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Abstract The recent California drought has highlighted the potential vulnerability of the state’s water
management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic
storage changes in California reservoirs on a state-wide scale have previously been difficult to model using
either traditional statistical or physical approaches. Indeed, although there is a significant line of research
on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a
system-wide modeling of the California reservoir network due to the spatial and hydrological
heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to
characterize the dependencies among a collection of 55 major California reservoirs across the state; this
model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the
relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven
manner based on reservoir volumes over the period 2003–2016. A key feature of our framework is a
quantification of the effects of external phenomena that influence the entire reservoir network. We further
characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI),
average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural
workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide
health diagnosis of the reservoir network as a function of PDSI.

1. Introduction

1.1. Motivation
The state of California depends on a complex water management system to meet wide-ranging water
demands across a large, hydrologically diverse domain. As part of this infrastructure, California has con-
structed 1,530 reservoirs having a collective storage capacity equivalent to a year of mean run off from Cali-
fornia rivers (Graf, 1999). The purpose of this system is to create water storage capacity and extend seasonal
water availability to meet agricultural, residential, industrial, power generation, and recreational needs.

Major state-wide California precipitation deficits during the years 2012–2015 rivaled the most intense 4 year
droughts in the past 1,200 years (Griffin & Anchukaitis, 2014). The drought was punctuated by low snow
pack in the Sierra Nevada, declining groundwater storage, and fallowed agricultural lands, in addition to sig-
nificantly diminished reservoir levels (AghaKouchak et al., 2014; Famiglietti, 2014; Howitt et al., 2014). This
sensitivity of the California reservoir network to external conditions (e.g., temperature, precipitation) has
implications for state-wide water and agricultural security. In this paper, we seek a characterization of the
relationships among the major California reservoirs and their sensitivity to state-wide physical and eco-
nomic factors, with a view to investigating and quantifying the likelihood of systemic catastrophes such as
the simultaneous exhaustion of multiple large reservoirs.

Such an analysis has been difficult to carry out on a system-wide scale due to the size and complexity of the
reservoir network. In one direction, a body of work has focused on characterizing the behavior of a small
collection of reservoirs using physical laws (e.g., Christensen & Lettenmaier, 2004); Christensen et al., 2006;
Nazemi & Wheater, 2015). Such approaches quickly become intractable in settings with large numbers of
reservoirs whose complex management is based on multiple economic and sectoral objectives (Howitt
et al., 2014). The hard-to-quantify influence of human operators and the lack of system closure have made
the modeling and prediction of reservoir network behavior using physical equations challenging in
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hydrology and climate models (Solander et al., 2016). In a different direction, numerous works have devel-
oped empirical techniques for modeling the behavior of a small number of reservoirs (e.g., Ashaary et al.,
2015; Barnett & Pierce, 2008; Bazartseren et al., 2003; Chen & Liu, 2015; Cheng et al., 2015; Hoerling & Eisc-
heid, 2007; Kuria & Vogel, 2015; Linares-Rodriguez, et al., 2015; Liu & Chung, 2014; Marton, et al., 2015; Nash
& Gleick, 1991, 1993; Phatafod, 1989; Revelle & Waggoner, 1983; Wisser et al., 2010; Yang et al., 2016, 2017;
Zhang et al., 2017). However, these methods are not directly applicable to modeling a large reservoir net-
work, as the water levels of major reservoirs in California exhibit complex interactions and are statistically
correlated with one another (as is demonstrated by our analysis). This necessitates a proper quantification
of the complex dependencies among reservoirs in determining the systemic characteristics of the reservoir
network.

The focus of this work is to develop a state-wide model over the California reservoir network that addresses
the following scientific questions:

1. What are the interactions or dependencies among reservoir volumes? In particular, how correlated are
major reservoirs in the system?

2. Are there common external factors influencing the network globally? Could these external factors cause
a system-wide catastrophe?

To the best of our knowledge, this work is the first that attempts such a state-wide characterization of the
California reservoir network. The state-wide external factors that we consider in our analysis include physical
factors such as state-wide PDSI and average temperature, and economic factors such as the consumer price
index and the number of agricultural workers. The focus on these state-wide external influences is driven
by the global nature of our analysis; indeed, an exciting direction for further research is to complement our
global model with local reservoir-specific factors to obtain an integrated picture of both systemic as well as
local risks to the reservoir network.

Answering these questions for the California reservoir system raises a number of challenges, and it is impor-
tant that any modeling framework that we consider addresses these challenges. First, reservoirs with similar
hydrological attributes (e.g., altitude, drainage area, spatial location) tend to behave similarly. As an exam-
ple, a pair of reservoirs that is approximately at the same altitude or in the same hydrological zone are more
likely to have a stronger correlation than those in different altitudes/zones. Therefore, we seek a framework
that ably models the complex heterogeneities in the reservoir system. A second challenge, which is in some
sense in competition with the first one, is that compactly specified models are much more preferable to
less succinct models, as concisely described models are often more interpretable and avoid problems asso-
ciated with over-fitting. Finally, it is crucial that models with both of the preceding attributes have the addi-
tional feature that they can be identified in a computationally efficient manner.

1.2. Approach and Results
Gaussian graphical models offer an appealing and conceptually powerful framework with all the attributes
just described. Graphical modeling is a prominent multivariate analysis technique that has been successfully
employed in domains as varied as gene regulatory network analysis, social networks, speech recognition,
and computer vision (see Jordan, 2004, for a survey on graphical modeling). These models are defined with
respect to graphs, with nodes of a graph indexing variables and the edges specifying statistical dependen-
cies among these variables. In a reservoir modeling context, the nodes of the graph correspond to reser-
voirs and an edge between two reservoirs would describe the strength of the interaction between the
levels of those reservoirs. Formally, the strength of an edge specifies the degree of conditional dependence
between the corresponding reservoirs; in other words, this is the dependence between two reservoirs con-
ditioned on all the other reservoirs in the network. Informally, an edge in a graphical model denotes the
extent to which two reservoirs remain correlated even after accounting for the influence of all the other res-
ervoirs in the network. We illustrate these points using a toy example of a graphical model over a collection
of eight reservoirs, shown in Figure 1a. (This figure is purely for explanatory purposes rather than a factual
representation of the complex dependencies among reservoirs, which we obtain in section 3). One can
imagine that the reservoir volume of Shasta (which is at a high elevation in northern California in the Sacra-
mento hydrological zone) is independent of the reservoir Pine Flat and the reservoir Isabella (which are in
southern California in the Tulare hydrological zone) after conditioning on volumes of reservoirs in the cen-
tral portion of the state (e.g., Black Butte, Lake Berrysa, New Melones, Buchanan, and Don Pedro). These
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relationships are encoded in a graphical model of Figure 1a. In particular, note that Shasta has an edge link-
ing it to each of the reservoirs {Black Butte, Lake Berrysa, Don Pedro, New Melones, Buchanan}, but does
not have an edge connecting it to the reservoirs {Pine Flat, Isabella}. Figure 1a is, of course, a cartoon dem-
onstration of a graphical modeling framework. In practice, identifying conditional dependencies between
pairs of reservoirs in large networks such as the one considered in our work is a challenging problem, and
we describe tractable approaches to learning such a graphical structure underlying the complex California
reservoir system in a completely data-driven manner in section 3. To the best of our knowledge, this is the
first work that applies graphical modeling techniques to model reservoirs or other water resources.

The graphical modeling framework provides a common lens for viewing two frequently employed statistical
techniques. On the one hand, a classical approach for obtaining a multivariate Gaussian distribution over
reservoir volumes is via a maximum likelihood estimator. This estimator has been widely used in various
domains in the geophysical sciences for multivariate analysis of a collection of random variables (Wackerna-
gel, 2003). The model obtained by this maximum likelihood estimator is specified by a completely con-
nected graphical structure, where all reservoirs are conditionally correlated given all other reservoirs. On the
other hand, an independent reservoir model analyses the behavior of an individual reservoir independently
of the other reservoirs in the network. This model results in a fully disconnected graphical model. In this
paper, we learn a statistical graphical model over the reservoir network in a data-driven manner based on
historical reservoir data. This model yields a sparse (yet connected) graphical structure describing the net-
work interactions. We demonstrate that this model outperforms the model obtained via unregularized max-
imum likelihood estimator and an independent reservoir model. Thus, the reservoir behaviors are not
independent of one another but can be specified with a moderate number of interactions. We demonstrate
that a majority of these interactions are between reservoirs that are in the same basin or hydrological zone,
and among reservoirs that have similar altitude and drainage area.

