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Summary. Models specified by low rank matrices are ubiquitous in contemporary applications.
In many of these problem domains, the row–column space structure of a low rank matrix carries
information about some underlying phenomenon, and it is of interest in inferential settings to
evaluate the extent to which the row–column spaces of an estimated low rank matrix signify
discoveries about the phenomenon. However, in contrast with variable selection, we lack a
formal framework to assess true or false discoveries in low rank estimation; in particular, the
key source of difficulty is that the standard notion of a discovery is a discrete notion that is ill
suited to the smooth structure underlying low rank matrices. We address this challenge via a
geometric reformulation of the concept of a discovery, which then enables a natural definition
in the low rank case.We describe and analyse a generalization of the stability selection method
of Meinshausen and Bühlmann to control for false discoveries in low rank estimation, and we
demonstrate its utility compared with previous approaches via numerical experiments.
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1. Introduction

Models that are described by low rank matrices are ubiquitous in many contemporary problem
domains. The reason for their widespread use is that low rank matrices offer a flexible approach
to specify various types of low dimensional structure in high dimensional data. For example,
low rank matrices are used to describe user preferences in collaborative filtering (Goldberg
et al., 1992), small collections of end member signatures in hyperspectral imaging (Manolakis,
2003), directions of moving targets in radar measurements (Fa and Lamare, 2011), low order
systems in control theory (Liu and Vandenberghe, 2009), coherent imaging systems in optics
(Pati and Kailath, 1994) and latent variable models in factor analysis (Shapiro, 1982). In many
of these settings, the row–column space structure of a low rank matrix carries information about
some underlying phenomenon of interest; for instance, in hyperspectral imaging for mineralogy
problems, the column space represents the combined signatures of relevant minerals in a mixture.
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Similarly, the row–column spaces of matrices that are obtained from radar measurements signify
the directions of moving targets. Therefore, in inferential contexts in which low rank matrices
are estimated from data, it is of interest to evaluate the extent to which the row–column spaces
of the estimated matrices signify true or false discoveries about the relevant phenomenon.

In seeking an appropriate framework to assess discoveries in low rank estimation, it is in-
structive to consider the case of variable selection, which may be viewed conceptually as low
rank estimation with diagonal matrices. Stated in terms of subspaces, the set of discoveries in
variable selection is naturally represented by a subspace that is spanned by the standard basis
vectors corresponding to the subset of variables that are declared significant. The number of true
discoveries then corresponds to the dimension of the intersection between this ‘discovery sub-
space’ and the ‘population subspace’ (i.e. the subspace that is spanned by standard basis vectors
corresponding to significant variables in the population), and the number of false discoveries is
the dimension of the ‘discovery subspace’ minus the number of true discoveries. Generalizing
this perspective to low rank estimation, it is perhaps appealing to declare that the number of
true discoveries is the dimension of the intersection of the estimated row–column spaces and
the population row–column spaces, and the number of false discoveries is the dimension of the
remaining components of the estimated row–column spaces. The difficulty with this approach
is that we cannot expect any inference procedure to estimate perfectly with positive probability
even a one-dimensional subspace of the population row–column spaces as the collection of
these spaces is not discrete; in particular, the set of all subspaces of a given dimension is the
Grassmannian manifold, whose underlying smooth structure is unlike that of the finite collec-
tion of co-ordinate subspaces that correspond to discoveries in variable selection. Therefore, the
number of true discoveries would generically be 0. One method to improve on this idea is to
define the number of true discoveries as the dimension of the largest subspaces of the estimated
row–column spaces that are within a specified angle of the population row–column spaces, and
to treat the dimension of the remaining components of the estimated row–column spaces as the
number of false discoveries. An unappealing feature of this second approach is that it depends
on an extrinsic parameter, and minor perturbations of this parameter could result in potentially
large changes in the number of true or false discoveries. In some sense, these preceding attempts
fail as they are based on a sharp binary choice that declares components of the estimated row–
column spaces exclusively as true or false discoveries, which is ill suited to the smooth structure
underlying low rank matrices.

As our first contribution, we develop in Section 2 a geometric framework for evaluating false
discoveries in low rank estimation. We begin by expressing the number of true or false discoveries
in variable selection in terms of functionals of the projection matrices that are associated with the
discovery or population subspaces that were described above; this expression varies smoothly
with respect to the underlying subspaces, unlike dimensions of intersections of subspaces. Next,
we interpret the discovery or population subspaces in variable selection as tangent spaces to
algebraic varieties of sparse vectors. Finally, we note that tangent spaces with respect to varieties
of low rank matrices encode the row–column space structure of a matrix and therefore offer an
appropriate generalization of the subspaces that is discussed in the context of variable selection.
Putting these observations together, we substitute tangent spaces with respect to varieties of low
rank matrices into our reformulation of discoveries in variable selection in terms of projection
matrices, which leads to a natural formalism of the number of true or false discoveries that
is suitable for low rank estimation. We emphasize that, although our definition respects the
smooth geometric structure underlying low rank matrices, one of its appealing properties is that
it specializes transparently to the usual discrete notion of true or false discoveries in the setting
of variable selection if the underlying low rank matrices are diagonal.
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Our next contribution concerns the development of a procedure for low rank estimation that
provides false discovery control. In Section 3, we generalize the ‘stability selection’ procedure of
Meinshausen and Bühlmann (2010) for controlling false discoveries in variable selection. Their
method operates by employing variable selection methods in conjunction with subsampling;
in particular, one applies a variable selection algorithm to subsamples of a data set and then
declares as discoveries those variables that are selected most frequently. In analogy with their
approach, our algorithm—which we call ‘subspace stability selection’—operates by combining
existing low rank estimation methods in conjunction with subsampling. Our framework employs
row–column space selection procedures (based on standard low rank estimation algorithms) on
subsamples of a data set and then outputs as discoveries a set of row–column spaces that are ‘close
to’ most of the estimated row–column spaces; the specific notion of distance here is based on our
tangent space formalism. Building on the results in Meinshausen and Bühlmann (2010) and Shah
and Samworth (2013), we provide a theoretical analysis of the performance of our algorithm.
A key quantity in our results is the commutator between projection matrices associated with
estimated tangent spaces and with the population tangent space, which highlights the distinction
between the discrete nature of variable selection and the smooth geometry underlying low rank
estimation.

Finally, in Section 4 we contrast subspace stability selection with previous methods in a range
of low rank estimation problems involving simulated as well as real data. The tasks involving real
data are on estimating user preference matrices for recommender systems and identifying signa-
tures of relevant minerals in hyperspectral images. The estimates that are provided by subspace
stability selection offer improvements in multiple respects. First, the row–column spaces of the
subspace stability selection estimates are far closer to their population counterparts in compari-
son with other standard approaches; in other words, our experiments demonstrate that subspace
stability selection provides estimates with far fewer false discoveries, without a significant loss
in power (both false discovery and power are based on the definitions that are introduced in this
paper). Second, in settings in which regularized formulations are employed, subspace stability
selection estimates are much less sensitive to the specific choice of the regularization parameter.
Finally, a common challenge with approaches that are based on cross-validation for low rank
estimation is that they overestimate the complexity of a model, i.e. they produce higher rank
estimates (indeed, a similar issue arises in variable selection, which was one of the motivations
for the development of stability selection in Meinshausen and Bühlmann (2010)). We observe
that the estimates that are produced by subspace stability selection have substantially lower rank
than those produced by cross-validation, with a similar or improved prediction performance.

The outline of this paper is as follows. In Section 2, we briefly review the relevant concepts from
algebraic geometry and then formulate a false discovery framework for low rank estimation.
Our subspace stability selection algorithm is described in Section 3, with theoretical support pre-
sented in Section 3.1. In Section 4, we demonstrate the utility of our approach in experiments with
synthetic and real data. We conclude with a discussion of further research directions in Section 5.

The programs that were used to analyse the data can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets.

1.1. Related work
We are aware of prior work for low rank estimation based on testing the level of significance
of the singular values of an observed matrix (see, for example, Choi et al. (2017), Liu and Lin
(2018) and Song and Shin (2018)). However, in contrast with our framework, these methods
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do not directly control deviations of row–column spaces, which carry significant information
about various phenomena of interest in applications. Further, these previous approaches have
limited applicability as they rely on having observations of all the entries of a matrix; this is
not so, for example, in low rank matrix completion problems which arise commonly in many
domains. In comparison, our methodology is general purpose and is applicable to a broad range
of low rank estimation problems. On the computational front, our algorithm and its analysis
are a generalization of some of the ideas in Meinshausen and Bühlmann (2010) and Shah and
Samworth (2013). However, the geometry underlying the collection of tangent spaces to low
rank matrices leads to some new challenges in our context.

1.2. Notation
For a subspace V, we denote projection onto V by PV. Given a self-adjoint linear map M :V̄→V̄

on a vector space V̄ and a subspace V⊂ V̄, the minimum singular value of M restricted to V is
given by σmin.PVMPV/= infx∈V\{0} ‖Mx‖l2=‖x‖l2 . We denote the Kronecker product between
two matrices A and B by A⊗B. Finally, the nuclear norm (the sum of singular values) is denoted
by ‘‖ · ‖Å’, and the Frobenius norm is denoted by ‘‖ · ‖F’.

2. A geometric false discovery framework

We describe a geometric framework for assessing discoveries in low rank estimation. Our dis-
cussion proceeds by first reformulating true or false discoveries in variable selection in geometric
terms, which then enables a transparent generalization to the low rank case. We appeal to ele-
mentary ideas from algebraic geometry on varieties and tangent spaces (Harris, 1995). We also
describe a procedure to obtain an estimate of a low rank matrix given an estimate of a tangent
space.

2.1. False discovery in low rank estimation
The performance of a variable selection procedure Ŝ ⊂{1, : : : , p}, which estimates a subset of a
collection of p variables as being significant, is evaluated by comparing the number of elements
of Ŝ that are also in the ‘true’ subset of significant variables SÅ ⊂ {1, : : : , p}—the number of
true discoveries is |Ŝ ∩SÅ|, whereas the number of false discoveries is |Ŝ ∩SÅc|. We give next a
geometric perspective on this combinatorial notion. As described in Section 1, we can associate
with each subset S ⊂{1, : : : , p} the co-ordinate aligned subspace T.S/={x∈Rp|supp.x/⊆S},
where supp.x/ denotes the locations of the non-zero entries of x. With this notation, the number
of false discoveries in an estimate Ŝ is given by

#false-discoveries=|Ŝ ∩SÅc|=dim{T.Ŝ/∩T.SÅ/⊥}= tr.P
T.Ŝ/

PT.SÅ
/⊥/:

Similarly, the number of true discoveries is given by tr.P
T.Ŝ/

PT.SÅ
//. These reformulations in

terms of projection operators have no obvious ‘discrete’ attribute to them. In particular, for
any subspaces W and W̃ , the expression tr.PWPW̃ / is equal to the sum of the squares of the
cosines of the principal angles between W and W̃ (Björck and Golub, 1973); as a result, the
quantity tr.PWPW̃ / varies smoothly with respect to perturbations of W and W̃ . The discrete
nature of a discovery is embedded inside the encoding of the subsets Ŝ and SÅ by using the
subspaces T.Ŝ/ and T.SÅ/. Consequently, to make progress towards a suitable definition of true
or false discoveries in the low rank case, we require an appropriate encoding of row–column
space structure via subspaces in the spirit of the mapping S 
→ T.S/. Towards this goal, we
interpret next the subspace T.S/ that is associated with a subset S ⊂ {1, : : : , p} as a tangent
space to an algebraic variety.
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Formally, for any integer k ∈ {1, : : : , p} let Vsparse.k/ ⊂ Rp denote the algebraic variety of
elements of Rp with at most k non-zero entries. Then, for any point in Vsparse.k/ consisting
of exactly k non-zero entries at locations given by the subset S ⊂ {1, : : : , p} (here |S|= k), the
tangent space at that point with respect to Vsparse.k/ is given by T.S/. In other words, the tangent
space at a smooth point of Vsparse.k/ is completely determined by the locations of the non-zero
entries of that point. This geometric perspective extends naturally to the low rank case.

Consider the determinantal variety Vlow rank.r/⊂Rp1×p2 of matrices of size p1 ×p2 with rank
at most r (here r ∈ {1, : : : , min.p1, p2/}). Then, for any matrix in Vlow rank.r/ with rank equal
to r and with row and column spaces given by R⊂ Rp2 and C ⊂ Rp1 respectively, the tangent
space at that matrix with respect to Vlow rank.r/ is given by example 8.14 in Harris (1995):

T.C, R/�{MR +MC|MR, MC ∈Rp1×p2 , row-space.MR/⊆R, column-space.MC/⊆C}: .2:1/

The dimension of T.C, R/ equals r.p1 +p2/− r2 and the dimension of its orthogonal comple-
ment T.C, R/⊥ equals .p1 − r/.p2 − r/. Further, the projection operators onto T.C, R/ and onto
T.C, R/⊥ can be expressed in terms of the projection maps onto C and R as follows:

PT.C,R/ =PC ⊗ I + I ⊗PR −PC ⊗PR,

PT.C,R/⊥ = .I −PC/⊗ .I −PR/=PC⊥ ⊗PR⊥ :
.2:2/

where ‘⊗’ denotes a Kronecker product. Consequently, the action of projection operators
PT.C,R/ and PT.C,R/⊥ on a matrix M ∈Rp1×p2 yields

PT.C,R/.M/=PCM +MPR −PCMPR

and

PT.C,R/⊥.M/=PC⊥MPR⊥ :

In analogy with the previous case with variable selection, the tangent space at a rank r matrix with
respect to Vlow rank.r/ encodes—and is in one-to-one correspondence with—the row–column
space structure at that point. Indeed, estimating the row–column spaces of a low rank matrix
can be viewed equivalently as estimating the tangent space at that matrix with respect to a
determinantal variety. With this notion in hand, we give our definition of true or false discoveries
in low rank estimation.

Definition 1. Let CÅ ⊂ Rp1 and RÅ ⊂ Rp2 denote the column and row spaces of a low rank
matrix in Rp1×p2 ; in particular, dim.CÅ/= dim.RÅ/. Given observations from a model that is
parameterized by this matrix, let .Ĉ, R̂/ ⊂ Rp1 × Rp2 be an estimator of the pair of subspaces
.CÅ, RÅ/ with dim.Ĉ/=dim.R̂/. Then the expected false discovery of the estimator is defined as

FD=E[tr.P
T.Ĉ, R̂/

PT.CÅ,RÅ
/⊥/], .2:3/

and the power of the estimator is defined as

PW=E[tr.P
T.Ĉ, R̂/

PT.CÅ,RÅ
//]: .2:4/

The expectations in both cases are with respect to randomness in the data that are employed
by the estimator, and the tangent spaces T.Ĉ, R̂/, T.CÅ, RÅ/ are as defined in expression (2.1).

With respect to our objective of identifying a suitable notion of discovery for low rank esti-
mation, the definitions of FD and of PW have some favourable attributes. These definitions do
not depend on a choice of basis for the tangent space T.CÅ, RÅ/. Further, for the reasons that
were described above, small changes in row–column space estimates lead to small changes in the
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performance of an estimator, as evaluated by FD and PW. Although these definitions respect
the smooth structure underlying low rank matrices, they specialize transparently to the usual
discrete notion of true or false discoveries in the setting of variable selection if the underlying
low rank matrices are diagonal. We also have that the expected false discovery is bounded as
0 � FD � dim{T.CÅ, RÅ/⊥} and the power is bounded as 0 � PW � dim{T.CÅ, RÅ/}, which is
in agreement with the intuition that the spaces T.CÅ, RÅ/ and T.CÅ, RÅ/⊥ represent the total
true and false discoveries respectively that can be made by any estimator. Similarly, we observe
that FD + PW = E[dim{T.Ĉ, R̂/}], which is akin to the expected total discovery made by the
estimator .Ĉ, R̂/.

