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Abstract Latent or unobserved phenomena pose a significant difficulty in data anal-
ysis as they induce complicated and confounding dependencies among a collection
of observed variables. Factor analysis is a prominent multivariate statistical modeling
approach that addresses this challenge by identifying the effects of (a small number of)
latent variables on a set of observed variables. However, the latent variables in a factor
model are purely mathematical objects that are derived from the observed phenomena,
and they do not have any interpretation associated to them. A natural approach for
attributing semantic information to the latent variables in a factor model is to obtain
measurements of some additional plausibly useful covariates that may be related to
the original set of observed variables, and to associate these auxiliary covariates to
the latent variables. In this paper, we describe a systematic approach for identifying
such associations. Our method is based on solving computationally tractable convex
optimization problems, and it can be viewed as a generalization of the minimum-trace
factor analysis procedure for fitting factor models via convex optimization. We ana-
lyze the theoretical consistency of our approach in a high-dimensional setting as well
as its utility in practice via experimental demonstrations with real data.
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1 Introduction

A central goal in data analysis is to identify concisely described models that char-
acterize the statistical dependencies among a collection of variables. Such concisely
parametrized models avoid problems associated with overfitting, and they are often
useful in providing meaningful interpretations of the relationships inherent in the
underlying variables. Latent or unobserved phenomena complicate the task of deter-
mining concisely parametrized models as they induce confounding dependencies
among the observed variables that are not easily or succinctly described. Conse-
quently, significant efforts over many decades have been directed towards the problem
of accounting for the effects of latent phenomena in statistical modeling. A common
shortcoming of approaches to latent-variable modeling is that the latent variables are
typically mathematical constructs that are derived from the originally observed data,
and these variables do not directly have semantic information linked to them. Discov-
ering interpretable meaning underlying latent variables would clearly impact a range
of contemporary problem domains throughout science and technology. For example,
in data-driven approaches to scientific discovery, the association of semantics to latent
variables would lead to the identification of new phenomena that are relevant to a
scientific process, or would guide data-gathering exercises by providing choices of
variables for which to obtain new measurements.

In this paper, we focus for the sake of concreteness on the challenge of interpreting
the latent variables in a factor model [21]. Factor analysis is perhaps the most widely
used latent-variable modeling technique in practice. The objective with this method is
to fit observations of a collection of random variables y ∈ R

p to the following linear
model:

y = Bζ + ε, (1)

whereB ∈ R
p×k, k � p. The randomvectors ζ ∈ R

k, ε ∈ R
p are independent of each

other, and they are normally distributed as1 ζ ∼ N (0,Σζ ), ε ∼ N (0,Σε), withΣζ �
0,Σε � 0 andΣε being diagonal. Here the random vector ζ represents a small number
of unobserved, latent variables that impact all the observed variables y, and the matrix
B specifies the effect that the latent variables have on the observed variables. However,
the latent variables ζ themselves do not have any interpretable meaning, and they are
essentially amathematical abstraction employed tofit a concisely parameterizedmodel
to the conditional distribution of y|ζ (which represents the remaining uncertainty in y
after accounting for the effects of the latent variables ζ )—this conditional distribution

1 Themean vector does not play a significant role in our development, and therefore we consider zero-mean
random variables throughout this paper.
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is succinctly described as it is specified by amodel consisting of independent variables
(as the covariance of the Gaussian random vector ε is diagonal).

A natural approach to attributing semantic information to the latent variables ζ in a
factor model is to obtain measurements of some additional plausibly useful covariates
x ∈ R

q (the choice of these variables is domain-specific), and to link these to the
variables ζ . However, defining and specifying such a link in a precise manner is
challenging. Indeed, a fundamental difficulty that arises in establishing this association
is that the variables ζ in the factor model (1) are not identifiable. In particular, for
any non-singular matrix W ∈ R

k×k , we have that Bζ = (BW−1)(Wζ ). In this
paper, we describe a systematic and computationally tractable methodology based
on convex optimization that integrates factor analysis and the task of interpreting
the latent variables. Our convex relaxation approach generalizes the minimum-trace
factor analysis technique, which has received much attention in the mathematical
programming community over the years [11,17–20].

1.1 A composite factor model

We begin by making the observation that the column space of B—which specifies
the k-dimensional component of y that is influenced by the latent variables ζ—is
invariant under transformations of the form B → BW−1 for non-singular matrices
W ∈ R

k×k . Consequently, we approach the problem of associating the covariates
x to the latent variables ζ by linking the effects of x on y to the column space of
B. Conceptually, we seek a decomposition of the column space of B into transverse
subspaces Hx ,Hu ⊂ R

p, Hx ∩ Hu = {0} so that column-space(B) ≈ Hx ⊕ Hu—
the subspace Hx specifies those components of y that are influenced by the latent
variables ζ and are also affected by the covariates x , and the subspace Hu represents
any unobserved residual effects on y due to ζ that are not captured by x . To identify
such a decomposition of the column space of B, our objective is to split the term Bζ

in the factor model (1) as
Bζ ≈ Ax + Buζu, (2)

where the column space of A ∈ R
p×q is the subspace Hx and the column

space of Bu ∈ R
p×dim(Hu) is the subspace Hu , i.e., dim(column-space(A))

+ dim(column-space(Bu)) = dim(column-space(B)) and column-space(A) ∩
column-space(Bu) = {0}. Since the number of latent variables ζ in the factormodel (1)
is typically much smaller than p, the dimension of the column space ofA is also much
smaller than p; as a result, if the dimension q of the additional covariates x is large, the
matrix A has small rank. Hence, the matrix A plays two important roles: its column
space (inRp) identifies those components of the subspace B that are influenced by the
covariates x , and its rowspace (inRq ) specifies those components of (a potentially large
number of) the covariates x that influence y. Thus, the projection of the covariates x
onto the rowspace of A represents the interpretable component of the latent variables
ζ . The term Buζu in (2) represents, in some sense, the effects of those phenomena that
continue to remain unobserved despite the incorporation of the covariates x .

Motivated by this discussion, we fit observations of (y, x) ∈ R
p × R

q to the
following composite factor model that incorporates the effects of the covariates x as
well as of additional unobserved latent phenomena on y:
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y = Ax + Buζu + ε̄ (3)

where A ∈ R
p×q with rank(A) � min{p, q},Bu ∈ R

p×ku with ku � p, and the
variables ζu, ε̄ are independent of each other (and of x) and normally distributed as
ζu ∼ N (0,Σζu ), ε̄ ∼ N (0,Σε̄), with Σζu � 0,Σε̄ � 0 and Σε̄ being a diagonal
matrix. ThematrixAmay also be viewed as themap specifying the best linear estimate
of y based on x . In other words, the goal is to identify a low-rankmatrixA such that the
conditional distribution of y|x (and equivalently of y|Ax) is specified by a standard
factor model of the form (1).

1.2 Composite factor modeling via convex optimization

Nextwedescribe techniques tofit observations of y ∈ R
p to themodel (3). Thismethod

is a key subroutine in our algorithmic approach for associating semantics to the latent
variables in a factor model (see Sect. 1.3 for a high-level discussion of our approach
and Sect. 3 for a more detailed experimental demonstration). Fitting observations of
(y, x) ∈ R

p ×R
q to the composite factor model (3) is accomplished by identifying a

Gaussian model over (y, x) with the covariance matrix of the model satisfying certain
algebraic properties. For background on multivariate Gaussian statistical models, we
refer the reader to [10].

Examining the factor model in (1), the covariance matrix of y is decomposable as
the sum of a low-rank matrix BΣζB′ (corresponding to the k � p latent variables
ζ ) and a diagonal matrix Σε . Based on this algebraic structure, a natural approach to
factor modeling is to find the smallest rank (positive semidefinite) matrix such that
the difference between this matrix and the empirical covariance of the observations of
y is close to being a diagonal matrix (according to some measure of closeness, such
as in the Frobenius norm). This problem is computationally intractable to solve in
general due to the rank minimization objective [14]. As a result, a common heuristic
is to replace the matrix rank by the trace functional, which results in the minimum
trace factor analysis problem [11,18–20]; this problem is convex and it can be solved
efficiently. The use of the trace of a positive semidefinite matrix as a surrogate for
the matrix rank goes back many decades, and this topic has received much renewed
interest over the past several years [3,8,13,16].

In attempting to generalize the minimum-trace factor analysis approach to the
composite factor model, one encounters a difficulty that arises due to the parametriza-
tion of the underlying Gaussian model in terms of covariance matrices. Specifically,
with the additional covariates x ∈ R

q in the composite model (3), our objective
is to identify a Gaussian model over (y, x) ∈ R

p × R
q with the joint covariance

Σ =
(

Σy Σyx

Σ ′
yx Σx

)
∈ S

p+q satisfying certain structural properties. One of these prop-

erties is that the conditional distribution of y|x is specified by a factor model, which
implies that the conditional covariance of y|x must be decomposable as the sum of a
low-rank matrix and a diagonal matrix. However, this conditional covariance is given
by the Schur complementΣy−ΣyxΣ

−1
x Σ ′

yx , and specifying a constraint on the condi-
tional covariance matrix in terms of the joint covariance matrixΣ presents an obstacle
to obtaining computationally tractable optimization formulations.
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A more convenient approach to parameterizing conditional distributions in Gaus-
sian models is to consider models specified in terms of inverse covariance matrices,
which are also called precision matrices. Specifically, the algebraic properties that we
desire in the joint covariance matrix Σ of (y, x) in a composite factor model can also
be stated in terms of the joint precision matrixΘ = Σ−1 via conditions on the subma-

trices of Θ =
(

Θy Θyx
Θ ′
yx Θx

)
. First, the precision matrix of the conditional distribution of

y|x is specified by the submatrix Θy ; as the covariance matrix of the conditional dis-
tribution of y|x is the sum of a diagonal matrix and a low-rank matrix, the Woodbury
matrix identity2 implies that the submatrix Θy is the difference of a diagonal matrix
and a low-rank matrix. Second, the rank of the submatrix Θyx ∈ R

p×q is equal to
the rank of A ∈ R

p×q in non-degenerate models (i.e., if Σ � 0) because the relation
between A and Θ is given by A = −[Θy]−1Θyx . Based on this algebraic structure
desired inΘ , we propose the following natural convex relaxation for fitting a collection
of observations D+

n = {(y(i), x (i))}ni=1 ⊂ R
p+q to the composite model (3):

(Θ̂, D̂y, L̂ y) = arg min
Θ∈Sp+q , Θ�0

Dy ,Ly∈Sp

−�(Θ;Dn+) + λn[γ ‖Θyx‖	 + trace(Ly)]

s.t. Θy = Dy − Ly, Ly 
 0, Dy is diagonal (4)

The term �(Θ;Dn+) is the Gaussian log-likelihood function that enforces fidelity to
the data, and it is given as follows (up to some additive and multiplicative terms):

�(Θ;Dn+) = log det(Θ) − trace

[
Θ · 1

n

n∑
i=1

(
y(i)

x (i)

)(
y(i)

x (i)

)′]
. (5)

This function is concave as a function of the joint precision matrix3 Θ . The matrices
Dy, Ly represent the diagonal and low-rank components of Θy . As with the idea
behind minimum-trace factor analysis, the role of the trace norm penalty on Ly is
to induce low-rank structure in this matrix. Based on a more recent line of work
originating with the thesis of Fazel [3,8,16], the nuclear norm penalty ‖Θyx‖	 on the
submatrix Θyx (which is in general a non-square matrix) is useful for promoting low-
rank structure in that submatrix of Θ . The parameter γ provides a tradeoff between
the observed/interpretable and the unobserved parts of the composite factor model (3),
and the parameter λn provides a tradeoff between the fidelity of the model to the data
and the overall complexity of the model (the total number of observed and unobserved
components in the composite model (3)). In summary, for λn, γ ≥ 0 the regularized
maximum-likelihood problem (4) is a convex program. From the optimal solution

2 Recall that the woodbury identity states that (A+UCV ′)−1 = A−1− A−1U (C−1+V A−1U )−1V A−1

for matrices A,U, V,C of appropriate dimensions.
3 An additional virtue of parameterizing our problem in terms of precision matrices rather than in terms of
covariance matrices is that the log-likelihood function in Gaussian models is not concave over the cone of
positive semidefinite matrices when viewed as a function of the covariance matrix.
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(Θ̂, D̂y, L̂ y) of (4), we can obtain estimates for the parameters of the composite
factor model (3) as follows:

Â = −[Θ̂y]−1Θ̂yx

B̂u = any squareroot of (D̂y − L̂ y)
−1 − D̂−1

y such that B̂u ∈ R
p×rank(L̂ y),

(6)

with the covariance of ζu being the identity matrix of appropriate dimensions and the
covariance of ε̄ being D̂−1

y . The convex program (4) is log-determinant semidefinite
programs that can be solved efficiently using existing numerical solvers such as the
LogDetPPA package [22].

1.3 Algorithmic approach for interpreting latent variables in a factor model

Our discussion has led us to a natural (meta-) procedure for interpreting latent variables
in a factor model. Suppose that we are given a factor model underlying y ∈ R

p.
The analyst proceeds by obtaining simultaneous measurements of the variables y as
well as some additional covariates x ∈ R

q of plausibly relevant phenomena. Based
on these joint observations, we identify a suitable composite factor model (3) via
the convex program (4). In particular, we sweep over the parameters λn, γ in (4) to
identify composite models that achieve a suitable decomposition—in terms of effects
attributable to the additional covariates x and of effects corresponding to remaining
unobserved phenomena—of the effects of the latent variables in the factor model given
as input.