A natural question is whether some dependencies specified by the graphical model are due to a small num-
ber of external phenomena (drought, agricultural usage, Colorado river discharge, precipitation, etc.). For
example, water held by a collection of nearby reservoirs might be influenced by a common snow pack vari-
able. Without observing this common variable, all reservoirs in this set would appear to have mutual links,
whereas if snow pack is included in the analysis, the common behavior is explained by a link to the snow
pack variable. Accounting for latent structure removes these confounding dependencies and leads to sparser
and more localized interactions between reservoirs. Figure 1b illustrates this point. Latent variable graphical
modeling offers a principled approach to quantify the effects of external phenomena that influence the
entire reservoir network. In particular, this modeling framework uses observational data to (1) identify the
number of global factors (e.g., latent variables) that summarize the effect of external phenomena on the res-
ervoir network, and (2) identify the residual reservoir dependencies after accounting for these global factors.
Our experimental results demonstrate that the reservoir network at a monthly resolution has two distinct
global factors, and residual dependencies persist after accounting for these global factors.

Figure 1. Graphical structure between a collection of eight reservoirs (a) without latent variables and (b) with latent varia-
bles. Green nodes represent reservoirs (variables) and the clouded green node represents latent variables. Solid blue lines
represent edges between reservoirs and dotted edges between reservoirs and latent variables. The reservoirs have been
grouped according to hydrological zones.
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Latent variable graphical modeling obtains a mathematical representation of the external phenomena
influencing the reservoir network. One is naturally interested in linking these mathematical objects to real-
world signals (e.g., state-wide Palmer Drought Severity Index, snow pack, consumer price index). We present
an approach for associating semantics to these latent variables. We find that the state-wide Palmer Drought
Severity Index (PDSI) is highly correlated (q � 0:88) with one of the latent variables. PDSI is then included as
a covariate in the next iteration of the graphical modeling procedure to learn a joint model over reservoirs
and PDSI. Using this model, we characterize the system-wide behavior of the network to hypothetical
drought conditions. In particular, we find that as PDSI approaches 25, there is a probability greater than
50% of simultaneous exhaustion of multiple large reservoirs. We further present an approach for identifying
specific reservoirs in the network that are at high risk of exhaustion during extreme drought conditions. We
find that the Buchanan and Hidden Dam reservoirs are at high risk and describe the stringent water man-
agement policies that were enforced to prevent exhaustion.

2. Data Set and Model Validation

Our primary data set consists of monthly averages of reservoir volumes, derived from daily time series of
volumes downloaded from the California Data Exchange Center (CDEC). We also used secondary data for
some covariates.

2.1. Reservoir Time Series
As described in section 1, there are 1,530 reservoirs in California. In this work, we perform statistical analysis
on the largest 60 reservoirs in California. We apply our analysis on a subset of the reservoirs as they have a
large amount of historical data available. Our technique can be extended to a larger collection of reservoirs
given sufficient data. For these 60 reservoirs, daily volume data are available during the period of study
(January 2003–November 2016). We excluded five reservoirs with more than half of their values undefined
or zero, leaving 55 reservoirs. This list of daily values was inspected using a simple continuity criterion and
approximately 50 specific values were removed or corrected. Corrections were possible in six cases because
values had misplaced decimal points, but all other detected errors were set to missing values. The most
common error modes were missing values that were recorded as zero volume, and a burst of errors in the
Lyons reservoir during late October 2014 that seems due to a change in recording method at that time.

The final set of 55 reservoir volume time series spans 5,083 days over the 167 months in the study period. It
contains two full cycles of California drought (roughly, 2007–2008 and 2012–2015) and three cycles of wet
period (2004–2006, 2009–2011, 2016). Four California hydrological zones are represented, with 25, 20, 6,
and 4 reservoirs in the Sacramento, San Joaquin, Tulare, and North Coast zones, respectively.

We are interested in long-term reservoir behavior and thus model reservoir volumes at a monthly time
scale. In particular, we average the data from daily down to 167 monthly observations. The reservoir data
exhibit strong seasonal components. Hence, a seasonal adjustment step is performed to remove these pre-
dictable patterns, so that we can model deviations from the underlying trend in the reservoir behavior.
With the exception of the Farmington reservoir (which has volume less than 108 m3), the joint volume
anomalies of the remaining 54 reservoirs are well-approximated by a multivariate Gaussian distribution.
This is demonstrated by a Q-Q plot in Figure S1 of the supporting information. Since a large amount of his-
torical data is available for the Farmington reservoir, we have included it in our analysis. These observed
properties suggest that the reservoir data is amenable to the multivariate Gaussian models we employ in
this paper. Before being used in the fitting algorithms, each time series is also rescaled by its standard devi-
ation so that each series has unit variance. We note that our statistical approach identifies correlations
between reservoir volumes. Since the correlation between two random variables is normalized by their
respective variances, this transformation is appropriate.

2.2. Covariate Time Series
Latent variable graphical modeling identifies a mathematical representation of the global factors influencing
the reservoir network. We link these global factors to real-world signals using ancillary data, i.e., covariates,
which are observable variables, exogenous to the model, that may affect a large fraction of reservoirs. The par-
ticular covariates that we use are temperature (averaged values over California downloaded from NOAA),
Palmer Drought Severity Index (averaged values over California downloaded from NOAA), hydroelectric power
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generation of California (downloaded from U.S. Energy Information and Administration), Colorado river dis-
charge (averaged values downloaded from United States Geological Survey), and Sierra Nevada snow pack
covariate (manually averaged in the Sierra Nevada region where the elevation is over 100 m, gridded observa-
tions downloaded from NOAA). Note that since we are interested in state-wide covariates that exert influence
over the entire network, these hydrological indicators were averaged over the state of California (or in the
case of snow pack and Colorado river discharge, averaged over a large region in the Sierra Nevada and Colo-
rado river, respectively). In addition to these hydrological indicators, we use the following economic factors:
state-wide number of agricultural workers (downloaded from State of California Employment Development
Department) and state-wide consumer price index (downloaded from Department of Industrial Relations).

For each of the seven covariates, we obtain averaged monthly observations from 2003 to 2016. We apply a
time lag of 2 months to the covariates temperature, snow pack, Colorado river discharge, and Palmer
Drought Severity Index (the reason for a 2 months lag is explained in section 4.4). As with the reservoir time
series, we remove seasonal patterns with a per-month average.

2.3. Model Validation
To ensure that the model of the reservoirs is representative of reservoir behavior, we perform model validation
using a technique known as holdout validation (Hastie et al., 2009). The objective of this technique is to produce
models that are not overly tuned to the idiosyncrasies of observational reservoir data, so that these models are
representative of future reservoir behavior. In a holdout validation framework, the available data are partitioned
into a training set, and a disjoint validation set. The training set is used as input to a fitting algorithm to identify
a model. The accuracy of this model is then validated by computing the average log-likelihood of the validation
set with respect to the distribution specified by the model. Here, larger values of log-likelihood are indicative of
better fit to data. For our experiments, we set aside monthly observations of reservoir volumes and covariates
from January 2004–December 2013 as a training set (ntrain5120) and monthly observations from January
2003–December 2003 and January 2014–November 2016 as a (disjoint) validation set (ntest547). Both the train-
ing and validation observations contain a significant amount of annual and interannual variability.

3. Dependencies Underlying the Reservoir Network

3.1. Method: Graphical Modeling
A common approach for fitting a graphical model to reservoirs is to choose the simplest model, that is, the
sparsest network that adequately explains the observational data. Easing this task, for Gaussian graphical mod-
els, the graphical structure is encoded in the sparsity pattern of the precision matrix (inverse covariance matrix)
over the variables. Specifically, zeros in the precision matrix of a multivariate Gaussian distribution indicate
absent edges in the corresponding graphical model. Thus, the number of edges in the graphical model equals
the number of nonzeros of the precision matrix H. As an example, consider the toy graphical model in Figure
1a. Suppose that the precision matrix H of size 8 3 8 is indexed according to the ordering {Shasta, Black Butte,
Lake Beryssa, Isabella, Pine Flat, Don Pedro, New Melones, and Buchanan}. Then, H has the following structure:

H5

? ? ? 0 0 ? ? ?

? ? ? 0 0 ? ? ?

? ? ? ? 0 ? ? ?

0 0 ? ? ? ? ? ?

0 0 0 ? ? ? 0 ?

? ? ? ? ? ? ? ?

? ? ? ? 0 ? ? ?

? ? ? ? ? ? ? ?

