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In problems such as variable selection and graph estimation, models are characterized
by Boolean logical structure such as the presence or absence of a variable or an edge.
Consequently, false-positive error or false-negative error can be specified as the number
of variables/edges that are incorrectly included or excluded in an estimated model.
However, there are several other problems such as ranking, clustering, and causal
inference in which the associated model classes do not admit transparent notions of
false-positive and false-negative errors due to the lack of an underlying Boolean logical
structure. In this paper, we present a generic approach to endow a collection of models
with partial order structure, which leads to a hierarchical organization of model classes
as well as natural analogs of false-positive and false-negative errors. We describe model
selection procedures that provide false-positive error control in our general setting, and
we illustrate their utility with numerical experiments.

combinatorics | greedy algorithms | multiple testing | stability

In data-driven approaches to scientific discovery, one is commonly faced with the problem
of model selection. Popular examples include variable selection (which covariates predict
a response?) and graph estimation (which pairs of variables have nonzero correlation or
partial correlation?). As exemplified by these two problems, a common feature of most
model selection problems in the literature is that the collection of models is organized
according to some type of Boolean logical structure, such as the presence versus absence
of a variable or an edge. A consequence of such structure is that model complexity can be
conveniently specified as the number of attributes (variables or edges) in a model, while
false-positive error or false-negative error corresponds to the number of attributes that
are incorrectly included or excluded in the model.

In many contemporary applications, models represent a far richer range of phenomena
that are not conveniently characterized via Boolean logical structure. As a first example,
suppose we are given observations of covariate–response pairs and we wish to order the
covariates based on how well they predict a response; the collection of models is given by
the set of rankings of the covariates. Second, consider a clustering problem in which we
are given observations of a collection of variables and the goal is to group them according
to some measure of affinity, with the number of groups and the number of variables
assigned to each group not known a priori; here, the model class is given by the collection
of all possible partitions of the set of variables. Third, suppose we wish to identify causal
relations underlying a collection of variables; the model class is the set of completed
partially directed acyclic graphs. Finally, consider the blind source separation problem in
which we are given a signal expressed as an additive combination of source signals and
our objective is to identify the constituent sources, without prior information about the
number of sources or their content; here, the model class is the collection of all possible
linearly independent subsets of vectors.

In these preceding examples, we lack a systematic definition of model complexity, false-
positive error, and false-negative error due to the absence of Boolean logical structure
in each collection of models. In particular, in the first three examples, valid models
are characterized by structural properties such as transitivity, set partitioning, and graph
acyclicity, respectively; these properties are global in nature and are not concisely modeled
via separable and local characteristics such as an attribute (a variable or edge) being
included in a model independently of other attributes. In the fourth example of blind
source separation, false-positive and false-negative errors should not be defined merely
via the inclusion or exclusion of true source vectors in an estimated set but should instead
consider the degree of alignment between the estimated and true sources, which again
speaks to the lack of a natural Boolean logical structure underlying the associated model
class.

As a concrete illustration of the inappropriateness of Boolean logical structure for
clustering, consider three items a, b, c, with the null model given by the three clusters
{a}, {b}, {c}, the true model by the two clusters {a, b}, {c}, and the estimated model by
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the single cluster {a, b, c}. An incorrect perspective grounded in
Boolean logical structure suggests a false-positive error of two,
with the “false discoveries” being that c is in the same cluster as a
and as b. However, accounting for set partition structure yields
the more accurate false-positive error value of one as a and b
are in the same cluster in the true and estimated models; hence,
including c in the same cluster as {a, b} should only incur one
false discovery.

While the preceding four problems have been studied ex-
tensively, the associated methods do not systematically control
false-positive error as this quantity is not formally defined.
Selection procedures that yield models with small false-positive
error play an important role in data-driven methods for gathering
evidence, rooted in the empirical philosophy and statistical testing
foundations of falsification of theories and hypotheses (1–3).

1. Our Contributions
We begin in Section 3 by describing how collections of models
may be endowed with the structure of a partially ordered set
(poset). Posets are relations that satisfy reflexivity, transitivity,
and antisymmetry, and they facilitate a hierarchical organization
of a set of models that leads to a natural definition of model
complexity. Building on this framework, we develop an axiomatic
approach to defining functions over poset element pairs for
evaluating similarity. This yields generalizations of well-known
measures such as family-wise error and false discovery rate to
an array of model selection problems in the context of ranking,
causal inference, multiple change-point estimation, clustering,
multisample testing, and blind source separation. In Section 4,
we describe two generic model selection procedures that search
over poset elements in a greedy fashion and that provide false
discovery control in discrete model posets. The first method is
based on subsampling and model averaging, and it builds on the
idea of stability selection (4, 5) for the variable selection problem,
while the second method considers a sequence of hypothesis
tests between models of growing complexity. With both these
methods, the combinatorial properties of a model poset play
a prominent role in determining computational and statistical
efficiency. Proofs of the theorems of Section 4 are provided in
Section 6. In Section 5, we provide numerical illustration via
experiments on synthetic and real data.

2. Related Work
Classic approaches to model selection such as the Akaike infor-
mation criterion and Bayesian information criterion assess and
penalize model complexity by counting the number of attributes
included in a model (6, 7). More generally, such complexity
measures facilitate a hierarchical organization of model classes,
and this perspective is prevalent throughout much of the model
selection literature (8–13). However, these complexity measures
rely on a Boolean logical structure underlying a collection of
models and are therefore not well suited to model classes that are
not characterized in this manner. The poset formalism presented
in this paper is sufficiently flexible to facilitate model selection
over model classes that are more complex than those characterized
by Boolean logical structure (such as the illustration presented
previously with clustering, see also Example 2), while being
sufficiently structured to permit precise definitions of model
complexity as well as false-positive and false-negative errors.

3. Poset Framework for Model Selection
We begin by describing how collections of models arising in
various applications may be organized as posets. Next, we present
approaches to endow poset-structured models with suitable
notions of true and false discoveries.

A. Model Classes as Posets. We begin with some basics of posets.
A poset (L,�) is a collection L of elements and a relation� that
is reflexive (x � x, ∀x ∈ L), transitive (x � y, y � z ⇒ x �
z, ∀x, y, z ∈ L), and antisymmetric (x � y, y � x ⇒ x =
y, ∀x, y ∈ L). An element y ∈ L covers x ∈ L if x � y, x 6= y,
and there is no z ∈ L\{x, y} with x � z � y; we call such (x, y)
a covering pair. A path from x1 ∈ L to xk ∈ L is a sequence
(x1, . . . , xk) with x2, . . . , xk−1 ∈ L such that xi covers xi−1 for
each i = 2, . . . , k. Throughout this paper, we focus on posets
in which there is a least element, i.e., an element xleast ∈ L such
that xleast � y for all y ∈ L; such least elements are necessarily
unique. Finally, a poset is graded if there exists a function rank(·)
mapping poset elements to the nonnegative integers such that the
rank of the least element is 0 and rank(y) = rank(x)+1 for y ∈ L
that covers x ∈ L. In graded posets with least elements, each path
from the least element to any x ∈ L has length equal to rank(x).
Posets are depicted visually using Hasse diagrams in which a
directed arrow is drawn from x ∈ L to any y ∈ L that covers x.

Posets offer an excellent framework to formulate model
selection problems as model classes in many applications possess
rich partial order structures. In particular, the poset-theoretic
quantities in the preceding paragraph have natural counterparts
in the context of model selection—the least element corresponds
to the “null” model that represents no discoveries, the relation�
specifies a notion of containment between simpler and more
complex models, and the rank function serves as a measure
of model complexity that respects the underlying containment
relation. We present several concrete illustrations next; Fig. 1
presents Hasse diagrams associated with several of these examples.

Example 1 (Variable selection): As a warm-up, consider the
variable selection problem of selecting which of p variables
influence a response. The poset here is the collection of all subsets
of {1, . . . , p} ordered by set inclusion, the least element is given
by the empty set, and the rank of a subset is its cardinality. This
poset is called the Boolean poset (14).

Example 2 (Clustering): Suppose we wish to group a collection
of p variables based on a given notion of similarity. The poset
here is the collection of all partitions of {1, . . . , p} ordered by
refinement, the least element is given by p groups each consisting
of one variable, and the rank of a partition is equal to p minus
the number of groups. Thus, higher-rank elements correspond
to models specified by a small number of clusters. This poset is
called the partition poset (14).