To make this approach more formal, consider a composite factor model (3)
y = Ax + Buζu + ε underlying a pair of random vectors (y, x) ∈ R

p × R
q , with

rank(A) = kx ,Bu ∈ R
p×ku , and column-space(A) ∩ column-space(Bu) = {0}.

As described in Sect. 1.2, the algebraic aspects of the underlying composite factor
model translate to algebraic properties of submatrices of Θ ∈ S

p+q . In particular,
the submatrix Θyx has rank equal to kx and the submatrix Θy is decomposable as
Dy − Ly with Dy being diagonal and Ly 
 0 having rank equal to ku . Finally, the
transversality of column-space(A) and column-space(Bu) translates to the fact that
column-space(Θyx ) ∩ column-space(Ly) = {0} have a transverse intersection. One
can simply check that the factor model underlying the random vector y ∈ R

p that
is induced upon marginalization of x is specified by the precision matrix of y given
by Θ̃y = Dy − [Ly + Θyx (Θx )

−1Θxy]. Here, the matrix Ly + Θyx (Θx )
−1Θxy is a

rank kx + ku matrix that captures the effect of latent variables in the factor model.
This effect is decomposed into Θyx (Θx )

−1Θxy—a rank kx matrix representing the
component of this effect attributed to x , and Ly—amatrix of rank ku representing the
effect attributed to residual latent variables.

These observations motivate the following algorithmic procedure. Suppose we are

given a factor model that specifies the precision matrix of y as the difference ˆ̃Dy − ˆ̃Ly ,

where ˆ̃Dy is diagonal and
ˆ̃Ly is low rank. Then the composite factor model of (y, x)

with estimates (Θ̂, D̂y, L̂ y) offers an interpretation of the latent variables of the given
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factor model if (i) rank( ˆ̃Ly) = rank(L̂ y + Θ̂yxΘ̂
−1
x Θ̂xy), (i i) column-space(Θ̂yx ) ∩

column-space(L̂ y) = {0}, and
(i i i)max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − [L̂ y + Θ̂yxΘ̂

−1
x Θ̂xy]‖2/‖ ˆ̃Ly‖2} is small. The

full algorithmic procedure for attributing meaning to latent variables of a factor model
is outlined below:

Algorithm 1 Interpreting Latent Variables in a Factor Model

1: Input: A collection of observationsD+
n = {(y(i), x(i))}ni=1 ⊂ R

p ×R
q of the variables y and of some

auxiliary covariates x ; Factor model with parameters (
ˆ̃Dy ,

ˆ̃Ly).

2: Composite Factor Modeling: For each d = 1, . . . , q, sweep over parameters (λn , γ ) in the convex
program (4) (with D+

n as input) to identify composite models with estimates (Θ̂, D̂y , L̂ y) that sat-

isfy the following three properties: (i) rank(Θ̂yx ) = d, (i i) rank( ˆ̃Ly) = rank(L̂ y) + rank(Θ̂yx ), and

(i i i) rank( ˆ̃Ly) = rank(L̂ y) + rank(Θ̂yx Θ̂
−1
x Θ̂xy).

3: Identifying Subspace: For each d = 1, . . . , q and among the candidate composite models (from

the previous step), choose the composite factor model that minimizes the quantity max{‖ ˆ̃Dy −
D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − [L̂ y + Θ̂yx Θ̂

−1
x Θ̂xy ]‖2/‖ ˆ̃Ly‖2}.

4: Output: For each d = 1, . . . q, the d-dimensional projection of x into the row-space of Θ̂yx represents
the interpretable component of the latent variables in the factor model.

The effectiveness ofAlgorithm1 is dependent on the size of the quantitymax{‖ ˆ̃Dy−
D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂ y − Θ̂yxΘ̂

−1
x Θ̂xy]‖2/‖ ˆ̃Ly‖2}. The smaller this quantity, the

better the composite factor model fits to the given factor model. Finally, recall from
Sect. 1.1 that the projection of covariates x onto to the row-space of A (from the
composite model (3)) represents the interpretable component of the latent variables
of the factor model. Because of the relation A = −[Θy]−1Θyx , this interpretable
component is obtained by projecting the covariates x onto the row-space of Θyx . This
observation explains the final step of Algorithm 1.

The input to Algorithm 1 is a factor model underlying a collection of variables
y ∈ R

p, and the algorithm proceeds to obtain semantic interpretation of the latent
variables of the factor model. However, in many situations, a factor model underlying
y ∈ R

p may not be available in advance, and must be learned in a data-driven fashion
based on observations of y ∈ R

p. In our experiments (see Sect. 3), we learn a factor
model using a specialization of the convex program (4). It is reasonable to ask whether
one might directly fit to a composite model to the covariates and responses jointly
without reference to the underlying factor model based on the responses. However, in
our experience with applications, it is often the case that observations of the responses
y aremuchmore plentiful than of joint observations of responses y and covariates x . As
an example, consider a setting in which the responses are a collection of financial asset
prices (such as stock return values); observations of these variables are available at a
very fine time-resolution on the order of seconds. On the other hand, some potentially
useful covariates such as GDP, government expenditures, federal debt, and consumer
rate are available at a much coarser scale (usually on the order of months or quarters).
As another example, consider a setting in which the responses are reservoir volumes

123



136 A. Taeb, V. Chandrasekaran

of California; observations of these variables are available at a daily scale. On the
other hand, reasonable covariates that one may wish to associate to the latent variables
underlying California reservoir volumes such as agricultural production, crop yield
rate, average income, and population growth rate are available at a much coarser time
scale (e.g., monthly). In such settings, the analyst can utilize the more abundant set of
observations of the responses y to learn an accurate factor model first. Subsequently,
one can employ our approach to associate semantics to the latent variables in this
factor model based on the potentially limited number of observations of the responses
y and the covariates x .

1.4 Our results

In Sect. 2 we carry out a theoretical analysis to investigate whether the framework
outlined in Algorithm 1 can succeed. We discuss a model problem setup, which serves
as the basis for the main theoretical result in Sect. 2. Suppose we have Gaussian
random vectors (y, x) ∈ R

p ×R
q that are related to each other via a composite factor

model (3). Note that this composite factor model induces a factor model underlying
the variables y ∈ R

p upon marginalization of the covariates x . In the subsequent
discussion, we assume that the factor model that is supplied as input to Algorithm 1
is the factor model underlying the responses y.
Nowwe consider the following question: Given observations jointly of (y, x) ∈ R

p+q ,
does the convex relaxation (4) (for suitable choices of regularization parameters λn, γ )
estimate the composite factor model underlying these two random vectors accurately?
An affirmative answer to this question demonstrates the success of Algorithm 1. In
particular, a positive answer to this question implies that we can decompose the effects
of the latent variables in the factor model underlying y using the convex relaxation
(4), as the accurate estimation of the composite model underlying (y, x) implies a
successful decomposition of the effects of the latent variables in the factor model
underlying y. That is, steps 2–3 in the Algorithm are successful. In Sect. 2, we show
that under suitable identifiability conditions on the population model of the joint ran-
dom vector (y, x), the convex program (4) succeeds in solving this question. Our
analysis is carried out in a high-dimensional asymptotic scaling regime in which the
dimensions p, q, the number of observations n, and other model parameters may all
grow simultaneously [2,24].

We give concrete demonstration of Algorithm 1 with experiments on synthetic data
and real-world financial data. For the financial asset problem, we consider as our
variables y the monthly averaged stock prices of 45 companies from the Standard and
Poor index over the periodMarch 1982 toMarch 2016, and we identify a factor model
(1) over ywith 10 latent variables (the approachwe use to fit a factormodel is described
in Sect. 3). We then obtain observations of q = 13 covariates on quantities related to
oil trade, GDP, government expenditures, etc. (See Sect. 3 for the full list), as these
plausibly influence stock returns. Following the steps outlined in Algorithm 1, we use
the convex program (4) to identify a two-dimensional projection of these 13 covariates
that represent an interpretable component of the 10 latent variables in the factor model,
as well as a remaining set of 8 latent variables that constitute phenomena not observed
via the covariates x . In further analyzing the characteristics of the two-dimensional
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projection, we find that EUR to USD exchange rate and government expenditures are
the most relevant of the 13 covariates considered in our experiment, while mortgage
rate and oil imports are less useful. See Sect. 3 for complete details.

1.5 Related work

Elements of our approach bear some similarity with canonical correlations analy-
sis [9], which is a classical technique for identifying relationships between two sets of
variables. In particular, for a pair of jointly Gaussian random vectors (y, x) ∈ R

p×q ,
canonical correlations analysis may be used as a technique for identifying the most
relevant component(s) of x that influence y. However, the composite factor model (3)
allows for the effect of further unobserved phenomena not captured via observations of
the covariates x . Consequently, our approach in some sense incorporates elements of
both canonical correlations analysis and factor analysis. Furthermore, a body of work
has considered factor regression models [4] that blend regression analysis and factor
analysis similiar in spirit to the composite factor model (4). A key distinction is that we
model the matrixA to have low rank. As discussed earlier, this modeling constraint is
motivated by the goal of associating semantics to latent variables. It is also important to
note that algorithms for factor analysis and for canonical correlations analysis usually
operate on covariance and cross-covariance matrices. However, we parametrize our
regularized maximum-likelihood problem (4) in terms of precision matrices, which is
a crucial ingredient in leading to a computationally tractable convex program.

The nuclear-norm heuristic has been employed widely over the past several years in
a range of statistical modeling tasks involving rank minimization problems; see [24]
and the references therein. The proof of our main result in Sect. 2 incorporates some
elements from the theoretical analyses in these previous papers, along with the intro-
duction of some new ingredients. We give specific pointers to the relevant literature
in Sect. 4.

1.6 Notation

Given amatrixU ∈ R
p1×p2 , and the norm ‖U‖2 denotes the spectral norm (the largest

singular value of U ). We define the linear operators F : Sp × S
p × R

p×q × S
q →

S
(p+q) and its adjoint F† : S(p+q) → S

p × S
p × R

p×q × S
q as follows:

F(M, N , K , O) �
(
M − N K
KT O

)
, F†

(
Q K
KT O

)
� (Q, Q, K , O) (7)

Similarly, we define the linear operators G : Sp × R
p×q → S

(p+q) and its adjoint
G† : S(p+q) → S

p × R
p×q as follows:

G(M, K ) �
(

M K
KT 0

)
, G†

(
Q K
KT O

)
� (Q, K ) (8)

Finally, for any subspace H, the projection onto the subspace is denoted by PH.
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2 Theoretical results

In this section, we state a theorem to prove the consistency of convex program (4). This
theorem requires assumptions on the population precision matrix, which are discussed
in Sect. 2.2. We provide examples of population composite factor models (4) that
satisfy these conditions. The theorem statement is given in Sect. 2.4 and the proof of
the theorem is given inSect. 4with somedetails deferred to the supplementarymaterial.

2.1 Technical setup

As discussed in Sect. 1.4, our theorems are premised on the existence of a population
composite factor model (3) y = A	x + B	

uζu + ε underlying a pair of random vec-
tors (y, x) ∈ R

p × R
q , with rank(A	) = kx ,B	

u ∈ R
p×ku , and column-space(A	) ∩

column-space(Bu
	) = {0}. As the convex relaxation (4) is solved in the precision

matrix parametrization, the conditions for our theorems are more naturally stated in
termsof the joint precisionmatrixΘ	 ∈ S

p+q , Θ	 � 0 of (y, x). The algebraic aspects
of the parameters underlying the factor model translate to algebraic properties of sub-
matrices ofΘ	. In particular, the submatrixΘ	

yx has rank equal to kx , and the submatrix
Θ	

y is decomposable as D	
y−L	

y with D
	
y being diagonal and L

	
y 
 0 having rank equal

to ku . Finally, the transversality of column-space(A	) and column-space(Bu
	) trans-

lates to the fact that column-space(Θ	
yx )∩ column-space(L	

y) = {0} have a transverse
intersection.

To address the requirements raised in Sect. 1.4, we seek an estimate (Θ̂, D̂y, L̂ y)

from the convex relaxation (4) such that rank(Θ̂yx ) = rank(Θ	
yx ), rank(L̂ y) =

rank(L	
y), and that ‖Θ̂ − Θ	‖2 is small. Building on both classical statistical esti-

mation theory [1] as well as the recent literature on high-dimensional statistical
inference [2,24], a natural set of conditions for obtaining accurate parameter esti-
mates is to assume that the curvature of the likelihood function at Θ	 is bounded in
certain directions. This curvature is governed by the Fisher information at Θ	:

I
	 � Θ	−1 ⊗ Θ	−1 = Σ	 ⊗ Σ	.

Here ⊗ denotes a tensor product between matrices and I
	 may be viewed as a map

from S
(p+q) to S(p+q). We impose conditions requiring that I	 is well-behaved when

applied to matrices of the form Θ − Θ	 =
(

(Dy − D	
y) − (Ly − L	

y) Θyx − Θ	
yx

Θyx
′ − Θ	

yx
′ Θx − Θ	

x

)
, where

(Ly,Θyx ) are in a neighborhood of (L	
y,Θ

	
yx ) restricted to sets of low-rank matrices.