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

where ? denotes a nonzero value. The intimate connection between a graphical structure and the precision
matrix implies that fitting a sparse Gaussian graphical model to reservoir observational data is equivalent to
estimating a sparse precision matrix H. Hence, the reservoirs are modeled according to the distribution
y � Nð0 ; H21Þ, where H is sparse. Note that the preprocessing to remove climatology causes the mean to
be zero. A natural technique to fit such a model to observational data is to minimize the negative log-
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likelihood (e.g., maximum likelihood estimation) of data while controlling the sparsity level of H. The log-
likelihood function of the training observations Dtrain5fyðiÞgntrain

i51 � R55 (after removing some additive con-
stants and scaling) is given by the concave function

‘ðH;DtrainÞ5log det ðHÞ2tr H � Rn½ � ; (1)

where Rn5 1
ntrain

Pntrain
i51 yðiÞyðiÞ0 is the sample covariance matrix. Thus, fitting a graphical model to Dtrain trans-

lates to searching over the space of precision matrices to identify a matrix H that is sparse and also yields a
small value of 2‘ðH;DtrainÞ. This formulation, however, is a computationally intractable combinatorial prob-
lem. Recent work (Friedman et al., 2008; Yuan & Lin, 2007) has identified a way around this road block by
using a convex relaxation:

Ĥ5 arg min
H2S55

2‘ðH;DtrainÞ1k jjHjj1;

s:t: H�0 : (2)

The notation S55 denotes the set of symmetric 55 3 55 matrices. The constraint � 0 imposes positive defi-
niteness so that the joint distribution of reservoirs is nondegenerate. The regularization term jj � jj1 denotes
the L1 norm (element-wise sum of absolute values) that promotes sparsity in the matrix H. The L1 penalty,
and more broadly, regularization techniques, are widely employed in inverse problems in data analysis to
overcome ill-posedness and avoid problems such as over-fitting to moderate sample size (see the text-
books/monographs B€uhlmann & van de Geer, 2011; Wainwright, 2014; and the references therein). These
regularization approaches have proved to be valuable in many applications, including cameras (Duarte
et al., 2008), magnetic resonance imaging (Lustig et al., 2008), gene regularity networks (Zhang & Kim,
2014), and radar (Herman & Strohmer, 2009).

The regularization parameter k in (2) provides overall control of the trade-off between the fidelity of the
model to the data and the complexity of the model. In particular, the program (2) with k 5 0 yields the
familiar maximum likelihood covariance estimator. This estimator has a well-known closed form solution
Ĥ5R21

n . Generally, R21
n will not contain any zeros. This implies that the estimated graphical structure is fully

connected with close fit to the training data Dtrain. However, as explored in section 3.2, this model may be
overtuned to the idiosyncrasies of the training observations Dtrain and will not generalize to future behavior
of reservoirs (a phenomenon known as over-fitting). Larger values of k yield a sparser graphical model with
very large k resulting in a completely disconnected graphical model where the reservoirs are independent
of one another. Importantly, for any choice of k > 0, equation (2) is a convex program with a unique opti-
mum, and can be solved efficiently using general purpose off-the-shelf solvers (Toh et al., 2006). Further
theoretical support of this estimator is presented in (Ravikumar et al., 2011).

We select the regularization parameter k by holdout validation. In particular, for any choice of k, we supply
the training observations Dtrain to (2) to learn a graphical model and compute the average log-likelihood of
this model on the validation set Dtest5fyðiÞgntest

i51 � R55. We sweep over all values of k to choose the model
with the best validation performance. Let the selected model (after holdout validation) be specified by the
precision matrix Ĥ. As discussed earlier, the matrix Ĥ specifies the structural properties of the graphical
model of the network. An edge between reservoirs r and r0 is present in the graph if and only if Ĥr;r0 6¼ 0,
with larger magnitudes indicating stronger interactions. We denote the strength of an edge as the normal-
ized magnitude of the precision matrix entry, that is,

sðr; r0Þ5jĤr;r0 j=ðĤr;rĤr0;r0 Þ1=2 	 0: (3)

The quantity sðr; r0Þ can be viewed as the partial correlation between reservoirs r and r0, given all other res-
ervoirs. In particular, a large sðr; r0Þ indicates that reservoirs r and r0 are highly correlated even after account-
ing for the influence of all the other reservoirs in the network. A small value of sðr; r0Þ indicates that the
reservoirs r and r0 are weakly correlated conditioned on all the reservoirs. Finally, sðr; r0Þ50 indicates that
reservoirs r and r0 are independent conditioned on all the remaining reservoirs.

3.2. Results: Graphical Model of Reservoir Network
In this section, we explore the properties of a graphical model over the reservoir network. As described in
section 3.1, we learn a graphical model by specifying a regularization parameter k and supplying
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observations Dtrain to the convex program (2). We vary k from 0 to 1 to identify a collection of graphical
models. For k 	 1, the graphical model is completely disconnected and not of interest. For each graphical
model, we measure the training performance as the log-likelihood of training observation Dtrain and the val-
idation performance as the log-likelihood of validation observations Dtest. Figure S2 in the supporting infor-
mation shows the training and validation performance of graphical modeling across k. Recall that k 5 0
yields the unregularized maximum likelihood (ML) estimate. This model has a training performance of
223.91 and validation performance of 21140.4. Large k (here, k 5 1) yields an independent reservoir
model, where the graphical structure is disconnected. This model has a training performance of 282.23 and
validation performance of 2101.95. To obtain a graphical model over the reservoir network, we choose
k50:23 where the validation performance is maximized (i.e., the choice of k using holdout validation).
This model has a training performance of 262.38 and validation performance of 285:43. Supporting
information Table S1 summarizes the training and validation performances of these three models.
Results of supporting information Table S1 and Figure S2 show that the training performance is a
decreasing function of k: smaller values of k lead to a closer fit to training observations. However, small
values of k yield a high complexity model that fits the idiosyncrasies of the training data and thus suffers
from overfitting. This is evident from the poor validation performance of the unregularized ML estimate
(when k 5 0). The specified graphical model is the superior model since it has a better validation perfor-
mance than the unregularized ML estimate and an independent reservoir model. Thus, the reservoir
behaviors are not independent, but can be characterized by a moderate number of dependencies. In
the supporting information, we characterize the sensitivity of the graphical model to the choice of the
regularization parameter k.

We further explore the properties of the specified graphical model, consisting of 285 edges. Using relation (3),
we compute the strength of the connections in the graphical structure. The upper triangle of Figure 2
shows the dependence relationships between reservoirs in this graphical model. The five strongest edges
in this graphical structure are between reservoirs Relief—Main Strawberry, Cherry—Hetch Hetchy, Invisi-
ble Lake—Lake Berryessa, Almanor—Davis, and Coyote Valley—Warm Spring. We show the geographical
location of these pairs of reservoirs in Figure 3. The presence of these strong edges is sensible: each such
edge is between reservoirs in the same hydrological zone, and four of these five edges are between pairs
of reservoirs fed by the same river. The five most connected reservoirs in order Folsom Lake, Antelope
river, Black Butte River, New Exchequer, and French Meadows, all of which are large reservoirs (volume
	 108 m3). We show the five strongest connections to Folsom lake in Figure 3, all of which are either con-
nected or are in close proximity to the Sacramento River. As a point of comparison, the lower triangle of
Figure 2 shows the graphical structure of the unregularized maximum likelihood estimate. This model
yields a fully connected network.

Furthermore, we observe that a majority of interactions in this graphical model are among reservoirs that
have similar drainage area (e.g., land where water falls off into reservoirs) and elevation. Figure 4a shows
a plot of the ratios of drainage areas between pairs of reservoirs connected via an edge and the strength of
the connections. Figure 4b shows a plot of the ratios of altitudes between pairs of connected reservoirs and
the strength of the connections. As a point of comparison, Figures 4c and 4d show similar metrics for the
unregularized ML estimate. Examining Figure 4, we observe that graphical modeling removes (or weakens)
dependencies between reservoirs of vastly different drainage area or elevation. This is expected since reser-
voirs with substantially different drainage area or elevation are less likely to have similar variability.

We observe that a large portion of the strong interactions occur between reservoirs in the same hydrologi-
cal zone, here denoted h(r). To quantify this observation, we consider

j5

P
r;r0 and hðrÞ5hðr0Þ sðr; r0ÞP

r;r0 sðr; r0Þ ; (4)

the ratio of within-zone edge strength to total edge strength. The model we fit has j50:85, so 85% of the
total edge strength is between reservoirs in the same hydrological zones. In comparison, j50:46 for an
unregularized ML estimate. Nevertheless, we notice some surprising connections between reservoirs that
are geographically far apart. In the next section, we propose a framework to quantify the influence of
external phenomena on the reservoir network. We further explore the effect of these external phenom-
ena to remove the confounding relationships between geographically distant reservoirs.
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4. Global Factors of the Reservoir Network

We identified a graphical model over California reservoirs. Could some of these dependencies specified by
the graphical model be due to external phenomena (e.g., global factors)? In this section, we describe an
approach, known as latent variable graphical modeling, that identifies the number and effect of global fac-
tors influencing the reservoir network. Since these global factors are not directly observed (although we
later discuss an approach to link global factors to real-world signals), we also denote them as latent
variables.