One can also arrive at the definitions (2.3) and (2.4) in an ‘axiomatic’ manner as follows.
Suppose that we wish to identify a suitable notion of alignment between the estimate T.Ĉ, R̂/

and the population T.CÅ, RÅ/ via a real-valued function f.·, ·/ whose arguments consist of
a pair of tangent spaces. First, f should remain invariant to simultaneous isometric linear
transformations of the row–column spaces of the population and of the estimate; as a parallel,
the appropriate invariance in variable selection is simultaneous relabelling of the variables in
the estimate and the population. We conclude from this that f must be a function purely of
the principal angles between its arguments, which correspond to the spectrum of the product
of the associated projection matrices. Second, our definition of f should satisfy the condition that
the sum f{T.Ĉ, R̂/, T.CÅ, RÅ/⊥} + f{T.Ĉ, R̂/, T.CÅ, RÅ/} equals dim{T.Ĉ, R̂/}—i.e. the sum
of the false discovery and the true discovery must equal the total amount of discovery. Based
on this requirement as well as the deduction from the first argument, one can arrive at the
definitions (2.3) and (2.4) after taking expectations.

We note that the definition of FD may be modified to obtain an analogue of the false discovery
rate (Benjamini and Hochberg, 1995), which is of interest in contemporary multiple testing as
well as in high dimensional estimation:

FDR=E

[ tr.P
T.Ĉ, R̂/

PT.CÅ,RÅ
/⊥/

dim{T.Ĉ, R̂/}

]
:

We focus in the present paper on controlling the quantity FD and we discuss in Section 5 some
challenges that are associated with controlling FDR in low rank estimation.

Finally, although the main focus of this paper is a false discovery framework for low rank esti-
mation in which we seek reliable estimates of both the row and the column spaces, the geometric
perspective outlined here can be adapted to settings in which one seeks only an estimate of the
column space of a low rank matrix. (Such a problem arises in hyperspectral imaging, as il-
lustrated in Section 4.) In such situations, the ideas described previously can be extended as
follows:

F̃D=E[tr.PĈPCÅ⊥/];

P̃W=E[tr.PĈPCÅ/];

˜FDR=E

[
tr.PĈPCÅ⊥/

dim.Ĉ/

]
:

⎫⎪⎪⎬
⎪⎪⎭ .2:5/

Here CÅ ⊂ Rp represents the population column space and Ĉ ⊂ Rp is an estimator. These
expressions can be derived by considering tangent spaces with respect to quotients of the de-
terminantal variety under certain equivalence relations; supplementary material section A.9
provides the details.
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2.2. From tangent space to parameter estimation
Although the primary emphasis of this paper is on a framework to evaluate and control the
expected false discovery of tangent spaces estimated from data, in many practical settings (e.g.
some of the prediction tasks with real data sets in Section 4), the ultimate object of interest is
an estimate of a low rank matrix. One can obtain such an estimate by solving a subsequent
matrix estimation problem in which the tangent space of the matrix is constrained to lie within
the tangent space identified from our framework. Concretely, let T.C, R/⊂Rp1×p2 be a tangent
space that corresponds to column and row spaces C ⊂Rp1 and R⊂Rp2 , and, given a collection
of observations D, we wish to solve the following optimization problem:

L̂= arg min
L∈Rp1×p2

Loss.L;D/ subject to T{column-space.L/, row-space.L/}⊆T.C, R/,

.2:6/

in which the decision variable L is constrained to have a tangent space that lies within the
prescribed tangent space T.C, R/. Furthermore, this constraint may be simplified as follows.
Suppose that the subspaces R and C are of dimension k. Let UC ∈Rp1×k and UR ∈Rp2×k be any
matrices with columns spanning the spaces C and R respectively. Then we can check that the set
{UCMU ′

R|M ∈Rk×k} is precisely the collection of matrices whose tangent spaces are contained
in T.C, R/. Consequently problem (2.6) may be reformulated as

L̂= arg min
L∈Rp1×p2 , M∈Rk×k

Loss.L;D/ subject to L=UCMU ′
R: .2:7/

Note that the constraint here is linear in the decision variables L and M. Consequently, an
appealing property of problem (2.7) is that, if the loss function Loss.·;D/ is convex, then problem
(2.7) is a convex optimization problem. For example, when Loss.·;D/ is the squared loss, an
optimal solution can be obtained in closed form.

In a similar fashion, in situations in which one is only concerned with estimating low rank
matrices with an accurate column space, one can solve an analogue of problem (2.7) in which
the decision variable satisfies the linear constraint that its column space lies inside a prescribed
column space.

3. False discovery control via subspace stability selection

Building on the discussion in the preceding section, our objective is the accurate estimation of the
tangent space that is associated with a low rank matrix, as this is in one-to-one correspondence
with the row–column spaces of the matrix. In this section, we formulate an approach based
on the stability selection procedure of Meinshausen and Bühlmann (2010) to estimate such a
tangent space. We shall also describe how this method can be specialized for problems involving
subspace estimation.

Stability selection is a general technique to control false discoveries in variable selection.
The procedure can be paired with any variable selection procedure as follows: instead of ap-
plying a selection procedure (e.g. the lasso) to a collection of observations, we instead apply
the procedure to many subsamples of the data and then choose those variables that are most
consistently selected in the subsamples. The virtue of the subsampling and averaging framework
is that it provides control over the expected number of falsely selected variables (see theorem
1 in Meinshausen and Bühlmann (2010) and theorem 1 in Shah and Samworth (2013)). We
develop a generalization of this framework in which existing row–column space selection pro-
cedures (based on any low rank estimation procedure) are employed on subsamples of the data,
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and then these spaces are aggregated to produce a tangent space that provides false discovery
control.

3.1. Subsampling procedure
Although our framework is applicable to general subsamples of the data, we adopt the subsam-
pling method that was outlined in Shah and Samworth (2013) in our experimental demonstra-
tions and our theoretical analysis; in particular, given a data set D and a positive (even) integer
B, we consider B subsamples or bags obtained from B=2 complementary partitions of D of the
form {.D2j−1, D2j/ : j =1, 2, 3, : : : , B=2}, where |D2j−1|= |D|=2 and D2j =D\D2j−1.

3.2. Set-up for numerical demonstrations
For our numerical illustrations in this section, we consider the following stylized low rank matrix
completion problem. The population parameter LÅ ∈R70×70 is a rank 10 matrix with singular
values (and associated multiplicities) given by 1 .times 3/, 0:5 .times 5/ and 0:1 .times 2/, and with
row–column spaces sampled uniformly at random according to the Haar measure. We are given
noisy observations Yi,j = LÅ

i, j + εi,j with εi,j ∼ N .0, σ2/ and .i, j/ ∈ Ω, where Ω ⊂ {1, : : : , 70}2

is chosen uniformly at random with |Ω| = 3186. The variance σ2 is chosen to set the signal-
to-noise ratio SNR (defined as E[‖LÅ‖F=‖ε‖F]) at a desired level, and this is specified later. As
our subsamples, we consider a collection of B = 100 subsets each consisting of |Ω|=2 = 1593
entries obtained from 50 random complementary partitions of the data. On each subsample—
corresponding to a subset S ⊂Ω of observations with |S|=1593—we employ the convex program
(Srebro and Shraibman, 2005; Candès and Recht, 2009)

L̂= arg min
L∈R70×70

∑
{i,j}∈S

‖.L−Y/i,j‖2
F +λ‖L‖Å, .3:1/

and we report the tangent space T{column-space.L̂/, row-space.L̂/} as the estimate that is
associated with the subsample. Here λ > 0 is a regularization parameter (to be specified later)
and ‘‖ · ‖Å’ is the nuclear norm (the sum of the singular values), which is commonly employed
to promote low rank structure in a matrix (Fazel, 2002). We emphasize that our development is
relevant to general low rank estimation problems, and this problem is merely for illustration in
the present section; for a more comprehensive set of experiments in more general settings, we
refer the reader to Section 4.

3.3. Stable tangent spaces
The first step in stability selection is to combine estimates of significant variables that are ob-
tained from different subsamples. This is accomplished by computing for each variable the
frequency with which it is selected across the subsamples. We generalize this idea to our context
via projection operators onto tangent spaces as follows.

Definition 2 (average projection operator). Suppose that T̂ is an estimator of a tangent space
of a low rank matrix, and suppose further that we are given a set of observations D and a
corresponding collection of subsamples {Dl}B

l=1 with each Dl ⊂D. Then the average projection
operator of the estimator T̂ with respect to the subsamples {Dl}B

l=1 is defined as

Pavg � 1
B

B∑
l=1

PT̂ .Dl/
, .3:2/

where T̂ .Dl/ is the tangent space estimate that is based on the subsample Dl.
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Here Pavg : Rp1×p2 → Rp1×p2 is self-adjoint, and its eigenvalues lie in the interval [0, 1] as
each PT̂ .Dl/

is self-adjoint with eigenvalues equal to 0 or 1. To draw a comparison with variable
selection, the tangent spaces in that case correspond to subspaces that are spanned by co-
ordinate vectors in Rp (with p being the total number of variables of interest) and the average
projection operator is a diagonal matrix of size p×p, with each entry on the diagonal specifying
the fraction of subsamples in which a particular variable is selected. The virtue of averaging over
tangent spaces estimated across a large number of subsamples is that most of the ‘energy’ of
the average projection operator Pavg tends to be better aligned with the underlying population
tangent space. We illustrate this point next with an example.

3.3.1. Illustration: the value of averaging projection maps
Consider the stylized low rank matrix completion problem that was described in Section 3.2. To
support the intuition that the average projection matrix Pavg has reduced in energy in directions
corresponding to T Å⊥ (i.e. the orthogonal complement of the population tangent space), we
compare the quantities E[tr.PavgPT

Å⊥/] and E[tr.PT̂ .D/PT
Å⊥/], where the expectation is com-

puted over 100 instances. Generically speaking, the operator Pavg is not a projection opera-
tor onto a tangent space and thus the quantity E[tr.PavgPT

Å⊥/] is not a valid false discovery;
rather it evaluates the average false discovery over the subsampled models. The second quantity,
E[tr.PT̂ .D/PT

Å⊥/], is based on employing the nuclear norm regularization procedure on the full
set of observations. The variance σ is selected so that SNR={0:8, 1:6}. As is evident from Fig. 1,
E[tr.PavgPT

Å⊥/] is smaller than E[tr.PT̂ .D/PT
Å⊥/] for the entire range of λ, with the gap being

larger in the low SNR-regime. In other words, averaging the subsampled tangent spaces reduces
energy in the directions that are spanned by T Å⊥.

While the average projection aggregated over many subsamples appears to have less energy
in T Å⊥, this operator is not a proper projection. Thus it still remains for us to identify a single
tangent space as our estimate from Pavg. We formulate the following criterion to establish a
measure of closeness between a single tangent space and the aggregate over subsamples.

Definition 3 (stable tangent spaces). Suppose that T̂ is an estimator of a tangent space of a low
rank matrix, and suppose further that we are given a set of observations D and a corresponding
collection of subsamples {Dl}B

l=1 with each Dl ⊂D. For a parameter α∈ .0, 1/, the set of stable
tangent spaces is defined as

Tα �{T |σmin.PT PavgPT /�α and T is a tangent space to a determinantal variety} .3:3/

where Pavg is computed on the basis of definition 2.

As the spectrum of Pavg lies in the range [0, 1], this is also the only meaningful range of values
for α. The set Tα consists of all those tangent spaces T to a determinantal variety such that the
Rayleigh quotient of every non-zero element of T with respect to Pavg is at least α. To contrast
again with variable selection, we note that both PT and Pavg are diagonal matrices in that case
(and thus are simultaneously diagonalizable). As a consequence, the set Tα has a straightforward
characterization for variable selection problems; it consists of subspaces that are spanned by
any subset of standard basis vectors corresponding to variables that are selected as significant
in at least an α-fraction of the subsamples.

As averaging the tangent spaces that are obtained from the subsampled data reduces energy
in the directions that are contained in T Å⊥, each element of Tα is also far from being closely
aligned with T Å⊥ (for large values of α). We build on this intuition by proving next that a tangent
space estimator that selects any element of Tα provides false discovery control at a level that is
a function of α. In Section 3.5 we describe efficient methods to choose an element of Tα.
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Fig. 1. The quantities E[tr.PT̂ .D/PT*? /] ( ) (no subsampling) and E[tr.PavgP
T*? /] ( ) (with sub-

sampling) as a function of λ for (a) SNR D 0.8 and (b) SNR D 1.6 in the synthetic matrix completion set-up: ,
cross-validated choice of λ
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As a final remark, the ideas that are described here can be readily applied to subspace es-
timation problems. Specifically, we define the average projection operator PC

avg (analogous to
expression (3.2)) as the average of projection matrices onto column space estimates that are ob-
tained from n=2 subsamples. Then, the stable subspace set (3.3) is modified to be the collection
of subspaces C ∈Rp that satisfy the criterion σmin.PCPC

avgPC/�α.

3.4. False discovery control of stable tangent spaces: theoretical analysis
Consider a low rank matrix LÅ ∈ Rp1×p2 with associated tangent space T Å, and suppose that
we are given independent and identically distributed (IID) observations from a model parame-
terized by LÅ. The objective is to obtain an accurate estimate of T Å. We intentionally keep our
discussion broad so that our results are relevant for a wide range of low rank estimation prob-
lems, e.g. low rank matrix completion or factor analysis. Let T̂ denote a tangent space estimator
that operates on samples drawn from the model parameterized by LÅ. Let D.n/ denote a data
set consisting of n IID observations from this model; we assume that n is even and that we are
given B subsamples {Dl}B

l=1 via complementary partitions of D.n/.
We present a general result that bounds the expected false discovery of stable tangent spaces

under the sole assumption that the data set provided consists of IID observations. Under addi-
tional assumptions that take the form of ‘better than random guessing’ and a geometric analogue
of exchangeability, we specialize our result to obtain a more refined bound that is similar in spirit
to the bound of Meinshausen and Bühlmann (2010). Finally, inspired by theorem 1 of Shah and
Samworth (2013), we also specialize our result to produce a bag-independent false discovery
bound that is valid for any B�2. The results in this section extend naturally to settings in which
one only seeks accurate estimates of the column space of a matrix; for precise statements in that
setting, see supplementary material section A.10.

Our theoretical findings are centred on the following intuition: for subspace stability selection
to be effective, the tangent space estimates across subsamples should contain many directions
around T Å (i.e. the signal component) and the remaining components (i.e. the noise) should
be evenly spread over all the other directions. Owing to the smooth structure underlying low
rank matrices, there are ‘many’ directions in which deviations about T Å can occur in a low
rank estimation procedure (a significant contrast with variable selection where the collection
of tangent spaces is a discrete set); thus, the requirement on the noise portion of the estimates
from the subsamples is a stringent one. This situation is alleviated if the noise components in
the subsamples are concentrated around T Å⊥, i.e. the tangent space estimates across subsam-
ples contain directions that mostly lie close to T Å or T Å⊥. Mathematically, this intuition can be
quantified via commutators. The commutator between self-adjoint operators A and B is denoted
[A, B]=AB−BA, and this map evaluates how far away A and B are from commuting with each
other. For projection operators PT1 and PT2 associated with subspaces T1 and T2, the singular val-
ues of [PT1 , PT2 ] are ± 1

2 sin.2θi/ where {θi} are the principal angles between T1 and T2 (Galántai,
2008). Consequently, ‖[PT1 , PT2 ]‖2

F = 1
2Σi sin.2θi/

2 and ‖[PT1 , PT2 ]‖2
2 = 1

4 maxi sin.2θi/
2. A small

commutator between the tangent space estimates from subsamples and T Å⊥ ensures that the
tangent space estimates consist of components that are closely aligned with T Å or with T Å⊥.
(As a contrast, in variable selection the associated projection operators commute; in particular,
θi ∈{0, π

2 } in variable selection.)