These local properties of I	 around Θ	 are conveniently stated in terms of tangent
spaces to the algebraic varieties of low-rank matrices. In particular, the tangent space
at a rank-r matrix N ∈ R

p1×p2 with respect to the algebraic variety of p1× p2 matrices
with rank less than or equal to r is given by:4

4 We also consider the tangent space at a symmetric low-rank matrix with respect to the algebraic variety of
symmetric low-rank matrices. We use the same notation ‘T ’ to denote tangent spaces in both the symmetric
and non-symmetric cases, and the appropriate tangent space is clear from the context.
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T (N ) � {NR + NC |NR, NC ∈ R
p1×p2 ,

row-space (NR) ⊆ row-space (N ),

column-space (NC ) ⊆ column-space (N )}

In the next section, we describe conditions on the population Fisher information I	

in terms of the tangent spaces T (L	
y), and T (Θ	

yx ); under these conditions, we present
a theorem in Sect. 2.4 showing that the convex program (4) obtains accurate estimates.

2.2 Fisher information conditions

Given a norm ‖ · ‖Υ on Sp × S
p ×R

p×q × S
q , we first consider a classical condition

in statistical estimation literature, which is to control the minimum gain of the Fisher
information I

	 restricted to a subspace H ⊂ S
p × S

p × R
p×q × S

q as follows:

χ(H, ‖ · ‖Υ ) � min
Z∈H‖Z‖Υ =1

‖PHF†
I
	FPH(Z)‖Υ , (9)

where PH denotes the projection operator onto the subspaceH and the linear maps F
andF† are defined in (7). The quantity χ(H, ‖·‖Υ ) being large ensures that the Fisher
information I

	 is well-conditioned restricted to image FH ⊆ S
p+q . The remaining

conditions that we impose on I	 are in the spirit of irrepresentibility-type conditions [6,
12,15,23,25] that are frequently employed in high-dimensional estimation. In the
subsequent discussion, we employ the following notation to denote restrictions of a
subspace H = H1 × H2 × H3 × H4 ⊂ S

p × S
p × R

p×q × S
q (here H1, H2, H3, H4

are subspaces in S
p,Sp,Rp×q ,Sq , respectively) to its individual components. The

restriction to the second components of H is given by H[2] = H2. The restriction to
the second and third component of H is given by H[2, 3] = H2 × H3 ⊂ S

p × R
p×q .

Given a norm ‖.‖Π on S
p × R

p×q , we control the gain of I	 restricted to H[2, 3]

Ξ(H, ‖ · ‖Π) � min
Z∈H[2,3]
‖Z‖Π=1

‖PH[2,3]G†
I
	GPH[2,3](Z)‖Π.

(10)

Here, the linear maps G and G† are defined in (8). In the spirit of irrepresentability
conditions, we control the inner-product between elements inGH[2, 3] andGH[2, 3]⊥,
as quantified by the metric induced by I

	 via the following quantity

ϕ(H, ‖ · ‖Π) � max
Z∈H[2,3]
‖Z‖Π=1

‖PH[2,3]⊥G†
I
	GPH[2,3](PH[2,3]G†

I
	GPH[2,3])−1(Z)‖Π.

(11)
The operator (PH[2,3]G†

I
	GPH[2,3])−1 in (11) is well-defined if Ξ(H) > 0, since

this latter condition implies that I	 is injective restricted to GH[2, 3]. The quantity
ϕ(H, ‖ · ‖Υ ) being small implies that any element of GH[2, 3] and any element of
GH[2, 3]⊥ have a small inner-product (in the metric induced by I

	). The reason that
we restrict this inner product to the second and third components of H in the quantity
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ϕ(H, ‖.‖Υ ) is that the regularization terms in the convex program (4) are only applied
to the matrices Ly and Θyx .

A natural approach to controlling the conditioning of the Fisher information around
Θ	 is to bound the quantities χ(H	, ‖ · ‖Υ ),Ξ(H	, ‖ · ‖Π), and ϕ(H	, ‖ · ‖Υ ) for
H

	 = W × T (L	
y) × T (Θ	

yx ) × S
q where W ∈ S

p is the set of diagonal matrices.
However, a complication that arises with this approach is that the varieties of low-rank
matrices are locally curved around L	

y and around Θ	
yx . Consequently, the tangent

spaces at points in neighborhoods around L	
y and around Θ	

yx are not the same as
T (L	

y) and T (Θ	
yx ). In order to account for this curvature underlying the varieties

of low-rank matrices, we bound the distance between nearby tangent spaces via the
following induced norm:

ρ(T1, T2) � max‖N‖2≤1
‖(PT1 − PT2)(N )‖2.

The quantity ρ(T1, T2) measures the largest angle between T1 and T2. Using this
approach for bounding nearby tangent spaces, we consider subspacesH′ = W×T ′

y ×
T ′
yx × S

q for all T ′
y close to T (L	

y) and for all T ′
yx close to T (Θ	

yx ), as measured by
ρ [6]. For ωy ∈ (0, 1) and ωyx ∈ (0, 1), we bound χ(H′, ‖ · ‖Υ ),Ξ(H′, ‖ · ‖Π), and
ϕ(H′, ‖ · ‖Π) in the sequel for all subspaces H′ in the following set:

U (ωy, ωyx ) �
{
W × T ′

y × T ′
yx × S

q | ρ(T ′
y, T (L	

y)) ≤ ωy

ρ(T ′
yx , T (Θ	

yx )) ≤ ωyx

}
.

(12)

We control the quantities Ξ(H′, ‖ · ‖Π) and ϕ(H′, ‖ · ‖Π) using the dual norm of
the regularizer trace(Ly) + γ ‖Θyx‖	 in (4):

Γγ (Ly,Θyx ) � max

{
‖Ly‖2, ‖Θyx‖2

γ

}
. (13)

Furthermore, we control the quantity χ(H′, ‖ · ‖Υ ) using a slight variant of the dual
norm:

Φγ (Dy, Ly,Θyx ,Θx ) � max

{
‖Dy‖2, ‖Ly‖2, ‖Θyx‖2

γ
, ‖Θx‖2

}
. (14)

As the dual norm max
{
‖Ly‖2, ‖Θyx‖2

γ

}
of the regularizer in (4) plays a central role

in the optimality conditions of (4), controlling the quantities χ(H′, Φγ ),Ξ(H′, Γγ ),
and ϕ(H′, Γγ ) leads to a natural set of conditions that guarantee the consistency of the
estimates produced by (4). In summary, given a fixed set of parameters (γ, ωy, ωyx ) ∈
R+ × (0, 1) × (0, 1), we assume that I	 satisfies the following conditions:

Assumption 1 : inf
H′∈U (ωy ,ωyx )

χ(H′, Φγ ) ≥ α, for some α > 0 (15)
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Assumption 2 : inf
H′∈U (ωy ,ωyx )

Ξ(H′, Γγ ) > 0 (16)

Assumption 3 : sup
H′∈U (ωyx ,ωyx )

ϕ(H′, Γγ ) ≤ 1 − 2

β + 1
for some β ≥ 2. (17)

For fixed (γ, ωy, ωyx ), larger value of α and smaller value of β in these assumptions
lead to a better conditioned I

	.
Assumptions 1, 2, and 3 are analogous to conditions that play an important role

in the analysis of the Lasso for sparse linear regression, graphical model selection
via the Graphical Lasso [15], and in several other approaches for high-dimensional
estimation. As a point of comparison with respect to analyses of the Lasso, the role of
the Fisher information I	 is played by AT A, where A is the underlying design matrix.
In analyses of both the Lasso and the Graphical Lasso in the papers referenced above,
the analog of the subspace H is the set of models with support contained inside the
support of the underlying sparse population model. Assumptions 1, 2, and 3 are also
similar in spirit to conditions employed in the analysis of convex relaxation methods
for latent-variable graphical model selection [6].

2.3 When do the Fisher information assumptions hold?

In this section, we provide examples of composite models (3) that satisfy Assump-
tions 1, 2 and 3 in (15) (16), and (17) for some choices of α > 0, β ≥ 2, ωy ∈
(0, 1), ωyx ∈ (0, 1) and γ > 0. Specifically, consider a population compos-
ite factor model y = A	x + B	

uζu + ε̄, where A	 ∈ R
p×q with rank(A	) =

kx ,B	
u ∈ R

p,ku , column-space(A	) ∩ column-space(B	
u) = {0}, and the random

variables ζu, ε̄, x are independent of each other and normally distributed as ζu ∼
N (0,Σζu ), ε̄ ∼ N (0,Σε̄). As described in Sect. 1.2, the properties of the compos-
ite factor model translate to algebraic properties on the underlying precision matrix
Θ	 ∈ S

p+q . Namely, the submatrix Θ	
yx has rank equal to kx and the submatrix

Θ	
y is decomposable as D	

y − L	
y with D	

y being diagonal and L	
y 
 0 having rank

equal to ku . Recall that the factor model underlying the random vector y ∈ R
p that is

induced upon marginalization of x is specified by the precision matrix of y given by

Θ̃	
y = D	

y −
[
L	
y +Θ	

yx (Θ
	
x )

−1Θ	
xy

]
. Here, L	

y +Θ	
yx (Θ

	
x )

−1Θ	
xy represents the effect

of the latent variables in the underlying factormodel.When learning a composite factor
model, this effect is decomposed into:Θ	

yx (Θ
	
x )

−1Θ	
xy—a rank kx matrix representing

the component of this affect attributed to x—and L	
y—a matrix of rank ku represent-

ing the effect of residual latent variables. There are two identifiability concerns that
arise when learning a composite factor model. First, the low rank matrices L	

y and
Θ	

yx (Θ
	
x )

−1Θ	
xy must be distinguishable from the diagonal matrix D	

y . Following pre-
vious literature in diagonal and low rank matrix decompositions [5,17], this task can
be achieved by ensuring that the column/row spaces of L	

y and Θ	
yx (Θ

	
x )

−1Θ	
xy are

incoherent with respect to the standard basis. Specifically, given a subspaceU ⊂ R
p,

the coherence of the subspace U is defined as:

μ(U ) = max
i=1,2...p

‖PU (ei )‖2�2
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where P denotes a projection operation and ei ∈ R
p denotes the i’th standard basis

vector. It is not difficult to show that this incoherence parameter satisfies the following
inequality:

dim(U )

p
≤ μ(U ) ≤ 1.

A subspace U with small coherence is necessarily of small dimension and far from
containing standard basis elements. As such, a symmetric matrix with incoher-
ent row and column spaces is low-rank and quite different from being a diagonal
matrix. Consequently, we require that the quantities μ(column-space(L	

y)) and

μ(column-space(Θ	
yxΘ

	
x
−1Θ	

xy)) are small.5 The second identifiability issue that
arises is distinguishing the low rankmatrices L	

y andΘ	
yx (Θ

	
x )

−1Θ	
xy fromone another.

This task is made difficult when the row/column spaces of these matrices are nearly
aligned. Thus, we must ensure that the row/column spaces of L	

y and Θ	
yx (Θ

	
x )

−1Θ	
xy

are sufficiently transverse (i.e., have large angles).
These identifiability issues directly translate to conditions on the population

composite factor model. Specifically, μ(column-space(L	
y)) and μ(column-space

(Θ	
yx (Θ

	
x )

−1Θ	
xy))being small translates toμ(column-space(A	)) andμ(column-space

(B	
u)) being small. Such a condition has another interpretation. It states that the effect

of x and ζu must not concentrate on any one variable of y; otherwise, this effect can
be absorbed by the random variable ε̄ in (3). The second identifiability assumption
that the row/column spaces of L	

y and Θ	
yx (Θ

	
x )

−1Θ	
xy have a large angle translates to

the angle between column spaces of A	 and B	
u being large. This assumption ensures

that the effect of x and ζu on y can be distinguished.
Having these identifiability concerns in mind, we give a stylized composite fac-

tor model (3) and numerically check that the Fisher Information Assumptions 1,
2, and 3 in (15), (16), and (17) are satisfied for appropriate choices of param-
eters. Specifically, we let p = 30, q = 2, kx = 1, and ku = 1. We let
the random variables x ∈ R

q , ζu ∈ R
ku , ε̄ ∈ R

p be distributed according to
x ∼ N (0, Iq×q), ζu ∼ N (0, Iku×ku ), and ε̄ ∼ N (0, Ip×p). We generate matri-
ces J ∈ R

p×kx , K ∈ R
q×kx with i.i.d Gaussian entries, and letA	 = J K T . Similarly,

we generate B	
u ∈ R

p×ku with i.i.d Gaussian entries. We scale the matrices A	 and
B	
u to have spectral norm equal to 0.1. Taking an instantiation of these matrices,

the smallest angle between the column spaces of A	 and B	
u is 87 degrees. Further-

more, the quantities μ(column-space(A	)) and μ(column-space(B	
u)) are 0.009 and

0.01 respectively. Thus, our stylized model satisfies the identifiability assumptions
discussed earlier in this section. Under this stylized setting, we numerically evaluate
Assumptions 1, 2, and3 in (15), (16), and (17)with aFisher information I	 that takes the
form:

I
	 =

(I + A	A	T + B	
uB	

u
T A	

A	T I
)

⊗
(I + A	A	T + B	

uB	
u
T A	

A	T I
)

5 We only need to control the coherence of the column spaces since these matrices are symmetric.
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Table 1 Ranges of γ and the
corresponding values of α and β

that satisfy Assumptions 1, 2,
and 3

γ α ≥ β ≤
(0.87, 1.04) 0.058 49

(0.89, 1.04) 0.060 24

(0.91, 1.03) 0.061 15

(0.95, 1.02) 0.065 9

We let ωy = 0.003, ωyx = 0.003 so that the largest angle between the pair of tangent
spaces T ′

y, T (L	
y) and tangent spaces T

′
yx , T (Θ	

yx ) is less than 0.1 degrees. Employing
a numerical procedure described in Section 1 of the supplementary material, we obtain
a range of values of γ, α > 0, and β ≥ 2 that satisfy Assumptions 1, 2, and 3 in (15),
(16), and (17). The values of α and β that are computed using this procedure serve
as a lower and upper bound for the optimal α and β, respectively. Indeed, an exciting
direction for future research is to develop sharper numerical or analytical techniques to
precisely characterize the optimal values of α and β. Table 1 illustrates ranges of γ and
the corresponding values of α and β that satisfy Fisher information Assumptions 1 and
3.Wenote that for all the ranges ofγ shown in this table, infH′∈U (ωy ,ωyx ) Ξ(H′) > 0.32
so that Assumption 2 is also satisfied. Examining Table 1, we observe that a larger
range of γ results in a smaller value of α and a larger value of β.