4.1. Method: Latent Variable Graphical Modeling
As shown by Chandrasekaran et al. (2012), fitting a latent variable graphical model corresponds to repre-
senting the precision matrix of the reservoir volumes H as the difference H5S2L, where S is sparse and L is
a low rank matrix. The matrix L accounts for the effect of external phenomena, and its rank is equal to the
number of global factors; these global factors summarize the effect of external phenomena on the reservoir
network. The matrix S specifies the residual conditional dependencies among the reservoirs after extracting
the influence of global factors. Moreover, the sparsity pattern of S encodes the residual graphical structure
among reservoirs. As an example, consider the toy model shown in Figure 1b. Suppose that the matrix S is

Figure 2. Linkages between reservoir pairs in the graphical model (top triangle) compared with those of the unregular-
ized maximum likelihood estimate (bottom triangle). Connection strength sðr; r0Þ is shown in the image map, with
unlinked reservoir pairs drawn in gray. The four hydrological zones are separated by red lines. Red boxes surround the
five strongest connections in each model.
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indexed according to the ordering {Shasta, Black Butte, Lake Berrysa, Isabella, Pine Flat, Don Pedro, New
Melones, and Buchanan}. Then S has the structure:

S5

? ? ? 0 0 0 0 ?

? ? ? 0 0 ? 0 0

0 0 0 ? ? 0 0 0

0 0 0 ? ? 0 0 ?

0 0 0 ? ? 0 0 0

0 ? 0 0 0 ? ? ?

0 0 0 0 0 ? ? ?

? 0 0 ? 0 ? ? ?

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

where ? denotes a nonzero entry. Fitting a latent variable graphical model to reservoir volumes is to identify
the simplest model, e.g., smallest number of global factors and sparsest residual network, that adequately
explains the data. In other words, we search over the space of precision matrices H that can be

Figure 3. A schematic of California and its river network with some reservoir connections. Green nodes represent the five
pairs of reservoirs with strongest edge strength in the graphical model. The red nodes represent the five strongest edges
to Folsom Lake, which is the most connected reservoir in the network. The acronyms for the reservoirs are: WRS, Wishon;
COY, Coyote Valley; INV, Indian Valley; BER, Lake Berryessa; SHA, Shasta; BUL, Bullards Bar; FOL, Folsom Lake; CMN,
Camanche; DNP, Don Pedro; EXC, New Exchequer; ALM, Almanor Lake; DAV, Lake Davis; SWB, Main Strawberry; RLF, Relief;
CHV, Cherry Valley; HTH, Hetch-Hetchy.
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decomposed as H5S2L to identify a matrix S that is sparse, a matrix L that has a small rank, and also yields
a small negative log-likelihood 2‘ðDtrain; S2LÞ. As with the case of graphical modeling, this formulation is a
computationally intractable combinatorial problem. Based on a recent work by Chandrasekaran et al.
(2012), a computationally tractable estimator is given by:

ðŜ; L̂Þ5 arg min
S;L2S55

2‘ðS2L;DtrainÞ1kðjjSjj11ctrðLÞÞ;

s:t: S2L � 0; L�0 : (5)

The constraint � 0 imposes positive definiteness on the precision matrix estimate S2L, so that the joint dis-
tribution of reservoirs is nondegenerate. The constraint �0 imposes positive semidefiniteness on the matrix
L (see Chandrasekaran et al., 2012, for an explanation of this constraint). Here, L̂ provides an estimate for
the low-rank component of the precision matrix (corresponding to the effect of latent variables on the res-
ervoir volumes), and Ŝ provides an estimate for the sparse component of the precision matrix (correspond-
ing to the residual dependencies between reservoirs after accounting for the latent variables).

The regularization parameter c provides a trade-off between the graphical model component and the latent
component. In particular, for very large values of c, the convex program (5) produces the same estimates as
the graphical model estimator (2) (that is, L̂50 so that no latent variables are used). As c decreases, the
number of latent variables increases and correspondingly the number of edges in the residual graphical
structure decreases; this is because latent variables account for a global signal common to all reservoirs.

Figure 4. (a) Ratios of drainage areas between pairs of reservoirs connected with an edge and their corresponding edge
strengths in a graphical model. (b) Ratios of elevations of pairs of reservoirs connected with an edge and their corre-
sponding edge strengths in a graphical model. (c) Ratios of drainage areas between pairs of reservoirs connected with an
edge and their corresponding edge strengths in an unregularized maximum likelihood (ML) estimate. (d) Ratios of eleva-
tions of pairs of reservoirs connected with an edge and their corresponding edge strengths in an unregularized maximum
likelihood (ML) estimate.
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The regularization parameter k provides overall control of the trade-off between the fidelity of the model to
the data and the complexity of the model.

As before, the function jj � jj1 denotes the L1 norm that promotes sparsity in the matrix S. The role of the
trace penalty on L is to promote low-rank structure (Fazel, 2002). As before, for k; c 	 0, equation (5) is a
convex program with a unique optimum that can be solved efficiently. Theoretical support for this estima-
tor is presented in Chandrasekaran et al. (2012).

Similar to the graphical model setting, we use the holdout validation technique to determine the number of
global latent variables and edges in the graphical structure between reservoirs. Concretely, for a particular
choice of k; c, we supply Dtrain as input to the program (5) to learn a latent variable graphical model and
compute the average log-likelihood of this model on the validation set Dtest. We sweep over all possible
choices of c; k and choose a set of parameters that yield the best validation performance.

Let the selected model (after holdout validation) be specified by the parameters ðŜ; L̂Þ. The matrix L̂ denotes
the effect of k5rankðL̂Þ latent variables on the reservoir network. The matrix Ŝ encodes the residual graphi-
cal structure between reservoirs after incorporating k latent variables. We can quantify the strength of the
edges of this graphical structure using the relation (3) with Ĥ replaced with Ŝ. Finally, we quantify the por-
tion of the variability of the network explained by the latent variables as follows: the model estimates the
covariance matrix of reservoirs as ðŜ2L̂Þ21 so that y � Nð0 ; ðŜ2L̂Þ21Þ. Given that the variance of a reser-
voir r is ½ðŜ2L̂Þ21�r;r , we denote the overall variance of the network as

P55
r51½ðŜ2L̂Þ21�r;r . The variance of res-

ervoir r, conditioned on k latent variables, is given by ðŜ21Þr . We thus denote the variance of the network
conditioned on k latent variables by

P55
r51½Ŝ

21�r;r . Furthermore, we define the ratio

dðkÞ5
P55

r51½ðŜ2L̂Þ21
2Ŝ

21�r;rP55
r51½ðŜ2L̂Þ21�r;r

; (6)

as the portion of the variability of the network explained by k latent variables.

4.2. Results: Accounting for Global Factors of the Reservoir Network
We first explore the effect of global factors on the connectivity of the reservoir network. Using observations
Dtrain as input to the convex program (5), we vary the regularization parameters ðk; cÞ to learn a collection of
latent variables graphical models. Figure 5 shows the residual conditional graphical structure corresponding
to each model. We observe that an increase in the number of latent variables leads to sparser structures and
stronger inner-zone connections. Indeed, the ratios of inner zone edge strengths to total edge strength are
j50:90; j50:91; j50:93; j50:94; j50:97, and j50:99 for models with 1, 2, 3, 4, 5, and 6 latent variables,
respectively. These results support the idea that latent variables extract global features that are common to all
reservoirs, and incorporating them results in more localized interactions. The residual dependencies that per-
sist (even after including several latent variables) can be attributed to unmodeled local variables.

Further, appealing to relation (6), the portion of the variability of the network explained by 1, 2, 3, 4, 5, and
6 latent variables is given by dð1Þ50:23; dð2Þ50:25; dð3Þ50:28; dð4Þ50:31; dð5Þ50:32; dð6Þ50:40,
respectively. Thus, the effect of latent variables on the network increases as we incorporate more of them in
the model. Nonetheless, even six latent variables explain less than 50% of the reservoir variability, with the
other portion attributed to residual conditional dependencies between reservoirs. Furthermore, this experi-
ment suggests that both the influence of global latent variables and residual dependencies among reser-
voirs are important factors of the reservoir network variability.

We now focus on one of these latent variables. In particular, we choose the parameters ðc; kÞ via holdout
validation with the validation set Dtest to learn a latent variable graphical model consisting of two latent var-
iables together with a residual graphical model (conditioned on the latent variables) having 171 edges. This
is the model corresponding to Figure 5b. Thus, the reservoir network consists of two global factors, and
some residual dependencies persist after accounting for their influence. The training and validation perfor-
mance of this model (in terms of log-likelihood) are given by 262.11 and 285.87, respectively.