Example 3 (Multisample testing): As a generalization of the
classic two-sample testing problem, consider the task of grouping
p samples with the objective that samples in a group come from
the same distribution. Although this problem is closely related
to the preceding clustering problem, it is more natural for the
underlying poset here to be the reverse of the partition poset that is
formed by reversing the order relation of the partition poset, i.e.,
the poset is the collection of all partitions of {1, . . . , p} ordered
by coarsening. With this reverse ordering, the least element
corresponds to all p samples belonging to the same group (i.e.,
coming from the same distribution), which generalizes the usual
null hypothesis in two-sample testing. The rank of a partition
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A B C

D E F
Fig. 1. Hasse diagrams for (A) variable selection with three variables (Example 1); (B) clustering four variables (Example 2); (C) multisample testing with four
samples (Example 3); (D) causal inference with three variables (Example 4); (E) partial ranking of three items (Example 6); and (F ) total ranking of three items
(Example 7).

is equal to the number of groups minus one. Thus, higher-rank
elements correspond to the p samples arising from many distinct
distributions.
Example 4 (Causal structure learning): Causal associations
among a collection of variables are often characterized by a
directed acyclic graph (DAG), namely a graph with directed
edges and no (directed) cycles, in which the nodes index
the variables. Causal structure learning entails inferring this
DAG from observations of the variables. The structure of a
DAG specifies a causal model via conditional independence
relations among the variables, with denser DAGs encoding fewer
conditional independencies in comparison with sparser DAGs.
(See ref. 15 for details on how the structure of a DAG encodes
conditional independence relations; here, we describe only those
aspects that pertain to a poset formulation to organize the
collection of all causal models based on graph structure.) Distinct
DAGs can specify the same set of conditional independence
relations, and these are called Markov equivalent DAGs. We
introduce some terminology to characterize Markov equivalent
DAGs. The skeleton of a DAG is the undirected graph obtained
by making all the edges undirected. A v-structure is a set of three
nodes x, y, z such that there are directed edges from x to z and
from y to z, and there is no edge between x and y. Two DAGs are
Markov equivalent if and only if they have the same skeleton and
the same collection of v-structures (16). A Markov equivalence
class of DAGs can be described by a completed partially directed
acyclic graph (CPDAG), which is a graph consisting of both
directed and undirected edges. A CPDAG has a directed edge
from a node x to a node y if and only if this directed edge
is present in every DAG in the associated Markov equivalence
class. A CPDAG has an undirected edge between nodes x and y
if the corresponding Markov equivalence class contains a DAG
with a directed edge from x to y and a DAG with a directed edge
from y to x. One can check that the total number of edges in
a CPDAG (directed plus undirected) is equal to the number
of edges in any DAG in the associated Markov equivalence

class. The collection of CPDAGs on p variables may be viewed
as a poset ordered by inclusion—CPDAGs C(1), C(2) satisfy
C(1)
� C(2) if and only if there exist DAGs G(1),G(2) in the

respective Markov equivalence classes such that G(1) is a directed
subgraph of G(2). In other words, C(1)

� C(2) if and only if all
the conditional independencies encoded by C(2) are also encoded
by C(1), or equivalently that all the conditional dependencies
encoded by C(1) are also encoded by C(2). The least element
is given by the CPDAG with no edges, and the rank function
is equal to the number of edges. Higher-rank elements in this
poset correspond to causal models exhibiting more conditional
dependence relations. In some causal inference contexts, it may
be more natural to view the fully connected CPDAG as the null
model. Our framework can accommodate this perspective by
reversing the preceding model poset. Specifically, in this reversed
poset, the partial order is given by inclusion of conditional
independencies, the least element is the fully connected CPDAG,
and the rank function is p(p− 1)/2 minus the number of edges.
Higher-rank elements in this poset correspond to causal models
exhibiting more conditional independence relations.

Example 5 (Multiple changepoint estimation): Consider the
problem of detecting changepoints in a multivariate time series.
Specifically, we observe p signals each for time instances t =
0, . . . , T − 1, each signal consists of at most one change (e.g.,
a change in the distribution or dynamics underlying the signal
observations), and the objective is to identify these changes. We
denote changepoints via vectors x = (x1, . . . , xp) ∈ {0, . . . , T }p,
with xi denoting the time index when a change occurs in the
i’th signal and xi = T corresponding to no change occurring.
The poset here is the set {0, 1, . . . , T }p ordered such that x � y
if and only if xj ≥ yj for all j = 1, . . . , p, the least element
is (T, . . . , T ), and the rank of an element is p · T minus the
sum of the coordinates. Higher-rank elements correspond to
changepoint estimates in which the changes occur early. This
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poset is the reverse of the (bounded) integer poset (14) with the
product order.

Example 6 (Partial ranking): We seek a ranking of a finite set
of items given noisy observations (e.g., pairwise comparisons),
and we allow some pairs of items to be declared as incomparable.
Such a partial ranking of the elements of a finite set S corresponds
to a strict partial order on S, i.e., a relation R that is irreflexive
((a, a) /∈ R, ∀a ∈ S), asymmetric ((a, b) ∈ R ⇒ (b, a) /∈
R, ∀a, b ∈ S), and transitive; if an element of S does not appear
in R, then that element is incomparable to any of the other
elements of S in the associated partial ranking. The poset here is
the collection of strict partial orders on S ordered by inclusion, the
least element is the empty set, and the rank of a partial ranking
is the cardinality of the associated relation. Thus, higher-rank
elements correspond to partial rankings that compare many of
the covariates.

Example 7 (Total ranking): We again wish to rank a finite
collection of items but now we seek a total ranking that provides
an ordered list of all the items. The setting is that we are given a
total ranking that represents our current state of knowledge (i.e.,
a “null model”) as well as a new set of noisy observations, and the
goal is to identify a total ranking that represents an update of the
null model to reflect the new information. Each total ranking of
the elements of a finite set S corresponds to a one-to-one function
from S to the integers {1, . . . , |S|}. Let �null be the function that
describes the null ranking. A convenient way to compare total
rankings and to define a poset structure over them is via the notion
of an inversion set. For any total ranking specified by a function
�, the associated inversion set (with respect to the null ranking
�null) is defined as inv(�;�null) := {(x, y) ∈ S × S | �null(x) <
�null(y), �(x) > �(y)}. The poset here (with respect to a given
null ranking �null) is the collection of total rankings on S ordered
by inclusion of the associated inversion sets, the least element
is the null ranking �null, and the rank of a total ranking is the
cardinality of the associated inversion set; this rank function is
also equal to the Kendall tau distance between a total ranking
and �null. Thus, higher-rank elements are given by total rankings
that depart significantly from the null ranking �null. This poset
is called the permutation poset (14).

Example 8 (Subspace estimation): The task is to estimate a
subspace in Rp given noisy observations of points in the subspace.
The poset is the collection of subspaces in Rp ordered by
inclusion, the least element is the subspace {0}, and the rank
of a subspace is its dimension. This poset is called the subspace
poset.

Example 9 (Blind source separation): We are given a signal in
Rp that is expressed as a linear combination of some unknown
source signals and the goal is to estimate these sources. The poset
here is the collection of linearly independent subsets of unit-norm
vectors in Rp ordered by inclusion, the least element is the empty
set, and the rank of a linearly independent subset is equal to the
cardinality of the subset.

With respect to formalizing the notion of false-positive and
false-negative errors, Example 1 is prominently considered in the
literature, while Examples 3 and 5 are multivariate generalizations
of previously studied cases (17, 18). Finally, Example 8 was
studied in ref. 19, although that treatment proceeded from a
geometric perspective rather than the order-theoretic approach
presented in this paper. With the exception of Example 1,
none of the other examples permit a natural formulation within

the traditional multiple testing paradigm due to the lack of
a Boolean logical structure underlying the associated model
classes. Moreover, Examples 8 and 9 are model classes consisting
of infinitely many elements. Nonetheless, we describe in the
sequel how the poset formalism enables a systematic and unified
framework for formulating model selection in all of the examples
above.

B. Evaluating True and False Discoveries. To assess the extent
to which an estimated model signifies discoveries about the true
model, we describe next a general approach to quantify the
similarity between poset elements in a manner that respects partial
order structure.

Definition 1 (Similarity valuation): Let (L,�, rank(·)) be a
graded poset. A function � : L×L→ R that is symmetric, i.e.,
�(x, y) = �(y, x) for all x, y ∈ L, is called a similarity valuation
over L if:

• 0 ≤ �(x, y) ≤ min{rank(x), rank(y)} for all x, y ∈ L,
• �(x, y) ≤ �(z, y) for all x � z,
• �(x, y) = rank(x) if and only if x � y.

Remark 1: The term “valuation” is often used in the order-
theory literature (14) to denote functions on posets that respect
the underlying partial order structure, and we use it in our context
for the same reason.

In the sequel, we describe similarity valuations for the various
model posets discussed previously. The conditions above make
similarity valuations well suited for quantifying the amount of
discovery in an estimated model with respect to a true model.
The first condition states that the amount of discovery must be
bounded above by the complexities of the true and estimated
models (which are specified by the rank function). The second
condition requires similarity valuations to respect partial order
structure so that more complex models do not yield less discovery
than less complex ones. The final condition expresses the desirable
property that the amount of discovery contained in an estimated
model is equal to the complexity of that model if and only if it is
“contained in” the true model. With these properties, we obtain
the following analogs of true and false discoveries and of related
quantities such as false discovery proportion.