2.4 Theorem statement

We now describe the performance of the regularized maximum-likelihood programs
(4) under suitable conditions on the quantities introduced in the previous section.
Before formally stating our main result, we introduce some notation. Let σy denote
the minimum nonzero singular value of L	

y and let σyx denote the minimum nonzero
singular value of Θ	

yx . We state the theorem based on essential aspects of the condi-
tions required for the success of our convex relaxation (i.e., the Fisher information
conditions) and omit complicated constants. We specify these constants in Sect. 4.

Theorem 1 Suppose that there exists α > 0, β ≥ 2, ωy ∈ (0, 1), ωyx ∈ (0, 1),
and the choice of parameter γ so that the population Fisher information I

	 sat-
isfies Assumptions 1, 2, and 3 in (15), (16) and (17). Let m � max{1, 1

γ
}, and

m̄ � max{1, γ }. Furthermore, suppose that the following conditions hold:

1. n �
[

β2

α2m
6
]
(p + q)

2. λn ∼
[

β
α
m2

]√
p+q
n

3. σy �
[

β

α5ωy
m4

]
λn

4. σyx �
[

β

α5ωyx
m5m̄2

]
λn

Then with probability greater than 1 − 2 exp
{

− C̃ prob
α2

β2m4 nλ2n

}
, the optimal

solution (Θ̂, D̂y, L̂ y) of (4) with i.i.d. observations D+
n = {y(i), x (i)}ni=1 of (y, x)

satisfies the following properties:
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1. rank(L̂ y) = rank(L	
y), rank(Θ̂yx ) = rank(Θ	

yx )

2. ‖D̂y − D	
y‖2 � mm̄

α2 λn, ‖L̂ y − L	
y‖2 � mm̄

α2 λn, ‖Θ̂yx − Θ	
yx‖2 � mm̄

α2 λn, ‖Θ̂x −
Θ	

x‖2 � mm̄
α2 λn

Weoutline the proof of Theorem 1 in Sect. 4. The quantities α, β, ωy, ωyx as well as
the choices of parameters γ play a prominent role in the results of Theorem 1. Indeed
larger values of α,ωy, ωyx and smaller values of β (leading to a better conditioned
Fisher information even for large distortions around the tangent space T (L	

y) and
T (Θ	

yx ) lead to less stringent requirements on the sample complexity, on the minimum
nonzero singular value of σy of L	

y , and on the minimum nonzero singular value σyx

of Θ	
yx .

2.5 Identifying an accurate factor model

Our objective is to learn a composite factor model that is close to a factor model
underlying y. As such a factor model is often not available in advance, we present
an approach for learning a factor model (1) using observations of y. In particular, we
fit observations Dn = {y(i)}ni=1 to the factor model (1) using the following convex
relaxation:

(
ˆ̃Dy,

ˆ̃Ly) = arg min
D̃y ,L̃ y∈Sp

D̃y−L̃ y�0

−�(D̃y − L̃ y;Dn) + λ̃n trace(L̃ y)

s.t. L̃ y 
 0, D̃y is diagonal. (18)

We note that the convex program (18) is a specialization of the convex program (4)
for learning a composite factor model. The parameter λ̃n in (18) provides a tradeoff
between fidelity of the model to the observations and the complexity of the model (i.e.,
the number of latent variables). In contrast tominimum-trace factor analysis—inwhich
the objective is to decompose a covariance matrix as the sum of a diagonal matrix and
a low-rank matrix [11,18–20]—the regularized maximum-likelihood convex program
(18) fits factor models by decomposing a precision matrix as the difference between a
diagonal matrix and a low-rank matrix. Although the focus of this paper is not about
learning a factor model accurately, we characterize the consistency of the convex
relaxation (18) underAssumptions on the populationFisher informationwith respect to
y. Specifically, let α̃ and β̃ denote analogous quantities toα andβ in Fisher information
Assumptions 1 and 3. Let σ denote the minimum nonzero singular value of L	

y +
Θ	

yx (Θ
	
x )

−1Θ	
xy . Then, the convex program (18) succeeds under appropriate Fisher

information conditions and n �
[

β̃2

α̃2

]
p, λ̃n ∼ β̃

α̃

√
p
n , and σ � β̃

α̃5ω̃y
λ̃n . We present

the complete technical discussion in Section 6.6 of the supplementary material.

3 Experimental results

In this section, we demonstrate the utility of Algorithm 1 for interpreting latent vari-
ables in factor models both with synthetic and real financial asset data.
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3.1 Synthetic simulations

We give experimental evidence for the utility of Algorithm 1 on synthetic examples.
Specifically, we generate a composite factor model (3) y = A	x+B	

uζu+ ε̄ as follows:
we fix p = 60 and q = 10. We let the random variables x ∈ R

q , ζu ∈ R
ku , ε̄ ∈ R

p be
distributed according to x ∼ N (0, Iq×q), ζu ∼ N (0, Iku×ku ), and ε̄ ∼ N (0, Ip×p).
We generate matrices J ∈ R

p×kx , K ∈ R
q×kx with i.i.d Gaussian entries, and let

A	 = J K T . Similarly, we generate B	
u ∈ R

p×ku with i.i.d Gaussian entries. This
approach generates a factor model (1) with k = kx + ku . The composite factor model
translates to a joint precision matrix Θ	, with the submatrix Θ	

y = D	
y − L	

y where
D	

y is diagonal, rank(L
	
y) = ku , and rank(Θ	

yx ) = kx . We scale matricesA	 and B	
u to

have spectral norm equal to τ . The value τ is chosen to be as large as possible without
the condition number ofΘ	 exceeding 7 (this is imposed for the purposes of numerical
conditioning). We obtain four models with (kx , ku) = (1, 1), (kx , ku) = (2, 2), and
(kx , ku) = (3, 3), and (kx , ku) = (4, 4).

For the purposes of this experiment, we assume that the input to Algorithm 1 is
the oracle factor model specified by the parameters (D	

y, L
	
y + Θ	

yx (Θx )
−1Θ	

xy), and
demonstrate the success of steps 2–3 of Algorithm 1. In particular, for each model,
we generate n samples of responses y and covariates x , and use these observations
as input to the convex program (4). The regularization parameters λn, γ are cho-
sen so that the estimates (Θ̂, L̂ y, D̂y) satisfy (i) rank(L	

y + Θ	
yx (Θ

	
x )

−1Θ	
xy) =

rank(L̂ y)+rank(Θ̂yxΘ̂
−1
x Θ̂xy), (i i) column-space(Θ̂yx )∩column-space(L̂ y) = {0},

and the deviation from the underlying factor model max{‖D	
y − D̂y‖2/‖D	

y‖2, ‖L	
y −

[L̂ y + Θ̂yxΘ̂
−1
x Θ̂xy]‖2/‖L	

y‖2} is minimized. Figure 1a shows the magnitude of the
deviation for different values of n. Furthermore, for each fixed n, we use the choice
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Fig. 1 Synthetic data: plot shows the error (defined in the main text) and probability of correct structure
recovery in composite factor models. The four models studied are (i) (kx , ku) = (1, 1), (i i) (kx , ku) =
(2, 2), and (i i i) (kx , ku) = (3, 3), and (iv) (kx , ku) = (4, 4). For each plotted point in (b), the probability
of structurally correct estimation is obtained over 10 trials. aComposite factor model error and b composite
factor model structural recovery
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of regularization parameters (λn, γ ) to compute the probability of obtaining struc-
turally correct estimates of the composite model (i.e., rank(L̂ y) = rank(L	

y) and

rank(Θ	
yx ) = rank(Θ̂y)). These probabilities are evaluated over 10 experiments and

are shown in Fig. 1b. These results support Theorem 1 that given (sufficiently many)
samples of responses/covariates, the convex program (4) provides accurate estimates
of the composite factor model (3).

3.2 Experimental results on financial asset data

We consider as our responses y the monthly stock returns of p = 45 companies from
the Standard and Poor index over the period March 1982 to March 2016, which leads
to a total of n = 408 observations. We then obtain measurements of 13 covariates that
can plausibly influence the values of stock prices: consumer price index, producer price
index, EUR to USD exchange rate, federal debt (normalized by GDP), federal reserve
rate, GDP growth rate, government spending (normalized by GDP), home ownership
rate, industrial production index, inflation rate, mortgage rate, oil import, and saving
rate. Of these 13 covariates, the covariates federal debt, government spending, GDP
growth rate, and home ownership rate are only available at a quarterly scale. Monthly
observations are available for the remaining covariates. Evidently, many more obser-
vations of y are available than of (y, x) jointly. As described in Sect. 1.3, this scenario
motivates us to first learn a factor model using the monthly observations of y. We then
associate semantics to the latent variables of this factor model by fitting a composite
factor model to the more limited joint observations of (y, x).

For the purpose of learning a factor model, we set aside a random subset of ntrain =
308 of the total n = 408 observations as a training set and the remaining subset
of ntest = 100 as the test set. We let Dtrain = {y(i)}ntraini=1 and Dtest = {y(i)}ntesti=1 be
the corresponding training and testing data sets respectively. We use the observations
Dtrain as input to the convex program (18) where the regularization parameter λ̃n is
chosen via cross-validation. Concretely, for a particular choice of λ̃n , we supplyDtrain
as input to the convex program (18), and solve (18) to obtain a factormodel specified by

(
ˆ̃Dy,

ˆ̃Ly). We then compute the average log-likelihood over the testing setDtest using

the distribution specified by the precision matrix ˆ̃Dy − ˆ̃Ly . We perform this procedure

as we vary λ̃n from 0.04 to 4 in increments of 0.004. Figure 2 shows a plot of rank( ˆ̃Ly))

(i.e., number of latent factors) versus average log-likelihood performance on the testing
set.Notice that fixing the number of latent factors does not lead to a unique factormodel
as varying the regularization parameter λ̃n may lead to a change in the estimatedmodel,

but no change in its structure (i.e., rank( ˆ̃Ly) remains the same). As larger values of
average log-likelihood are indicative of a better fit to test samples, these results suggest
that 10 latent factors influence stock prices. We thus focus on associating semantics
to the factor model with the largest average log-likelihood performance that consists
of 10 latent factors.

We nowproceedwith the steps 2–3 ofAlgorithm1. To obtain a consistent set of joint
observations (y, x) to employ as input to the convex program (4), we apply a 3-month
averaging for each variable that is available at a monthly scale (i.e., the responses y
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Fig. 2 Number of latent factors
versus average log-likelihood
over testing set. These results are
obtained by sweeping over
parameters λ̃n ∈ [0.04, 4] in
increments of 0.004 and solving
the convex program (18)
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Table 2 Number of composite
factor models with
rank(Θ̂yx ) = 1, . . . , 5 that
satisfy the requirements of step 2
in Algorithm 1 (for the factor
model with 10 latent variables)

(Rank(Θ̂yx ), rank(L̂ y)) No. of models satisfying
conditions of step 2

(1, 9) 167

(2, 8) 196

(3, 7) 218

(4, 6) 110

(5, 5) 98

and the covariates x with the exception of the four specified earlier) to obtain quarterly
measurements. This leads to n = 137 quarterly measurements. We denote the quar-
terly responses and covariates by ỹ and x̃ , respectively. We let D+

n = {(ỹ(i), x̃ (i))}ni=1
be the set of joint quarterly observations of response ỹ and covariates x̃ . Using obser-
vationsD+

n as input to the convex program (4), we perform an exhaustive sweep over
parameter space (λn, γ ) to learn composite models with estimates (Θ̂, D̂y, L̂ y) such
that rank(Θ̂) = 0, 1, 2, . . . 10, and rank(L̂ y) = 0, 1, 2, . . . 10. As we are interested
comparing these composite models to the factor model with 10 latent variables, we
finely grid the parameter space (λn, γ ) so that there are a large number of models
for which rank(Θ̂) + rank(L̂ y) is equal to 10. Among these models, we restrict to
those that satisfy the conditions of step 3 of Algorithm 1. Table 2 shows the num-
ber of models that satisfy these conditions for rank(Θ̂yx ) = 1, . . . , 5. For each
d = 1, . . . , 5, we then identify the composite factor model which minimizes the

quantity max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂ y − Θ̂yxΘ̂
−1
x Θ̂xy]‖2/‖ ˆ̃Ly‖2}. Table 3

shows the values of this quantity for rank(Θ̂yx ) = 1, . . . , 5 with respect to the factor
model with 10 latent variables.