Theorem 1 (false discovery control of subspace stability selection). Consider the set-up that
was described above. Let T̂ .Dl/ denote the tangent space estimates that are obtained from each
of the subsamples, and let Pavg denote the associated average projection operator computed
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via expression (3.2) over B complementary bags. Fix any α ∈ . 1
2 , 1/ and let T denote any

selection of an element of the associated set Tα of stable tangent spaces. Then for any fixed
orthonormal basis {Mi}dim.T Å⊥/

i=1 for T Å⊥, we have that

E[tr.PT P
T

Å⊥/]�F +κbag.α/+2.1−α/E[dim.T/], .3:4/

where for a basis-dependent bound take F =Σdim.T
Å⊥

/
i=1 E[‖PT̂{D.n=2/}.Mi/‖F]2 and

κbag.α/=
dim.T

Å⊥
/∑

i=1
.2=B/

B=2∑
j=1

E[ max
k∈{0,1}

tr.[PT , PT̂ .D2j−k/⊥ ]× [Pspan.Mi/, PT̂ .D2j−k/]/],

and for a basis-independent bound take F =E[tr.PT̂{D.n=2/}PT
Å⊥/1=2]2 and

κbag.α/= .2=B/
B=2∑
j=1

E[ max
k∈{0,1}

tr.[PT , PT̂ .D2j−k/⊥ ]× [P
T

Å⊥ , PT̂ .D2j−k/]/]:

The expectations are with respect to randomness in the data and the set D.n=2/ denotes n=2
IID observations drawn from the model parameterized by LÅ.

The proof of theorem 1 is presented in the on-line supplementary material section A.1. The
result states that the expected false discovery of a stable tangent space is bounded by a sum of
three quantities. The first term F characterizes the quality of the estimator employed on sub-
samples consisting of n/2 observations. The terms κbag.α/ and 2.1−α/E[dim.T/] are functions
of the user-specified parameter α, the number of bags B and the product of commutators. In
proposition 1, we show that α close to 1 leads to a small κbag.α/, and thus, as expected, a smaller
expected false discovery. Further, one must select α > 1

2 for bound (3.4) to be non-vacuous as
we always have that E[tr.PT P

T
Å⊥/]�E[dim.T/].

Remark 1. The quantities Σdim.T
Å⊥

/
i=1 E[‖PT̂{D.n=2/}.Mi/‖F]2 and E[tr.PT̂{D.n=2/}PT

Å⊥/1=2]2

for F highlight the role of bagging in reducing variance. For ease of exposition, we define β ∈
Rdim.T Å⊥/ as βi = ‖PT̂{D.n=2/}.Mi/‖F, so that Σdim.T Å⊥/

i=1 E[‖PT̂{D.n=2/}.Mi/‖F]2 = tr.E[β]E[β]′/
and tr.PT̂{D.n=2/}PT

Å⊥/ = tr.ββ′/. Jensen’s inequality yields E[tr.ββ′/1=2]2 � E[tr.ββ′/], so the
improvement of bagging over just using a subsample D.n=2/ once is given by var{tr.ββ′/1=2}.
Next, by appealing to the positive definiteness of a covariance matrix, we have that tr.E[β]E[β]′/�
E[tr.ββ′/]; in this case, the variance reduction is given by tr{cov.β/}. In both these cases, the
variance is maximally reduced under conditions that follow from the Bhatia–Davis inequality.
Specifically, given a fixed E[tr.ββ′/1=2], the Bhatia–Davis inequality states that var{tr.ββ′/1=2} is
enhanced when the distribution of tr.ββ′/1=2 concentrates around 0 and

√
dim.T Å⊥

/ (i.e. most
discoveries are either true or false). Similarly, given a fixed E[β], tr{cov.β/} is enhanced when the
distribution of each βi concentrates around 0 or 1 (i.e. the estimate T̂{D.n=2/} is mostly aligned
with or orthogonal to each Mi ∈T Å⊥). Such concentration of βi can be precisely translated to
the commutators ‖E[[PT̂{D.n=2/}, Pspan.Mi/]]‖F being small, which is exploited in proposition 2
to bound F . In Section 4, we use this intuition to describe synthetic experiments that illustrate
the improvement (in terms of expected false discovery) of a stable tangent space over using the
original estimator without subsampling.

Remark 2. The terms Σdim.T
Å⊥

/
i=1 E[‖PT̂{D.n=2/}.Mi/‖F]2 and E[tr.PT̂{D.n=2/}PT

Å⊥/1=2]2 for F

are incomparable in general. The term E[‖PT̂{D.n=2/}.Mi/‖F]2 depends on the specific choice
of basis, and it is useful in scenarios in which a particular choice of {Mi}dim.T Å⊥/

i=1 is natural,
such as in variable selection problems in which the standard basis has a clear interpreta-



False Discovery and Its Control 1009

tion. In contrast, E[tr.PT̂{D.n=2/}PT
Å⊥/1=2]2 is basis independent and is more useful in prob-

lem settings in which no particular choice of a basis is natural.

Remark 3. The quantity κbag.α/ depends on commutators of projection operators associated
with various tangent spaces. As such, this quantity is closer to 0 if the principal angles between
T and T̂{D.n=2/}⊥ and between T Å⊥ and T̂{D.n=2/} are close to 0 or π=2. Note that in variable
selection problems all the underlying projection matrices commute, and as a result we have that
κbag.α/ = 0. In this sense, κbag.α/ highlights the distinction between low rank estimation and
variable selection.

Remark 4. Building on the previous remark, the commutativity property in the variable
selection setting enables additional simplifications of our bounds. Although the bound (3.4)
is valid for variable selection, exploiting the fact that the projection matrices commute in
that case and with the choice of the standard basis for {Mi}dim.T Å⊥/

i=1 , we obtain additional
simplifications. Specifically, letting {Mi}dim.T Å⊥/

i=1 be the subset of the standard basis that lies in
T

Å⊥ and noting that κbag vanishes, one can modify the proof of theorem 1 to obtain the following
bound:

E[tr.PT P
T

Å⊥/]�
dim.T

Å⊥
/∑

i=1

E[‖PT̂{D.n=2/}.Mi/‖F]2

2α−1
=

dim.T
Å⊥

/∑
i=1

P[ith null selected by T̂{D.n=2/}]
2α−1

:

.3:5/

This improved bound follows from a careful accounting of the first and third terms in bound
(3.4); see the supplementary material section A.3. The equality here is a consequence of the
observations that PT̂{D.n=2/} is a diagonal projection matrix and that each Mi is an element of
the standard basis. Thus, we recover the interpretation that the overall expected false discovery
for the special case of variable selection can be bounded in terms of the probability that the
procedure T̂ selects null variables on subsamples. The final expression (3.5) matches theorem 1 of
Shah and Samworth (2013) (in particular, it holds for any B�2). As a final comparison between
the low rank estimation and variable selection settings, the dependence on α in inequality (3.5)
is multiplicative as opposed to additive as in inequalities (3.4). In particular, in the low rank
case even if the estimator T̂ performs exceedingly well on the subsamples, the expected false
discovery may still be large depending on the choice of α and dim.T Å⊥

/; in contrast, for variable
selection if the estimator T̂ performs exceedingly well on the subsamples, the expected false
discovery is small provided that α is chosen to be close to 1. This distinction is fundamental
to the geometry underlying the sparse and determinantal varieties. Specifically, in the low rank
case even if Pavg ≈PT

Å the set of stable tangent spaces Tα necessarily includes many tangent
spaces that are near the population tangent space T Å but are not perfectly aligned with it. This
is because the collection of row–column spaces forms a Grassmannian manifold rather than a
finite or discrete set. In contrast, if Pavg ≈PT

Å in variable selection, the only elements of the set
of stable tangent spaces (for large α) are those corresponding to subsets of the true significant
variables.

Next we provide a bound on both the basis-independent and basis-dependent versions of
κbag.α/, which leads to a bag-independent bound on the expected false discovery by combining
with theorem 1.

Proposition 1 (bounding κbag.α/ and a bag-independent result). Consider the set-up of
theorem 1. Then the following bound holds for both the basis-independent and the basis-
dependent versions of κbag.α/: κbag.α/�2

√
1−αE[dim.T/]. Further, letting the average number
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of discoveries from n=2 observations be denoted by q := E[dim[T̂{D.n=2/}]], we also have that
E[dim.T/]�q=α. Thus, we obtain the following false discovery bound for any B�2:

E[tr.PT P
T

Å⊥/]�F +2{1−α+√
.1−α/}E[dim.T/]�F + 2q

α
{1−α+√

.1−α/} .3:6/

for either the basis-dependent or the basis-independent form of F from theorem 1.

Remark 5. The proof of the result is presented in the on-line supplementary material section
A.2. This bound highlights the role of α, where κbag.α/ becomes smaller as α is chosen close to
1. The bag-independent bound (3.6) on expected false discovery of a stable tangent space holds
for any B�2, and thus can be looser than bound (3.4). In particular, bound (3.6) is relevant for
α� 0:9 (as the bound otherwise exceeds q), which is more stringent than the condition α > 1

2
in theorem 1. Despite the more restrictive range of values for α, these bag-independent results
may nonetheless have utility in regimes in which the signal strength is high so that larger values
of α may be considered.

Next we describe a more refined false discovery bound under additional assumptions on the
estimator T̂ = .Ĉ, R̂/.

Assumption 1.

E[tr.P
T

Å⊥PT̂{D.n=2/}/]

dim.T Å⊥/
�

E[tr.PTÅPT̂{D.n=2/}/]

dim.T Å/

Assumption 2. The distribution of ‖PT̂ {D.n=2/}.M/‖F is the same for all rank 1 M ∈ T Å⊥,
‖M‖F =1

In words, assumption 1 states that the estimator’s normalized power is greater than its normal-
ized expected false discovery and assumption 2 states that the energy of any normalized rank
1 element in T Å⊥ onto tangent spaces obtained from subsamples consisting of n=2 observa-
tions is identically distributed. In the case of variable selection, assumption 1 reduces precisely
to the ‘better than random guessing’ assumption employed by Meinshausen and Bühlmann
(2010), namely that the probability that the procedure T̂ selects a null variable when employed
on the subsamples is better than random guessing. As a second condition, Meinshausen and
Bühlmann (2010) required that the random variables {Ik∈T̂{D.n=2/}} are exchangeable. This as-
sumption implies that the distribution of Ik∈T̂{D.n=2/} is the same for all null k. Our assumption
2 when specialized to variable selection reduces to the weaker requirement that each of the ran-
dom variables Ik∈T̂{D.n=2/} has the same distribution. In supplementary material section A.4,
we show that assumptions 1 and 2 are satisfied by some natural ensembles and estimators in low
rank estimation problems. We prove next a bound on the expected false discovery under these
additional assumptions.

Proposition 2 (refined false discovery control). Consider the set-up of theorem 1. Suppose
additionally that assumptions 1 and 2 are satisfied. For any M ∈T Å⊥ with rank.M/=1, ‖M‖F =
1, the false discovery of a stable tangent space T is bounded by

E[tr.PT P
T

Å⊥/]� q2

p1p2
+f.κindiv/+ 2q

α
{1−α+√

.1−α/}, .3:7/

where κindiv :=E[‖[Pspan.M/, PT̂{D.n=2/}]‖F] and f.κindiv/=p1p2κ
2
indiv +2qκindiv.
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Remark 6. The proof of proposition 2 can be found in the on-line supplementary material
section A.5. It proceeds by showing that, in the bag-dependent setting (although the specific
choice does not matter because of assumption 2), F � q2=.p1p2/ + f.κindiv/ and employs the
bounds κbag � 2

√
.1−α/E[dim.T/] and E[dim.T/] � q=α (from proposition 1). Consider the

term q2=.p1p2/ in this result, where q can be approximated by q≈ tr.Pavg/. Suppose that typical
outputs of the estimates obtained from subsamples {Dl}B

l=1 have rank k which is far smaller
than the ambient dimensions, i.e. k�min{p1, p2}, yielding tr.Pavg/=O{k.p1 +p2/}; as a result,
q2=.p1p2/ is much smaller than q. The second term is an increasing function of the commutator-
dependent quantity κindiv. To bound κindiv we note that it suffices to consider a single M ∈T Å⊥

with rank.M/=1, ‖M‖F =1. A natural data-driven heuristic to obtain such an M is to consider
a rank 1 matrix that is ‘least aligned’ with Pavg, i.e. in some sense choosing the opposite of
a stable tangent space. Concretely, letting u and v be the singular vectors corresponding to
the smallest singular values of PC

avg and PR
avg respectively, we propose setting M̃ = uv′. This

choice can be justified theoretically provided that the estimator T̂{D.n=2/} has good power; see
supplementary material section A.6. We then obtain the following data-driven approximation
κindiv = .1=B/ΣB

l=1‖[PT̂ .Dl/
, Pspan.M̃/]‖F. Finally, the third term can be controlled by choosing

α sufficiently close to 1.

Remark 7. For the case of variable selection, κindiv = 0, so F �q2=total variables. Plugging
this into expression (3.5), we obtain the bound on the expected false discovery of
E[# discoveries in T̂{D.n=2/}]2={2.1−α/.# total variables/}. This bound was obtained by Shah
and Samworth (2013) as a consequence of their theorem 1 and it holds for any B�2 (an identical
bound was also obtained by Meinshausen and Bühlmann (2010), although that result requires
averaging over all subsamples).

3.5. Subspace stability selection algorithm
As described in the previous subsection, every tangent space in Tα provides control on the
expected false discovery. The goal then is to select an element of Tα to optimize power. A
natural approach to achieve this objective is to choose a tangent space of largest dimension
from Tα to maximize the total discovery.

Consider the following optimization problem for each r =1, : : : , min{p1, p2}:

TOPT.r/= arg max
T tangent space to a point in Vlow rank.r/

σmin.PT PavgPT /: .3:8/

A conceptually appealing approach to select an optimal tangent space is via the optimization
problem

TOPT ∈ arg max
T∈TOPT.r/∩Tα

r, .3:9/

where, by construction, the set TOPT.r/∩Tα is non-empty if Tα is a non-empty set. In the case
of variable selection, this procedure would result in the selection of all those variables that are
estimated as being significant in at least an α-fraction of the bags, which is in agreement with
the procedure of Meinshausen and Bühlmann (2010). In our setting of low rank estimation,
however, we are not aware of a computationally tractable approach to solve problem (3.8). The
main source of difficulty lies in the geometry underlying the collection of tangent spaces to
determinantal varieties. In particular, solving problem (3.8) in the case of variable selection is
easy because the operators PT and Pavg are both diagonal (and hence trivially simultaneously
diagonalizable) in that case; as a result, we can decompose problem (3.8) into a set of one-variable
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problems. In contrast, the operators PT and Pavg are not simultaneously diagonalizable in the
low rank case, and consequently there does not appear to be any clean separability in problem
(3.8) in general with determinantal varieties.