The conditional dependency relationships between reservoir pairs in this residual graphical structure are shown
in the upper triangle of Figure 5b. Comparing this graphical structure with the graphical structure without any
latent variables (lower triangle of Figure 5b), accounting for the global factors weakens or removes many
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Figure 5. Linkages between reservoir pairs in the latent-variable sparse graphical model (top triangle) with varying num-
ber of latent variables compared with those of the ordinary sparse graphical model (bottom triangle). Connection
strength sðr; r0Þ is shown in the image map, with unlinked reservoir pairs drawn in gray. The four hydrological zones are
separated by red lines. Red boxes surround the five strongest connections in each model.
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connections between reservoirs: 134 are removed and 252 are weakened. Of the 134 edges removed, 94 are
between reservoirs in different hydrological zones. Further, the latent variable graphical model has comparable
model complexity and training/testing performance to the graphical model without latent variables. We con-
clude that many of the connections in the graphical model (without latent variables) are due to unmodeled
global factors and accounting for these variables leads to fewer remaining conditional dependencies.

Finally, of the 55 reservoirs in our system, 35 are used for sourcing hydroelectric power. In the graphical
structure without latent variables, there are 154 pairwise edges between reservoirs that are used for gener-
ating hydroelectric power. Once the latent variables are incorporated, all but 15 of these edges are weak-
ened or removed. This suggests that hydroelectric power is strongly correlated to one of the global factors.
We verify this hypothesis in the next section.

4.3. Method: Interpreting Latent Variables Via Correlation Analysis
Latent-variable graphical modeling identifies a mathematical representation of the global factors of the res-
ervoir network. Naturally, one is interested in linking these mathematical variables to real-world signals to
aid understanding of factors that globally affect the reservoir network. We propose an approach to give
physical interpretations to the estimated global factors. The high-level intuition of this approach is to iden-
tify a space of all possible latent variable data termed the latent space. Then we compute the correlation of
external covariates (the covariates we consider are in section 2.2) with this space. Candidate covariates with
high correlation are variables that globally influence the reservoir network.

Suppose, we identified a latent variable graphical model with estimates ðŜ; L̂Þ and k5rankðL̂Þ. Let z 2 Rk

denote the latent variables (i.e., k global variables influencing the reservoir network) and y 2 R55 denote

reservoir volumes; further, partition the joint precision matrix of (y, z) as ~H5

~Hy
~H
0
zy

~Hzy
~Hz

0
@

1
A. A natural

approximation for the observations of z given observations Dtrain is the conditional mean:

~z ðiÞ5E½zðiÞjyðiÞ�52 ~H
21
z

~Hzy yðiÞ: (7)

If ~Hz and ~Hzy were explicitly known, the length ntrain observations f~z ðiÞgntrain
i51 � Rk would provide an esti-

mate of the latent variables given observations Dtrain. As discussed in Chandrasekaran et al. (2012), the low-
rank component in the decomposition of the marginal precision matrix of y is L̂5 ~H

0
zy

~H
21
z

~Hzy . However,
even though we have L̂, this does not uniquely identify ~H

21
z

~Hzy . Indeed, for any nonsingular A 2 Rk3k , one
can transform ~Hz ! A ~HzA0 and ~Hzy ! A ~Hzy without altering L̂. In terms of z, these observations imply that
for any nonsingular A, fA21~z ðiÞgntrain

i51 is an equivalent realization of the latent variable data: z is recoverable
only up to a nonsingular transformation.

Nevertheless, the structure of the low-rank matrix L̂ places a constraint on the effect of the latent variables z on y.
Let ~Z 2 Rn3k denote a (nonunique) realization of latent variable observations. As we have seen, ~Z A21is an equiv-
alent realization. The key invariant is the column-space of ~Z , a k-dimensional linear subspace of Rntrain . We thus,
define the latent space to be the column-space of ~Z . We recover the latent space as follows: Let Y 2 Rntrain355

denote observations of reservoir volumes, (7) becomes ~Z5Y ~H
0
zy

~H
21
z . Since the column-space of Y ~H

0
zy

~H
21
z is

equal to the column-space of YL̂, the basis elements of the latent space are given by the k left singular vectors of
the matrix YL, which can be readily computed. We interpret the underlying latent variables by correlating each
covariate with this latent space. The manner in which we compute these correlations is presented in the support-
ing information. A covariate with a large correlation has a strong influence over the entire network.

Suppose we have identified a particular covariate with a large correlation. As described in the supporting
information, we can appropriately modify our technique to identify other covariates that are correlated with
the latent space after taking away the effect of the specified covariate. Taking this effect away from further
analysis is important since the covariates may be dependent on one another (e.g., PDSI and temperature). A
covariate that has a high correlation is another global factor. We can repeat this procedure to identify all
the k global factors of the reservoir network.

We make two remarks. First, the observations fyðiÞg used in (7) to characterize the latent space need not be
the same as the data employed to identify a latent variable graphical model using the estimator (5). In par-
ticular, to quantify the correlation of a covariate with the global factors, we use observations fyðiÞg in (7)
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that are of the same time scale and period as the data that is available for the covariate. As an example, if
data for a particular covariate is only available from January 2005–January 2016 at a monthly scale, we use
monthly observations of y during the same time period in (7) to characterize the latent space, and subse-
quently link the observations of the covariate to this space. Second, we note that a subset of the authors of
the present paper have proposed an alternate approach for giving physical interpretation to the global fac-
tors. This procedure is different that the one proposed in this paper and is based on solving a convex opti-
mization program (Taeb & Chandrasekaran, 2017).

4.4. Results: Semantics for Global Factors of the Reservoir Network
The latent variable graphical model identified two global factors influencing the reservoir network. As
described in section 4.3, this yields a two-dimensional latent space corresponding to all possible observa-
tions of the global factors. To obtain real-world representation of these two global factors, we link the two-
dimensional latent space to the seven covariates described in section 2.2. Recall from section 2.2 that the
covariates PDSI, Colorado river discharge, temperature, and snow pack had a time lag of 2 months. The
time lag for each of these covariates was selected to maximize their correlation with the latent space.

We find that the covariates PDSI and hydroelectric power have the largest correlations with q50:88 and
q50:80, respectively. Secondary covariate influences are due to consumer price index, Colorado river dis-
charge, Sierra Nevada snow pack (their correlations values are all less than q50:5) with little influence from
the number of agricultural workers and temperature. We deduce that PDSI, being computed from variables
like precipitation and temperature that control mass balance, is a forcing function on system-wide reservoir
levels, while correlation of water levels with aggregate hydropower generation is a system-wide response
to high reservoir levels across the network. We then take the effect of PDSI away from the latent space to
find the correlation of the modified latent space with the remaining six covariates. We notice that the corre-
lation of CPI (consumer price index) and Colorado river discharge with the latent space do not change very
much, since they are unlikely to be structurally connected to PDSI. On the other hand, the correlation of
number of agricultural workers, Sierra Nevada snow pack, hydroelectric power, and temperature are signifi-
cantly reduced as they are largely dependent on PDSI. Nevertheless, all the six covariates have less than 0.5
correlation with the modified latent space. Further tests with additional covariates could yield candidates
with strong influence over the reservoir network. The complete list of each covariate and its correlation
with the latent space before and after removing PDSI is shown in supporting information Table S2.

In the subsequent section, we describe an approach for incorporating PDSI as a covariate in the next itera-
tion of graphical modeling to learn a joint distribution over reservoir volumes and PDSI. Since we identified
one of the two global factors influencing the network, we account for the presence of residual latent varia-
bles in the modeling framework.

5. Systemic Dependency of the Network to Global Factors

The previous experiment confirmed that the state-wide PDSI signal is a strong forcing function on the entire
reservoir network. For purposes of full generality, suppose that using the approach described in section 4.3,
we discovered a collection of covariates that are the global factors of the reservoir network. We can extend
our modeling framework to incorporate these covariates and characterize the behavior of the network sub-
ject to extreme values of these covariates.

5.1. Method: Conditional Latent Variable Graphical Modeling
Let x 2 Rq be a collection of covariates that are global factors of the reservoir network (in our setting, q 5 1
and x is the PDSI variable). Since x can account for the effect of some of the global factors, the distribution
of y given x may still depend on a few residual latent variables. Therefore, we fit a latent variable graphical
model to the conditional distribution of yjx. We term this modeling framework as conditional latent variable
graphical modeling.

Let R be the join covariance matrix of ðy; xÞ 2 R551q and H5R21 be the corresponding joint precision

matrix partitioned as H5
Hy Hyx

H0yx Hx

 !
. The conditional precision matrix of y given x is equal to the subma-

trix Hy. Following the description of section 4.1, fitting a latent variable graphical model to the distribution
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of y given x corresponds to decomposing the submatrix Hy as the difference Sy2Ly . The matrix Ly is the
effect of residual latent variables on the reservoirs after regressing on the covariates x, and its rank is equal
to the number of residual latent variables. The matrix Sy specifies the residual dependencies among reser-
voirs after accounting for x and residual latent variables. The sparsity pattern of Sy encodes the residual
graphical structure among reservoirs.