Examining Table 3, we note that there is large increase in deviation as rank(Θ̂yx ) is
increased above 2. Thus, we consider the composite factor model with rank(Θ̂yx ) = 2
to be an acceptable approximation of the underlying factor model. As a final step
of the algorithm, we investigate the properties of the two-dimensional row-space of
Θ̂yx to shed some light on those covariates that appear to play a significant role in
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Table 3 Deviation of the
candidate composite factor
model from the factor model
consisting of 10 latent variables

(rank(Θ̂yx ), rank(L̂ y)) max{‖ ˆ̃Dy− D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly−
[L̂ y + Θ̂yx Θ̂

−1
x Θ̂xy ]‖2/‖ ˆ̃Ly‖2}

(1, 9) 0.39

(2, 8) 0.40

(3, 7) 0.47

(4, 6) 0.51

(5, 5) 0.55

Table 4 Strength of each
covariate in the composite factor
model with 2-dimensional
projection of covariates and 8
latent variables

Covariate Strength

Exchange rate 0.18

Government expenditures 0.14

GDP growth rate 0.11

Home ownership rate 0.09

Industrial production rate 0.08

PPI 0.08

CPI 0.07

Federal debt 0.06

Saving rate 0.04

Inflation rate 0.04

Federal reserve rate 0.03

Oil import 0.03

Mortgage rate 0.01

capturing some of the latent phenomena in the 10-factor model. In particular, for the
composite factor model with (rank(Θ̂yx ), rank(L̂ y)) = (2, 8) (second row in Table 3),
we let V ∈ R

13×2 denote a matrix with orthogonal, unit-norm columns such that the
columns of V form a basis for the row space of Θ̂yx (such a matrix may be computed,
for example, via the singular value decomposition). Thus, the projection of x onto
the row-space of Θ̂yx—given by V T x—represents the interpretable component of the
latent variables. We then consider the Euclidean-squared-norm of the i th row of V ,
as this specifies the relative strength of the i th covariate. As shown in Table 4, all
covariates have some contribution (as we allow general linear combinations of the
covariates x in the composite factor model (3)). However, the covariates exchange
rate, government expenditures, and GDP growth rate seem to be the most relevant,
and the covariates mortgage rate and oil import seem to be the least relevant.

4 Proof strategy of Theorem 1

We first begin by specifying the constants in Theorem 1. Let ψ � ‖Θ	−1‖2, C̃ =
112ψ3, C̃0 = max{ 1

196ψ , 7
12ψ, 1

2ψ4 }, C̃samp = C̃C̃0, C̃1 = 148ψ2 + 24ψ4, C̃σ =
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84ψ4(24ψ4 + 148ψ2)2, and C̃ prob = 1
25088ψ6 . The precise conditions on the number

of observations, the regularization parameter λn , minimum nonzero singular value of
L	
y and minimum nonzero singular value of Θ	

yx for Theorem 1 are given by:

1. n ≥ C̃2
samp

[
β4

α2m
6(p + q)

]

2. λn ∈
[
C̃

{
β
α
m2

√
p+q
n

}
, 1

βmC̃0

]

3. σy ≥ C̃σ

[
β

α5ωy
m4m̄λn

]

4. σyx ≥ C̃σ

[
β

α5ωyx
m5m̄3λn

]

Moreover, under these conditions, with probability greater than 1 − 2 exp
(

− C̃ prob

α2

m4β2 nλ2n

)
, the optimal solution of the convex program (4) with estimates (Θ̂, L̂ y, D̂y)

satisfies the following properties:

1. rank(L̂ y) = rank(L	
y), rank(Θ̂yx ) = rank(Θ	

yx )

2. ‖D̂y − D	
y‖2 ≤ C̃1

mm̄
α2 λn, ‖L̂ y − L	

y‖2 ≤ C̃1
mm̄
α2 λn, ‖Θ̂yx − Θ	

yx‖2 ≤ C̃1

mm̄2

α2 λn, ‖Θ̂x − Θ	
x‖2 ≤ C̃1

mm̄
α2 λn

Now under assumptions of Theorem 1, we construct appropriate primal feasible
variables (Θ̂, D̂y, L̂ y) that satisfy the conclusions of the theorem—i.e., Θ̂yx , L̂ y are
low-rank (with the same ranks as the underlying population quantities Θ	

yx and L	
y)—

and for which there exists a corresponding dual variable certifying optimality. This
proof technique is sometimes also referred to as a primal–dual witness or certificate
approach [23]. The high-level proof strategy is similar in spirit to the proofs of con-
sistency results for sparse graphical model recovery [15] and latent variable graphical
model recovery [6], although our convex program and the conditions required for
its success are different from these previous results. Consider the following convex
program

(Θ̂, D̂y, L̂ y) = arg min
Θ∈Sp+q , Θ�0

Dy ,Ly∈Sp

−�(Θ;D+
n ) + λn[γ ‖Θyx‖	 + ‖Ly‖	]

s.t. Θy = Dy − Ly, Dy is diagonal (19)

Comparing (19) with the convex program (4), the difference is that we no longer
constrain Ly to be a positive semidefinite matrix. In particular, if Ly 
 0, then the
nuclear norm of the matrix Ly in the objective function of (19) reduces to the trace
of Ly . We show in the supplementary material that with high probability, the matrix
L̂ y is positive semidefinite. Standard convex analysis states that (Θ̂, D̂y, L̂ y) is the
solution of the convex program (19) if there exists a dual variable Λ ∈ S

p with the
following optimality conditions being satisfied:

[Σn − Θ̂−1]y + Λ = 0; [Σn − Θ̂−1]y ∈ λn∂‖L̂ y‖	

[Σn − Θ̂−1]yx ∈ −λnγ ∂‖Θ̂yx‖	; [Σn − Θ̂−1]x = 0

Θ̂y = D̂y − L̂ y; D̂y is diagonal; Λi,i = 0 for i = 1, 2, . . . p
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Recall that elements of the subdifferential with respect to nuclear norm at a matrix M
have the key property that they decompose with respect to the tangent space T (M).
Specifically, the subdifferential with respect to the nuclear norm at a matrix M with
(reduced) SVD given by M = UQV T is as follows:

N ∈ ∂‖M‖	 ⇔ PT (M)(N ) = UV T , ‖PT (M)⊥(N )‖2 ≤ 1,

whereP denote a projection operator. Let us denote the subspaceW ∈ S
p as the set of

diagonal matrices with nonnegative entries. Let SVD of L̂ y and Θ̂yx be given by L̂ y =
Ū Q̄V̄ ′ and Θ̂yx = Ŭ Q̆V̆ ′ respectively, and Z � (0, λnŪ V̄ ′, −λnγŬ V̆ ′, 0).
Setting Λ = [Σn − Θ̂−1]Y,off diagonal, and letting H = W × T (L̂ y) × T (Θ̂yx ) × S

q ,
the optimality conditions of (19) can be reduced to:

1. PHF†(Σn − Θ̂−1) = Z
2. ‖PT (L̂ y)⊥(Σn − Θ̂−1)y‖2 < λn ; ‖PT (Θ̂yx )⊥(Σn − Θ̂−1)yx‖2 < λnγ

Our analysis proceeds by constructing variables (Θ̂, D̂y, L̂ y) that satisfy the opti-
mality conditions specified above. Consider the optimization program (19) with
additional (non-convex) constraints that Ly and Θyx belong to algebraic variety of
low rank matrices specified by L	

y and Θ	
yx . While this new program is non-convex, it

has a very interesting property that at the global optimal solution (and indeed at any
locally optimal solution) L̂ y and Θ̂yx are smooth points of their respective algebraic
varieties. This observation suggests that the Lagrange multipliers corresponding to
the additional variety constraints belongs to T (L̂ y)

⊥ and T (Θ̂yx )
⊥ respectively. We

show under suitable conditions that (Θ̂, D̂y, L̂ y) also satisfy the second optimality
condition of (19) corresponding to the tangent spaces T (L̂ y)

⊥ and T (Θ̂yx )
⊥. Thus

(Θ̂, D̂y, L̂ y) is a unique solution of (4) and as constructed, is algebraically consistent
(i.e., rank(L̂ y) = rank(L	

y) and rank(Θ̂yx ) = rank(Θ	
yx ))

4.1 Results proved in the supplementary material

To ensure that the estimate Θ̂ is close to the population quantity Θ	, the quantity
E = Θ̂ − Θ	 must be small. Since the optimality conditions of (19) are stated in
terms of Θ̂−1, we bound the deviation between Θ̂−1 and Θ	−1. Specifically, the
Taylor series expansion of Θ̂−1 around Θ	 is given by:

Θ̂−1 = (Θ	 + E)−1 = Θ	−1 + Θ	−1EΘ	−1 + RΣ	(E)

where, RΣ	(E) = Σ	
[ ∑∞

k=2(−EΘ	)k
]
. Recalling that I	 = Θ	−1⊗Θ	−1, we note

that Θ̂−1−Θ	−1 = I
	(E)+ RΣ	(E). In Sect. 2.2, we imposed Assumptions 1, 2, and

3 in (15), (16), and (17) on I	. These assumptions allow us to control I	(E) when E is
restricted to certain directions. We bound the remainder term RΣ	(E) in Proposition 1
where E is restricted to live in a certain space. Specifically, consider the following
constrained optimization program:
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(Θ̃, D̃y, L̃ y) = argminΘ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−�(Θ;Dn+) + λn[‖Ly‖	 + γ ‖Θyx‖	]

s.t. Θy = Dy − Ly, (Dy, Ly,Θyx ,Θx ) ∈ H
′ (20)

Here H′ = W × T ′
y × T ′

yx × S
q , where T ′

y is a subspace in S
p, and T ′

yx is a subspace

in Rp×q . Let Δ = (D̃y − D	
y, L̃ y − L	

y, Θ̃yx −Θ	
yx , Θ̃x −Θ	

x ) denote the error in the

estimated variables. Furthermore, let Δ1 = D̃y − D	
y,Δ2 = L̃ y − L	

y and so forth. In
the following proposition, we bound the remainder term RΣ	(F(Δ)) defined earlier.

Proposition 1 Let ψ � ‖Θ	−1‖2 and C ′ = (3 + γ )ψ . If Φγ [Δ] ≤ 1
2C ′ , then

Φγ [F†RΣ	(F(Δ))] ≤ 2mψC ′2Φγ [Δ]2.
Notice the bound on RΣ	(F(Δ)) is dependent on the error termΦγ [Δ]. In the follow-
ing proposition,we bound this error so thatwe can control the remainder term. Suppose
that for α > 0, β ≥ 2, ωy ∈ (0, 1), and ωyx ∈ (0, 1), the Fisher information condi-
tions (15), (16), and (17) are satisfied. Suppose we let T ′

y and T ′
yx be tangent spaces

to the low-rank matrix varieties and ρ(T ′
y, T (L	

y)) ≤ ωy and ρ(T ′
yx , T (Θ	

yx )) ≤ ωyx .
Let En = Σ	 − Σn denote the difference between the true joint covariance and the
sample covariance and letCT = (PT ′

y
⊥(L	

y),PT ′
yx

⊥(Θ	
yx )). The proof of the following

result uses Brouwer’s fixed-point theorem, and is inspired by the proof of a similar
result in [6,15].

Proposition 2 Let κ � β(3 + 16
α

ψ2m). Consider the following two quantities:

r1 � max
{ 4

α

(
Φγ [F†En] + Φγ [F†

I
	FCT] + λn

)
, Φγ [CT ]

}
(21)

r2 � 4

α

(
Φγ [F†En] + Φγ [F†

I
	FCT]

)
(22)

Define ru1 � max
{
4
α

(
2λn
κ

+ λn

)
, λn

κ

}
and ru2 � 8λn

ακ
. Suppose that (1) r1 ≤ ru1 , (2)

r2 ≤ ru2 , and (3) ru1 ≤ min{ 1
4C ′ , α

32max{1+ κ
2 , α

8 }2mψC ′2 }, then max{‖Δ2‖2, 1
γ
‖Δ3‖2} ≤

2ru1 and max{‖Δ1‖2, ‖Δ4‖2} ≤ ru2 . Consequently, Φγ (Δ) ≤ 2ru1 .