We describe next a heuristic to approximate expression (3.8). Our approximation entails
computing optimal row space and column space approximations from the bags separately rather
than in a combined fashion via tangent spaces. Specifically, suppose that {.Ĉ.Dl/, R̂.Dl//}B

l=1
denote the row–column space estimates from B subsamples {Dl}B

l=1 ⊂D of the data. We average
the projection operators that are associated with these row–column spaces:

PC
avg = 1

B

B∑
l=1

PĈ.Dl/
,

PR
avg = 1

B

B∑
l=1

PR̂.Dl/
:

.3:10/

Note that the average projection operator Pavg based on estimates from subsamples of tangent
spaces to determinantal varieties is a self-adjoint map on the space Rp1×p2 whereas the averages
PC

avg and PR
avg are self-adjoint maps on the spaces Rp1 and Rp2 respectively. On the basis of these

separate column space and row space averages, we approximate expression (3.8) as

Tapprox.r/=T

{
arg max

C⊂Rp1 subspace of dimension r

σmin.PCPC
avgPC/,

× arg max
R⊂Rp2 subspace of dimension r

σmin.PRPR
avgPR/

}
: .3:11/

The advantage of this formulation is that the inner optimization problems of identifying the
best row space and column space approximations of rank r can be computed tractably. In par-
ticular, the optimal column space and row space approximations of dimension r are equal to
the span of the eigenvectors corresponding to the r largest eigenvalues of PC

avg and PR
avg respec-

tively. We have that σmin.PTapprox.r/PavgPTapprox.r// � σmin.PTOPT.r/PavgPTOPT.r// and we expect
this inequality to be strict in general, even though tangent spaces to determinantal varieties
are in one-to-one correspondence with the underlying row–column spaces. To see why this is
so, consider a column space and row space pair .C, R/⊂Rp1 ×Rp2 , with dim.C/=dim.R/= r.
The collection of matrices MC ⊆Rp1×p2 with column space contained in C has dimension p2r

and the collection of matrices MR ⊆Rp1×p2 with row space contained in R has dimension p1r.
However, the tangent space T.C, R/⊂Rp1×p2 , which is the sum of MC and MR, has dimension
p1r +p2r − r2. In other words, the spaces MC and MR do not have a transverse intersection
(i.e. MC ∩MR �= {0}), and therefore optimal tangent space estimation does not appear to be
decoupled into (separate) optimal column space estimation and optimal row space estimation.
Although this heuristic is only an approximation, it does yield good performance in practice, as
described in the illustrations in the next subsection as well as in the experiments with real data in
Section 4. Further, our final estimate of a tangent space still involves the solution of problem (3.9)
by using approximation (3.11) instead of (3.8). Consequently, we continue to retain our guaran-
tees from Section 3.1 on false discovery control. The full procedure is presented in algorithm 1 in
Table 1.

The tuning parameter α∈ [0, 1] in algorithm 1 plays an important role in how much signal is
selected by subspace stability selection. In our experience, the output of subspace stability selec-
tion is quite robust to α in moderate to high SNR settings. As a result, in all our experiments we
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Table 1. Algorithm 1: subspace stability selection algorithm

Step 1: input, a set of observations D, a collection of subsamples {Dl}B
l=1 ⊂D, a row–column

space (equivalently, tangent space) estimation procedure .Ĉ, R̂/ and a parameter α∈ .0, 1/
Step 2: obtain tangent space estimates; for each bag {Dl, l=1, 2, : : : , B}, obtain
row–column space estimates {.Ĉ.Dl/, R̂.Dl//}B

l=1 and set T̂ .Dl/=T{Ĉ.Dl/, R̂.Dl/}
Step 3: compute average projection operators; compute the average tangent space projection
operator Pavg according to expression (3.2) and the average row–column space projection
operators PR

avg and PC
avg according to expression (3.1)

Step 4: compute optimal row–column space approximations; compute ordered singular vectors
{u1, u2, : : : , up1}⊂Rp1 and {v1, v2, : : : , vp2}⊂Rp2 of PC

avg and PR
avg respectively;

for each r =1, : : : , min{p1, p2}, set C̄.r/= span.u1, : : : , ur/ and R̄.r/= span.v1, : : : , vr/
Step 5: tangent space selection via expression (3.9); let rS3 denote the largest r such that
T{C̄.r/, R̄.r/}∈Tα
Step 6: output, tangent space TS3 =T{C̄.rS3/, R̄.rS3/}

select α to equal 0:70. For detailed analysis on the sensitivity to α see the on-line supplementary
material section A.7.

3.5.1. Computational cost of algorithm 1
We do not account for the cost of obtaining the row–column space estimates {.Ĉ.Dl/, R̂.Dl//}B

l=1
on each subsample in step 2 of algorithm 1 and focus exclusively on the cost of combining these
estimates via steps 3–5. In step 3, the computational complexity of computing the averages
PR

avg and PC
avg requires O[B max{p1, p2}2] operations and computing the average Pavg requires

O.Bp2
1p2

2/ operations. Step 4 entails the computation of two singular value decompositions
of matrices of size p1 × p1 and p2 × p2, which leads to a cost of O[max{p1, p2}3] operations.
Finally, in step 5, to check membership in Tα we multiply three maps of size p1p2 ×p1p2 and
compute the singular value decomposition of the result, which requires a total of O.p3

1p3
2/

operations. Thus, the computational cost of algorithm 1 to aggregate estimates produced by B

bags is O[max{Bp2
1, Bp2

2, Bp2
1p2

2, p3
1, p3

2, p3
1p3

2}].
Although the scaling of algorithm 1 is polynomial in the size of the inputs, when either p1

or p2 is large the overall cost due to terms such as p3
1p3

2 may be prohibitive. In particular, the
reason for the expensive terms Bp2

1p2
2 and p3

1p3
2 in the final expression is computations involving

projection maps onto tangent spaces (which belong to Rp1p2 ). We describe next a modification
of algorithm 1 so that the resulting procedure consists of only computations involving projection
maps onto row and column spaces (which belong to Rp2 and Rp1 respectively).

3.5.2. Modification of algorithm 1 and associated cost
The inputs to this modified procedure are the same as those of the original procedure. We modify
step 3 of algorithm 1 by computing only the average row–column space projection maps PR

avg and
PC

avg. Let PC
avg =UΓU ′ and let PR

avg =VΔV ′ be the singular value decomposition computations
of step 4. We modify step 5 of algorithm 1 to choose the largest r′

S3 so that Γr′
S3,r′

S3
� α and

Δr′
S3,r′

S3
� α. One can check that the cost that is associated with this modified procedure is

O[max{Bp2
1, Bp2

2, p3
1, p3

2}].
This modified method has the property that the row and column spaces are individually well

aligned with the corresponding averages from the subsamples; the following result shows that
the resulting tangent space belongs to a set of stable tangent spaces.
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Proposition 4 (modified algorithm 1 satisfies subspace stability selection criterion). Let
TS3-modified be the output of the modified algorithm 1 with input parameter α. Then, TS3-modified ∈
T1−4.1−α/.

Proposition 4 guarantees that our modification of algorithm 1 continues to provide false
discovery control. We use this modified approach in some of our larger experiments in Section
4. The proof of this proposition can be found in the on-line supplementary material section A.8.

Finally we remark that, in subspace estimation problems (see Section 2.1), the subspace
stability selection can be readily employed to find a stable tangent space. In particular, re-
call from Section 3.1 that the stability selection criterion (3.3) reduces to finding C such that
σmin.PCPC

avgPC/�α. Naturally, a projection operator PC that satisfies the criterion above can
be obtained via singular value thresholding. Furthermore, this subspace estimate is optimal
according to problem (3.9).

3.6. Further illustrations
In the remainder of this section, we explore various facets of algorithm 1 via illustrations on the
synthetic matrix completion problem set-up that was described at the beginning of Section 3.
For further demonstrations of the utility of subspace stability selection with real data, we refer
the reader to the experiments of Section 4.

3.6.1. Illustration: α versus rS3
The threshold parameter α determines the eventual optimal rank rS3, with larger values of α
yielding a smaller rS3. To understand this relationship better, we plot in Fig. 2σmin.PTS3PavgPTS3/

as a function of rS3 for a large range of values of the regularization parameter λ and SNR =
{0:4, 0:8, 1:2, 50}. Each curve in the plots corresponds to a particular value of rS3, with the
full curves representing rS3 = 1, : : : , 10 and the dotted curves representing rS3 = 11, : : : , 70. As
smaller values of rS3 lead to larger values of σmin.PTS3PavgPTS3/, the curves are ordered such
that the top curve corresponds to rS3 =1 and the bottom curve corresponds to rS3 =70. We first
observe that, for a fixed rS3, the associated curve is generally decreasing as a function of λ. For
large values of λ, both signal and noise are substantially reduced because of a significant amount
of regularization. Conversely, for small values of λ, both signal and noise are present to a greater
degree in the estimates on each subsample; however, the averaging procedure reduces the effect
of noise, which results in high quality aggregated estimates for smaller values of λ. Next, we
observe that the curves that are indexed by the rS3-cluster in the high SNR-regime, with the first
three corresponding to rS3 = 1, 2, 3, the next five corresponding to rS3 = 4, : : : , 8, the next two
corresponding to rS3 = 9, 10 and finally the remaining curves corresponding to rS3 > 10. This
phenomenon is due to the clustering of the singular values of the underlying population LÅ.
In contrast, for low values of SNR, the clustering is less pronounced as the components of LÅ

with small singular values are overwhelmed by noise.

3.6.2. Illustration: subspace stability selection reduces false discovery
Next, we demonstrate that subspace stability selection produces a tangent space which is differ-
ent and usually of a higher quality (e.g. smaller expected false discovery) than the base estimator
applied to the full data set. We choose the noise level so that SNR takes one of the values in
{1:5, 2, 2:5, 3}. In contrast, we employ procedure (3.1) on a subset of 2231 observations (the
training set) of the full set of 3186 observations and the remaining subset of 955 observations
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(a) (b)

(c) (d)

Fig. 2. Relationship between rS3 and α in algorithm 1 for a large range of λ and SNR (a) 0.4, (b) 0.8, (c)
1.2 and (d) 50

constitute the test set. We use cross-validation to identify an optimal choice λÅ of the regular-
ization parameter. The estimate that is produced by procedure (3.1) on the training set for this
choice of λÅ is recorded as the output of the non-subsampled approach. In contrast, estimator
(3.1) with the choice λÅ is used in conjunction with α=0:7 to produce a subspace stability selec-
tion tangent space via algorithm 1. For each of the four choices of SNR, we ran 100 experiments
and averaged to find an empirical approximation to the expected false discovery (2.3). Table 2
compares the expected false discovery (with 1σ-statistics) of the non-subsampled approach with
that of the subspace stability selection procedure for the various problem settings. Evidently,
subspace stability selection yields a much smaller amount of false discovery compared with not
employing subsampling.

At this stage, it is natural to wonder whether the source of the improved false discovery
control that is provided by subspace stability selection over not using subsampling is simply
because the non-subsampled approach provides estimates with a larger rank. In particular, as
an extreme hypothetical example, the zero-dimensional space is a stable tangent space and has
zero expected false discovery, and more generally lower rank tangent space estimates are likely to
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Table 2. False discovery of subspace stability selection versus a non-subsampled
approach on the stylized matrix completion problem†

Method Results for the following SNRs:

SNR=1.5 SNR=2 SNR=2.5 SNR=3

No subsampling 1274:6±78:8 1532:8±68:5 1573:5±71:2 1417±63:5
Subspace stability 107:6±11:5 89:7±16:9 87:9±18:7 87:9±19:4

selection

†The maximum possible amount of false discovery is dim.T Å⊥
/= .70−10/2 =3600.

have smaller expected false discovery. Thus, is subsampling better primarily because it produces
lower rank estimates? To address this point in our stylized set-up, we consider a population
LÅ with associated incoherence parameter equal to 0.8. (The incoherence of a matrix M is
maxi max{‖Pcol-space.M/.ei/‖2

2, ‖Prow-space.M/.ei/‖2
2} where ei is the ith standard basis vector,

and it plays a prominent role in various analyses of the low rank matrix completion problem
(Candès and Recht, 2009).) We sweep over the regularization parameter λ, and we compare the
following two estimates: first, the estimate L̂ obtained via expression (3.1) and then truncated
to its first three singular values, and subsampled estimates obtained via algorithm 1 with rS3
set to 3. The choice of 3 here is motivated by the fact that the population low rank matrix LÅ

has three large components. We perform this comparison for SNR = {0:8, 1:6} and describe
the results in the plots in Fig. 3. In the high SNR-regime, the performances of the subsampled
and the non-subsampled approaches are similar. However, in the low SNR-regime, subspace
stability selection yields a tangent space with far less false discovery across the entire range
of regularization parameters. Further, subspace stability selection provides a fundamentally
different solution that cannot be reproduced simply by selecting the ‘right’ regularization penalty
in expression (3.1) applied to the entire data set.

Similar behaviour is also observed when the solution L̂ is truncated at a different rank. As an
example, with SNR=0:8, we choose λ via cross-validation and truncate L̂ at rank r =1, 2, : : : , 5
and compare its false discovery estimate with the estimate that is produced by subspace stability
selection with rS3 = r (shown in Table 3).

3.6.3. Illustration: stability of tangent spaces to small changes in regularization parameter
Finally, we note that, in settings in which regularization is employed, the estimate can be
extremely sensitive to the choice of regularization parameter. For example, in nuclear-norm-
regularized formulations such as expression (3.1), small changes to the parameter λ can often
lead to substantial changes in the optimal solution. A virtue of subspace stability selection is that
the estimates that it provides are generally very stable to small perturbations of λ. To formalize
this discussion, given two tangent spaces T and T̃ , we consider the quantity

μ.T , T̃ /�1− tr.PT PT̃ /

max{dim.T/, dim.T̃ /}
which measures the degree to which T and T̃ are misaligned. If T = T̃ , then μ.T , T̃ /=0 and, in
contrast, T ⊆ T̃

⊥
would yield μ.T , T̃ /=1. Hence, larger values of μ.T , T̃ / are indicative of greater

deviations between T and T̃ . We use this metric to compare the stability of the non-subsampled
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(a)

(b)

Fig. 3. False discovery of subspace stability selection versus a non-subsampled approach with (a)
SNR D 1.6 and (b) SNR D 0.8 (here, we choose a rank 3 approximation of the non-subsampled approach
and rS3 D 3 in algorithm 1 of subspace stability selection; the maximum possible amount of false discovery
is dim.T Å?/D .70�10/2 D3600): , no subsampling; , subspace stability selection

approach with subspace stability selection. In our stylized set-up, we choose the noise level
so that SNR = 4 and we select λ= 0:03 (based on cross-validation). Letting T be the tangent
space of estimator (3.1) with λ=0:03 and T̃ with λ=0:05, we find that μ.T , T̃ /=0:23. Setting
α= 0:7 with B = 100 complementary bags and computing the same metrics for the outputs of
subspace stability selection, we find that μ.T , T̃ / = 0:003. This contrast is observed for many
other SNR-levels.
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Table 3. False discovery of subspace stability selection versus a non-
subsampled approach with SNR D 0:8 and rank of the estimate set to vary
from 1 to 5†

Method Results for the following ranks:

rank =1 rank =2 rank =3 rank =4 rank =5

No subsampling 20.4 48.1 89.7 146.7 218.8
Subspace stability 12.4 25.6 44.3 70.4 109

selection

†The maximum possible amount of false discovery is dim.T Å⊥
/=3600.

4. Experiments

In this section, we demonstrate the utility of subspace stability selection in providing false
discovery control with both synthetic and real data. We consider the following types of low rank
estimation problems.