Definition 2 (True and false discoveries): Let (L,�, rank(·))
be a graded poset and let � be a similarity valuation onL. Letting
x?
∈ L be a true model and x̂ ∈ L be an estimate, the true

discovery, the false discovery, and the false discovery proportion
are, respectively, defined as follows:

TD(x̂, x?) := �(x̂, x?),
FD(x̂, x?) := rank(x̂)− �(x̂, x?) = rank(x̂)− TD(x̂, x?),

FDP(x̂, x?) :=
rank(x̂)− �(x̂, x?)

rank(x̂)
=

FD(x̂, x?)
rank(x̂)

.

With these definitions, we articulate our model selection objective
more precisely:
B.1. Goal. Identify the largest rank model subject to control in
expectation or in probability on false discovery (proportion).

This objective is akin to seeking the largest amount of discovery
subject to control on false discovery (rate). The data available to
carry out model selection vary across our examples; in Section 4,
we describe methods to obtain false discovery control guarantees
in various settings.
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To carry out this program, a central question is the choice of a
suitable similarity valuation for a graded model poset. Indeed, it is
unclear whether there always exists a similarity valuation for any
graded model poset (L,�, rank(·)). To address this question,
consider the following function for x, y ∈ L:

�meet(x, y) := max
z�x,z�y

rank(z). [1]

Remark 2: In order theory, a poset (L,�) is said to possess
a meet if for each x, y ∈ L there exists a z ∈ L satisfying i)
z � x, z � y and ii) for any w ∈ L with w � x, w � y,
we have w � z; such a z is called the meet of x, y and posets
that possess a meet are called meet semilattices. Except for the
poset in Example 4 on causal structure learning, the posets in
the other examples are meet semilattices (SI Appendix, section
1). The subscript “meet” in Eq. 1 signifies that �meet is the rank
of the meet for meet semilattices, although �meet is well defined
even if (L,�) is not a meet semilattice.

One can check that �meet is a similarity valuation on any
graded poset (L,�, rank(·)); see SI Appendix, section 2, for a
proof. For Example 1 on variable selection, �meet has the desirable
property that it reduces to the number of common variables in
two models; thus, the general model selection goal formulated
above reduces to the usual problem of maximizing the number
of selected variables subject to control on the number of selected
variables that are null. Next, we describe the model selection
problems we obtain in Examples 2–6 with �meet as the choice of
similarity valuation.

In Example 2 on clustering, the value of �meet for two partitions
of p variables is equal to p minus the number of groups in
the coarsest common refinement of the partitions. The model
selection problem is that of partitioning the variables into the
smallest number of groups subject to control on the additional
number of groups in the coarsest common refinement of the
estimated and true partitions compared to the number of groups
in the estimated partition.

Recall that the poset in Example 3 on multisample testing is
the reverse of the poset in Example 2; thus, many of the notions
from the preceding paragraph are appropriately “reversed” in
Example 3. In particular, the value of �meet in Example 3 for two
partitions of p samples is equal to the number of groups in the
finest common coarsening of the partitions. The model selection
problem entails partitioning the samples into the largest number
of groups subject to control on the additional number of groups in
the estimated partition compared to the number of groups in the
finest common coarsening of the estimated and true partitions.

In Example 4 on causal structure learning, the value of
�meet for two CPDAGs C(1), C(2) is equal to the maximum
number of edges in a CPDAG that encodes all the conditional
independencies of C(1) and of C(2). The model selection task
is then to identify the CPDAG with the largest number of
edges subject to control on the additional number of edges in
the estimated CPDAG compared to the densest CPDAG that
encodes all the conditional independence relationships in both
the true and estimated CPDAGs.

In Example 5 on multiple changepoint estimation, suppose
x, y ∈ {0, . . . , T }p are vectors of time indices specifying
changepoints in p signals. We have that �meet(x, y) = p · T −∑p

i=1 max{xi, yi}. The model selection problem entails
identifying changes as quickly as possible subject to control on
early detection of changes (i.e., declaring changes before they
occur); this is a multivariate generalization of the classic quickest
change detection problem (18).

In Example 6 on partial ranking, the value of �meet for two
partial rankings is equal to the cardinality of the intersection of the
associated relations, i.e., the number of common comparisons in
the two partial rankings. The associated model selection problem
is that of identifying a partial ranking with the largest number
of comparisons (i.e., the associated relation must have large
cardinality) subject to control on the number of comparisons
in the estimated partial ranking that are not in the true partial
ranking.

In Examples 1–6, the function �meet of Eq. 1 provides a
convenient way to assess the amount of discovery in an estimated
model with respect to a true model, thereby yielding natural
formulations for model selection. However, in Examples 7–9,
�meet has some undesirable features.

Consider first the setup in Example 7 on total ranking for
the set S = {a, b, c} with the null model given by the ranking
�null(a) = 1,�null(b) = 2,�null(b) = 3, the true model given
by the ranking �?(a) = 3,�?(b) = 1,�?(c) = 2 (Hasse
diagram shown in Fig. 1), and the estimated ranking given
by �̂(a) = 2, �̂(b) = 3, �̂(c) = 1. In this case, one can see
from Fig. 1 that �meet(�̂,�?) = 0, which suggests that no
discovery is made. On the other hand, the inversion sets of
these rankings are given by inv(�?;�null) = {(a, b), (a, c)} and
inv(�̂;�null) = {(a, c), (b, c)}, and the element (a, c) is common
to both inversion sets as the fact that item c is ranked higher than
item a in the true model has been discovered in the estimated
model; this reasoning suggests that a positive quantity would be a
more appropriate value for the similarity valuation between �̂ and
�?. The key issue is that inv(�?;�null) ∩ inv(�̂;�null) is not an
inversion set of any total ranking, but this intersection still carries
valuable information about true discoveries made in �̂ about �?.
However, the similarity valuation �meet only considers subsets of
inv(�?;�null)∩ inv(�̂;�null) that correspond to inversion sets of
total rankings as the maximization in Eq. 1 is constrained to be
over poset elements. Motivated by this discussion, we employ
the following similarity valuation in Example 7 for total rankings
�, �̃ (with respect to a null model �null):

�total-ranking(�, �̃) = |inv(�;�null) ∩ inv(�̃;�null)|. [2]

With this similarity valuation, the model selection problem
reduces to identifying a total ranking with the largest inversion
set (with respect to �null) subject to control on the number of
comparisons in the inversion set of the estimated total ranking
that are not in the inversion set of the true total ranking.

Next, in Example 8, �meet(x̂, x?) is equal to the dimension
of the intersection of the subspaces x̂, x?. When these subspaces
have small dimensions, for example, �meet generically equals zero
regardless of the angle between the subspaces; in words, �meet
does not consider the smooth structure underlying the collection
of subspaces. As discussed in ref. 19, a more suitable measure of
similarity is the sum of the squares of the cosines of the principal
angles between the subspaces, which is expressed as follows using
projection matrices onto subspaces U , Ũ :

�subspace(U , Ũ) = trace(PUPŨ ). [3]

The model selection task is to identify the largest-dimensional
subspace subject to control on the sum of the squares of the
cosines of the principal angles between the estimated subspace
and the orthogonal complement of the true subspace.

Finally, �meet is inadequate as a similarity valuation in
Example 9 for the same reasons as in Example 8 due to the
underlying smooth structure, and we propose here a more
appropriate alternative. Given B ∈ Rp×k, B̃ ∈ Rp×` (these
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matrices have unit-norm and linearly independent columns
representing source signals), suppose without loss of generality
that k ≤ ` (due to the symmetry of similarity valuations) and let
Perm(`) be the collection of bijections on {1, . . . , `}. With this
notation, consider the following similarity valuation:

�source-separation(B, B̃) = max
�∈Perm(`)

k∑
i=1

(BT B̃)2
i,�(i). [4]

This valuation is better suited to quantify the degree of align-
ment between two collections of vectors in source separation than
�meet. Model selection entails identifying the largest collection of
source vectors subject to control on the difference in the number
of estimated source vectors and the alignment between the true
and estimated source vectors as evaluated by �source-separation.

Table 1 summarizes our discussion of the various model posets
and their associated similarity valuations. In conclusion, while
�meet is a similarity valuation for any model poset, it is not always
the most natural choice, and identifying a suitable similarity
valuation that captures the essential features of an application
is key to properly formulating a model selection problem. This
situation is not unlike the selection of an appropriate loss function
in point estimation—while there exist many candidates that are
mathematically valid, the utility of an estimation procedure in the
context of a problem domain depends critically on a well-chosen
loss.

4. False Discovery Control over Posets
In this section, we turn our attention to the task of identifying
models of large rank that provide false discovery control. We
begin in Section A with a general greedy strategy for poset search
that facilitates the design of model selection procedures, and we
specialize this framework to specific approaches in Sections B
and C. Some of the discussion in Section A is relevant for all of
the posets in Examples 1–9, while the methodology presented
in Sections B and C is applicable to general discrete posets with
integer-valued similarity valuations such as in Examples 1–7.
Along the way, we remark on some of the challenges that arise in
the two continuous cases of Examples 8 and 9.

