
∫ π−ϕ(β)

0
v(ϕ(β) + t)dt (C.12)

= π − ϕ(β)− z−1
p

∫ π−ϕ(β)

0

∫ ϕ(β)+t

0
sinp−1 ϑdαdt (C.13)

= π − ϕ(β)− z−1
p

∫ π

0

∫ π−ϕ(β)

max(ϑ−ϕ(β),0)
sinp−1 ϑdtdα (C.14)

= π − ϕ(β)− z−1
p

∫ π

0
{π − ϕ(β)−max(ϑ− ϕ(β), 0)} sinp−1 ϑdα

(C.15)

= z−1
p

∫ π

0
max(ϑ− ϕ(β), 0) sinp−1 ϑdα (C.16)

= z−1
p

∫ π

ϕ(β)
(ϑ− ϕ(β)) sinp−1 ϑdα (C.17)

(C.14) follows by switching the order of integration and the rest of these equalities

follow by straight-forward integration and some algebra.

Using the inequalities that zp ≥ 2√
p−1

(see [95]) and sin(x) ≤ exp(−(x − π/2)2/2)
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for x ∈ [0, π], we can bound the last integral as

z−1
p

∫ π

ϕ(β)
(ϑ− ϕ(β)) sinp−1 ϑdα ≤

√
p− 1

2

∫ π

ϕ(β)
(ϑ− ϕ(β)) exp

(
−p− 1

2
(ϑ− π

2 )2

)
dϑ

(C.18)

Performing the change of variables a =
√
p− 1(ϑ− π

2 ), we are left with the integral

1

2

∫ √p−1π/2

√
p−1(ϕ(β)−π/2)

{
a√
p− 1

+
(π

2
− ϕ(β)

)}
exp

(
−a

2

2

)
da (C.19)

=− 1

2
√
p− 1

exp

(
−a

2

2

) ∣∣∣∣
√
p−1π/2

√
p−1(ϕ(β)−π/2)

+
π
2 − ϕ(β)

2

∫ √p−1π/2

√
p−1(ϕ(β)−π/2)

exp

(
−a

2

2

)
da

(C.20)

≤ 1

2
√
p− 1

exp

(
−p− 1

2
(π/2− ϕ(β))2

)
+

√
π

2

(π
2
− ϕ(β)

)
(C.21)

In this final bound, we bounded the first term by dropping the upper integrand, and

for the second term we used the fact that∫ ∞
−∞

exp(−x2/2)dx =
√

2π . (C.22)

We are now left with the task of computing a lower bound for ϕ(β). We need to

first reparameterize the problem. Let K be a spherical cap. Without loss of generality,

we may assume that

K = {x ∈ Sp−1 : x1 ≥ h} (C.23)

for some h ∈ [0, 1]. h is the height of the cap over the equator. Via elementary

trigonometry, the solid angle that K subtends is given by π/2 − sin−1(h). Hence,

if h(β) is the largest number such that β caps of height h cover Sp−1, then h(β) =

sin(π/2− φ(β)).

The quantity h(β) may be estimated using the following estimate from [25]. For

h ∈ [0, 1], let γ(p, h) denote the volume of a spherical cap of Sp−1 of height h.

Lemma C.2.1 ( [25]). For 1 ≥ h ≥ 2√
p ,

1

10h
√
p

(1− h2)
p−1

2 ≤ γ(p, h) ≤ 1

2h
√
p

(1− h2)
p−1

2 . (C.24)

Note that for h ≥ 2√
p ,

1

2h
√
p

(1− h2)
p−1

2 ≤ 1

4
(1− h2)

p−1
2 ≤ 1

4
exp(−p−1

2 h2) . (C.25)
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So if

h =

√
2 log(4β)

p− 1
(C.26)

then h ≤ 1 because we have assumed β ≤ 1
4 exp(4(p−1)

π3 ). Moreover, h ≥ 2√
p and the

volume of the cap with height h is less than or equal to 1/β. That is

ϕ(β) ≥ π/2− sin−1

(√
2 log(4β)

p− 1

)
. (C.27)

Combining the estimate (C.21) with Proposition 5.3.1, and using our estimate for ϕ(β),

we get the bound

w(C) ≤ 1

2

√
p

p− 1
exp

−p−1
2 sin−1

(√
2 log(4β)

p− 1

)2
+

√
πp

2
sin−1

(√
2 log(4β)

p− 1

)
(C.28)

This expression can be simplified by using the following bounds. First, sin−1(x) ≥ x lets

us upper bound the first term by
√

p
p−1

1
8β . For the second term, using the inequality

sin−1(x) ≤ π
2x results in the upper bound

w(C) ≤
√

p

p− 1

(
1

8β
+
π3/2

2

√
log(4β)

)
. (C.29)

For p ≥ 9 the upper bound can be expressed simply as w(C) ≤ 3
√

log(4β). We recall

that β = 1
Θ , which completes the proof of the theorem.