4.1. Low rank linear measurements and matrix completion
We consider noisy linear functions of a low rank matrix LÅ ∈Rp1×p2 of the form Yi ≈〈Ai, LÅ〉, i=
1, : : : , n, where each Ai ∈Rp1×p2 . In the linear measurement setting, Ai is an arbitrary sensing
matrix and, in the matrix completion setting, Ai consists of 0s everywhere except a single entry
which is equal to 1. The matrix completion problem is similar to that considered in the stylized
demonstrations of Section 3.1. One point of departure from that discussion in the present section
is that, in experiments where the dimensions p1 and p2 are large, employing the nuclear norm
regularized estimator (3.1) on each subsample is impractical. Instead, we use on each subsample
the following non-convex formulation:

.Û, V̂ /= arg min
U∈Rp1×k ,V∈Rp2×k

∑
i∈S

.Yi −〈Ai, UV ′〉/2 +λ.‖U‖2
F +‖V‖2

F/: .4:1/

where ‖U‖2
F +‖V‖2

F is a surrogate for the nuclear norm penalty (3.1), λ> 0 is a regularization
parameter and S ⊂ {1, : : : , p1} × {1, : : : , p2} is the set of observed indices. By construction,
L̂= ÛV̂

′
is constrained to have rank at most k, and this rank can be adjusted by appropriately

tuning λ. Fixing U and V the above problem is convex in V and U respectively, and thus a
commonly employed approach in practice is alternating least squares (ALS).

4.2. Factor analysis
We observe samples {Y.i/}n

i=1 ⊂ Rp of a random vector and we identify a factor model that
best explains these observations, i.e. a model in which the co-ordinates of the observed vector
are independent conditioned on a small number k �p of latent variables. In other words, our
objective is to approximate the sample covariance of {Y.i/}n

i=1 by a covariance matrix that is de-
composable as the sum of a diagonal matrix and a positive semidefinite low rank matrix. Using
the Woodbury inversion lemma, we have that the precision matrix can be decomposed as a diag-
onal matrix minus a positive semidefinite low rank matrix. The virtue of working with precision
matrices is that the log-likelihood function is concave with respect to this parameterization. On
each subsample, we use the following estimator (Shapiro, 1982):
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.D̂, L̂/= arg min
L∈Sp,D∈Sp

− log{det.D−L/}+ tr
{(

1
|S|

∑
i∈S

Y.i/Y .i/′
)

.D−L/

}
+λ tr.L/,

subject to D−L�0, L�0, D is diagonal.

.4:2/

Here tr.·/ is the restriction of the nuclear norm to symmetric positive semidefinite matrices.

4.3. Synthetic simulations
We explore the role of the commutator in the false discovery bound of theorem 1 in a stylized
matrix denoising problem. Specifically, we generate a population low rank matrix LÅ ∈ Rp×p

with p = 200, with rank.LÅ/ = 6, the non-zero singular values set to {120, 100, 80, 30, 20, 10}
and the row and column spaces are sampled uniformly from the Steifel manifold. Once LÅ has
been generated, we also choose a basis for the orthogonal complements of the row–column
spaces of LÅ and we let UÅQVÅ′ be the full SVD of LÅ, i.e. UÅ, VÅ ∈ Rp×p are orthogonal
matrices and Q ∈ Rp×p is a diagonal matrix that is zero padded. We obtain n noisy measure-
ments of LÅ of the form Yi =LÅ + δ.γUÅDiV

Å′ + εi/ for j =1, 2, : : : , n, where Di is a diagonal
matrix with IID standard Gaussian entries on the diagonal and εi ∈Rp×p is a matrix with IID
standard Gaussian entries. The parameter δ > 0 controls the signal-to-noise ratio and the pa-
rameter γ > 0 controls the commutator term inside theorem 1. In particular, larger values of γ
lead to a smaller commutator term since the measurements Yi and LÅ are all closer to being
simultaneously diagonalizable. Geometrically, this corresponds to the principal angles between
T Å⊥ and T̂{D.n=2/} concentrating around 0 and π=2. We vary γ in the range {10, 30} and, for
each γ, we chose δ so that SNR=0:15 (here SNR=E[‖LÅ‖2=‖δ[γUÅDiV

Å + εi]‖2]). We obtain
n=2p measurements, and the estimator that we employ on a subsample computes best rank k

approximation of the average over the data in the subsample (where k is selected a priori). In our
first illustration, the estimator computes rank 6 approximations. We apply subspace stability
selection with α ∈ [0:75, 0:97] and B = 100 complementary bags, and we obtain an empirical
approximation of the expected false discovery over 100 trials. Since the population model is
known, the quantities inside theorem 1 are readily obtainable. We set the orthonormal basis
elements {Mi}dim.T Å⊥/

i=1 needed to compute the term F in bound (3.4) to be {UÅ
:,6+iV

Å′
:,6+j}

p−6
i,j=1.

Figs 4(a) and 4(b) compare the expected false discovery achieved by subspace stability selection
with the bound of theorem 1, the average number of discoveries of subspace stability selec-
tion (i.e. E[dim.T/]), and simply computing a rank 6 approximation of the entire data without
any subsampling. Figs 4(c) and 4(d) show a similar set of illustrations but with the estima-
tor computing a rank 10 approximation. A number of points are worth noting from these
plots. First, subspace stability selection performs far better than simply using computing low
rank approximations on the entire data set; in particular, when the estimator computes rank
6 approximations and with γ = 10, subspace stability selection chooses a rank 3 model for
α = 0:9 and expected false discovery about 32 whereas a rank 6 approximation on the entire
data set without subsampling yields an expected false discovery around 515. For comparison,
the total amount of possible false discovery is dim.T Å⊥

/=37636. Second, relative to the value
of dim.T Å⊥

/, the results provided by theorem 1 are very effective as they yield an expected
false discovery bound between 300 and 1100 depending on the choice of α. Specifically, these
bounds are also smaller than the average number of discoveries made by subspace stability
selection as well as the expected false discovery of an estimator that operates on all the data
with no subsampling. As a final remark, we also note that smaller values of the commuta-
tor (larger choice of γ) lead to better bounds on the expected false discovery, as predicted by
theorem 1.
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Fig. 4. False discovery of subspace stability selection as a function of α for the matrix completion set-
ting ( , false discovery obtained by subspace stability selection; , theorem 1 bound; ,
proposition 1; , average dimension of the selected tangent space; , false discovery from us-
ing entire data) (subspace stability selection has small but non-zero false discoveries; as an example, for
γ D20, rank selected D6, and αD0.9, subspace stability selection chooses typically a rank 3 model with 32.1
false discoveries; here dim.T Å?/ D 37636): (a) γ D 30, rank sel.D 6, k[PT̂{D.n=2/},PTÅ? ]kF � 52; (b) γ D 10,
rank sel.D 6, k[PT̂{D.n=2/},PTÅ? ]kF � 226; (c) γ D 30, rank sel.D 10, k[PT̂{D.n=2/},PTÅ? ]kF � 81; (d) γ D 10,
rank sel.D10, k[PT̂{D.n=2/},PTÅ? ]kF �291

Next, we explore the false discovery and power attributes of subspace stability selection in
various noise and rank regimes. We consider the linear Gaussian measurement setting that was
described earlier with p=60, the rank of LÅ in the set {1, 2, 3, 4}, the non-zero singular values
set to 1, and the row and column spaces sampled uniformly from the Steifel manifold. The
measurements matrices {Ai}n

i=1 consist of IID entries drawn from N .0, 1/. We obtain noisy
measurements Yi =〈Ai, LÅ + ε〉, i=1, : : : , n, where ε∼N .0, σ2/. The observation noise level σ2

is tuned so that SNR (here E[〈Ai, LÅ〉=ε]) lies in the set {1, 2, 3, 4, 5}. A fraction n=6p2=10 are
used as training data for estimator (4.1) with λ chosen via hold-out validation with a validation
set of size 3p2=20 and the rank constraint k set to 10. With this choice of λ, we evaluate the
expectation and standard deviations of false discovery and the power empirically over 100
trials. As a point of comparison, we set α=0:7 with B=100 complementary bags and compute
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the same metrics based on subspace stability selection. We repeat a similar experiment in the
matrix completion setting where LÅ ∈ Rp×p with p = 100, rank in the set {1, 2, 3, 4} and row
and column spaces chosen uniformly from a Steifel manifold. We select a fraction 7/10 of the
total entries uniformly chosen at random as the observation set Ω so that |Ω|= 7p2=10. These
observations are corrupted with Gaussian noise with variance selected so that SNR is in the
range {0:5, 0:875, 1:25, 1:625, 2:00}. We use these observations as input to estimator (4.1), with
λ selected on the basis of hold-out validation on an ntest =7=20p2 validation set.

Fig. 5 compares the performance of the non-subsampled approach and subspace stability
selection computed empirically over 100 iterations for all the problem settings. For settings
where either the false discovery standard deviation normalized by expected value or the power
standard deviation normalized by expected value is greater than 0.01, we plot the expected value
with a cross and the 1σ around the mean with a rectangle. Several settings in Fig. 5 experience
a significant loss in power by using the subspace stability selection procedure. Those precisely
correspond to models with high rank and low SNR-regime where some components of the
signal are overwhelmed by noise. To control false discoveries in these settings, subspace stability
selection filters out some of the signal and as a result yields a small power.

4.4. Experimental results on real data sets
4.4.1. Collaborative filtering
In collaborative filtering, one is presented with partially filled user preference matrices in which
rows are indexed by users and columns by items, with each entry specifying a user’s preference
for an item. The objective is to infer the unobserved entries. As discussed in Section 1, such user
preference matrices are often well approximated as low rank, and therefore a popular approach
to collaborative filtering is to frame it as a problem of low rank matrix completion and to solve
this problem on the basis of either the convex relaxation (3.1) or the non-convex approach (4.1)
via ALS. We describe experimental results on two popular data sets in collaborative filtering:

(a) the Amazon book crossing data set (obtained from http://www2.informatik.
uni-freiburg.de/˜cziegler/BX/) of which we consider a portion consisting of
p1 =1245 users and p2 =1054 items with approximately 6% of the ratings (integer values
from 1 to 10) observed, and

(b) the Amazon video games data set (obtained from http://jmcauley.ucsd.edu/
data/amazon/) of which we consider a portion consisting of p1 =482 users and p2 =520
items with approximately 3.5% of the ratings (integer values from 1 to 5) observed.

In each case, we partition the data set as follows: we set aside 85% of the observations as a
training set, 10% of the observations as a hold-out validation set and the remaining 5% as an
evaluation set to assess the performance of our learned models.

As these problems are relatively large in size, we employ ALS on the non-convex formulation
(4.1) with k = 80 (the upper bound on the rank) and we apply the modification of algorithm 1
for subspace stability selection. Finally, to obtain estimates of low rank matrices (as this is the
eventual object of interest in collaborative filtering) we use formulation (2.7) given estimates of
tangent spaces. We set α = 0:7 and B = 100 complementary bags. Fig. 6 illustrates the mean-
squared error (MSE) of ALS and subspace stability selection on the hold-out set for these two
data sets for a range of values of the regularization parameter λ. For both data sets, we observe
that subspace stability selection yields models with better MSE on the hold-out set over the
entire range of regularization parameters. On the book crossings data set, we further note that,
at the cross-validated λ, the rank of the estimate that is obtained from the non-subsampled
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Fig. 5. False discovery versus power with (a) matrix completion and (b) linear measurements over 20
different problem instances (varying rank and noise level) ( , performance of the non-subsampled approach;

, subspace stability selection with α D 0.7): for the instances where the standard deviation divided by the
mean is greater than 0.01, we show a 1σ-rectangle around the mean; the lines connect dots corresponding
to the same problem instance; both the false discovery and the power are normalized by dividing expressions
(2.3) and (2.4) by dim.T Å?/ and dim.T*/ respectively
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(a)

(b)

Fig. 6. Collaborative filtering—MSE on the hold-out set of the non-subsampled approach ( ) and
subspace stability selection ( ) ( , cross-validated choice of λ with the non-subsampled approach): (a)
Amazon video games; (b) Amazon book crossing

approach is 80 (i.e. the maximum allowable rank) with the first three singular values equal to
4329, 135.4 and 63.1. The MSE of this model on the evaluation set is 0.83. In contrast, at the
cross-validated λ-subspace stability selection yields a rank 2 model with an MSE of 0.81 on
the evaluation set. Thus, we obtain a much simpler model with subspace stability selection that
also offers better predictive performance. Similarly, for the Amazon video games data set, the
rank of the estimate that is obtained from the non-subsampled approach is 39 with the first five
singular values equal to 1913.5, 49.4, 43.6, 28.4 and 27.4, with an MSE of 0.87 on the evaluation
set. In contrast, subspace stability selection yields a rank 4 solution with a much smaller MSE
of 0.74 on the evaluation set. Finally, we observe for both data sets that subspace stability
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selection is much more stable across the range of regularization parameters. Thus, subspace
stability selection is far less sensitive to the particular choice of λ, which removes the need for
fine tuning λ.

4.4.2. Hyperspectral unmixing
Here we give an illustration with real hyperspectral imaging data in which the underlying popu-
lation parameters are known on the basis of extensive prior experiments. In this problem, we are
given a hyperspectral image Y ∈Rp1×p2 consisting of p1 frequency bands and p2 pixels, where Yi,j
is the reflectance of the jth image pixel to the ith frequency band. The spectral unmixing problem
aims to find W ∈Rp1×k (called the end member matrix) and H ∈Rk×p2 (called the abundance ma-
trix) so that Y ≈WH , where k �min.p1, p2/ is the number of end members (Manolakis, 2003).
Of particular interest is the k-dimensional column space of W , which corresponds to the space
that is spanned by the k end members that are present in the image. We discuss two natural hy-
perspectral unmixing problems that arise commonly in practice. We focus on the urban data set
(obtained from http://www.escience.cn/people/feiyunZHU/Dataset GT.html):
a hyperspectral image consisting of 307×307 pixels, each of which corresponds to a 2 m×2 m
area with 210 wavelengths ranging from 400 nm to 2500 nm. Following previous analyses of
this data set, we remove 48 noisy channels to obtain 162 wavelengths and select a 30×25 patch
(equal to 750 pixels) that is shown in Fig. 7(a). In the patch selected, there are a total of three
end members (shown in Fig. 7(b)), with one strong signal and two weak signals.

In many settings, obtaining a complete hyperspectral image of a scene may be costly, and
it is of interest to reconstruct a hyperspectral image accurately from partial observations. This
problem may be naturally formulated as one of low rank matrix completion. As with other
application domains in which problems are reformulated as low rank matrix completion, ALS
applied to the non-convex formulation (4.1) is commonly employed. To simulate such a hy-
perspectral unmixing problem, we randomly subsampled 10% of the hyperspectral data in the
patch as training data. We further selected another 10% of the remaining data as a hold-out
validation set. We compare the amount of false discovery of a non-subsampled approach and
subspace stability approach, with k conservatively chosen to be equal to 20 in the ALS procedure
in each case. Because the scale of this problem is large, we use the modification of algorithm 1
(with α=0:7 and B =100 complementary bags) described in Section 3.1 for subspace stability
selection. As the column space of the low rank estimate is the principal object of interest for end
member detection, the quantities of interest for evaluating performance are based on expression
(2.5): FD = E[tr.Pcol-space.W

Å
/⊥Pcol-space.Ŵ//] and PW = E[tr.Pcol-space.W

Å
/Pcol-space.Ŵ//]. Here,

the expectation is with respect to the randomness in the selection of the 10% training data,
WÅ ∈R162×3 is the matrix consisting of the spectra of the three end members in Fig. 7(b)) and
Ŵ is the estimated matrix. We find a cross-validated choice of λ=1 from one random selection
of training data. With this λ and over 100 random trials in the selection of training data, non-
subsampled ALS produces on average rank 20 estimate with FD = 0:1 dim{col-space.WÅ⊥

/}
and PW = 0:97 dim.col-space.WÅ//. In contrast, for the same λ = 1, subspace stability se-
lection (operating on tangent spaces Tn.col-space.Ŵ// produces on average rank 2.86 with
FD=0:0007 dim.col-space{WÅ⊥

/} and PW=0:91 dim{col-space.WÅ/}. Furthermore, even if
λ is set sufficiently large (e.g. λ=29) so that the non-subsampled ALS estimate has on average
rank equal to 2.52, the false discovery estimate is FD = 0:007 dim{col-space.WÅ/

⊥}, which is
still far larger than the amount of false discovery of subspace stability selection.