A. Greedy Approaches toModel Selection. To make progress on
the problem of identifying large rank models that provide control
on false discovery, we begin by noting that the false discovery
FD(x̂, x?) in an estimated model x̂ with respect to a true model
x? may be expressed as the following telescoping sum for any
path (x0, x1, . . . , xk−1, xk) with x0 being the least element xleast
and xk = x̂:

FD(x̂, x?) =
k∑

i=1
1− [�(xi, x?)− �(xi−1, x?)]. [5]

The term 1− [�(xi, x?)− �(xi−1, x?)] may be interpreted as the
“additional false discovery” incurred by the model xi relative to
the model xi−1. The above decomposition of false discovery in
terms of a path from the least element to an estimated model
suggests a natural approach for model selection. In particular,
we observe that a sufficient condition for FD(x̂, x?) to be small
is for each term in the above sum to be small. Thus, we will
greedily grow a path starting from the least element x0 = xleast
by adding one element xi at a time such that each (xi−1, xi) is
a covering pair and each 1 − [�(xi, x?) − �(xi−1, x?)] is small.

We continue this process until we can no longer guarantee that
1− [�(xi, x?)− �(xi−1, x?)] is small.

For such a procedure to be fruitful, we require some data-
driven method to bound 1− [�(xi, x?)− �(xi−1, x?)] as the true
model x? is not known. Our objective, therefore, is to design a
data-dependent function Ψ : {(a, b) | b covers a in L} → [0, 1]
that takes as input covering pairs and outputs a number in
the interval [0, 1] and further satisfies the property that Ψ(u, v)
being small is a sufficient condition for 1− [�(v, x?)− �(u, x?)]
to be small (in expectation or in probability). Given such a
function, we grow a path using the greedy strategy outlined
above by identifying at each step a covering pair that minimizes
Ψ. Algorithm 1 provides the details. In Sections B and C, we
present two approaches for designing suitable functions Ψ: one
based on a notion of stability and the other based on testing.
Proofs that both these methods control for false discoveries are
presented in Section 6.

Algorithm 1: Greedy sequential algorithm for model selection

1: Input: poset L, threshold � ∈ [0, 1]; data-dependent
function Ψ : {(a, b) | b covers a in L} → [0, 1]

2: Greedy selection: Set u = xleast and perform:
(a) find vopt ∈ argmin

{(u,v) | v covers u in L}Ψ(u, v).
(b) ifΨ(u, vopt) ≤ �, set u = vopt and repeat steps (2a-2b).

Otherwise, stop.
3: Output: return x̂ = u

In designing a suitable function Ψ so that 1 − (�(v, x?) −
�(u, x?)) is small (in expectation or in probability) whenever
Ψ(u, v) is small, we note that the examples presented in Section 3
exhibit an important invariance. Specifically, in each example,
there are distinct covering pairs (u, v) and (u′, v′) such that 1−
[�(v, x?)− �(u, x?)] = 1− [�(v′, x?)− �(u′, x?)] for every true
model x?. Accordingly, it is natural that the function Ψ also
satisfies the property that Ψ(u, v) = Ψ(u′, v′); stated differently,
one need only specify Ψ for a “minimal” set of covering pairs. We
present next a definition that formalizes this notion precisely.

Definition 3 (Minimal covering pairs): Consider a graded poset
(L,�, rank(·)) endowed with a similarity valuation �. A subset
S ⊂ {(a, b) | b covers a in L} of covering pairs in L is called
minimal if the following two properties hold:

• For each covering pair (u′, v′) /∈ S, there exists (u, v) ∈ S with
rank(v) ≤ rank(v′) such that �(v, z) − �(u, z) = �(v′, z) −
�(u′, z) for all z ∈ L.

• For distinct covering pairs (u, v), (u′, v′) ∈ S, there exists some
z ∈ L such that �(v, z)− �(u, z) 6= �(v′, z)− �(u′, z).

In words, a minimal set of covering pairsS for a graded posetL
is an inclusion-minimal collection of smallest rank covering pairs
for which it suffices to consider the values ofΨ. For Example 1 on
variable selection with the similarity valuation �meet, a minimal
set of covering pairs is given by S = {(∅, {i}) | i = 1, . . . , p} and
this minimal set is unique. In general, however, such sets are not
unique; see SI Appendix, section 3, where we derive minimal sets
of covering pairs for several examples. Minimal sets of covering
pairs are significant methodologically from both computational
and statistical perspectives. In particular, several of our bounds
for discrete posets depend on the cardinality |S| and these also
involve computations that scale in number of operations with
|S|. Therefore, identifying a minimal set of covering pairs that
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Table 1. Problem classes and associated characterization of model selection via posets
Least element Rank Similarity valuation

Problem domain Models (i.e., global null) Partial order (i.e., model complexity) (i.e., true discoveries)

Variable selection Subsets of {1, . . . , p} ∅ Inclusion of subsets Cardinality of subset Subsets x, x̃; �(x, x̃) = |x ∩ x̃|
clustering Partitions of {1, . . . , p} {1}, {2}, . . . , {p} Refinement of partition p−#groups Partitions x, x̃; �(x, x̃) = p−# groups in

coarsest common refinement
Multisample

testing
Partitions of {1, . . . , p} {1,2, . . . , p} Coarsening of partition #groups Partitions x, x̃; �(x, x̃) = # groups in finest

common coarsening
Causal structure

learning
Completed partially

directed acyclic
graphs (CPDAG) on a
set of variables

CPDAG with no
edges

Inclusion of conditional
dependencies
encoded by CPDAGs

#edges CPDAGs C, C̃; �(C, C̃) = # edges in
densest CPDAG encoding conditional
independencies of both C, C̃

Multiple
changepoint

Elements of {0, . . . , T }p (T, T, . . . , T) Entrywise reverse
ordering

p · T minus sum of
entries

Changepoint vectors x, x̃;
�(x, x̃) = p · T −

∑
i max{xi , x̃i}

Partial ranking Relations specified by
strict partial orders
on a set of items

∅ Inclusion of set
specifying relations

Cardinality of set
specifying relation

SetsR, R̃ specifying relations;
�(R, R̃) = |R ∩ R̃|

Total ranking Total orders on a set of
items

Base ranking �null Inclusion of inversion
sets w.r.t. �null

Cardinality of inversion
set w.r.t. �null

Total orders �, �̃;
�(�, �̃) = |inv(�;�null) ∩ inv(�̃;�null)|

Subspace
estimation

subspaces in Rp
{0} Inclusion of subspaces Dimension of subspace Subspaces U , Ũ ; �(U , Ũ) = trace(PUPŨ )

Blind source
separation

Linearly independent
subsets of Rp

∅ Inclusion of subsets Cardinality of subset Subsets given by columns of
B ∈ Rp×k , B̃ ∈ Rp×` , k ≤ `;
�(B, B̃) = max�∈Perm(`)

∑k
i=1(BT B̃)2

i,�(i)

is small in cardinality is central to the success of our proposed
methods. In the remainder of this section, we assume that a
minimal set of covering pairs S for a given model poset L is
available.

B. Model Selection via Stability. Our first method for designing
a suitable function Ψ to employ in Algorithm 1 is based on sub-
sampling and corresponding model averaging. We assume that we
have access to a base procedure x̂base that provides model estimates
from data as well as a datasetD consisting of observations drawn
from a probability distribution parameterized by the true model
x?, and our approach is to aggregate the model estimates provided
by x̂base on subsamples of D. The requirements on the quality
of the procedure x̂base are quite mild, and we prove bounds in
the sequel on the false discovery associated with the aggregated
model. In particular, the aggregation method ensures that the
averaged model is “stable” in the sense that it contains discoveries
that are supported by a large fraction of the subsamples. Our
method generalizes the stability selection method for variable
selection (4, 5) and subspace stability selection for subspace
estimation (19). We demonstrate the broad applicability of this
methodology in Section 5 by applying it to several examples from
Section 3.