In the following proposition, we prove algebraic correctness of program (20).
The statement of this proposition requires us to define some constants. Let

C ′
1 = 2m̄m

κα

(
6ψ2 + 5

α
ψ2 + 46ψ2κ

α
+ κ

)
+ 1

ψ2 ,C
′
2 = 4

α
( 1
2κ + 1),C ′

σy
=

C ′2
1 ψ2 max{2κ +1, 2

C ′
2ψ

2 +1},C ′
σyx

= C ′2
1 ψ2 max{2κ + κ

γ
, 2
C ′
2ψ

2 + κ
γ
}, and C ′

samp =
max{ 1

8mψκ
, α

16C ′( 2
κ
+1)

, α2

128( 2
κ
+1)max{1+ κ

2 , α
8 }2mψ2C ′2 ,

1
4C ′

1C
′ }.

Proposition 3 Suppose that σy ≥ m
ω
C ′

σy
λn, σyx ≥ mγ 2C ′

σyx
λn. Further, suppose

that λn is chosen so that λn ≤ 1
C ′
samp

. Then, there exists tangent space T ′
y ⊂ S

p in the

rank-ku variety (ku = rank(L	
y)) and tangent space T ′

yx ⊂ R
p×q in rank kx -variety

(kx = rank(Θ	
yx )) where ρ(T ′

y, T (L	
y)) ≤ ωy, ρ(T ′

yx , T (Θ	
yx )) ≤ ωyx such that the

corresponding solution (Θ̃, D̃y, L̃ y) of (20) satisfies the following properties:
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1. rank(L̃ y) = rank(L	
y) and rank(Θ̃yx ) = rank(Θ	

yx )

2. Letting CT = (0 , PT ′
y
⊥(L	

y) , PT ′
yx

⊥(Θ	
yx ) , 0), we have thatΦγ [F†

I
	F(CT )] ≤

λn
κ
and Φγ [CT ] ≤ 4

α
(1 + 2

κ
)λn

3. Φγ [Δ] ≤ 2C ′
1λn

4. L̃ y 
 0

Furthermore, suppose that Φγ (F†En) ≤ λn
κ

and Φγ [F†RΣ	(F(Δ))] ≤ λn
κ
. Then

the tangent space constraint (Dy, Ly,Θyx ,Θx ) ∈ H
′ in (20) is inactive, so that

(Θ̃, D̃y, L̃ y) is the unique solution of the original convex program (4).

Thus far, the analysis of the convex program so has been deterministic in nature. In
the following proposition, we present the probabilistic component of our analysis by
showing the rate at which the sample covariancematrixΣn converges toΣ	 in spectral
norm. This result is well-known and is a specialization of a result proven by [7].

Proposition 4 Suppose that the number of observed samples obeys n ≥ 64κ2m2

ψ2C ′2
samp(p + q), and the regularization parameter λn is chosen so that: λn ∈[

8ψκm
√

p+q
n , 1

C ′
samp

]
. Then, with probability greater than 1− 2exp

{
− nλ2n

128κ2m2ψ2

}
,

Φγ [F†En] ≤ λn
κ
.

4.2 Proof of Theorem 1

We first relate the constants C̃samp, C̃, C̃0, C̃1, and C̃σ of Theorem 1 to the constants

C ′
samp,C

′
1C

′
σy
, andC ′

σyx
. In particular, using the properties that β ≥ 2 and ψ2

α
≥ 1

2 and

m̄,m ≥ 1, one can check that: C̃0 ≥ 1
βmC

′
samp, C̃σ ≥ α5

βm3m̄
C ′

σy
, C̃σ ≥ α5

βm4m̄
C ′

σyx
,

and C̃1 ≥ α2

mm̄C
′
1. Furthermore, we have that C̃ ≥ α

βm 8ψκ . Using these relations,
one can also check that the assumptions of Theorem 1 imply that the assumptions of
Proposition 3 and Proposition 4 are satisfied. Thus we can conclude that the optimal
solution (Θ̃, D̃y, L̃ y) of (20) (with a particular choice of tangent spaces T ′

y and T ′
yx )

satisfy results of Proposition 3. Further, by appealing to Proposition 4, we have that
Φγ (F†En) ≤ λn

κ
. If we show that Φγ [F†RΣ	(Δ)] ≤ λn

κ
, then we conclude that

the unique optimum (Θ̂, D̂y, L̂ y) of the original convex program (4) coincide with
the optimum (Θ̃, D̃y, L̂ y) of the convex program (20). Thus, we conclude that the
estimates of (4) have structurally correct structure (i.e., rank(L̂ y) = rank(L	

y) and

rank(Θ̂yx ) = rank(Θ	
yx )) and have their error bounded by Φγ (Δ) ≤ 2C ′

1λn . To show

that Φγ [F†RΣ	(Δ)] ≤ λn
κ
, we note that

4

α

(
Φγ [F†En] + Φγ [F†

I
	FCT ] + λn

)
≤ 4

α

(λn

κ
+ λn

κ
+ λn

)
≤ 4λn

α

( 2
κ

+ 1
)

≤ min
{ 1

4C ′ ,
α

32max{1 + κ
2 , α

8 }2mψC ′2
}
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Here, we used the bound on Φγ [F†
I
	FCT ] provided by Proposition 3 and the bound

on λn . Furthermore, appealing to Proposition 3 once again, we haveΦγ [CT ] ≤ 4
α
(1+

2
κ
)λn ≤ min{ 1

4C ′ , α
16mψC ′2 }. Thus Proposition 2 provides us with the bound Φγ [Δ] ≤

2C ′
1λn ≤ 1

2C ′ . We subsequently apply the results of Proposition 1 to obtain:

Φγ [F†RΣ	(F(Δ))] ≤ 2mψC ′2Φδ,γ [Δ]2 ≤
[
2mψC ′2C ′2

1 λn

]
λn ≤ λn

κ

The last inequality follows from the bound on λn .

5 Discussion

In this paper we describe a new approach for interpreting the latent variables in a factor
model. Our method proceeds by obtaining observations of auxiliary covariates that
may plausibly be related to the observed phenomena, and then suitably associating
these auxiliary covariates to the latent variables. The procedure involves the solutions
of computationally tractable convex optimization problems,which are log-determinant
semidefinite programs that can be solved efficiently. We give both theoretical as well
as experimental evidence in support of our methodology. Our technique generalizes
transparently to other families beyond factor models such as latent-variable graphical
models [6], although we do not pursue these extensions in the present article.
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1 A Numerical Approach for Verifying Assumptions 1, 2, and 3
(main paper)

We begin by considering Assumption 1 in (15)(main paper). Let
f1 , 2 max{√p,

√
2ku,
√

2kxγ,
√
q}, f2 , max{

√
2ku,
√

2kxγ} and

ω , max{ωy, ωyx}. Let Z = (Z1, Z2, Z3, Z4) ∈ H′ with Φγ(Z1, Z2, Z3, Z4) = 1. It is straightforward
to check that:

Φγ [PH′F†I?FPH′(Z1, Z2, Z3, Z4)] ≥ f−1
1 σmin(PH?F†I?FPH?)

− max
{

1,
1

γ

}
(
√

3ω + ω +
√

3ω2)f2ψ
2 , T1

Notice that the quantity σmin(PH?F†I?FPH?) (and henceforth the quantity T1) is computable given
the population model. Thus a trivial lower bound for α is given by:

inf
H′∈U(ωy ,ωyx)

χ(H′,Φγ) ≥ α ≥ T1

We now consider Assumption 2 in (16) (main paper). Let Z = (Z1, Z2) ∈ H[2, 3]′ with
Γγ(Z1, Z2) = 1. Using triangle inequality, it is straightforward to check the following bound:

Γγ [PH[2,3]′G†I?GPH[2,3]′(Z1, Z2)] ≥ min
{

1,
1

γ

}
(
√

3f2)−1

σmin(PH[2,3]?G†I?GPH[2,3]?)

− max
{

1,
1

γ

}
(
√

3ω + ω +
√

3ω2)f2ψ
2 , T2

Notice that the quantity T2 is computable giving the population model. Then,

inf
H′∈U(ωy ,ωyx)

Ξ(H′,Γγ) ≥ T2

∗Email: ataeb@caltech.edu, venkatc@caltech.edu
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Now we consider Assumption 3 in (17) (main paper). Using triangle inequality, it is straightforward
to check that:

Γγ [PH[2,3]′⊥G
†I?GPH[2,3]′(Z1, Z2)] ≤

√
3f2 max

{
1,

1

γ

}
σmax(PH[2,3]?⊥G

†I?GPH[2,3]?)

+ max
{

1,
1

γ

}
(
√

3ω + ω +
√

3ω2)f2ψ
2 , T3

Similarly, the quantity T3 can be computed given the population model. Then, an upper bound
for ϕ(H′,Γγ) is given by:

sup
H′∈U(ωyx,ωyx)

ϕ(H′,Γγ) ≤ 1− 2

1 + β
≤ T3

T2
=⇒ β ≤ 2

1− T3
T2

− 1

2 Proof of Proposition 1 (main paper)

Proof. We note that:

‖∆‖2 ≤ ‖∆Dy‖2 + ‖∆Ly‖2 + ‖∆Θyx‖2 + ‖∆Θx‖2 ≤ (3 + γ)Φγ(∆)

Furthermore, recall that

RΣ?(F(∆)) = Σ?−1
[ ∞∑
k=2

(−F(∆)Σ?−1)k
]
.

Using this observation and some algebra, we have that:

Φγ [F†RΣ?(F(∆))] ≤ mψ
[ ∞∑
k=2

(ψ‖∆‖2)k
]
≤ mψ3 (3 + γ)2Φγ [∆]2

1− (3 + γ)Φγ [∆]ψ

≤ 2mψC ′2Φγ [∆]2

3 Proof of Proposition 2 (main paper)

Proof. The proof of this result uses Brouwer’s fixed-point theorem, and is inspired by the proof of
a similar result in [5, 2]. The optimality conditions of (20) (main paper) suggest that there exist
Lagrange multipliers QDy ∈ W, QTy ∈ T ′y

⊥, and QTyx ∈ T ′yx
⊥ such that

[Σn − Θ̃−1]y +QDy = 0; [Σn − Θ̃−1]y +QTy ∈ λn∂‖L̃y‖?
[Σn − Θ̃−1]yx +QTyx ∈ −λnγ∂‖Θ̃yx‖?; [Σn − Θ̃−1]x = 0

Letting the SVD of L̃ and Θ̃yx be given by L̃y = ŪD̄V̄ ′ and Θ̃yx = ŬD̆V̆ ′ respectively, and
Z , (0, λnŪ V̄

′, −λnγŬ V̆ ′, 0), we can restrict the optimality conditions of (15) (main paper)
to the space H′ to obtain, PH′F†(Σn − Θ̃−1) = Z. Further, by appealing to the matrix inversion
lemma, this condition can be restated as PHMF†(En − RΣ?(F∆) + I?F(∆)) = Z. Based on the

2



Fisher information assumption 1 in (15) (main paper), the optimum of (20) (main paper) is unique
(this is because the Hessian of the negative log-likelihood term is positive definite restricted to the
tangent space constraints). Moreover, using standard Lagrangian duality, one can show that the
set of variables (Θ̃, D̃y, L̃y) that satisfy the restricted optimality conditions are unique. Consider
the following function S(δ) restricted to δ ∈ W × T ′y × T ′yx × Sq with ρ(T (L?y), T

′
y) ≤ ωy and

ρ(T (Θ?
yx), T ′yx) ≤ ωyx:

S(δ) = δ − (PH′F†I?FPH′)−1
(
PH′F†[En − RΣ?F(δ + CT)

+I?F(δ + CT)]− Z
)

The function S(δ) is well-defined since the operator PH′F†I?FPH′ is bijective due to Fisher infor-
mation assumption 1 in (15) (main paper). As a result, δ is a fixed point of S(δ) if and only if
PH′F†[En−RΣ?(F(δ+CT))+ I?F(δ+CT)] = Z. Since the pair (Θ̃, D̃y, L̃y) are the unique solution
to (20) (main paper), the only fixed point of S is PH′ [∆]. Next we show that this unique optimum
lives inside the ball Bru1 ,ru2 = {δ | max{‖δ2‖2, 1

γ ‖δ3‖2} ≤ ru1 ,max{‖δ1‖2, ‖δ4‖2} ≤ ru2 δ ∈ H′}. In
particular, we show that under the map S, the image of Bru1 ,ru2 lies in Bru1 ,ru2 and appeal to Brouwer’s
fixed point theorem to conclude that PH′ [∆] ∈ Bru1 ,ru2 . For δ ∈ Bru1 ,ru2 , the first component of S(δ),
denoted by S(δ)1, can be bounded as follows:

‖S(δ)1‖2 =
∥∥∥[(PH′F†I?FPH′)−1

(
PH′F†[En −RΣ?(F(δ + CT))

+ I?FCT ] + Z
)]

1

∥∥∥
2
≤ 2

α

[
Φγ [F†(En + I?F(CT))]

]
+

2

α
Φγ [F†RΣ?(δ + CT )] ≤ ru2

2
+

2

α
Φγ [F†RΣ?(δ + CT )]

The first inequality holds because of Fisher Information Assumption 1 in (15) (main paper), and the
properties that Φγ [PHM(.)] ≤ 2Φγ(.) (since projecting into the tangent space of a low-rank matrix
variety increases the spectral norm by a factor of at most two) and Φγ(Z) = λn. Moreover, since
ru1 ≤ 1

4C′ , we have Φγ(δ + CT) ≤ Φγ(δ) + Φγ(CT) ≤ 2ru1 ≤ 1
2C′ . Moreover, ru1 ≤ ru2 max{1 + κ

2 ,
α
8 }.