Let D1
train5fðyðiÞ; xðiÞÞgntrain

i51 � R551q be the training set of reservoir volumes augmented with covariate data
and let D1

test5fðyðiÞ; xðiÞÞgntest
i51 � R551q be the corresponding validation set. A natural approach for fitting a

conditional latent variable graphical model is to choose the simplest model, e.g., the smallest number of
residual latent variables and sparsest residual graphical model, that adequately explains the data. Following
a similar line of reasoning as the case of latent variable graphical modeling, we arrive at the following
estimator for fitting a conditional latent variable graphical model to the observations D1

train (A. Taeb &
V. Chandrasekaran, Sufficient dimension reduction and modeling responses conditioned on covariates: An
integrated approach via convex optimization, 2015, arXiv:1508.03852, hereinafter referred to as A. Taeb &
V. Chandrasekaran, online report, 2015):

ðĤ; Ŝy ; L̂yÞ5 arg min
H2S551q

Sy ;Ly2S55

2‘ðH;D1
trainÞ1kðjjSy jj11ctrðLyÞÞ

s:t: H � 0; Hy5Sy2Ly ; Ly�0: (8)

The term ‘ðH;D1
trainÞ is the Gaussian log-likelihood function over the variables (y, x), which after removing

constants terms and scaling is given by

‘ðH;D1
trainÞ5log det ðHÞ2tr H � R1

n

� �
;

where R1
n 5 1

ntrain

Xntrain

i51

yðiÞ

xðiÞ

 !
yðiÞ

xðiÞ

 !0
is the sample covariance matrix of reservoirs and covariates. The

program (8) with k 5 0 is the unregularized multivariate maximum likelihood estimator of reservoirs and
covariates. For k; c 	 0, the regularized maximum likelihood estimator (8) is a convex program with a
unique optimum and can be solved efficiently, similar to estimators (1) and (5). Theoretical support for this
estimator is presented in A. Taeb and V. Chandrasekaran (online report, 2015). We note that a conditional
graphical model could also be obtained using other techniques, such as the convex program proposed by
Frot et al. (B. Frot, L. Jostins, & G. McVean, Latent variable model selection for Gaussian conditional random
fields, 2017, arXiv:1512.06412).

We select the regularization parameters k; c in (8) via holdout validation with the testing set D1
test. Con-

cretely, for a particular choice of k; c, we supply D1
train as input to the program (8) to obtain a conditional

latent variable graphical and validate the performance on the validation set D1
test. We perform this proce-

dure as we vary k; c, and choose the model with the best validation performance.

Suppose we obtain a conditional latent variable graphical model over ðy; xÞ 2 R553q with estimates
ðĤ; Ŝy ; L̂yÞ. We use this model to characterize the behavior of the network in response to the covariates x
in the month of November (the analysis can be done for any month). Our metric for the behavior of the
network is the probability of simultaneous exhaustion: the probability that the volumes of a collection of
reservoirs drop below zero. Letting R̂5Ĥ

21
, the composite variable ðy; xÞ 2 R551q is distributed as

ðy; xÞ � N ð0; R̂Þ. (Preprocessing to remove climatology causes the mean to be zero.) To determine
the behavior of a collection of K reservoirs r5fr1; r2; . . . ; rKg as the covariates x vary, we extract the ðK1qÞ3
ðK1qÞ block of R̂ corresponding to yr 2 RK and x, and recall that

yrjx � NðR̂yr ;xR̂
21
x x; R̂yr 2R̂yr;xR̂

21
x R̂x;yrÞ ; (9)

an instance of the standard expressions for the conditional mean and variance of these jointly Gaussian var-
iables. Let the November climatology, subtracted during preprocessing, for reservoir volume yr (r 2 r) be
lyr

, and the November climatology of x be lx 2 Rq. Let the scaling used to make the time series of yr have
unit variance be ayr and the scaling matrix used to make the time series of each covariate to have unit vari-
ance be ax 2 Rq3q. Then, for x 5 u, the probability that at least k of K reservoirs have their volume drop
below zero in November is:
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PðAKðkÞjx5axðu2lxÞÞ; (10)

where AKðkÞ is the event that yr 
 2lyr
ayr for at least k of the K reservoirs. The probability in (10), or that of

any system-wide event, can be computed using Monte Carlo draws from the joint conditional distribution.

We can further use the model to identify ‘‘weak nodes’’ of the network: reservoirs that are at high risk of
exhaustion. In particular, we compute the probability of each reservoir conditioned on PDSI, namely,

Pðyr < 2lyr
ayr jx5axðu2lxÞÞ ; (11)

by applying equation (10) with K 5 1.

5.2. Results: Network Behavior Under Drought
To obtain a system-wide response to drought, we follow the approach described in section 5.1 to compute
the probability of exhaustion of a collection of reservoirs conditioned on particular PDSI. We obtain this
probability by learning a conditional latent variable graphical model over reservoir volumes and PDSI. This
probability is computed for the month of November, when reservoirs are typically at their lowest, but the
same calculation applies to any month. Since we applied a time lag of 2 months to the PDSI time series,
these probabilities are computed based on September PDSI.

To learn a joint distribution, let x 2 R denote PDSI and consider a conditional latent-variable graphical
model over ðy; xÞ 2 R5511. Using observations D1

train (consisting of 55 reservoir volumes and PDSI values)
and appropriate choice of regularization parameters k; c (using holdout validation), we fit a latent-variable
graphical model to the conditional distribution y j x via the estimator (8). The estimated model consists of
one residual latent variable (e.g., rank ðL̂yÞ51). Recall that the reservoir network consists of two global fac-
tors. Evidently, by regressing away the effect of PDSI, we are left with one residual latent variable, which
supports the observation that PDSI is a global factor of the reservoir network. It is plausible that a portion of
the residual latent variable is due to management behavior.

The conditional latent-variable graphical modeling procedure also provides an estimate of a graphical
model of the conditional distribution of y conditioned on PDSI (e.g., the matrix Ŝy )—this graphical model
consists of 206 edges. The training and validation performance of this model is 261.79 and 288.52, respec-
tively. We now compute the systemic response to drought based on the conditional latent variable graphi-
cal model over reservoirs and PDSI. Appealing to relation (10), we can compute the probability that at least

k of K reservoirs have their volume drop below zero in November.
Here, we consider those reservoirs having capacity of at least 108m3

(K 5 31). Of the 55 reservoirs in our data set, 22 have capacity below
108 m3. Two of the 33 remaining (Terminus and Success) are flood-
control reservoirs: they are unique in that their volume routinely falls
below 10% of capacity, independent of PDSI. Thus, we focus on the
remaining 31 large reservoirs in what follows. We vary PDSI and com-
pute (10) for selected values of k. Figure 6 indicates that with sus-
tained precipitation deficits and a PDSI approaching 25, the
probability that three or more of California’s major reservoirs run dry
is greater than 50%. This probability increase above 80% as PDSI
drops to 26.

5.3. Implications
The results of Figure 6 indicate that under severe drought conditions
(e.g., small values of PDSI), there is a high risk of simultaneous exhaus-
tion of multiple large reservoirs. To further investigate the implications
of drought on reservoir conditions, we use (11) to compute the proba-
bility of exhaustion of each reservoir as a function of PDSI. As shown
in the supporting information, our results indicate that the reservoirs
Hidden Dam and Buchanan have the highest risk of exhaustion
(among the 31 reservoirs with capacity 	 108 m3) under severe
drought conditions. Stringent management practices; however, have
prevented these reservoirs from running dry. Specifically, the Madera
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Figure 6. System-wide response to drought in a conditional latent variable
graphical model: probability that at least k reservoirs out of 31 large reservoirs
(with capacity 	 108m3) will have volume fall to zero, for a range of PDSI;
Dashed black line: average September PDSI (September 2004–2015). Dashed
blue line: September 2014 PDSI. Dashed red line: September 2015 PDSI. Dashed
green line: September 2016 PDSI.
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Irrigation District, which owns the water rights of the Hidden Dam reservoir, allowed for the release of very
small amount of water during the drought period of 2014–2015. This is because the reservoir volume had
reached the minimum pool of 5,000 acre feet (6:1 3 106 m3; � 5% of the total capacity) required for recre-
ational purposes. The Buchanan reservoir received a similar degree of stringent management. During the
2014–2015 period, the reservoir volume reached the minimum pool of 10,000 acre feet
(12:2 3 106 m3; � 6% of the total capacity) required for recreational purposes. As a result, the Chowchilla
Water District, which owns the water rights of the Buchanan reservoir, determined that no water will be
released during the 2014–2015 period.