A different type of hyperspectral unmixing problem arises if the observations are corrupted
by noise. In particular, based on the decomposition Y ≈ WH , the outer product YY ′ is well
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Fig. 7. (a) Urban hyperspectral image and (b) spectra of three materials in the image (the data and the
population spectra are obtained from http://www.escience.cn/people/feiyunZHU/Dataset GT.html): ,
asphalt; , root; , grass
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approximated by a low rank matrix. Thus, another natural approach for end member detection
is to perform factor analysis by viewing each column of Y (i.e. an entire collection of wavelengths
corresponding to each pixel) as an observation and approximating the sample covariance of
these observations as the sum of diagonal and low rank matrices. The row–column spaces
of the low rank component (which is symmetric and hence the row and column spaces are
the same) serve as estimates of the subspace that is spanned by the end members. We obtain
{Y.i/}750

i=1 ⊂ R162 spectral observations of the 750 total pixels by applying white noise to the
population parameters with the noise level chosen so that SNR = 0:78. We then set aside 80%
of the data as training data for estimator (4.2), which is solved by using the LogDetPPA solver
of Toh et al. (2006). We set aside the remaining 20% as a hold-out validation set. Employing
estimator (4.2) without subsampling and with λ chosen via cross-validation and expectations
computed over 100 yields false discovery FD=0:04 dim.T Å⊥

/ and power PW=0:48 dim.T Å/.
(Here T Å represents the population tangent space.) In contrast, subspace stability selection with
α=0:7 and B=100 complementary bags yields a tangent space estimate with a false discovery
FD = 0:015 dim.T Å⊥

/ and power PW = 0:69 dim.T Å/. Evidently, subspace stability selection
yields a substantial decrease in the amount of false discovery as well as an improvement in
power.

5. Conclusions and future directions

In this paper, we describe a geometric framework for assessing false discoveries in low rank
estimation. The framework proposed has many appealing properties including that it is a natural
generalization of false discovery in variable selection. We further describe the subspace stability
selection algorithm to provide false discovery control in the low rank setting. This procedure is
a generalization of the stability selection method of Meinshausen and Bühlmann (2010). The
method is general and we demonstrate its utility with both synthetic and real data sets in a range
of low rank estimation tasks.

There are several interesting directions for further investigation that arise from our work.
First, within the context of theorem 1 on the expected false discovery of a stable tangent space
produced by subspace stability selection, it would be useful to carry out a more refined bag-
dependent analysis in the spirit of Shah and Samworth (2013). Second, while algorithm 1 from
Section 3.3 outputs an estimate that does provide false discovery control, it is unclear whether
this is the most powerful procedure possible. In particular, it is of interest to obtain an optimal
solution to problem (3.9), or to prove that algorithm 1 computes a nearly optimal solution.
Third, algorithm 1 requires a user-specified α to produce an estimate that provides a false
discovery bound as stated in theorem 1. In exploratory settings, one may wish to examine the
data first, and to choose α to obtain a desired amount of discovery while still retaining some
false discovery guarantees. This viewpoint, considered by Goeman and Solari (2011), reverses
the traditional role of the analyst and the inference procedure. Building on their perspective,
it would be of interest to develop false discovery bounds for subspace stability selection that
remain valid despite post hoc selection of α. Fourth, a significant topic of contemporary interest
in variable selection—especially when there are a large number of possible predictors—is to
control for the false discovery rate. In Section 2 we gave a formulation of the false discovery
rate in the low rank setting, and it is natural to seek procedures that provide false discovery rate
control in settings with high dimensional matrices. One obstacle that arises with this effort is
that every proof of false discovery rate control of a variable selection method (of which we are
aware) relies strongly on the simultaneous diagonalizability of the projection matrices that are
associated with the population tangent space and the estimated tangent space (when translated
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to the geometric viewpoint of our paper). Finally, the geometric framework that is developed in
this paper for assessing false discovery is potentially relevant beyond the specific setting of low
rank estimation. For example, our set-up extends naturally to latent variable graphical model
selection (Chandrasekaran et al., 2012) as well as low rank tensor estimation (Kolda and Bader,
2009), both of which are settings in which the underlying geometry is similar to that of low rank
estimation. More broadly, the perspective that is presented here may be useful in addressing
many other structured estimation problems.

Acknowledgements

This research was funded by National Science Foundation grant CCF-1350590, Air Force Office
of Scientific Research grant FA9550-16-1-0210 and Sloan and Resnick Fellowships.

References

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J. R. Statist. Soc. B, 57, 289–300.

Björck, A. and Golub, G. (1973) Numerical methods for computing angles between linear subspaces. Math.
Computns, 27, 579–594.

Candès, E. and Recht, B. (2009) Exact matrix completion via convex optimization. Foundns Computnl Math., 9,
717–772.

Chandrasekaran, V., Parillo, P. A. and Willsky, A. S. (2012) Latent variable graphical model selection via convex
optimization. Ann. Statist., 40, 1935–1967.

Choi, Y., Taylor, J. and Tibshirani, R. (2017) Selecting the number of principal components: estimation of the
true rank of a noisy matrix. Ann. Statist., 45, 2590–2617.

Fa, R. and Lamare, R. (2011) Reduced-rank STAP algorithms using joint iterative optimization of filters. IEEE
Trans. Aer. Electron. Syst., 47, 1668–1684.

Fazel, M. (2002) Matrix rank minimization with applications. PhD Thesis. Department of Electrical Engineering,
Stanford University, Stanford.

Goldberg, D., Nichols, D., Oki, B. and Terry, D. (1992) Using collaborative filtering to weave an information
tapestry. Communs ACM, 35, no. 12, 61–70.

Harris, J. (1995) Algebraic Geometry: a First Course. Berlin: Springer.
Kolda, T. and Bader, B. (2009) Tensor decompositions and applications. SIAM Rev., 51, 455–500.
Liu, Z. and Lin, X. (2018) A geometric perspective on the power of principal component association tests in

multiple phenotype studies. J. Am. Statist. Ass., 114, 975–990.
Liu, Z. and Vandenberghe, L. (2009) Interior-point method for nuclear norm approximation with application to

system identification. SIAM J. Matrx Anal. Appl., 31, 1235–1256.
Manolakis, D. (2003) Detection algorithms for hyperspectral imaging applications: a signal processing perspective.

In Proc. Wrkshp Advances in Techniques for Analysis of Remotely Sensed Data, pp. 378–384.
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A Appendix

A.1 Proof of Theorem 4 (main paper)

We first prove the basis-dependent bound. For each ` = 1, . . . , B and for each i = 1, . . . ,dim(T ?⊥)
we have that

trace(PTPspan(Mi)) = trace(PT̂ (D`)
PTPT̂ (D`)

Pspan(Mi)) + trace(P
T̂ (D`)

⊥PTPT̂ (D`)
⊥Pspan(Mi))

+ trace(PT̂ (D`)
PTPT̂ (D`)

⊥Pspan(Mi)) + trace(PT̂ (D`)
⊥PTPT̂ (D`)

Pspan(Mi)).

(1)
The last two terms may be simplified as follows:

trace(PT̂ (D`)
PTPT̂ (D`)

⊥Pspan(Mi)) + trace(PT̂ (D`)
⊥PTPT̂ (D`)

Pspan(Mi))

= trace(PT̂ (D`)
(PTPT̂ (D`)

⊥ − P
T̂ (D`)

⊥PT )Pspan(Mi))

+ trace((PT̂ (D`)
⊥PT − PTPT̂ (D`)

⊥)PT̂ (D`)
Pspan(Mi))

= trace([PT ,PT̂ (D`)
⊥ ]× [Pspan(Mi),PT̂ (D`)

]).

The first equality follows by noting that PT̂ (D`)
⊥PT̂ (D`)

= PT̂ (D`)
PT̂ (D`)

⊥ = 0 for each ` = 1, . . . , B.
The second equality follows from the definition of the commutator and the cyclicity of trace. We
label the various terms of (1) combined with the above simplification in terms of commutators as
follows for each ` = 1, . . . , B and i = 1, . . . ,dim(T ?⊥):

f`,i = trace(PT̂ (D`)
PTPT̂ (D`)

Pspan(Mi))

g`,i = trace(P
T̂ (D`)

⊥PTPT̂ (D`)
⊥Pspan(Mi))

h`,i = trace([PT ,PT̂ (D`)
⊥ ]× [Pspan(Mi),PT̂ (D`)

]).

(2)

Therefore, we have for each ` = 1, . . . , B and i = 1, . . . ,dim(T ?⊥) that:

trace(PTPspan(Mi)) = f`,i + g`,i + h`,i.

Fix a pair of complementary bags indexed by {2j − 1, 2j} for some j ∈ {1, . . . , B2 }. For this pair,
we have that:

trace(PTPspan(Mi)) = min{f2j−1,i + g2j−1,i + h2j−1,i, f2j,i + g2j,i + h2j,i}
≤ min{f2j−1,i + g2j−1,i, f2j,i + g2j,i}+ max{h2j−1,i, h2j,i}
≤ min{f2j−1,i, f2j,i}+ g2j−1,i + g2j,i + max{h2j−1,i, h2j,i}.

(3)

1



The first equality holds because the two terms in the minimum are equal. The first inequality
holds because min{u0 + v0, u1 + v1} ≤ min{u0, u1} + max{v0, v1} if u0 + v0 = u1 + v1 (here
uk = f2j−k,i+g2j−k,i and vk = h2j−k,i for k = 0, 1). The second inequality holds because min{u0 +
v0, u1 + v1} ≤ min{u0, u1}+ v0 + v1 for v0, v1 ≥ 0 (here uk = f2j−k,i and vk = g2j−k,i for k = 0, 1).

The bound (3) holds for all j = 1, 2, . . . , B/2 and for each i = 1, . . . ,dim(T ?⊥). We can thus
minimize the upper bounds as follows:

trace(PTPspan(Mi)) ≤ min
j=1,2,...,B/2

min{f2j−1,i, f2j,i}+ g2j−1,i + g2j,i + max{h2j−1,i, h2j,i}

≤ 2

B

B/2∑
j=1

min{f2j−1,i, f2j,i}+ g2j−1,i + g2j,i + max{h2j−1,i, h2j,i},

where the second inequality follows from the fact that the minimum over a collection of numbers is

bounded above by their average. Since trace(PTPT?⊥) =
∑dim(T?⊥)
i=1 trace(PTPspan(Mi)), we have

the following bound after taking expectations:

E [trace(PTPT?⊥)] ≤ E

dim(T?⊥)∑
i=1

2

B

B/2∑
j=1

min{f2j−1,i, f2j,i}


︸ ︷︷ ︸

Term 1

+E

dim(T?⊥)∑
i=1

2

B

B/2∑
j=1

(g2j−1,i + g2j,i)


︸ ︷︷ ︸

Term 2

+ E

dim(T?⊥)∑
i=1

2

B

B/2∑
j=1

max{h2j−1,i, h2j,i}


︸ ︷︷ ︸

Term 3

.

We focus on bounding each term separately. First, considering Term 1, we have for each ` = 1, . . . , B
and each i = 1, . . . ,dim(T ?⊥) that:

f`,i = trace(PT̂ (D`)
PTPT̂ (D`)

Pspan(Mi))

= trace(PTPT̂ (D`)
Pspan(Mi)PT̂ (D`)

PT )

= ‖PTPT̂ (D`)
(Mi)‖2F

≤ ‖PT̂ (D`)
(Mi)‖2F .

Here the second equality follows from the idempotence of projection operators and the cyclicity
of trace; the third equality by the definition of the Frobenius norm; and the inequality from the
property that projection reduces the Frobenius norm of a matrix. With this relation, we bound
Term 1 as follows:

Term 1 ≤ E

dim(T?⊥)∑
i=1

2

B

B/2∑
j=1

min{‖PT̂ (D2j−1)
(Mi)‖2F , ‖PT̂ (D2j)

(Mi)‖2F }


≤ E

dim(T?⊥)∑
i=1

2

B

B/2∑
j=1

‖PT̂ (D2j−1)
(Mi)‖F ‖PT̂ (D2j)

(Mi)‖F


=

dim(T?⊥)∑
i=1

[E‖PT̂ (D(n/2))(Mi)‖F ]2.

2



Here the second inequality follows from the property that minimum of two positive quantities is
bounded above by the product of their square roots, and the equality follows from T̂ (D2j−1) and

T̂ (D2j) being independent, and T̂ (D`) being identically distributed for all ` = 1, 2, . . . , `. Turning
next to Term 2, we have that:

Term 2 = 2 E

 1

B

B∑
`=1

dim(T?⊥)∑
i=1

trace(PT̂ (D`)⊥
PTPT̂ (D`)⊥

Pspan(Mi))


= 2 E

[
1

B

B∑
`=1

trace(PT̂ (D`)⊥
PTPT̂ (D`)⊥

PT?⊥)

]

≤ 2 E

[
1

B

B∑
`=1

trace(PT̂ (D`)⊥
PTPT̂ (D`)⊥

)

]
= 2 E

[
trace(PT (I − Pavg)PT )

]
≤ 2(1− α)dim(T ).

Here the second equality follows from
∑dim(T?⊥)
i=1 Pspan(Mi) = PT?⊥ ; the first inequality follows

from the inequality trace(AB) ≤ trace(A)‖B‖2 for symmetric and positive-semidefinite A; the third
equality from the definition of Pavg, the idempotence of projection operators, and the cyclicity of
trace; and the last inequality from the choice of T . Term 3 is simply taken as is. This concludes
the basis-dependent bound.

Next we consider the basis-independent bound. We begin with a decomposition analogous to
that of (1) along with the subsequent simplification in terms of commutators for each ` = 1, . . . , B:

trace (PTPT?⊥) = trace
(
PT̂ (D`)

PTPT̂ (D`)
PT?⊥

)
+ trace

(
PT̂ (D`)⊥

PTPT̂ (D`)⊥
PT?⊥

)
+ trace

([
PT ,PT̂ (D`)⊥

]
×
[
PT?⊥ ,PT̂ (D`)

])
.

(4)

The remainder of the proof proceeds in an analogous fashion.

A.2 Proof of Proposition 5 (main paper)

We use the terminology of subsection A.1 above. We prove a bound on κbag(α) in both the
basis-dependent and basis-independent settings based on the following observation for each j =
1, . . . , B/2:

max


dim(T?⊥)∑

i=1

h2j−1,i,

dim(T?⊥)∑
i=1

h2j,i

 ≤
dim(T?⊥)∑

i=1

max {h2j−1,i, h2j,i} .

Taking expectations on both sides and averaging over the collection of complementary pairs of
bags indexed by j = 1, . . . , B/2, the left-hand-side corresponds to the basis-independent ver-
sion of κbag(α) while the right-hand-side corresponds to the basis-dependent version of κbag(α).
Consequently, it suffices to just bound the right-hand-side. Consider the following sets for each
j = 1, . . . , B/2 and each i = 1, . . . ,dim(T ?⊥):

S1j = {i | h2j−1,i = max{h2j−1, h2j,i}}
S0j = {i | h2j,i = max{h2j−1, h2j,i}}.