We can now appeal to Proposition 1 (main paper) to obtain:

2

α
Φγ [F†RΣ?(δ + CT)] ≤ 4

α
mψC ′2[Φγ(δ + CT)]2

≤ 16

α
mψC ′2(ru2 )2 max{1 +

κ

2
,
α

8
}2

≤ ru2
2

Thus, we conclude that ‖S(δ)1‖2 ≤ ru2 . Similarly, we check that:

‖[S(δ)2]‖2 =
∥∥∥[(PH′F†I?FPH′)−1

(
PH′F†[En −RΣ?(F(δ + CT))

+ I?FCT ] + Z
)]

2

∥∥∥
2
≤ 2

α

[
Φγ [F†(En + I?F(CT)] + λn

]
+

2

α
Φγ [F†RΣ?(δ + CT )] ≤ ru1

2
+

2

α
Φγ [F†RΣ?(δ + CT )] ≤ ru1

Using a similar approach, we can conclude that 1
γ ‖S(δ)3‖2 ≤ ru1 and ‖S(δ)3‖2 ≤ ru2 . Therefore,

Brouwer’s fixed point theorem suggests that PH′(∆) ∈ Bru1 ,ru2 . Hence, ‖∆1‖2 ≤ ru2 , ‖∆4‖2 ≤ ru2 ,
‖∆2‖2 ≤ ‖PH′[2](∆2)‖2 + ‖PH′[2]⊥(∆2)‖2 ≤ 2ru1 , and
1
γ ‖∆3‖2 ≤ 1

γ ‖PH′[3](∆3)‖2 + 1
γ ‖PH′[3]⊥(∆2)‖2 ≤ 2ru1 .
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4 Proof of Proposition 3 (main paper)

Below, we outline our proof strategy:

1. We proceed by analyzing (19) (main paper) with additional constraints that the variables
Ly, and Θyx belong to the algebraic varieties low-rank matrices (specified by rank of L?y, and
Θ?
yx) , and that the tangent spaces T (Ly), T (Θyx) are close to the nominal tangent spaces

T (L?y), and T (Θ?
yx) respectively. We prove that under suitable conditions on the minimum

nonzero singular value of L?y, and minimum nonzero singular value of Θ?
yx, any optimum

pair of variables (Θ, Dy, Ly) of this non-convex program are smooth points of the underlying
varieties; that is rank(Ly) = rank(L?y) and rank(Θyx) = rank(Θ?

yx). Further, we show that Ly
has the same inertia as L?y so that Ly � 0.

2. Conclusions of the previous step imply the the variety constraints can be “linearized” at the
optimum of the non-convex program to obtain tangent-space constraints. Under the specified
conditions on the regularization parameter λn, we prove that with high probability, the unique
optimum of this “linearized” program coincides with the global optimum of the non-convex
program.

3. Finally, we show that the tangent-space constraints of the linearized program are inactive
at the optimum. Therefore the optimal solution of (19) (main paper) has the property that
with high probability: rank(L̄y) = rank(L?y) and rank(Θ̄yx) = rank(Θ?

yx). Since L̄y � 0, we
conclude that the variables (Θ̄, D̄y, L̄y) are the unique optimum of (4) (main paper).

4.1 Variety Constrained Program

We begin by considering a variety-constrained optimization program. Letting (M,N,P,Q) ⊂ Sp ×
Sp × Rp×q × Sq, we denote P[2,3](M,N,P,Q) = (N,P ) ⊂ Sp × Rp×q. The variety-constrained
optimization program is given by:

(ΘM, DMy , LMy ) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ;D+
n ) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly, (Θ, Dy, Ly) ∈M. (1)

Here, the set M =M1 ∩M2, where the sets M1 and M2 are given by:

M1 ,
{

(Θ, Dy, Ly) ∈ S(p+q) × Sp × Sp
∣∣∣Dy is diagonal, rank(Ly) ≤ rank(L?y)

rank (Θyx) ≤ rank(Θ?
yx); ‖PT (L?y)⊥(Ly − L?y)‖2 ≤

λn
2ψ2

‖PT (Θ?yx)⊥(Θyx −Θ?
yx)‖2 ≤

λn
2ψ2

}
M2 ,

{
(Θ, Dy, Ly) ∈ S(p+q) × Sp × Sp

∣∣∣
‖I?F(∆)‖2 ≤ 6m̄ψ2λn

( 8

ακ
+

4

α
+

1

κ

)}
,

The optimization program (1) is non-convex due to the rank constraints rank(Ly) ≤ rank(L?y) and
rank(Θyx) ≤ rank(Θ?

yx) in the set M. These constraints ensure that the matrices Ly, and Θyx

belong to appropriate varieties. The constraints in M along T (L?y)
⊥ and T (Θ?

yx)⊥ ensure that the
tangent spaces T (Ly) and T (Θyx) are “close” to T (L?y) and T (Θ?

yx) respectively. Finally, the last
conditions roughly controls the error. We begin by proving the following useful proposition:

4



Proposition 4.1. Let (Θ, Dy, Ly) be a set of feasible variables of (1). Let ∆ = (Dy − D?
y, Ly −

L?y,Θyx−Θ?
yx,Θx−Θ?

x) and recall that C ′1 = 2m̄m
κα

(
6ψ2+ 5

αψ
2+ 46ψ2κ

α +κ
)

+ 1
ψ2 . Then, Φγ [∆] ≤ C ′1λn

Proof. Let H? =W × T (L?y)× T (Θ?
yx)× Sq. Then,

Φγ [F†I?FPH?(∆)] ≤ Φγ [F†I?F(∆)] + Φγ [F†I?FPH?⊥(∆)]

≤ 6m̄mψ2λn

( 8

ακ
+

4

α
+

1

κ

)
+ mψ2

(ωyλn
2ψ2

+
ωyxλn
2ψ2

)
≤ m̄mλn

κ

(
6ψ2 +

24

α
ψ2 +

48ψ2κ

α
+ κ
)

Since Φγ [PH?(·)] ≤ 2Φγ(·), we have that Φγ [PH?F†I?FPH?(∆)] ≤ 2m̄mλn
κα

(
6ψ2 + 24

α ψ
2 + 48ψ2κ

α +κ
)

.

Consequently, we apply Fisher Information Assumption 1 in (15) (main paper) to conclude that

Φγ [PH?(∆)] ≤ 2m̄mλn
κα

(
6ψ2 + 24

α ψ
2 + 48ψ2κ

α + κ
)

. Moreover:

Φγ [∆] ≤ Φγ [PH?(∆)] + Φγ [PH?⊥(∆)] ≤ 2m̄mλn
κα

(
6ψ2 +

24

α
ψ2 +

48ψ2κ

α
+ κ
)

+
λn
ψ2

= C ′1λn

Proposition 4.1 leads to powerful implications. In particular, under additional conditions on
the minimum nonzero singular values of L?y and Θ?

yx, any feasible set of variables (Θ, Dy, Ly) of (1)
has two key properties: (a) The variables (Θyx, Ly) are smooth points of the underlying varieties,
(b) The constraints in M along T (L?y)

⊥ and T (Θ?
yx)⊥ are locally inactive at Θyx and Ly. These

properties, among others, are proved in the following corollary.

Corollary 4.2. Consider any feasible variables (Θ, Dy, Ly) of (1). Let σy be the smallest nonzero
singular value of L?y and σyx be the smallest nonzero singular value of Θ?

yx. Let H′ =W×T (Ly)×
T (Θyx)×Sq and CT ′ = PH′⊥(0, L?y,Θ

?
yx, 0). Furthermore, recall that C ′1 = 2m̄m

κα

(
6ψ2+ 24

α ψ
2+ 48ψ2κ

α +

κ
)

+ 1
ψ2 , C ′2 = 4

α (1+ 2
κ), C ′σy = C ′21 ψ

2 max{2κ+1, 2
C′2ψ

2 +1} and C ′σyx = C ′21 ψ
2 max{2κ+κ

γ ,
2

C′2ψ
2 +κ

γ }.
Suppose that the following inequalities are met: σy ≥ m

ωy
Cσyλn,

σyx ≥ mγ2

ωyx
C ′σyxλn. Then,

1. Ly and Θyx are smooth points of their underlying varieties, i.e. rank(Ly) = rank(L?y),
rank(Θyx) = rank(Θ?

yx); Moreover Ly has the same inertia as L?y.

2. ‖PT (L?y)⊥(Ly − L?y)‖2 ≤ λn
48mψ2 and ‖PT (Θ?yx)⊥(Θyx −Θ?

yx)‖2 ≤ λn
48mψ2

3. ρ(T (Ly), T (L?y)) ≤ ωy; ρ(T (Θyx), T (Θ?
yx)) ≤ ωyx; that is, the tangent spaces at Ly and Θyx

is “close” to the tangent space L?y and Θ?
yx.

4. Φγ [CT ′ ] ≤ min{ λn
κψ2 , C

′
2λn}

5



Proof. We note the following relations before proving each step: C ′1 ≥ 1
ψ2 ≥ 1

mψ2 , ωy, ωyx ∈ (0, 1),
and κ ≥ 6. We also appeal to the results of regarding perturbation analysis of the low-rank matrix
variety [1].

1. Based on the assumptions regarding the minimum nonzero singular values of L?y and Θ?
yx,

one can check that:

σy ≥
C ′21 λn
ωy

mψ2(κ+ 1) ≥ C ′1λn
ωy

(2κ+ 1) ≥ 8‖L− L?y‖2

σyx ≥ C ′21 λn
ωyx

γ2mψ2
(6β

γ
+ 2κ

)
≥ 8‖Θyx −Θ?

yx‖2

Combining these results and Proposition 4.1, we conclude that Ly and Θyx are smooth points of
their respective varieties, i.e. rank(Ly) = rank(L?y), and rank(Θyx) = rank(Θ?

yx). Furthermore, Ly
has the same inertia as L?y.

2. Since σy ≥ 8‖Ly − L?y‖2, and σyx ≥ 8‖Θyx −Θ?
yx‖2, we can appeal to Proposition 2.2 of [2]

to conclude that the constraints in M along PT (L?y)⊥ and PT (Θ?yx)⊥ are strictly feasible:

‖PT (L?y)⊥(Ly − L?y)‖2 ≤
‖Ly − L?y‖22

σy
≤ λn

48mψ2

‖PT (Θ?yx)⊥(Θyx −Θ?
yx)‖2 ≤

‖Θyx −Θ?
yx‖22

σyx
≤ λn

48mψ2

3. Appealing to Proposition 2.1 of [2], we prove that the tangent spaces T (Ly) and T (Θyx) are
close to T (L?y) and T (Θ?

yx) respectively:

ρ(T (Ly), T (L?y)) ≤
2‖Ly − L?y‖2

σy
≤ 2C ′1λnωy
C ′21 λnmψ

2(2κ+ 1)
≤ ωy

ρ(T (Θyx), T (Θ?
yx)) ≤

2‖Θyx −Θ?
yx‖2

σyx
≤ 2C ′1λnγωyx

C′21 λn
ωyx

γ2mψ2
(
κ
γ + 2κ

) ≤ ωyx
4. Letting σ′y and σ′yx be the minimum nonzero singular value of Ly and Θyx respectively, one

can check that:

σ′y ≥ σy − ‖Ly − L?y‖2 ≥ 8C ′1λn ≥ 8‖Ly − L?y‖2

σ′yx ≥ σyx − ‖Θyx −Θ?
yx‖2 ≥ 8C ′1λnγ ≥ 8‖Θyx −Θ?

yx‖2

Once again appealing to Proposition 2.2 of [2] and simple algebra, we have:

Φγ(CT ′) ≤ m‖PT (Ly)⊥(Ly − L?y)‖2 +m‖PT (Θyx)⊥(Θyx −Θ?
yx)‖2

≤ m
‖Ly − L?y‖22

σ′y
+m
‖Θyx −Θ?

yx‖22
σ′yx

≤ min
{ λn
κψ2

, C ′2λn

}
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4.2 Variety Constrained Program to Tangent Space Constrained Program

Consider any optimal solution (ΘM, DMy , LMy ) of (1). In Corollary 4.2, we concluded that the

variables (ΘMyx , L
M
y ) are smooth points of their respective varieties. As a result, the rank constraints

rank(Ly) ≤ rank(L?y) and rank(Θyx) ≤ rank(Θ?
yx) can be “linearized” to Ly ∈ T (LMy ) and Θyx ∈

T (ΘMyx ) respectively. Since all the remaining constraints are convex, the optimum of this linearized
program is also the optimum of (1). Moreover, we once more appeal to Corollary 4.2 to conclude
that the constraints in M along PT (L?y)⊥ and PT (Θ?yx)⊥ are strictly feasible at (ΘM, DMy , LMy ). As
a result, these constraints are locally inactive and can be removed without changing the optimum.
Therefore the constraint (ΘM, DMy , LMy ) ∈M1 is inactive and can be removed. We now argue that

the constraint (ΘM, DMy , LMy ) ∈M2 in (1) can also removed in this “linearized” convex program.