Thus, at low reservoir volumes, the stringent management that these reservoirs receive results in their
behavior deviating from the predictions of our model. To further highlight this distinction, we examine the
historical reservoir volumes of Buchanan and Hidden Dam as a function of PDSI. Suppose we restrict our
attention to PDSI greater than 23. In this regime, the correlation of the Buchanan and Hidden Dam reser-
voirs with PDSI as obtained from our model is similar to the empirical historical average. On the other hand,
for PDSI values less than 23, the empirical correlations are significantly reduced. Concretely, the empirical
correlation of the Buchanan reservoir is a factor � 6=100 of the value estimated by our model. The empirical
correlation of the Hidden Dam is a factor � 2=5 of the correlation estimated by our model (refer to the sup-
porting information for further discussion). The significant reductions in these correlations for low PDSI val-
ues highlight the impact of the severe management practices. Our model is representative of the reservoir
behavior in a ‘‘Business as Usual’’ (BAU) regime where heavy management practices have not been
employed and therefore correlations of PDSI and reservoirs volumes are independent of PDSI value. Conse-
quently, an alternative interpretation of our results is that Figure 6 provides an advanced guideline as to
when strict reservoir management needs to be employed to leave the BAU regime—in effect breaking the
correlation of PDSI and reservoir volumes—to prevent reservoir exhaustion. More specifically, we propose
the following rule of thumb in situations where one may have advanced prediction of the PDSI value: if the
exhaustion probabilities are low at the predicted value of PDSI, no heavy management effort is likely to be
needed and the reservoir could be operated in a BAU setting. If these probabilities start to rise above 50%,
this indicates trouble and that water managers need to prepare to leave the BAU regime.

To summarize, the proposed model characterizes the risk of exhaustion of large California reservoirs during
extreme drought. The proposed methodology can be used to inform water managers of potential risks
under typical management behavior. Additionally, the method used here can forecast other key events that
precede reservoir exhaustion, such as when power generation is made impossible as water levels drop
below turbine inlets, or when water levels reach the minimum pool for recreational purposes.

6. Discussion and Future Directions

The California reservoir system is summarized by a complex, dynamic network of correlated time series that
respond to a diverse set of global and local factors, including both natural climate processes and human
decision-making. Our objective was to develop the first statewide model of this complex network to
address these scientific questions:

1. What are the interactions or dependencies among reservoir volumes?
2. Are there common external factors influencing the network globally? Could these external factors cause

a system-wide catastrophe?

We appealed to a powerful modeling framework, known as graphical modeling, to address these questions.
These models characterize the complex relationships among reservoirs, and can be learned efficiently based
on solving a regularized maximum likelihood estimator. We identified a graphical model consisting of 285
edges over the reservoir network and demonstrated that � 85% of the dependencies are between reser-
voirs in the same hydrological zone. We observed that reservoirs with similar hydrological attributes (e.g.,
elevation and drainage area) tend to exhibit stronger dependencies. We further characterized Folsom Lake
to be the most connected reservoir in the network, and demonstrated its strong dependencies with reser-
voirs connected to the Sacramento river. To address question 2, we quantified the influence of external phe-
nomena on the network using an extension of the graphical modeling framework, known as latent variable
graphical modeling. These models can be learned efficiently based on solving a generalization of the maxi-
mum likelihood estimator in the graphical modeling setting. Using historical reservoir data, we determined
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two global factors influence the reservoir network at a monthly resolution, and proposed a novel methodol-
ogy to obtain physical interpretation of these global factors. We found that PDSI was highly correlated
(q � 0:88) with one of the global factors. We then used PDSI as a covariate in the next iteration of the
graphical modeling procedure to characterize risks of system-wide catastrophe in response to hypothetical
drought conditions. We also identified that Buchanan and Hidden Valley reservoirs are high susceptible to
exhaustion.

The approach applied here to study reservoirs has the potential to be applicable across many complex data
problems in the geosciences. The graphical modeling technique can be first used to model the complex
network of variables. The model can be enhanced to account for global factors (latent variables) that influ-
ence the entire network. Then a latent space summarizing all possible configurations of latent variable data
can be estimated by model optimization. Candidate external forcing data can be linked to this latent space
to find matches. Once a best match is found, the effect of this covariate can be taken away and other cova-
riates could be tested to identify all the factors of the global system variability. Then the latent variables
could be included as covariates in a new iteration of the graphical modeling procedure to learn a joint
model over the network variables and covariates. Using this model, the behavior of the network under
extreme values of the global factors can be characterized. This procedure has the additional value of direct-
ing and prioritizing observational efforts.

There are several interesting directions for future research. The analysis of this paper was over a network of
55 major reservoirs in California. It would be interesting to obtain volumetric measurements of many more
reservoirs (currently the amount of data available is insufficient for analysis on a larger set of reservoirs) and
apply our procedure to obtain a model over this larger network; indeed, there is no other obstruction to car-
rying out a more extensive analysis with the methodology presented in this paper. Further, the statistical
framework developed in this paper is focused on a global model of the reservoir network and the influence
of state-wide variables. An exciting direction for future investigation is to complement our modeling frame-
work to account for local variables (e.g., local temperature, local precipitation, etc.). Specifically, associated
with each reservoir, we can include a collection of local variables and apply our framework to the reservoir
volumes after regressing on the local variables. As described, this procedure would model the reservoir net-
work at both local and global scales.
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Preprocessing the Reservoir/Covariates Data: Let {ȳ(i)}ntrain
i=1 ⊂ R55 and

{ȳ(i)}ntest
i=1 ⊂ R55 be the averaged monthly reservoir volumes in the training and vali-

dation set respectively. Focusing on a reservoir r and the month of January, let µȳr be

the average reservoir level during January (obtained only from training observations). For

each observation i in January, we apply the transformation:

ỹ(i)
r = ȳ(i)

r − µȳr .

1California Institute of Technology.

2Jet Propulsion Laboratory
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We repeat the same steps for all months. Furthermore, letting σr be the sample standard

deviation of the training observations {ỹ(i)
r }ntrain

i=1 , we produce unit variance observations

with the transformation,

y(i)
r =

1

σ
1/2
r

ỹ(i)
r .

We repeat the same steps for all reservoirs to obtain the preprocessed reservoir obser-

vations {y(i)}ntrain
i=1 and {y(i)}ntest

i=1 . Finally, the same steps are repeated to preprocess the

covariates data.

Checking Gaussianity: We verify that the joint reservoir anomalies (after preprocessing

steps) can be well-approximated by a multivariate Gaussian distribution. To check for

the Gaussianity assumption, we use a commonly employed method known as Q-Q plot.

This is a graphical procedure for comparing two probability distribution by plotting their

quantiles against each other. In particular, we compare the quantiles of the reservoir

observations with a multivariate normal distribution. Figure 1(a) shows the Q-Q plot

for the 55 reservoirs. We notice that by removing the Farmington reservoir, the Q-Q

plot shown in Figure 1(b) exhibits a strong linear relationship, suggesting that these 54

reservoirs are well-approximately jointly by a multivariate Gaussian distribution.

Sensitivity of Graphical Model to λ: As described in the main text, the regularization

parameter λ is varied from 0 to 1 to identify a collection of graphical models. For each

graphical model, we measure the training and validation log-likelihood performances.

Figure 2 illustrates the training and validation performances for different values of λ.

Recall that λ = 0 corresponds to an unregularized maximum likelihood estimate and λ = 1

corresponds to independent reservoir model. We chose λ = 0.23 to obtain a graphical
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model with the best validation performance. The training and validation performances of

these models are summarized in Table 1.

To demonstrate that the graphical model estimate does not vary significantly under small

perturbations to λ, we also obtain graphical model estimates with λ = 0.26 and λ = 0.20

(Recall that the edge strengths in a graphical model contain the relevant information of

the model). Figure 3(a) compares the edge strengths of the model with λ = 0.23 and

the model with λ = 0.20. Furthermore, Figure 3(b) compares the edge strengths of the

model with λ = 0.23 and the model with λ = 0.26. Evidently, strong edges persist across

all models, with a few weak edges removed or added as λ is varied. The total number

of edges in the graphical model when λ = 0.20, λ = 0.23, and λ = 0.26 is 295, 285, and

279 respectively. Furthermore, the quantity κ (defined in equation (4) of main paper) is

0.852, 0.859, and 0.862 for λ = 0.20, λ = 0.23, and λ = 0.26. These results suggest that

our conclusions are not particularly sensitive to the choice of the regularization parameter,

although we chose λ = 0.23 as it leads to the best validation performance.