Formally, fix a positive even integer B and obtain B/2
complementary partitions of the dataset D, each of which
partitionsD into two subsamples of equal size. Let this collection
of subsamples be denoted {D(`)

}
B
`=1, and let x̂base(D(`)) denote

the model estimate obtained by applying the base procedure to
the subsampleD(`). For any covering pair (u, v) of a model poset
L, we define:

Ψstable(u, v) := 1−
1
B

B∑
`=1

�(v, x̂base(D(`)))− �(u, x̂base(D(`)))
cL(u, v)

,

[6]

where cL(u, v) := maxz∈L �(v, z)− �(u, z). Appealing to prop-
erties of similarity valuations, we have that �(v, x̂base(D(`))) −
�(u, x̂base(D(`))) ≥ 0 and cL(u, v) ≥ 1. The term
�(v, x̂base(D(`))) − �(u, x̂base(D(`))) measures the additional

discovery about x̂base(D(`)) in the model v relative to the model
u, while the quantity cL(u, v) serves as normalization to ensure
that Ψstable(u, v) ∈ [0, 1]. In particular, Ψstable(u, v) being small
implies that the additional discovery represented by the model
v over the model u is supported by a large fraction of the
subsamples {D(`)

}
B
`=1. Consequently, when Ψstable is employed

in the context of Algorithm 1 in which we greedily grow a
path, each “step” in the path corresponds to a discovery that
is supported by a large fraction of the subsamples. We provide
theoretical support for this approach in Theorem 4 in the sequel
and the proof proceeds by showing that Ψstable(u, v) being small
implies that E[1−(�(u, x?)−�(v, x?))] is small; we combine this
observation with the telescoping sum formula Eq. 5 to obtain a
bound on the expected false discovery of the model estimated by
Algorithm 1.

When Algorithm 1 with Ψ = Ψstable is specialized to
Example 1 and Example 8, we obtain the stability selection
procedure of (4, 5) and the subspace stability selection method
of ref. 19. For variable selection in particular, Algorithm 1 with
Ψ = Ψstable outputs the subset of variables that appear in at least
a 1 − � fraction of the models estimated by the base procedure
when applied to the subsamples {D(`)

}
B
`=1. More generally,

Algorithm 1 with Ψ = Ψstable also provides a procedure for
model selection in Examples 2–7 corresponding to discrete model
posets.

Theorem 4 (False discovery control for Algorithm 1 withΨ =
Ψstable). Let (L,�, rank(·)) be a graded discrete model poset with
integer-valued similarity valuation � and let S be an associated set
of minimal covering pairs. Let x̂base be a base estimator. Suppose the
dataset D employed in the computation of Ψstable consists of i.i.d.
observations from a distribution parametrized by the true model
x?
∈ L, and suppose x̂sub is an estimator obtained by applying

x̂base to a subsample of D of size |D|/2. Fix � ∈ (0, 1/2) and a
positive, even integer B. The output x̂stable from Algorithm 1 with
Ψ = Ψstable satisfies the following false discovery bound

E[FD(x̂stable, x?)] ≤
∑

(u,v)∈S∩Tnull

E[�(v, x̂sub)− �(u, x̂sub)]2

(1− 2�)cL(u, v)2 . [7]
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Here, the set Tnull := {(u, v) covering pair in L | �(v, x?) =
�(u, x?)} consists of all covering pairs (u, v) for which there is no
additional discovery in the model v over the model u with respect to
the true model x?.

In the bound Eq. 7, the numerator E[�(v, x̂sub)− �(u, x̂sub)]2
of each summand characterizes the quality of the base estimator
on subsamples; base estimators for which this term is small, when
employed in the computation of Ψstable in Algorithm 1, yield
models x̂stable with small false discovery.

Remark 3: When specialized to Example 1 on variable selection
with similarity valuation �meet, we recover Theorem 1 of ref. 5.
Specifically, in Eq. 7, we have that cL(u, v) = 1 for any covering
pair (u, v) and

∑
(u,v)∈S∩Tnull

E[�(v, x̂sub) − �(u, x̂sub)]2 =∑
null i P[variable i selected by x̂sub]2.

Theorem 4 is general in its applicability to all the discrete posets
in Section 3, and it provides an intuitive bound on expected
false discovery. Nonetheless, it requires a characterization of the
quality of the base estimator x̂base employed on subsamples. When
such a characterization is unavailable, the false discovery bound
Eq. 7 may not be easily computable in practice. To address
this shortcoming and obtain easily computable bounds on false
discovery, we consider natural assumptions on the estimator x̂sub
corresponding to the base estimator x̂base applied to subsamples;
these assumptions generalize those developed in refs. 4 and 19
for stability-based methods for variable selection and subspace
estimation. To formulate these assumptions, we introduce some
notation. Let rank(L) := maxu∈L rank(u) be the largest rank of
an element in L and let Sk := {(u, v) ∈ S | rank(v) = k} for
each k ∈ [rank(L)].

Assumption 1 (Better than random guessing). For each k ∈
[rank(L)] with Sk 6= ∅, we have that∑

(u,v)∈Sk∩Tnull

1
|Sk ∩ Tnull|

·
E[�(v, x̂sub)− �(u, x̂sub)]

cL(u, v)

≤

∑
(u,v)∈Sk\Tnull

1
|Sk \ Tnull|

E[�(v, x̂sub)− �(u, x̂sub)]
cL(u, v)

.

Assumption 2 (Invariance in mean). For each k ∈ [rank(L)]
with Sk 6= ∅, we have that E[�(v,x̂sub)−�(u,x̂sub)]

cL(u,v) is the same for each
(u, v) ∈ Sk ∩ Tnull.

In words, Assumption 1 states that the average normalized
difference in similarity valuation of the estimator x̂sub is smaller
over “null” covering pairs than over nonnull covering pairs.
Assumption 2 states that the expected value of the normalized
difference in similarity of x̂sub is the same for each “null”
covering pair. For the case of variable selection (Example 1),
Assumption 1 reduces precisely to the “better than random
guessing” assumption employed by (4), namely that the expected
number of true positives divided by the expected number of false
positives selected by the estimator x̂sub is larger than the same
ratio for an estimator that selects variables at random. As a second
condition, (4) required that the random variables in the collection
{I[i ∈ x̂sub] : i null} are exchangeable. Our Assumption 2 when
specialized to variable selection reduces to the requirement that
each of the random variables in the collection {I[i ∈ x̂sub] : i null}
has the same mean. As a second illustration, consider the case of

total ranking (Example 7) involving items a1, . . . , ap, with the
least element �null given by �null(ai) = i, i = 1, . . . , p, the true
total ranking by �?, and the estimator on subsamples by �̂sub. Fix
any k ∈ {1, . . . , p − 1}. Assumption 1 states that the expected
number of pairs (ai, aj) ∈ inv(�̂sub;�null) ∩ inv(�?;�null)
with j − i = k divided by the expected number of pairs
(ai, aj) ∈ inv(�̂sub;�null) \ inv(�?;�null) with j − i = k is
larger than the same ratio for an estimator that outputs a total
ranking at random. Assumption 2 states that the probability
that (ai, aj) ∈ inv(�̂sub;�null) is the same for all pairs (ai, aj)
with j − i = k and (ai, aj) 6∈ inv(�?;�null). See SI Appendix,
section 4, for a formal derivation.

Theorem 5 (Refined false discovery control for Algorithm 1
with Ψ = Ψstable). Consider the setup of Theorem 4, and suppose
additionally that Assumptions 1 and 2 are satisfied. The output
x̂stable from Algorithm 1 with Ψ = Ψstable satisfies the false discovery
bound:

E[FD(x̂stable, x?)] ≤
∑

k∈[rank(L)],Sk 6=∅

q2
k

|Sk|(1− 2�)
, [8]

where qk =
∑

(u,v)∈Sk
E[�(v, x̂sub)− �(u, x̂sub)]/cL(u, v).

The quantities in the bound Eq. 8 may be readily computed
in practice. In particular, each Sk and cL(·, ·) depends only
on the model poset L, and each qk can be approximated

as qk ≈
1
B
∑B

`=1
∑

(u,v)∈Sk

�(v,x̂base(D(`)))−�(u,x̂base(D(`)))
cL(u,v) . We

give characterizations of the sets Sk and cL(·, ·) for posets
corresponding to total ranking, partial ranking, clustering, and
causal structure learning in SI Appendix, section 3.

Remark 4: Specializing Theorem 5 to the case of variable
selection, we arrive at the bound in Theorem 1 of ref. 4.
Specifically, note that for the Boolean poset with the similarity
valuation �meet, Sk = ∅ for k ≥ 2, |S1| = # variables, and
q1 =

∑
i P[variable i selected by x̂sub] is the average number of

variables selected by the estimator x̂sub.

Turning our attention to Examples 8 and 9, the situation is
considerably more complicated with continuous model posets. A
result for these two cases under the same setup as in Theorem 4
yields the following bound for � ∈ (0, 1/2) (SI Appendix,
section 5):

E[FD(x̂stable, x?)] ≤
2� + 2

√
�

1− �
E[rank(x̂sub)]

+ E[
√

FD(x̂sub, x?)]2. [9]

The first term in the bound is a function of the average number of
discoveries made by the estimator x̂sub, and this term is smaller for
� ≈ 0. The second term in the bound concerns the quality of the
estimator x̂sub. Specifically, note that Jensen’s inequality implies
E[
√

FD(x̂sub, x?)]2 ≤ E[FD(x̂sub, x?)], so that the improvement
provided by the estimator x̂stable based on subsampling and model
averaging over the estimator x̂sub that simply employs the base
estimator on subsamples is characterized by var(FD(x̂sub, x?)).
Thus, the key remaining task as before is to characterize the
properties of the estimator x̂sub. However, the difficulty with the
continuous examples is that conditions akin to Assumptions 1
and 2 are substantially more challenging to formulate and analyze
at an appropriate level of generality. (One such effort under a
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limited setting for the case of subspace estimation is described in
ref. 19.) It is of interest to develop such a general framework for
continuous model posets, and we leave this as a topic for future
research.