3



If there are some i such that h2j−1 = h2j,i, then the corresponding i should be assigned (arbitrarily)

to one of S0j or S1j , exclusively, so that the sets S0j ,S1j partition {1, . . . ,dim(T ?⊥)}. With this
notation, κbag(α) (basis-dependent or basis-independent) may be bounded as:

κbag(α) ≤ E

[
2

B

B/2∑
j=1

∑
i∈S1

j

h2j−1,i +
∑
i∈S0

j

h2j,i


]
. (5)

We first bound the term
∑
i∈S0

j
h2j,i as follows:

∑
i∈S0

j

h2j,i = trace

[PT ,PT̂ (D2j)
⊥ ]×

∑
i∈S0

j

Pspan(Mi),PT̂ (D2j)


≤ ‖[PT ,PT̂ (D2j)

⊥ ]‖?

∥∥∥∥∥∥
∑
i∈S0

j

Pspan(Mi),PT̂ (D2j)

∥∥∥∥∥∥
2

≤ 1

2
‖[PT ,PT̂ (D2j)

⊥ ]‖?

≤ ‖PTPT̂ (D2j)
⊥‖?

≤ ‖PTPT̂ (D2j)
⊥‖F

√
dim(T ).

Here the first inequality holds because of the tracial Hölder inequality; the second inequality holds
because the spectral norm of the commutator between two projection matrices is bounded above
by 1

2 ; the third inequality follows from the triangle inequality; and the final inequality follows from

‖A‖? ≤ ‖A‖F
√

rank(A). We can similarly bound
∑
i∈S1

j
h2j−1,i. Applying this to (5), we obtain:

κbag(α) ≤ E

 2

B

B/2∑
j=1

(‖PTPT̂ (D2j−1)
⊥‖F + ‖PTPT̂ (D2j)

⊥‖F )
√

dim(T )


= 2 E

[(
1

B

B∑
`=1

‖PTPT̂ (D`)
⊥‖F

)√
dim(T )

]

≤ 2 E


√√√√ 1

B

B∑
`=1

‖PTPT̂ (D`)
⊥‖2F

√dim(T )


≤ 2 E


√√√√ 1

B

B∑
`=1

trace(PTPT̂ (D`)
⊥PT )

√dim(T )


= 2 E

[√
trace(PT (I − Pavg)PT )

√
dim(T )

]
≤ 2
√

1− α E[dim(T )].

Here the second inequality follows from concavity of the square root function; and the final two
steps follow from the definition of Pavg and the fact that T is a stable tangent space.
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Next we conclude that E[dim(T )] ≤ q
α via the following sequence of inequalities:

E[dim(T )] ≤ 1
αE[σmin(PTPavgPT )] ≤ 1

αE[trace(PTPavgPT )] ≤ 1
αE[trace(Pavg)] = q

α .

A.3 Proof of Bound in Remark 4 (main paper)

We employ the notation of f, g, h as presented in (2). Considering the decomposition (1) and
noting that the projection operators PT̂ (D`)

,Pspan(Mi),PT all commute with each other in variable

selection, we have that h2j−1,i = h2j,i = 0 for each j = 1, . . . , B/2 and each i = 1, . . . ,dim(T ?⊥).

Hence, for each j = 1, 2, . . . , B/2 and each i = 1, . . . ,dim(T ?⊥):

trace
(
PTPspan(Mi)

)
= f2j−1,i + g2j−1,i

trace
(
PTPspan(Mi)

)
= f2j,i + g2j,i.

(6)

Furthermore,

g2j−1,i = trace
(
PT̂ (D2j−1)⊥

PTPT̂ (D2j−1)⊥
Pspan(Mi)

)
= trace

(
PT∩span(Mi)PT̂ (D2j−1)⊥

)
.

The second equality holds from commutativity of the projection operators in variable selection.
Noticing that trace

(
PTPspan(Mi)

)
= trace

(
PT∩span(Mi)

)
, we move g2j−1,i and g2j,i to the left side

and conclude the relation :

trace
(
PT∩span(Mi)PT̂ (D2j−1)

)
= f2j−1 ; trace

(
PT∩span(Mi)PT̂ (D2j)

)
= f2j . (7)

Notice PT∩span(Mi) is a diagonal matrix with with all zeros except potentially one nonzero in the
diagonal. Hence, trace(PT∩span(Mi)) = {0, 1} and is equal to 0 only if PT∩span(Mi) is an identically
zero matrix. Thus, an equivalent reformulation of (7) is:

trace
(
PT∩span(Mi)

)
trace

(
PT∩span(Mi)PT̂ (D2j−1)

)
= f2j−1

trace
(
PT∩span(Mi)

)
trace

(
PT∩span(Mi)PT̂ (D2j)

)
= f2j .

(8)

Taking the minimum over complementary bags yield:

min{f2j−1, f2j} = trace
(
PT∩span(Mi)

)
min
k

trace
(
PT∩span(Mi)PT̂ (D2j−k)

)
≥ trace

(
PT∩span(Mi)

)∏
k

trace
(
PT∩span(Mi)PT̂ (D2j−k)

)
≥ trace

(
PT∩span(Mi)

){∑
k

trace
(
PT∩span(Mi)PT̂ (D2j−k)

)
− 1

}
.

Here the first inequality follows from the fact that min{a, b} ≥ ab for a, b ∈ [0, 1]. The second

inequality follows from ab ≥ a+ b− 1 for a, b ∈ [0, 1]. We then bound 2
B

∑B/2
j=1 min{f2j−1, f2j}

2

B

B/2∑
j=1

min{f2j−1, f2j} ≥ trace
(
PT∩span(Mi)

)
[2 trace

(
PT∩span(Mi)Pavg

)
− 1].

5



Suppose PT∩span(Mi) is not zero-dimensional. Then, as T ∈ Tα, we find that:

trace
(
PT∩span(Mi)

)
≤ 1

2α− 1

2

B

B/2∑
j=1

min{f2j−1, f2j}. (9)

If PT∩span(Mi) is zero-dimensional, the bound (9) continues to hold as f2j−1, f2j are non-negative
quantities. Via the inequality trace(AB) ≤ trace(A)‖B‖2 for positive-semidefinite A, we have that
f2j−1,i = trace(PT̂ (D2j−1)

PTPT̂ (D2j−1)
Pspan(Mi)) ≤ trace(PT̂ (D2j−1)

Pspan(Mi)). We substitute this

into (9) to find:

E[trace(PTPT?⊥)] =

dim(T?⊥)∑
i=1

E
[
trace

(
PT∩span(Mi)

)]

≤
dim(T?⊥)∑

i=1

E
[

2
B

∑B/2
j=1 min{trace(PT̂ (D2j−1)

Pspan(Mi)), trace(PT̂ (D2j)
Pspan(Mi))}

]
2α− 1

=

dim(T?⊥)∑
i=1

E
[

2
B

∑B/2
j=1 trace(PT̂ (D2j−1)

Pspan(Mi))trace(PT̂ (D2j)
Pspan(Mi))

]
2α− 1

=

dim(T?⊥)∑
i=1

E[trace(PT̂ (D(n/2))Pspan(Mi))]
2

2α− 1
.

Here the second equality follows from trace(PT̂ (D2j−1)
Pspan(Mi)) ∈ {0, 1} and trace(PT̂ (D2j)

Pspan(Mi)) ∈
{0, 1}; the final equality holds from T̂ (D2j−1) and T̂ (D2j) being independent and that T̂ (D`) is iden-
tically distributed for all ` = 1, 2, . . . , B.

A.4 When are Assumptions 1 and 2 in (3.6) Satisfied?

Are there reasonable estimators and models in the low-rank setting that satisfy Assumptions 1 and
2 in (3.7) (main paper)? This section aims to address this question.

Assumption 1 is rather benign. Specifically, fix any k ≤ min{p1, p2}. Let U ∈ Rp1×k and V ∈
Rp2×k be drawn respectively from a Haar measure on the Stiefel Manifold. Then it is straightforward
to check that the tangent space T̂ = T (span(U), span(V )) satisfies the following condition:

E
[
trace

(
PT?⊥PT̂

)]
dim(T ?⊥)

=
E
[
trace

(
PT?PT̂

)]
dim(T ?)

.

In other words, the case of equality in Assumption 1 is satisfied if the row and column space
estimates are drawn uniformly at random as above, and Assumption 1 merely requires that the
low-rank estimator under consideration is better than such a procedure which makes no use of any
observations.

Assumption 2 is more stringent, although it is fulfilled in some natural classes of models /
estimators. In particular, this assumption is satisfied when the estimator as well as the data
generation process are both invariant under orthogonal conjugation. Consider for example:
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• Linear regression with Gaussian functionals: consider the linear matrix regression setting
where we obtain n linear measurements of L? in the form yi = 〈Ai, L?〉 + εi, with each
Ai ∈ Rp1×p2 consisting of i.i.d. standard Gaussian entries (and the Ai’s being independent of
each other) and ε ∈ Rn being a standard Gaussian vector. Consider estimators of the form:

L̂ = arg min
L

∑n
i=1(yi − 〈Ai, L〉)2 + λ R(L),

which includes as special cases a convex approach with R(L) = ‖L‖? as well as a non-convex
approach (solved via alternating least squares) with R(L) = ‖U‖2F + ‖V ‖2F with L = UV ′

corresponding to the estimator (4.2) (main paper).

• Matrix denoising: suppose we are given n observations of L? of the form Yi = L? + εi. Here
εi is a random matrix with i.i.d. standard Gaussian entries (and the εi’s are independent of
each other). Consider any spectral estimator (such as soft thresholding or hard thresholding
of the singular values) applied to Ȳ = 1

n

∑n
i=1 Yi to estimate L?.

In Section A.10, we provide a PCA model and a corresponding estimator that would satisfy a
version of Assumption 2 suitable for subspace estimation problems.

A.5 Proof of Proposition 6 (main paper)

Recall that F =
∑dim(T?⊥)
i=1 E[‖PT̂ (D(n/2))(Mi)‖F ]2 in the basis-dependent bound. Consider a

collection of rank-1 basis elements {Mi}dim(T?⊥)
i=1 . By Assumption 2, E[‖PT̂ (D(n/2))(Mi)‖F ]2 =

E[‖PT̂ (D(n/2))(M)‖F ]2 for any fixed rank-1 matrix M ∈ T ?⊥ with ‖M‖F = 1. Letting δ1 =

E[‖PT̂ (D(n/2))(M)‖F ], we thus have F = dim(T ?⊥)δ21 . Define the quantity δ2 = E[‖PT̂ (D(n/2))(M)‖2F ].

Then, F can be bounded in terms of δ2 and |δ1 − δ2| as follows:

F = dim(T ?⊥)δ21

= dim(T ?⊥){δ22 + (δ1 − δ2)2 + 2δ2(δ1 − δ2)}

≤ dim(T ?⊥){δ22 + (δ1 − δ2)2 + 2δ2|δ1 − δ2|}.

(10)

We focus on bounding δ2 and |δ1 − δ2|. To bound δ2, note that:

E
[
trace

(
PT̂ (D(n/2))PT?⊥

)]
+ E

[
trace

(
PT̂ (D(n/2))PT?

)]
= E[dim(T̂ (D(n/2)))] = q.

Employing “better than random guessing” Assumption 1, we find that:

E
[
trace

(
PT̂ (D(n/2))PT?⊥

)](
1 +

dim(T ?)

dim(T ?⊥)

)
≤ q.

Since dim(T ?) + dim(T ?⊥) = p1p2, we find

E
[
trace

(
PT̂ (D(n/2))PT?⊥

)]
≤ q

p1p2
dim(T ?⊥). (11)
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We now express the left-hand side of (11) in terms of δ2. By Assumption 2, we have that

E
[
trace

(
PT̂ (D(n/2))PT?⊥

)]
= dim(T ?⊥)δ2. Combining this with (11), we obtain the bound:

δ2 ≤
q

p1p2
. (12)

Now we focus on bounding |δ1 − δ2|. We proceed by bounding δ1 − δ2 and δ2 − δ1 by the same

quantity. In particular, we show that δ1 − δ2 ≤ κindiv where κindiv = E
∥∥∥[PT̂ (D(n/2)),Pspan(M)

]∥∥∥
F

:

δ1 − δ2 = E
[
‖PT̂ (D(n/2))(M)‖F

]
− E

[
‖PT̂ (D(n/2))(M)‖2F

]
(a)
=E

[∥∥∥PT̂ (D(n/2))Pspan(M)

∥∥∥
F

]
− E

[∥∥∥PT̂ (D(n/2))Pspan(M)

∥∥∥2
F

]
(b)
=E

[∥∥∥PT̂ (D(n/2))Pspan(M)

∥∥∥
F

]
− E

[∥∥∥PT̂ (D(n/2))Pspan(M)PT̂ (D(n/2))

∥∥∥
F

]
(c)
=E

[
‖PT̂ (D(n/2))Pspan(M)]‖F

]
− E

[∥∥∥Pspan(M)PT̂ (D(n/2)) +
[
PT̂ (D(n/2)),Pspan(M)

]
PT̂ (D(n/2))

∥∥∥
F

]
(d)

≤E
∥∥∥[PT̂ (D(n/2)),Pspan(M)

]
PT̂ (D(n/2))

∥∥∥
F

(e)

≤E
∥∥∥[PT̂ (D(n/2)),Pspan(M)

]∥∥∥
F

= κindiv.

Here
(a)
= follows from the property that E

[
‖PT̂ (D(n/2))(M)‖F

]
= E

[
‖PT̂ (D(n/2))Pspan(M)‖F

]
and

that E
[
‖PT̂ (D(n/2))(M)‖2F

]
= E

[
‖PT̂ (D(n/2))Pspan(M)‖2F

]
;
(b)
= follows from noting that Pspan(M) has

rank-1 by construction so that
∥∥∥PT̂ (D(n/2))Pspan(M)PT̂ (D(n/2))

∥∥∥
F

= trace
(
PT̂ (D(n/2))Pspan(M)PT̂ (D(n/2))

)
=∥∥∥PT̂ (D(n/2))Pspan(M)

∥∥∥2
F

;
(c)
= follows from the definition of a commutator;

(d)

≤ follows from reverse tri-

angle inequality; and
(e)

≤ follows from the following reasoning for matrices A,B where B is a projec-
tion matrix: ‖AB‖F =

√
‖AB‖2F =

√
trace(A′AB) ≤

√
trace(A′A)‖B‖2 ≤

√
trace(A′A) = ‖A‖F .

Similar logic shows that δ2 − δ1 ≤ κindiv which leads to the conclusion that |δ1 − δ2| ≤ κindiv.
Plugging in the bounds for δ2 and |δ1 − δ2| into (10), we find that:

F ≤ q2

p1p2
+ dim(T ?⊥)κ2indiv + 2qκindiv,

as desired.

A.6 Goodness of the Data-Driven Heuristic in Remark 5

Recall that we chose M = uv′, where u, v are selected to be the smallest singular vectors associated
with PCavg and PRavg, respectively. Notice that PT?⊥(M) will be of rank less than or equal to 1 since

PT?⊥(M) = PC?⊥MPR?⊥ . Hence, the cosine of the largest principal angle between T ?⊥ and M ,
given by ‖PT?⊥Pspan(M)‖F , will be achieved between the direction spanned by M and a rank-1
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direction in T ?⊥. As such, we next prove that if the estimator has good power, ‖PT?⊥Pspan(M)‖F
will be close to 1.