� C.3 Direct Width Calculations

We first give the proof of Proposition 5.3.2.

Proof. Let x? be an s-sparse vector in Rp with `1 norm equal to 1, and let A denote

the set of unit-Euclidean-norm one-sparse vectors. Let ∆ denote the set of coordinates

where x? is non-zero. Recall from Chapter 2 that the normal cone at x? with respect

to the `1 ball is given by

NA(x?) = cone {z ∈ Rp : zi = sgn(x?i ) for i ∈ ∆, |zi| ≤ 1 for i ∈ ∆c} (C.30)

= {z ∈ Rp : zi = tsgn(x?i ) for i ∈ ∆, |zi| ≤ t for i ∈ ∆c for some t > 0} .
(C.31)
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Here ∆c represents the zero entries of x?.

Given g ∼ N (0, Ip), we would like to construct a u ∈ NA(x?) that is close to g.

Pick u(g) as

ui(g) =

gi i ∈ ∆c

‖g∆c‖∞sgn(x?i ) i ∈ ∆
(C.32)

That is, we set u(g) equal to g on ∆c. On ∆, we set u(g) proportional to the sign of

x?, and scale this sign vector appropriately by the `∞ norm of g on ∆c. For this choice,

we have

E[‖u(g)− g‖2] = E[‖u∆(g)− g∆‖2] (C.33)

= E[‖u∆(g)‖2] + E[‖g∆‖2] (C.34)

= sE[‖g∆c‖2∞] + s (C.35)

≤ 2s log(p− s) + 2s (C.36)

Here, the second equality holds because g∆c and g∆ are independent. The final in-

equality follows because the maximum squared magnitude of a sequence of p−s normal

random variables is bounded above by 2 log(p− s) + 1. By Corollary 5.3.1, this means

that the `1 heuristic succeeds when n exceeds 2p(log(p− s) + 1).

For small values of s, we can tighten this result. The minimum squared distance

to the normal cone at x? can be formulated as a one-dimensional convex optimization

problem for arbitrary z ∈ Rp

inf
u∈NA(x?)

‖z− u‖22 = inf
t≥0

|ui|<t, i∈∆c

∑
i∈∆

(zi − tsgn(x?i ))
2 +

∑
j∈∆c

(zj − uj)
2 (C.37)

= inf
t≥0

∑
i∈∆

(zi − tsgn(x?i ))
2 +

∑
j∈∆c

shrink(zj , t)
2 (C.38)

where

shrink(z, t) =


z + t z < −t

0 −t ≤ z ≤ t

z − t z > t

(C.39)
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is the `1-shrinkage function. Hence, for any fixed t ≥ 0 independent of g, we have

E
[

inf
u∈NA(x?)

‖g − u‖22
]
≤ E

∑
i∈∆

(gi − tsgn(x?i ))
2 +

∑
j∈∆c

shrink(gj , t)
2

 (C.40)

= s(1 + t2) + E

∑
j∈∆c

shrink(gj , t)
2

 . (C.41)

Now we directly integrate the second term, treating each summand individually.

For a zero-mean, unit-variance normal random variable g,

E
[
shrink(g, t)2

]
=

1√
2π

∫ −t
−∞

(g + t)2 exp(−g2/2)dg +
1√
2π

∫ ∞
t

(g − t)2 exp(−g2/2)dg

(C.42)

=
2√
2π

∫ ∞
t

(g − t)2 exp(−g2/2)dg (C.43)

= − 2√
2π
t exp(−t2/2) +

2(1 + t2)√
2π

∫ ∞
t

exp(−g2/2)dg (C.44)

≤ 2√
2π

(
−t+

1 + t2

t

)
exp(−t2/2) (C.45)

=
2√
2π

1

t
exp(−t2/2) . (C.46)

The first simplification follows because the shrink function and Gaussian distributions

are symmetric about the origin. The second equality follows by integrating by parts.

The inequality follows by a tight bound on the Gaussian Q-function

Q(x) =
1√
2π

∫ ∞
x

exp(−g2/2)dg ≤ 1√
2π

1

x
exp(−x2/2) for x > 0 . (C.47)

Using this bound, we get

E
[

inf
u∈NA(x?)