C. Model Selection via Testing. Our second approach to design-
ing a suitable function Ψ to employ in Algorithm 1 is based on
testing the following null hypothesis for each (minimal) covering
pair (u, v) of a discrete model poset L:

Hu,v
0 : �(v, x?) = �(u, x?),

Ψtest(u, v) := P-value corresponding to Hu,v
0 .

[10]

The null hypothesis Hu,v
0 in Eq. 10 states that there is no

additional discovery about x? in the model v relative to the
model u, and small values of Ψtest(u, v) provide evidence for
rejecting this null hypothesis and accepting the alternative that
�(v, x?) > �(u, x?). When Ψtest is employed in the context
of Algorithm 1 in which we greedily grow a path, each “step”
in the path corresponds to a discovery for which we have the
“strongest evidence” using the above test. Our next result provides
theoretical support for this method.

Theorem 6 (False discovery control for Algorithm 1 withΨ =
Ψtest). Let (L,�, rank(·)) be a graded discrete model poset with
integer-valued similarity valuation � and let S be an associated set of
minimal covering pairs. The output x̂test of Algorithm 1 with Ψ =
Ψtest satisfies the false discovery bound P (FD(x̂test, x?) > 0) ≤
�|S|.

The multiplicity factor involving the cardinality of the set of
minimal covering pairs S is akin to a Bonferroni-type correction,
and it highlights the significance of identifying a set of minimal
covering pairs of small cardinality. We emphasize that although
Algorithm 1 with Ψ = Ψtest proceeds via sequential hypothesis
testing, the procedure is applicable to general model classes with
no underlying Boolean logical structure; in particular, it is the
graded poset structure underlying our framework that facilitates
such methodology.

As an illustration of the multiplicity factor |S| for different
settings, we have that |S| = p(p− 1) for partial ranking; |S| =∑p−1

k=1
( p

k+1
)∑k

`=1
( k+1

`

)
for clustering; and |S| = p(p−1)

2 for
total ranking. See SI Appendix, section 3, for further details.

The graded poset structure of a model class can also yield more
powerful model selection procedures than those obtained by the
greedy procedure of Algorithm 1. We give one such illustration
next in which a collection of model estimates that each exhibits
zero false discovery (with high probability) can be “combined”
to derive a more complex model that also exhibits zero false
discovery. Formally, a poset (L,�) is said to possess a join if for
each x, y ∈ L there exists a z ∈ L satisfying i) z � x, z � y and
ii) for any w ∈ L with w � x, w � y, we have w � z; such a z
is called the join of x, y and posets that possess a join are called
join semilattices (these are dual to the notion of a meet defined
in Section 3). Except for the posets in Examples 4, 6, and 9, the
posets in the other examples are join semilattices (SI Appendix,
section 1). For a model class that is a join semilattice, suppose
we are provided estimates x̂(1), . . . , x̂(m) of a true model x? such
that FD(x̂(j), x?) = 0, j = 1, . . . , m (for example, by appealing
to greedy methods such as Algorithm 1 or its variants). Appealing
to the properties of a similarity valuation, we can conclude that
the join x̂join of x̂(1), . . . , x̂(m) satisfies FD(x̂join, x?) = 0; in
general, rank(x̂join) is larger than rank(x̂(1)), . . . , rank(x̂(m)),

and therefore, this procedure is one way to obtain a more powerful
model by combining less powerful ones while still retaining
control on the amount of false discovery. The following result
formalizes matters.

Proposition 7 (Using joins to obtain more powerful models).
Let (L,�, rank(·)) be a graded discrete model poset that is a join
semilattice with integer-valued similarity valuation � and let S be
an associated set of minimal covering pairs. Consider a collection of
estimates x̂(1), . . . , x̂(m) of a true model x? and let x̂join denote the
join of x̂(1), . . . , x̂(m). Suppose for each x̂(j), j = 1, . . . , m there is
a path from the least element of L to x̂(j) such that every covering
pair (u, v) along the path satisfies Ψtest(u, v) ≤ �. Then, we have
the false discovery bound P(FD(x̂join, x?) > 0) ≤ �|S|.

5. Experiments
We describe the results of numerical experiments on synthetic
and real data in this section. We employ Algorithm 1 with both
Ψ = Ψstable and Ψ = Ψtest. For the testing-based approach, the
manner in which P-values are obtained is described in the context
of each application, and we set � equal to 0.05/|S| for a given set
S of minimal covering pairs. For the stability-based approach,
we consider B = 100 subsamples obtained by partitioning a
given dataset 50 times into subsamples of equal size, and we set
� = 0.3.

To obtain a desired level of expected false discovery with the
stability-based approach, we appeal to Theorem 5 as follows.
In the bound Eq. 8, each qk can be derived by averaging over
subsamples (as explained in the discussion after the statement of
Theorem 5), and all the other quantities are known. The values
of these qk’s, in turn, depend on the model estimates returned
by the base procedure x̂base employed on the subsamples; in
particular, if the estimate is the least element then each qk equals
zero, and as x̂base returns models of increasing complexity, the
value of each qk generally increases. Building on this observation,
we tune parameters in x̂base to return increasingly more complex
models until the bound Eq. 8 is at the desired level. For causal
structure learning, we employ Greedy Equivalence Search as our
base procedure with tuning via the regularization parameter that
controls model complexity (20). For clustering, we employ k-
means (21) as the base procedure with tuning via the number of
clusters. For our illustrations with ranking problems (both partial
and total) in which we are provided with pairwise comparison
data, our base procedure first employs the maximum-likelihood
estimator associated with the Bradley–Terry model (22), which
returns a vector of positive weights ŵ of dimension equal to the
number of items. Using this ŵ, we associate numerical values to
covering pairs; each covering pair corresponds to increasing the
complexity of a model by including a pair of items (i, j) to the
inversion set (in total ranking) or to the relation specifying a strict
partial order (in partial ranking), and the value we assign is the
difference ŵj − ŵi. Our base procedure then constructs a path
starting from the least element by greedily adding covering pairs
of largest value at each step, provided these values are larger than
a regularization parameter � > 0; smaller values of � yield model
estimates of larger complexity, while larger values yield estimates
of smaller complexity.

Finally, for causal structure learning, we restrict our search
during the model aggregation phase of Algorithm 1 to paths that
yield CPDAG models in which each connected component in the
skeleton has a diameter at most two; such a restriction facilitates
a simple characterization of covering pairs. This restriction is not
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imposed on the output of the base procedure. Moreover, the true
model can be an arbitrary CPDAG.

A. Synthetic Data. We describe experiments with synthetic data
using Algorithm 1 with Ψ = Ψstable.
A.1. Total ranking. We consider a total ranking problem with
p = 30 items. We observe n i.i.d. games between players i, j
with the outcome modeled as yij` ∼ Bernoulli(w?

i /(w
?
i + w?

j ))
for ` = 1, . . . , n, where w?

∈ Rp
++ is a feature vector and

n ∈ {200, 250, 300}. We fix w? by first defining w̃ ∈ Rp
++

as w̃i = � i−1, i = 1, . . . , p for � ∈ {0.97, 0.98, 0.99}, and
then setting w? equal to a permutation of w̃ in which we swap
the entries 1, 3, the entries 8, 10, the entries 15, 17, the entries
20, 22, and the entries 25, 27. Smaller values of � correspond to
better-distinguished items, and hence to easier problem instances.
The base procedure is tuned such that the expected false discovery
in Eq. 8 is at most three.
A.2. Clustering. We consider a clustering problem with p = 20
variables. The true partition consists of 12 clusters with five
variables in one cluster, another five variables in a second cluster,
and the remaining variables in singleton clusters. The p variables
are independent two-dimensional Gaussians. Each variable in
cluster i has mean (�i, 0) and covariance 1

4 I ; each �i = i/d for
d ∈ {3, 3.5, 4}. Smaller values of d correspond to better-separated
clusters, and hence to easier problem instances. We are provided
n i.i.d. observations of these variables for n ∈ {40, 65, 90}. The
base procedure is tuned such that the expected false discovery in
Eq. 8 is at most three.
A.3. Causal structure learning. We consider a causal structure
learning problem over p = 10 variables. We generate the
true DAG as follows: we obtain an Erdös-Renyi graph with
edge probability v ∈ {0.08, 0.16} and then orient the edges
according to a random total ordering of the variables. A linear
structural causal model is defined where each variable is a linear
combination of its parents plus independent Gaussian noise
with mean zero and variance 1

4 . The coefficients in the linear
combination are drawn uniformly at random from the interval
[0.5, 0.7]. Larger values of v lead to denser DAGs, and hence to
harder problem instances. We obtain n i.i.d. observations from
these models for n ∈ {1,000, 1,200, 1,400, 1,600, 1,800}. The
base procedure is tuned such that the expected false discovery in
Eq. 8 is at most two.