Correlating Covariates to the Latent Space: Latent variable graphical modeling

identifies a summarization of external phenomena influencing the reservoir network; these

influences are summarized by global latent variables. In the main paper, we introduced the

latent space, a space of all possible configurations of the latent variable time series. Here,

we describe the manner in which compute the correlation of a candidate covariate with

the latent space. Let T ⊂ Rn with dim(T ) = k denote the latent space. Let X1 ∈ Rntrain

be the ntrain observations of the covariate x1 (normalized to have unit variance). The
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correlation of this covariate with the latent space is given by:

corr(x1) =
∥∥∥PT (X1)

∥∥∥
`2
,

where PT denotes the projection matrix onto the subspace T . By definition, the quantity

corr(x1) is between 0 and 1 with large values indicating that the covariate x1 has a strong

influence over the entire reservoir network.

Suppose we have identified a covariate x1 that is highly correlated with the latent space.

We can modify our technique to identify other covariates that are correlated with the

latent space after taking away the effect of the covariate x1.

Let U1D1V
′

1 be the reduced SVD of X1 where U1 ∈ Rntrain , D1 ∈ R and V1 ∈ R. Let

X2 ∈ Rntrain be the ntrain observations of the covariate x2. The correlation of a covariate

x2 with the latent space after taking away the effect of x1 is given by:

corrx1(x2) =
∥∥∥(I − U1U

′
1)PT (I − U1U

′
1)(X2)

∥∥∥
`2
.

If the quantity corrx1(x2) is large, then the covariate x2 is strongly correlated to the second

global statewide variable. We can once again take away the effect of the covariates x1

and x2 from the latent space, and find its correlation with another covariate x3. Let

U2D2V
′

2 be the reduced SVD of [X1, X2] ∈ Rntrain×2 where U2 ∈ Rntrain×2, D2 ∈ R2×2 and

V2 ∈ R2×2. Let X3 ∈ Rntrain be the ntrain observations of the covariate x3. The correlation

of a covariate x3 with the latent space after taking away the effect of x1 and x2 is given

by:

corrx1,x2(x3) =
∥∥∥(I − U2U

′
2)PT (I − U2U

′
2)(X3)

∥∥∥
`2
.

Similarly, if the quantity corrx1,x2(x3) is large, then the covariate x3 is strongly correlated

to the third global driver. We can repeat this procedure to identify all the k global drivers
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influencing the reservoir network.

The latent variable graphical model identified two global drivers influencing the reservoir

network. As described in the preceding paragraphs, this yields a two dimensional latent

space corresponding to all possible observations of the global drivers. To obtain real-world

representation of these two global drivers, we link the two dimensional latent space to the 7

covariates described in Section 2.2 (main paper). The correlation values of each covariate

with the latent space are shown in the second column of Table 2. We then take the effect

of PDSI away from the latent space to find the correlation of the modified latent space

with the remaining 6 covariates. These correlation values are shown in the third column

of Table 2.

Identifying Reservoirs Most at Risk of Exhaustion: As described in the main text,

our modeling framework serves a powerful tool to identify reservoirs that are high risk

of exhaustion so that appropriate preventive management practices could be employed.

For each reservoir, we sweep over a range of PDSI and use (11) (main text) to compute

probabilities of exhaustion. Figure 4 shows those reservoirs (among 31 large reservoirs

with capacity greater than 108m3) that were highly sensitive to PDSI. Evidently, these

reservoirs are at high risk of exhaustion, and additionally, some have a greater sensitivity

to small PDSI changes than others. We focus on two reservoirs with highest risk of exhaus-

tion: Buchanan and Hidden Dam reservoir. We consider Figure 5 which demonstrates the

historical volumes of these reservoirs in response to PDSI. Notice that as expected, there

is a positive correlation between PDSI and reservoir volumes: smaller values of PDSI

generally result in a lower volume. An interesting phenomenon seems to occur for very

small values of PDSI (e.g. less than 3 corresponding to drought period 2014-2015). In

D R A F T October 11, 2017, 3:04pm D R A F T



X - 6 TAEB ET AL.: GRAPHICAL MODELING OF RESERVOIRS

this range, changes to PDSI do not appear to substantially impact the reservoir volumes.

In other words, the correlation between PDSI and reservoir volumes is significantly re-

duced as compared to the correlation during normal and wet periods. To provide concrete

numbers on the reduction in this correlation, we focus on November volumes of Buchanan

and Hidden Dam reservoirs and the corresponding September PDSI values. We further

restrict to observations where PDSI is less than 3. We compute the Pearson Correlation

Coefficient between PDSI and each reservoir during this period. This correlation for the

Buchanan reservoir is a factor of ≈ 6/100 of the value estimated by our model. Similarly,

the correlation for the Hidden Dam is a factor ≈ 2/5 of the correlation estimated by our

model. As described in the main paper, the large drops in correlations are due to strict

management. Figure 6 demonstrates the amount of water from precipitation into the

Hidden Dam and Buchanan reservoirs, the total inflow, and the outflow as a consequence

of the stringent management efforts. Examining Figure 6, notice that there was little to

no outflow of water, which keeps the reservoir volumes mostly constant and prevents them

from running dry.
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Figure 1: (a): Q-Q plot of the entire set of 55 reservoirs, (b): Q-Q plot of 54 reservoirs (excluding the Farmington
reservoir). The Q-Q plots are against a multivariate Gaussian distribution. Notice that y = x is a close approxi-
mation to the Q-Q plot in (b) implying that 54 reservoirs (excluding Farmington reservoir) is well approximated
by a multivariate Gaussian distribution.

Model Training performance Validation performance

unregularized ML estimate (λ = 0) −23.91 -1140.4

independent reservoir model (λ = 1) −83.23 −101.95

graphical model (λ = 0.23) −63.52 − 85.54

Table 1: Training and validation performances of unregularized maximum likelihood (ML) estimate, independent
reservoir model, and graphical model. As larger values of log-likelihood are indicative of better performance, the
graphical model is the superior model.
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Figure 2: Training and validation performance of graphical modeling for different values of the regularization
parameter λ. The training performance is computed as the average log-likelihood of training samples and the
validation performance is computed as the average log-likelihood of validation samples.
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(a) λ = 0.23 vs λ = 0.2
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(b) λ = 0.23 vs λ = 0.26

Figure 3: Sensitivity of the graphical model estimate to perturbations of λ around the optimal value λ = 0.23
(this choice of λ leads to optimal validation performance): we observe that strong edges in the original model are
strong edges in the perturbed model (i.e. with perturbed λ) with approximately the same strength.
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Covariate Correlation Correlation after removing PDSI

Palmer Drought Severity Index (PDSI) 0.88 N/A

Hydroelectric power 0.80 0.09

Sierra Nevada snow pack 0.50 0.32

Consumer Price Index (CPI) 0.33 0.25

Colorado river discharge 0.29 0.23

Number of agricultural workers 0.17 0.03

Temperature 0.10 0.04

Table 2: Covariates and correlations with the latent space before and after removing PDSI
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Figure 4: Individual reservoir responses to drought in a conditional latent variable graphical model: probability
that six most-at-risk reservoirs out of 31 large reservoirs (with capacity ≥ 108m3) will have volume drop below zero;
Dashed black line: average September PDSI (September 2004-September 2015). Dashed blue line: September
2014 PDSI. Dashed red line: September 2015 PDSI. Dashed green line: September 2016 PDSI.

D R A F T October 11, 2017, 3:04pm D R A F T



X - 10 TAEB ET AL.: GRAPHICAL MODELING OF RESERVOIRS

-6 -4 -2 0 2 4
PDSI

0

2

4

6

8

10

12

14

16

18
v

o
lu

m
e

 (
m

3
)

×10
7

2003-2013,2016
2014-2015

(a) Buchanan

-6 -4 -2 0 2 4
PDSI

0

2

4

6

8

10

12

v
o

lu
m

e
 (

m
3
)

×10
7

2003-2013,2016
2014-2015

(b) Hidden Dam

Figure 5: PDSI vs reservoir levels for the Buchanan and Hidden Dam reservoirs during the period of study (i.e.
January 2003 to November 2016). Notice a positive correlation between PDSI and the reservoir volumes: smaller
values of PDSI generally lead to lower reservoir volumes. During the 2014-2015 drought period (shown in red),
the correlation is substantially reduced as a result of stringent management efforts.
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(a) Hidden Dam, 2014-2015

(b) Buchanan, 2014-2015

Figure 6: Inflows, outflows, precipitation, and water levels for the Buchanan and Hidden Dam reservoirs during
the extreme drought period of 2014-2015. Notice that there was little precipitation, leading to marginal inflow of
water into each reservoirs. Due to heavy management, there was little to no outflow of water from these reservoirs,
preventing them from running dry. These figures are obtained from the Sacramento District Water Control Data
System at http://www.spk-wc.usace.army.mil/plots/california.html.
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