‖g − u‖22
]
≤ s(1 + t2) + (p− s) 2√

2π

1

t
exp(−t2/2) (C.48)

Setting t =
√

2 log(p/s− 1)− 1 gives

E
[

inf
z∈NA(x?)

‖g − z‖22
]
≤ 2s

(
log

(
p− s
s

)
+ 1

)
. (C.49)

provided that s ≤ 1
1+ep. This bound on s arises because t must be greater than or equal

to 0 and the second term in (C.48) is set to be less than 2s.
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Next we give the proof of Proposition 5.3.3.

Proof. Let x? be an m1×m2 matrix of rank r with singular value decomposition UΣV ∗,

and let A denote the set of rank-one unit-Euclidean-norm matrices of size m1 × m2.

Without loss of generality, impose the conventions m1 ≤ m2, Σ is r× r, U is m1× r, V
is m2 × r, and assume the nuclear norm of x? is equal to 1.

Let uk (respectively vk) denote the k’th column of U (respectively V ). It is con-

venient to introduce the orthogonal decomposition Rm1×m2 = ∆⊕∆⊥ where ∆ is the

linear space spanned by elements of the form ukz
T and yvTk , 1 ≤ k ≤ r, where z

and y are arbitrary, and ∆⊥ is the orthogonal complement of ∆. The space ∆⊥ is

the subspace of matrices spanned by the family (yzT ), where y (respectively z) is any

vector orthogonal to all the columns of U (respectively V ). Recall from Chapter 2 that

the normal cone of the nuclear norm ball at x? is given by the cone generated by the

subdifferential at x?:

NA(x?) = cone
{
UV T +W ∈ Rm1×m2 : W TU = 0, WV = 0, ‖W‖∗A ≤ 1

}
(C.50)

=
{
tUV ∗ +W ∈ Rm1×m2 : W TU = 0, WV = 0, ‖W‖∗A ≤ t, t ≥ 0

}
.

(C.51)

Note that here ‖Z‖∗A is the operator norm, equal to the maximum singular value of

Z [121].

Let G be a Gaussian random matrix with i.i.d. entries, each with mean zero and

unit variance. Then the matrix

Z(G) = ‖P∆⊥(G)‖UV ∗ + P∆⊥(G) (C.52)

is in the normal cone at x?. We can then compute

E
[
‖G− Z(G)‖2F

]
= E

[
‖P∆(G)− P∆(Z(G))‖2F

]
(C.53)

= E
[
‖P∆(G)‖2F

]
+ E

[
‖P∆(Z(G))‖2F

]
(C.54)

= r(m1 +m2 − r) + rE[‖P∆⊥(G)‖2] . (C.55)

Here (C.54) follows because P∆(G) and P∆⊥(G) are independent. The final line follows

because dim(T ) = r(m1 +m2 − r) and the Frobenius (i.e., Euclidean) norm of UV ∗ is

‖UV ∗‖F =
√
r. Due to the isotropy of Gaussian random matrices, P∆⊥(G) is identically

distributed as an (m1 − r) × (m2 − r) matrix with i.i.d. Gaussian entries each with

mean zero and variance one. We thus know that

P
[
‖P∆⊥(G)‖ ≥

√
m1 − r +

√
m2 − r + s

]
≤ exp

(
−s2/2

)
(C.56)
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(see, for example, [41]). To bound the latter expectation, we again use the integral form

of the expected value. Letting µT⊥ denote the quantity
√
m1 − r +

√
m2 − r, we have

E
[
‖P∆⊥(G)‖2

]
=

∫ ∞
0

P
[
‖P∆⊥(G)‖2 > h

]
dh (C.57)

≤ µ2
T⊥ +

∫ ∞
µ2
T⊥

P
[
‖P∆⊥(G)‖2 > h

]
dh (C.58)

≤ µ2
T⊥ +

∫ ∞
0

P
[
‖P∆⊥(G)‖2 > µ2

T⊥ + t
]
dt (C.59)

≤ µ2
T⊥ +

∫ ∞
0

P
[
‖P∆⊥(G)‖ > µT⊥ +

√
t
]
dt (C.60)

≤ µ2
T⊥ +

∫ ∞
0

exp(−t/2)dt (C.61)

= µ2
T⊥ + 2 (C.62)

Using this bound in (C.55), we get that

E
[

inf
Z∈NA(x?)