For the preceding three problem classes, we compare the
performance of our stability-based methodology versus that of

a non-subsampled approach in which the base procedure (with
suitable regularization) is applied to the entire dataset. For
total ranking, the nonsubsampled procedure simply extracts the
ranking implied by the maximum-likelihood estimator associated
with the Bradley–Terry model. For clustering, the nonsubsam-
pled approach employs k-means where the number of clusters is
chosen to maximize the average silhouette score (23). For causal
structure learning, the nonsubsampled approach applies Greedy
Equivalence Search with a regularization parameter chosen based
on holdout validation (70% of the data is used for training and the
remaining 30% for validation). Fig. 2 presents the results of our
experiments averaged over 50 trials, and as the plots demonstrate,
our stability-based methods yield models with smaller false
discovery than the corresponding nonsubsampled approaches.
This reduction in false discovery comes at the expense of a loss in
power, which is especially significant for some of the harder prob-
lem settings. However, in all cases, our stability-based method
provides the desired level of control on expected false discovery.

B. Real Data. We describe the next experiments with real data.
B.1. Partial ranking of tennis players. We consider the task
of partially ranking six professional tennis players—Berdych,
Djokovic, Federer, Murray, Nadal, and Wawrinka—based on
historical head-to-head matches of these players up to the end of
2022. We apply Algorithm 1 with Ψ = Ψstable and with the base
procedure tuned such that the expected false discovery in Eq. 8 is
at most three. The output of our procedure is a rank-eight model
given by the partial ranking {Djokovic, Nadal} > {Berdych,
Murray, Wawrinka} and {Federer} > {Berdych, Wawrinka}.
B.2. Total ranking of educational systems. We consider the task
of totally ordering p = 15 OECD countries in reading
comprehension based on test results from the Programme for
International Student Assessment (PISA). We take the null
ranking as the ordering of the countries based on performance in
2015 (see the first row in Table 2), and we wish to update this
model based on 2018 test scores (data obtained from ref. 24),
with the number of test scores ranging from 696 to 3,414. We
apply Algorithm 1 with Ψ = Ψtest, and we obtain P-values by
modeling the average test score of each country as a Gaussian.
We set � = 0.05/

p(p−1)
2 (here p(p−1)

2 is the cardinality of a
set of minimal covering pairs), which yields the guarantee from
Theorem 6 that the estimated model has zero false discovery
with probability at least 0.95. The output of our procedure is the
rank-nine model given by the total ranking in the second row in
Table 2.
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Fig. 2. Comparing the performance of Algorithm 1 with Ψ = Ψstable vs. a nonsubsampling approach for total ranking, clustering, and causal structure learning.
Each problem setting corresponds to a pair of dots and a connecting line. The comparison is in terms of the amount of false and true discoveries.
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Table 2. Ranking of nations according to PISA reading comprehension scores; the first column is the 2015 ranking
of 15 OECD countries which serves as the base ranking for our analysis: Based on test results in 2018, we update
this ranking using Algorithm 1 based on 	 = 	test with the result shown in the second column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2015 base ranking CAN FIN IRL EST KOR JPN NOR NZL DEU POL SvN NLD AUS SWE DNK
Testing approach FIN IRL EST CAN KOR JPN NOR NZL POL DEU AUS SWE SvN DNK NLD

B.3. Learning causal structure among proteins. We aim to learn
causal relations underlying p = 11 phosphoproteins and phos-
pholipids from a mass spectroscopy dataset containing ≈854
measurements of abundance levels in an observational setting
(25); data obtained from the supplementary material of ref. (25).
We apply Algorithm 1 with Ψ = Ψstable and with the base
procedure tuned such that the expected false discovery in Eq. 8 is
at most two. Fig. 3 presents the rank-six CPDAG model obtained
from our algorithm and compares it to the estimates obtained
from the literature (25–27). Our CPDAG estimate has fewer
edges than those in refs. 25–27, which do not explicitly provide
control on false discovery.

6. Proofs

For notational ease, for a covering pair (u, v) and element z in
the poset L, we define f (u, v; z) := �(v, z)− �(u, z). Recall that
Tnull := {(u, v) covering pair in L | �(v, x?) = �(u, x?)}. Our
analysis relies on the following lemmas with the proofs presented
in SI Appendix, section 6.

Lemma 8. Fix a discrete model poset L with integer-valued
similarity valuation �. For any model x ∈ L with (x0, . . . , xk)
being any path from the least element x0 = xleast to xk = x, we
have that FD(x, x?) ≤

∑k
i=1 I[(xi−1, xi) ∈ Tnull]. As a result, we

have that FD(x, x?) > 0 implies the existence of some i for which
(xi−1, xi) ∈ Tnull.

Lemma 9. For any covering pairs (u, v) and (x, y) with v � x, we
cannot have that f (u, v; z) = f (x, y; z) for all z ∈ L.

A. Proof of Theorem 4. For notational convenience, we let
x̂(`)

base = x̂base(D(`)) where {D(`)
}
B
`=1 are the subsamples of D.

Let x̂stable be the output of Algorithm 1 with rank(x̂stable) =
k̂, and let (x0, . . . , xk̂) be the associated path from the
least element x0 = xleast to xk̂ = x̂stable; we have that
1
B
∑B

`=1 f (xi−1, xi; x̂(`)
base)/cL(xi−1, xi) ≥ (1 − �) for each i =

1, . . . , k̂. Let C := {(xi−1, xi) | i = 1, . . . , k̂}. From Lemma 8,
we also have that FD(x̂stable, x?) ≤ |C ∩ Tnull|. Combining

Fig. 3. Left: CPDAG obtained by Algorithm 1 with Ψ = Ψstable; Right:
comparing the edges obtained by our algorithm (shown in the Leftmost
column) with different causal discovery methods (with indicated reference).
The consensus network according to ref. 25 is denoted here by Sachs (25)a
and their reconstructed network by Sachs (25)b; The authors in ref. 26 apply
two methods, and the results are presented by Meinshausen (26) a and b.
Here, “−” means that the edge direction is not identified.

these observations, we conclude that FD(x̂stable, x?) ≤∑
(u,v)∈C∩Tnull

I
[

1
B
∑B

`=1
f (u,v;x̂(`)base)

cL(u,v) ≥ 1− �
]

. Next, we ob-

serve that for each covering pair in C there exists a
covering pair in the minimal set S with the values of
f and cL remaining the same; moreover, distinct cov-
ering pairs in C map to distinct covering pairs in S
from Lemma 9. Thus, we conclude that FD(x̂stable, x?) ≤∑

(u,v)∈S∩Tnull
I
[

1
B
∑B

`=1
f (u,v;x̂(`)base)

cL(u,v) ≥ 1− �
]

. Then:

FD(x̂stable, x?)

≤

∑
(u,v)∈
S∩Tnull

I

 1
B/2

B/2∑
`=1

∑
i∈{0,1}

f (u, v; x̂(2`−i)
base )

cL(u, v)
≥ 2− 2�



≤

∑
(u,v)∈
S∩Tnull

I

 1
B/2

B/2∑
`=1

∏
i∈{0,1}

f (u, v; x̂(2`−i)
base )

cL(u, v)
≥ 1− 2�

 . [11]

The second inequality follows from ab ≥ a + b − 1 for
a, b ∈ [0, 1], where we set a = f (u, v; x̂(2`−1)

base )/cL(u, v) and

b = f (u, v; x̂(2`)
base )/cL(u, v), and note that f (u, v; z)/cL(u, v) ∈

[0, 1] for any z ∈ L. Taking expectations on both sides
of the preceding inequality, we finally seek a bound on

P
[

1
B/2

∑B/2
`=1

∏
i∈{0,1}

f (u,v;x̂(2`−i)
base )

cL(u,v) ≥ 1− 2�
]

. We have that

P

 1
B/2

B/2∑
`=1

∏
i∈{0,1}

f (u, v; x̂(2`−i)
base )

cL(u, v)
≥ 1− 2�



≤

E

[
1

B/2
∑B/2

`=1
∏

i∈{0,1}
f (u,v;x̂(2`−i)

base )

cL(u,v)

]
1− 2�

=
E [f (u, v; x̂sub)]

2

cL(u, v)2(1− 2�)
. [12]

Here x̂sub represents the estimator corresponding to the base
procedure x̂base applied to a subsample of D of size |D|/2. The
inequality follows from Markov’s inequality, and the equality
follows by noting that complementary bags are independent and
identically distributed. Combining Eq. 11 and Eq. 12, we obtain
the desired result.

B. Proof of Theorem 5. We have from Theorem 4 that

E[FD(x̂stable, x?)] ≤
rank(L)∑

k=1

∑
(u,v)∈Sk∩Tnull

E[f (u, v; x̂sub)]2

(1− 2�)cL(u, v)2 .