Lemma 1. Let τ := E[min{σmin(PC?PĈ(D(n/2))PC?), σmin(PR?PR̂(D(n/2))PR?)}] and

δ := E[max{σmin(PCavg), σmin(PRavg)}]. Then, the expected cosine of the principal angle between the

data-driven M and T ?⊥ is lower-bounded by:

E
[
‖PT?⊥Pspan(M)‖2F

]
≥ 2τ − 1− 2(δ +

√
δ).

Evidently, when the estimator has good power, i.e. τ is close to 1, and the expected smallest
singular values δ is close to 0, the data-driven approach produces an M that is close to T ?⊥. We
next prove this lemma.

Proof. Notice that:

E
[
trace

(
PT?⊥Pspan(M)

)]
= E

[
trace

(
PC?⊥Pspan(u)

)
trace

(
PR?⊥Pspan(v)

)]
≥ E

[
trace

(
PC?⊥Pspan(u)

)]
+ E

[
trace

(
PR?⊥Pspan(v)

)]
− 1

= 1− E
[
trace

(
PC?Pspan(u)

)]
− E

[
trace

(
PR?Pspan(v)

)]
, (13)

where the first equality is due to the property that PT?⊥ = C?⊥ ⊗ R?⊥ and the inequality is due
to the property ab ≥ a + b − 1 for a, b ∈ [0, 1]. This decomposition implies that upper bounds for
E
[
trace

(
PC?Pspan(u)

)]
and E

[
trace

(
PR?Pspan(v)

)]
yield a lower-bound for E

[
trace

(
PT?⊥Pspan(M)

)]
.

Proceeding with upper-bounding E
[
trace

(
PC?Pspan(u)

)]
, we consider the following decomposition:

trace
(
PC?Pspan(u)

)
= trace

(
PĈ(D`)

⊥PC?PĈ(D`)
⊥Pspan(u)

)
+ trace

(
PĈ(D`)

PC?PĈ(D`)
Pspan(u)

)
+ trace

(
PĈ(D`)

⊥PC?PĈ(D`)
Pspan(u)

)
+ trace

(
PĈ(D`)

PC?PĈ(D`)
⊥Pspan(u)

)
≤

∥∥∥PĈ(D`)
⊥PC?PĈ(D`)

⊥

∥∥∥
2

+ trace
(
PĈ(D`)

Pspan(u)PĈ(D`)

)
+
∥∥∥PĈ(D`)

Pspan(u)

∥∥∥
?
,

where the inequality is due to trace(AB) ≤ trace(A)‖B‖2 for A � 0, trace(AB) ≤ ‖A‖?‖B‖2, the
idempotence of projection operators and that ‖[PT1

,PT2
]‖2 ≤ 1

2 for any two subspaces T1 and T2.

9



Since the choice of ` was arbitrary, we minimize over the entire collection:

E
[
trace

(
PC?Pspan(u)

)]
≤ E

[
min

`=1,2,...,B

∥∥∥PĈ(D`)
⊥PC?PĈ(D`)

⊥

∥∥∥
2

+ trace
(
PĈ(D`)

Pspan(u)PĈ(D`)

)
+

∥∥∥PĈ(D`)
Pspan(u)

∥∥∥
?

]
(a)

≤ 1

B

B∑
`=1

E
[∥∥∥PĈ(D`)

⊥PC?PĈ(D`)
⊥

∥∥∥
2

]
+ E

[
trace

(
PĈ(D`)

Pspan(u)PĈ(D`)

)]
+ E

[∥∥∥PĈ(D`)
Pspan(u)

∥∥∥
?

]
(b)

≤ 1

B

B∑
`=1

E
[∥∥∥PĈ(D`)

⊥PC?PĈ(D`)
⊥

∥∥∥
2

]
+ E

[
trace

(
Pspan(u)PCavgPspan(u)

)]
+ E

[√
trace

(
Pspan(u)PCavgPspan(u)

)]
(c)

≤ 1

B

B∑
`=1

E
[∥∥∥PĈ(D`)

⊥PC?PĈ(D`)
⊥

∥∥∥
2

]
+ δ +

√
δ

(d)
= 1− τ + δ +

√
δ.

Here
(a)

≤ follows from the fact that minimum over a collection is bounded by their average;
(b)

≤

follows from ‖A‖? ≤ ‖A‖F rank(A) and the concavity of square root function; and
(c)

≤ follows from
the fact that u is selected to be the smallest singular vector of PCavg, concavity of square function

and Jensen’s inequality, and the definition of δ, and
(d)
= follows from the fact that ‖PT⊥1 PT2PT⊥1 ‖2 =

1− σmin(PT2PT1PT2) and that Ĉ(D`) is identically distributed for all `. Repeating the same steps
for the row-space and combining with (13) gives the desired result.

A.7 Sensitivity of Subspace Stability Selection to α

The tuning parameter α ∈ [0, 1] plays an important role in how much discovery is made by subspace
stability selection. In our experience, the output of subspace stability selection (which selects a
stable tangent space) is rather robust to α in moderate to high SNR settings. As a result, in all
our experiments, we select α to equal 0.70.

To more systematically explore the sensitivity of the subspace stability selection algorithm to
the choice of α, we consider the following matrix completion setup where L? ∈ Rp×p with p = 100,
rank of L? in the set {1, 3, 5}, and row/column spaces chosen uniformly at random from the Steifel
manifold. We select a fraction 7/10 of the total entries uniformly at random as the observation set Ω
so that |Ω| = 7p2/10. These observations are corrupted with Gaussian noise with variance selected
so that the SNR is one of the values {0.5, 0.8, 2}, for a total number of nine problem instances (three
different noise levels and three different ranks). We use these observations as input to the estimator
(4.1) (main paper), with λ selected based on holdout validation on a ntest = 7/20p2 validation
set. We fix B = 100 and vary the choice of in Algorithm 1 (main paper) over the values in the
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set αset = {0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75, 0.775, 0.8}. For each α, we obtain an associated
stable tangent space TS3(α). Figure 1 demonstrates the variation in the normalized false discov-

ery E
[
trace

(
PTS3(α)PT?⊥

)]
/dim(T ?⊥) and normalized power E

[
trace

(
PTS3(α)PT?

)]
/dim(T ?) as a

function of α. We notice that for SNR = 2, both the false discovery and power are very stable with
respect to α for all ranks. Even for a lower value of SNR = 0.8, the normalized false discovery and
power remain stable to changes in α for small ranks, but are less stable for larger ranks. In sum-
mary, this experiment indicates that the subspace stability selection algorithm tends to be robust
to perturbations of α for moderate-to-high SNR regimes and small ranks.

We note that the choice of α can also be guided by our theoretical results. In particular, in
cases where the signal strength is strong so that the commutator terms are small (see the theoreti-
cal statements in Section 3.2 (main paper)), we recommend selecting a large α to maximize power
while controlling for false discoveries.

A.8 Proof of Proposition 7 (main paper)

Let T be a tangent space produced by the modified algorithm with associated column and row
spaces (C,R). We proceed by obtaining an upper bound on ‖PT (I − Pavg)PT ‖2, which gives a
lower bound on σmin(PTPavgPT ):

‖PT (I − Pavg)PT ‖2 = max
M∈T,‖M‖F=1

1

B
trace

( B∑
`=1

M ′PT̂ (D`)⊥
(M)

)
(a)
= max

M∈T,‖M‖F=1

1

B

B∑
`=1

‖PĈ(D`)⊥
MPR̂(D`)⊥

‖2F

(b)

≤ max
M∈T,‖M‖F=1

2

B

B∑
`=1

‖PĈ(D`)⊥
PCMPR̂(D`)⊥

‖2F

+
2

B

B∑
`=1

‖PĈ(D`)⊥
PC⊥MPRPR̂(D`)⊥

‖2F

(c)

≤ max
M∈T,‖M‖F=1

2

B

B∑
`=1

‖PĈ(D`)⊥
PCM‖2F +

2

B

B∑
`=1

‖PR̂(D`)⊥
PRM ′‖2F

= max
M∈T,‖M‖F=1

2 trace(PC(I − Pavg)PCMM ′) + 2 trace(PR(I − Pavg)PRM ′M)

≤ 2 ‖PC(I − Pavg)PC‖2 + 2 ‖PR(I − Pavg)PR‖2 ≤ 4(1− α).

Here (a) follows from the cyclicity of the trace functional and the idempotence of projection maps;
(b) from the fact that M ∈ T implies that M = PCM + PC⊥MPR and the elementary inequality
(a+ b)2 ≤ 2a2 + 2b2; and (c) from the property ‖AP‖F ≤ ‖A‖F for any projection matrix P.

A.9 Tangent Spaces for Column-Space Estimation

In certain domains such as hyperspectral imaging, one only requires estimates of the column-space
of a low-rank matrix, and we seek an appropriate tangent space that represents the discoveries in
this context.
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Figure 1: Variation in false discovery E
[
trace

(
PTS3(α)PT?⊥

)]
/dim(T ?⊥) and power

E
[
trace

(
PTS3(α)PT?

)]
/dim(T ?) as a function of α for different SNR and rank regimes.
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We begin by considering the tangent space with respect to the determinantal variety V(r) ⊂
Rp1×p2 at a rank-r matrix L = UV ′ ∈ Rp1×p2 with column/row spaces (C,R). To compute this
space, we consider differences of the form (U + ∆1)(V + ∆2)′ − UV ′ = ∆1V

′ + U∆′2 + ∆1∆′2 ≈
∆1V

′ + U∆′2 for ∆1 ∈ Rp1×r,∆2 ∈ Rp2×r small. However, such elements involve attributes of the
neighborhood of L that do not concern the estimation of an accurate column space, and therefore we
must quotient out the irrelevant directions. Specifically, the directions consisting of column-space
components in C⊥ are not relevant to the accurate estimation of C. The matrices in V(r) that lie in
a neighborhood around L with deviations in the column-space purely in directions in C⊥ are given
by L+ PC⊥∆ for ∆ ∈ Rp1×p2 . Therefore, we consider the following equivalence class associated to
each rank-r matrix L ∈ V(r):

[L] = {L+ PC⊥∆PR | ∆ ∈ Rp1×p2}. (14)

The tangent space at L with respect to the quotient manifold V(r)\[L] then signifies the dis-
coveries of interest for column-space estimation. The tangent spaces at L with respect to the
equivalence class [L] and with respect to the quotient manifold V(r)\[L] form complementary sub-
spaces of the tangent space at L with respect to V(r), and these are known respectively as the
vertical space and the horizontal space. One can check that the vertical space is given by Tvertical =
{PC⊥∆PR | ∆ ∈ Rp1×p2} while the horizontal space is given by Thorizontal = {PC∆ | ∆ ∈ Rp1×p2}
so that T (Ĉ, R̂) = Tvertical⊕Thorizontal. Our tangent space of interest is thus the subspace Thorizontal,
which is solely a function of the column space C.

Observing that PThorizontal
= PC ⊗ I and PT⊥horizontal = PC⊥ ⊗ I, the expected false discovery,

power, and false discovery rate in the context of column-space estimation associated to an estimator
Ĉ are defined as:

FD = E
[
trace

(
PĈPC?⊥

)]
PW = E

[
trace

(
PĈPC?

)]
FDR = E

[
trace

(
PĈPC?⊥

)
dim(Ĉ)

]
.

(15)

A.10 False Discovery Guarantees for Column-Space Estimation

In this section, we provide false discovery control guarantees of subspace stability selection for
column-space estimation problems. Suppose there exists a population column-space C? ∈ Rp1 , and
we are given i.i.d observations from a model parameterized by C?. Let Ĉ be a subspace estimator
that operates on samples drawn from the model parameterized by C?. Let D(n) denote a dataset
consisting of n i.i.d observations from these models; we assume n is even and that we are given B
subsamples {D`}Bi=1 via complementary partitions of D(n).

We omit the proof of each of these statements as their proof is similar in spirit to those from
the main paper.

Theorem 1 (False Discovery Control of Subspace Stability Selection). Consider the setup described
above. Let Ĉ(D`) denote the subspace estimates obtained from each of the subsamples, and let
PCavg denote the associated average projection operator computed via (3.2) (main paper). Fix any
α ∈ (0, 1) and let C denote any selection of an element of the associated set Tα of stable tangent
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spaces. Then for any fixed collection of orthonormal basis elements {Mi}dim(C?⊥)
i=1 of C?⊥

E [trace (PCPC?⊥)] ≤ F + κbag(α) + 2(1− α)E[dim(C)]. (16)

For basis-dependent bound, F
∑dim(C?⊥)
i=1 E

[∥∥∥PĈ(D(n/2))(Mi)
∥∥∥
F

]2
and κbag(α) =

∑dim(C?⊥)
i=1

2
B

∑B/2
j=1

E[maxk∈{0,1} trace([PC ,PĈ(D2j−k)
⊥ ]×[Pspan(Mi),PĈ(D2j−k)

])], whereas for a basis-independent bound,

F ≤ E[trace(PĈ(D(n/2))PC?⊥)1/2]2 and κbag(α) = 2
B

∑B/2
j=1 E[maxk∈{0,1} trace([PC ,PĈ(D2j−k)

⊥ ] ×
[PC?⊥ ,PĈ(D2j−k)

])]. Here the expectation is with respect to randomness in the observations. The set

D(n/2) denotes a collection of n/2 i.i.d. observations drawn from the model parametrized by C?.

The next proposition provides an upper bound for κbag(α) and also provides a bag independent
bound:

Proposition 1 (Bounding κbag and a Bag Independent Result). Consider the setup of Theo-
rem 1. Then the following bound holds for both the basis-independent and basis-dependent κbag(α):
κbag(α) ≤ 2

√
1− αE[dim(C)]. Furthermore, letting the average number of discoveries from n/2

observations be denoted by q := E[dim(Ĉ(D(n/2)))], we also have that E[dim(C)] ≤ q
α . Thus, we

obtain the following false discovery bound for any B ≥ 2:

E [trace (PCPC?⊥)] ≤ F +
2q

α
(1− α+

√
1− α). (17)

Finally, we obtained a refined bound under “better than random guessing” and exchangeability
assumptions:

Assumption 3:
E
[
trace

(
PC?⊥PĈ(D(n/2))

)]
dim(C?⊥)

≤
E
[
trace

(
PC?PĈ(D(n/2))

)]
dim(C?)

Assumption 4: The distribution of ‖PĈ(D(n/2))(M)‖F is the same for all M ∈ C?⊥, ‖M‖F = 1.

(18)

The idea behind these two assumptions are similar to Assumptions 1 and 2 in (3.7) (main paper). In
particular, a similar argument as with Assumption 1 demonstrates that Assumption 3 is very benign.
Assumption 4 is satisfied for data generation processes and estimators that are both invariant under
orthogonal conjugation. In particular, consider the PCA model y = B?z + ε for B? ∈ Rp1×k and ε
is a Gaussian vector with independent and identically distributed coordinates. Consider the PCA-
estimator that finds top components of the empirical covariance of y from observations. Then the
estimator satisfies Assumption 4 in (18).

Proposition 2 (Refined False Discovery Bound). Consider the setup in Theorem 1. Suppose
additionally that Assumptions 3 and 4 in (18) are satisfied. Let the average number of discoveries
from n/2 observations be denoted by q := E[dim(Ĉ(D(n/2)))]. Then, for any fixed M ∈ C?⊥ with
‖M‖2 = 1, the expected false discovery of a stable column-space C is bounded by:

E [trace (PCPC?⊥)] ≤ q2

p1
+ f (κindiv) +

2q

α
(1− α+

√
1− α), (19)

where κindiv := E
[
‖[Pspan(M),PC?⊥ ]‖F

]
and f(κindiv) = p1κ

2
indiv + 2qκindiv.
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