‖G− Z‖2F
]
≤ r(m1 +m2 − r) + r(

√
m1 − r +

√
m2 − r)2 + 2r (C.63)

≤ r(m1 +m2 − r) + 2r(m1 +m2 − 2r) + 2r (C.64)

≤ 3r(m1 +m2 − r) (C.65)

where the second inequality follows from the fact that (a+b)2 ≤ 2a2 +2b2. We conclude

that 3r(m1 +m2− r) random measurements are sufficient to recover a rank r, m1×m2

matrix using the nuclear norm heuristic.
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Appendix D

Properties of Convex Symmetric

Functions

A convex symmetric function is a convex function that is invariant with respect to a

permutation of the argument:

Definition D.0.1. A function g : Rn → R is a convex symmetric function if it is

convex, and if for any x ∈ Rn it holds that g(Πx) = g(x) for all permutation matrices

Π ∈ Sym(n).

The properties of such functions are well-known in the literature on convex analysis

and optimization, and they arise in many applications. We briefly describe some of

these properties and applications here.

An important class of convex symmetric functions is the set of linear functionals

given by monotone linear functionals:

g(x) = vTx,

where v1 ≥ · · · ≥ vn. Recall that x is the vector obtained by sorting the entries of x

in descending order. Monotone linear functionals can be used to express any convex

symmetric function. Specifically, letM⊂ Rn represent the cone of monotone decreasing

vectors in Rn. Then for any convex symmetric function g : Rn → R, we have that

g(x) = sup
v∈M

vTx− αv.

This statement is a simple consequence of the separation theorem from convex analysis

[124]. Monotone linear functionals in turn can be expressed as the nonnegative sum

of even more elementary functions called distribution functions, which are defined as

207
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follows:

gk(x) =

k∑
i=1

(x)i.

These functions are closely related to the notion of conditional value-at-risk [125], which

in turn is computed using quantiles of probability distributions.

Convex symmetric functions are intimately connected with the concept of majoriza-

tion [104]. There are many equivalent characterizations of majorization [42,97], and we

briefly mention some of these next. A vector x ∈ Rn is said to majorize another vector

y ∈ Rn if

gk(x) ≥ gk(y), ∀k = 1, . . . , n− 1 and gn(x) = gn(y).

The permutahedron of a vector x ∈ Rn is the convex hull of all permutations of x, and

is given by the set of vectors in Rn that are majorized by x. Thus, convex constraints

given by distribution functions provide a simple characterization of the permutahedron

generated by x. Majorization is also closely related to the notion of Lorenz dominance;

a (typically nonnegative) vector x ∈ Rn is said to Lorenz-dominate y ∈ Rp if −x

is majorized by −y. Lorenz dominance is used to measure the level of inequality in

distributions, i.e., if a distribution x Lorenz-dominates a distribution y then x is “more

equal” than y (see also the Gini coefficient, which is used to measure inequalities in

countries).

A convex symmetric function is an example of a Schur-convex function, which is

a function f such that f(x) ≥ f(y) whenever x majorizes y. Hence a Schur-convex

function preserves order with respect to majorization. Consequently, such functions

arise in many applications in which majorization plays a prominent role [104]. We

note that the functions that are both convex and Schur-convex are exactly the convex

symmetric functions.

A fairly similar set of results hold for convex functions of symmetric matrices that

are invariant under conjugation of the argument by orthogonal matrices, i.e., convex

functions f : Sn → R such that f(V AV T ) = f(A) for all A ∈ Sn and for all Π ∈ Sym(n).
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[98] Löfberg, J. (2004). YALMIP: A Toolbox for Modeling and Optimization

in MATLAB. Proceedings of the CACSD Conference, Taiwan. Available from

http://control.ee.ethz.ch/ joloef/yalmip.php.

[99] Lokam, S. (1995). Spectral Methods for Matrix Rigidity with Applications

to Size-Depth Tradeoffs and Communication Complexity. 36th IEEE Symp. on

Found. of Comp. Sci. (FOCS). 6–15.

[100] Ma, S., Goldfarb, D., and Chen, L. (2008). Fixed point and Bregman

iterative methods for matrix rank minimization. Preprint, arXiv:0905.1643.

[101] Mahajan, M. and Sarma, J. (2010). On the Compelxity of Matrix Rank and

Rigidity. Theo. of Comp. Sys. 46 9–26.

[102] Mangasarian, O. and Recht, B. (2009). Probability of Unique Integer So-

lution to a System of Linear Equations. Preprint.

[103] Marcenko, V. A. and Pastur, L. A. (1967). Distributions of eigenvalues of

some sets of random matrices. Math. USSR-Sb. 1 507–536.

[104] Marshall, A. and Olkin, I. (1979). Inequalities: The Theory of Majorizations

and Its Applications. Academic Press.

[105] Mason, O. and Verwoerd, M. (2007). Graph Theory and Networks in Biol-

ogy. IET Syst. Biol. 1 89-119.
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