In particular, letting HM ,W×T (LMy )×T (ΘMyx )×Sq, consider the following convex optimization
program:

(Θ̃, D̃y, L̃y) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ;D+
n ) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly, (Dy, Ly,Θyx,Θx) ∈ HM (2)

We prove that under conditions imposed on the regularization parameter λn, the pair of variables
(ΘM, DMy , LMy ) is the unique optimum of (2). That is, we show that

1. ‖I?F(∆)‖2 < 6m̄ψ2λn

(
8
ακ + 4

α + 1
κ

)
Appealing to Corollary 4.2 and Proposition 4 (main paper), we have that Φγ [F†I?FCTM ] ≤

λn
κ , Φγ [CTM ] ≤ C ′2λn and (with high probability) Φγ [F†En] ≤ λn

κ . Consequently, based on the
bound on λn in assumption of Theorem 1 (main paper), it is straightforward to show that ru1 ≤
min

{
1

4C′ ,
α

32 max{1+κ
2
,α
8
}2mψC′2

}
so that Φγ [∆] ≤ 1

2C′ . Hence by Proposition 2 (main paper), we

have that ‖∆1‖2, ‖∆4‖2 ≤ ru2 < ru1 , ‖∆2‖2 ≤ 2ru1 and ‖∆‖3 ≤ 2γru1 . Therefore:

‖I?F(∆)‖2 ≤ ψ2(‖∆1‖2 + ‖∆2‖2 + ‖∆3‖2 + ‖∆4‖2)

< 6m̄ψ2ru1 ≤ 6m̄ψ2λn

( 8

ακ
+

4

α
+

1

κ

)
4.3 From Tangent Space Constraints to the Original Problem

The optimality conditions of (2) suggest that there exist Lagrange multipliers QDy ∈ W, QTy ∈
T (LMy )⊥, and QTyx ∈ T (ΘMyx )⊥ such that

[Σn − Θ̃−1]y +QDy = 0; [Σn − Θ̃−1]y +QTy ∈ λn∂‖L̃y‖?
[Σn − Θ̃−1]yx +QTyx ∈ −λnγ∂‖Θ̃yx‖?; [Σn − Θ̃−1]x = 0

Letting the SVD of L̃y and Θ̃yx be given by L̃y = Ū ŌV̄ ′ and Θ̃yx = Ŭ ŎV̆ ′ respectively, and
Z , (0, λnŪ V̄

′, −λnγŬ V̆ ′, 0), we can restrict the optimality conditions to the space HM to
obtain, PHMF†(Σn − Θ̃−1) = Z. We proceed by proving that the variables (Θ̃, D̃y, L̃y) satisfy the
optimality conditions of the original convex program (4) (main paper). That is:

1. PHMF†(Σn − Θ̃−1) = Z

2. max
{
‖PT ′⊥y (Σn − Θ̃−1)y‖2, 1

γ ‖PT ′⊥yx (Σn − Θ̃−1)yx‖2
}
< λn

7



It is clear that the first condition is satisfied since the pair (Θ̃, S̃y, L̃y) is optimum for (2). To
prove that the second condition, we must prove that Γγ [PH⊥M[2,3]G†(Σn− Θ̃−1)] < λn. In particular,

denoting ∆ = (D̃y −D?
y, L̃y − L?y, Θ̃yx −Θ?

yx, Θ̃x −Θ?
x) we show that:

Γγ [PH⊥M[2,3]G
†I?GPHM[2,3](∆)] < λn − Φγ [PH⊥MF

†En] (3)

− Φγ [PH⊥MF
†RΣ?(F(∆))]

− Φγ [PH⊥MF
†I?FCTM ]

− Γγ [PHM[2,3]⊥G†I?F(∆1, 0, 0,∆4)]

Using the fact that Γγ [PHM[2,3]⊥G†(N)] ≤ Φγ [PH⊥MF
†(N)] for any matrix N ∈ Sp+q, this would

in turn imply that:

Γγ [PHM[2,3]⊥G†I?GPHM[2,3](∆)] < λn − Γγ [PHM[2,3]⊥G†En] (4)

− Γγ [PHM[2,3]⊥G†RΣ?(F(∆))]

− Γγ [PHM[2,3]⊥G†I?FCTM ]

− Γγ [PHM[2,3]⊥G†I?F(∆1, 0, 0,∆4)]

Indeed (4) implies that the second optimality condition is satisfied. So we focus on showing that
(4) is satisfied. Since Φγ [∆] ≤ 1

2C′ , we can appeal to Proposition 1 (main paper) and the bound

on λn to conclude Φγ [F†RΣ?(F(∆))] ≤ 2mψC ′2Φγ [∆]2 ≤ 2mψC ′2C ′21 λ
2
n ≤ λn

κ . Using the first
optimality condition, the fact that projecting into tangent spaces with respect to rank variety
increase the spectral norm by at most a factor of two (i.e. Φγ [PHM(·)] ≤ 2Φγ(·)), the fact that

Γγ [G†(·)] ≤ Φγ [F†(·)], and that κ = β(6 + 16ψ2m
α ), we have that:

Γγ [PHM[2,3]G†I?GPHM[2,3](∆)] ≤ λn + 2Γγ [G†RΣ?(∆)] + 2Γγ [G†I?FCTM ]

+ 2Γγ [G†En] + Γγ [G†I?F(∆1, 0, 0,∆4)]

≤ λn + 2Φγ [F†RΣ?(∆)] + 2Φγ [F†I?FCTM ]

+ 2Φγ [F†En] + Φγ [F†I?F(∆1, 0, 0,∆4)]

≤ λn +
λn
β

Applying Fisher Information Assumption 2 in (16) (main paper), we obtain:

Γγ [PHM[2,3]⊥G†I?GPHM[2,3](∆)] ≤ (β + 1)λn
β

(
1− 2

β + 1

)
= λn −

λn
β

< λn −
λn
2β

≤ λn − Φγ [F†RΣ(F(∆))]− Φγ [F†I?FCTM ]

− Φγ [F†En]− Γγ [G†I?F(∆1, 0, 0,∆4)]

≤ λn − Φγ [PH⊥MF
†RΣ?(F(∆))]

− Φγ [PH⊥MF
†I?FCTM ]

− Φγ [PH⊥MF
†En]

− Γγ [PHM[2,3]⊥G†I?F(∆1, 0, 0,∆4)]

Here, we used the fact that ‖PT⊥(.)‖2 ≤ ‖.‖2 for a tangent space T of the low-rank matrix variety.
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5 Proof of Proposition 4 (main paper)

We must study the rate of convergence of the sample covariance matrix to the population covariance
matrix. The following result from [3] plays a key role in obtaining this result.

Proposition 5.1. Given natural numbers n, p with p ≤ n, Let Γ be a p × n matrix with i.i.d
Gaussian entries that have zero-mean and variance 1

n . Then the largest and smallest singular
values σ1(Γ) and σp(Γ) of Γ are such that:

max

{
Prob[σ1(Γ) ≤ 1 +

√
p

n
+ t],Prob[σp(Γ) ≤ 1−

√
p

n
− t]

}
.

We now proceed with proving Proposition 4 (main paper). First, note that Φγ [F†En] ≤ m‖Σn−
Σ?‖2. Using Proposition 5.1 and the fact that λn

mκ ≤ 8ψ and n ≥ 64κ2(p+q)m2ψ2

λ2
n

, the following bound

holds: Pr[m‖Σn−Σ?‖2 ≥ λn
κ ] ≤ 2exp

{
− nλ2

n
128κ2m2ψ2

}
. Thus, Φγ [F†En] ≤ λn

κ with probability greater

than 1− 2exp
{
− nλ2

n
128κ2m2ψ2

}
.

6 Consistency of the Convex Program (18) (main paper)

In this section, we prove the consistency of convex program (18) (main paper) for estimating a
factor model. We first introduce some notation. We define the linear operator: F̃ : Sp × Sp → Sp
and its adjoint F̃† : Sp → Sp × Sp as follows:

F̃(M,K) ,M −K, F̃†(Q) , (Q,Q). (5)

We consider a population composite factor model (3) (main paper) y = A?x + B?uζu + ε un-
derlying a pair of random vectors (y, x) ∈ Rp × Rq, with rank(A?) = kx, B?u ∈ Rp×ku , and
column-space(A?) ∩ column-space(B?u) = {0}. As the convex relaxation (18) (main paper) is
solved in the precision matrix parametrization, the conditions for our theorems are more natu-
rally stated in terms of the joint precision matrix Θ? ∈ Sp+q, Θ? � 0 of (y, x). The algebraic
aspects of the parameters underlying the factor model translate to algebraic properties of sub-
matrices of Θ?. In particular, the submatrix Θ?

yx has rank equal to kx, and the submatrix Θ?
y

is decomposable as D?
y − L?y with D?

y being diagonal and L?y � 0 having rank equal to ku. Fi-
nally, the transversality of column-space(A?) and column-space(B?u) translates to the fact that
column-space(Θ?

yx) ∩ column-space(L?y) = {0} have a transverse intersection. We consider the fac-
tor model underlying the random vector y ∈ Rp that is induced upon marginalization of x. In
particular, the precision matrix of y is given by Θ̃?

y = D?
y− [L?y +Θ?

yx(Θ?
x)−1Θ?

xy]. To learn an accu-

rate factor model, we seek an estimate ( ˆ̃Dy,
ˆ̃Ly) from the convex program (18) (main paper) such

that rank( ˆ̃Ly) = rank(L?y+Θ?
yxΘ?

x
−1Θ?

xy), and the errors ‖ ˆ̃Dy−D?
y‖2, ‖

ˆ̃Ly− [L?y+Θ?
yx(Θ?

x)−1Θ?
xy]‖2

are small.

Following the same reasoning as the Fisher information conditions for consistency of the convex
program (4) (main paper), A natural set of conditions on the population Fisher information at Θ̃?

y
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defined as I?y = (Θ̃?
y)
−1 ⊗ (Θ̃?

y)
−1 are given by:

Assumption 4 : inf
H′∈Ũ(ω̃y)

χ̃(H′, Φ̃) ≥ α̃, for some α̃ > 0 (6)

Assumption 5 : inf
H′∈Ũ(ω̃y)

Ξ̃(H′) > 0 (7)

Assumption 6 : sup
H′∈Ũ(ω̃y)

ϕ̃(H′) ≤ 1− 2

β̃ + 1
for some β̃ ≥ 2, (8)

where,

χ̃(H, ‖.‖Υ) , min
Z∈H
‖Z‖Υ=1

‖PHĨ†I?yĨPH(Z)‖Υ

Ξ̃(H) , min
Z∈H[2]
‖Z‖2=1

‖PH[2]I?yPH[2](Z)‖2

ϕ̃(H) , max
Z∈H[2]
‖Z‖2=1

‖PH⊥[2]I?yPH[2](PH[2]I?yPH[2])
−1(Z)‖2

Ũ(ω̃y) ,
{
W × T ′ | ρ(T ′, T (L?y + Θ?

yx(Θ?
x)−1Θ?

xy)) ≤ ω̃y
}

Φ̃(D,L) , max {‖D‖2, ‖L‖2} .

Assumption 4 controls the gain of the Fisher information I?y restricted to appropriate subspaces and
Assumption 5 and 6 are in the spirit of irrepresentability conditions. As the variety of low-rank
matrices is locally curved around T (L?y + Θ?

yx(Θ?
x)−1Θ?

xy), we control the Fisher information I?y at
nearby tangent spaces T ′ where ρ(T ′, T (L?y + Θ?

yx(Θ?
x)−1Θ?

xy)) ≤ ω̃y. We also note that measuring

the gains of Fisher information I?y with the norm Φ̃ and ‖ · ‖2 is natural as these are closely tied

with dual norm of the regularizer trace(L̃y) in (18) (main paper).
We present a theorem of consistency of the convex relaxation (18) (main paper) under Assump-

tions 4, 5 and 6. We let σ denote the minimum nonzero singular value of L?y + Θ?
yx(Θ?

x)−1Θ?
xy. The

proof strategy is similar in spirit to the strategy for proving the consistency of the convex relaxation
(4) (main paper).

Theorem 6.1. Suppose that there exists α̃ > 0, β̃ ≥ 2, ω̃y ∈ (0, 1) so that the population Fisher
information I?y satisfies Assumptions 4, 5 and 6 in (6), (7), and (8). Suppose that the following
conditions hold:

1. n &
[
β̃2

α̃2

]
(p)

2. λ̃n ∼ β̃
α̃

√
p
n

3. σ & β̃
α̃5ω̃y

λ̃n

Then with probability greater than 1 − 2 exp
{
− C α̃

β̃
nλ̃2

n

}
, the optimal solution (Θ̂, ˆ̃Dy,

ˆ̃Ly) of

(18) (main paper) with i.i.d. observations Dn = {y(i)}ni=1 satisfies the following properties:

1. rank( ˆ̃Ly) = rank(L?y + Θ?
yx(Θ?

x)−1Θ?
xy)

2. ‖ ˆ̃Dy −D?
y‖2 . λ̃n

α̃2 , ‖ ˆ̃Ly − L?y −Θ?
yx(Θ?

x)−1Θ?
xy‖2 . λ̃n

α̃2
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