Our goal is to bound E[f (u, v; x̂sub)]/cL(u, v) for (u, v) ∈ Sk ∩
Tnull. Note that each qk may be decomposed as

qk =
∑

(u,v)∈
Sk∩Tnull

E[f (u, v; x̂sub)]
cL(u, v)

+
∑

(u,v)∈
Sk\Tnull

E[f (u, v; x̂sub)]
cL(u, v)

.
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Appealing to Assumption 1, we have that

qk ≥

(
1 +
|Sk \ Tnull|

|Sk ∩ Tnull|

) ∑
(u,v)∈Sk∩Tnull

E[f (u, v; x̂sub)]
cL(u, v)

.

Rearranging the terms, we obtain that∑
(u,v)∈Sk∩Tnull

E[f (u, v; x̂sub)]
cL(u, v)

≤
qk

|Sk|
|Sk ∩ Tnull|.

Appealing to Assumption 2, we have for each (u, v) ∈ Sk ∩ Tnull

that E[f (u,v;x̂sub)]
cL(u,v) ≤

qk
|Sk|

. Plugging this bound into the conclusion
of Theorem 4 yields the desired result.

C. Proof of Theorem 6. Let x̂test be the output of Algorithm 1
with rank(x̂test) = k̂, and let (x0, . . . , xk̂) be the associated
path from the least element x0 = xleast to xk̂ = x̂test; we
have that Ψtest(xi−1, xi) ≤ � for each i = 1, . . . , k̂. Let
C := {(xi−1, xi) | i = 1, . . . , k̂}. From Lemma 8, we have
that FD(x̂test, x?) > 0 implies the existence of a covering pair
(u, v) ∈ C ∩ Tnull for which Ψtest(u, v) ≤ �. For each covering
pair in C, there exists a covering pair in S with the same
value of Ψtest; thus, there exists (u, v) ∈ S ∩ Tnull such that
Ψtest(u, v) ≤ �. Consequently:

P(FD(x̂test, x?) > 0)
≤ P (∃(u, v) ∈ S ∩ Tnull s.t. Ψtest(u, v) ≤ �)

≤

∑
(u,v)∈S∩Tnull

P(Ψtest(u, v) ≤ �) ≤ �|S|.

Here, the second inequality follows from the union bound and
the final inequality from Ψtest(u, v) being a valid P-value under
the null hypothesis �(v, x?) = �(u, x?).

D. Proof of Proposition 7. For each x̂(j), j = 1, . . . , m, we are
given that there is a path from xleast to x̂(j) such that Ψtest is
bounded by � for each covering pair in the path; let C(j) be the set
of these covering pairs. As described in Section C in the discussion

preceding Proposition 7, FD(x̂join, x?) > 0 implies that
FD(x̂(j), x?) > 0 for some j = 1, . . . , m, which in turn implies
from Lemma 8 the existence of a covering pair (u, v) ∈ C(j)

∩Tnull
for some j = 1, . . . , m. Following the same logic as in the proof
of Theorem 6, we conclude that FD(x̂join, x?) > 0 implies the
existence of (u, v) ∈ S ∩ Tnull such that Ψtest(u, v) ≤ �. Using
the same reasoning as in Eq. 13, we have the desired conclusion.

7. Discussion
We present a general framework to endow a collection of models
with poset structure. This framework yields a systematic approach
for quantifying model complexity and false-positive error in an
array of complex model selection tasks in which models are not
characterized by Boolean logical structure (such as in variable
selection). Moreover, we develop a methodology for controlling
false-positive error in general model selection problems over
posets, and we describe experimental results that demonstrate
the utility of our framework.

We finally discuss some future research questions that arise
from our work. On the mathematical front, a basic open
question is to characterize fundamental tradeoffs between false-
positive and false-negative errors that are achievable by any
procedure in model selection over a general poset; this would
generalize the Neyman–Pearson lemma on optimal procedures
for testing between two hypotheses. On the computational
and methodological front, it is of interest to develop methods
to control false-positive error as well as false discovery rates,
including in settings involving continuous model posets.

Data,Materials, and Software Availability. All study data are included in the
article. The code for implementing our methods is available at https://github.
com/armeentaeb/model-selection-over-posets (30).
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Supporting Information Text11

Subhead. This document includes proofs of claims in the main text.12

I. Meet Semi-lattice and Join Semi-lattice Properties and Posets in Examples 1-913

The Boolean poset (Example 1), partition poset (Examples 2-3), integer poset (Example 5), permutation poset (Example 7), and14

subspace poset (Example 8) are all known in the literature to be lattices (and consequently meet-semi and join semi-lattices);15

see (1).16

We next show that for Examples 6 and 9 associated with partial ranking and blind-source separation, the corresponding17

posets are also meet semi-lattices. Consider the partial ranking setting in Example 6. Let R1 and R2 be two relations that are18

irreflexive, asymmetric, and transitive. Recalling that the partial ordering is based on inclusion, it is clear that the relations19

R = {(a, b) : (a, b) ∈ R1, (a, b) ∈ R2} is the unique largest rank element in the partial ranking poset such that R � R1 and20

R � R2. Furthermore, for any R̃ with R̃ � R1 and R̃ � R2, we clearly have that R̃ � R. Consider the blind-source separation21

setting in Example 9. Let x1 and x2 be two sets of linearly independent subsets of unit norm vectors. Recalling that the partial22

ordering in the associated poset is based on inclusion, it is clear that the set y = x1 ∩ x2 is the unique largest rank element in23

the partial ranking poset such that y � x1 and y � x2. Furthermore, for every z with z � x1 and z � x2, we have that z � y.24

We show that the poset corresponding to causal structure learning setting (Example 4) is not meet semi-lattice or join25

semi-lattice. As a counterexample, consider the CPDAGs Ci for i = 1, 2, 3, 4 shown in Figure S1. Notice that C3 � C1, C3 � C2,26

C4 � C1, and C4 � C2. Notice also that C3 and C4 are both CPDAGs with the largest rank that are smaller (in a partial order27

sense) than C1 and C2. We thus can conclude that the poset is not meet semi-lattice. Similarly, C1 and C2 are both CPDAGs28

with the smallest rank that are larger (in a partial order sense) than C3 and C4. We thus can conclude that the poset is not29

join semi-lattice.30

We next show that the poset for Example 6 is not join semi-lattice with a simple counterexample. Consider as an example31

elements x1 = {(1, 2)} and x2 = {(2, 1)}. Note that there does not exist an element z such that x1 � z and x2 � z. Thus, the32

poset is not join semi-lattice.33

Finally, we show that the poset corresponding to blind-source separation (Example 9) is not join semi-lattice. Consider a34

collection of p + 1 rank-1 elements in this poset, each element consisting of a single p dimensional vector. Then, evidently,35

there cannot exist an element z consisting of a set of vectors that contains all of the vectors in the rank-1 elements, while36

satisfying the linear independence condition.37

II. Proof that Eq. (1) is a Similarity Valuation Function38

Recall that39

ρmeet(x, y) = max
z�x,z�y

rank(z). [14]40

By definition, ρmeet(·, ·) is a symmetric function. We will now show that it satisfies the three properties in Definition 1 for any41

pair of elements x, y ∈ L. For the first property, we can conclude ρmeet(x, y) ≥ 0 since by definition, the rank function returns42

a non-negative integer for all the elements in the poset. Again, because of the property of the rank function in a graded poset,43

a feasible z (satisfying the constraints z � x, z � y) will necessarily have rank(z) ≤ min{rank(x), rank(y)}. For the second44

property, consider any w ∈ L with x � w. Note that:45

ρmeet(w, y) = max
z�w,z�y

rank(z). [15]46

Then, any feasible z in Eq. (14) is also feasible in Eq. (15) by the transitive property of posets. Therefore, ρmeet(x, y) ≤ ρmeet(w, y).47

For the third property, first note that if x � y, then z = x is feasible in Eq. (14) and thus ρmeet(x, y) ≥ rank(x). Since also48

ρmeet(x, y) ≤ rank(x) by the second property of similarity valuations, we have that ρmeet(x, y) = rank(x). Now suppose that49

ρmeet(x, y) = rank(x). By Eq. (14), we conclude that there exists a feasible z (z � x, z � y) such that rank(z) = rank(x). By50

the property of the rank function, we have that if rank(z) = rank(x) and z � x, then z = x. Since we have additionally that51

z � y, we conclude that x � y.52

III. Proof of Lemmas 8-953

Proof of Lemma 8. Recall the telescoping sum decomposition Eq. (5) that FD(xk, x�) =
∑k

i=1 1−[f(xi−1, xi; x�)]. From the first54

property of similarity valuation that it yields non-negative values, second property of similarity valuation that ρ(x, y) ≤ ρ(z, y)55

for x � z, and that the ρ is an integer-valued similarity valuation, we have that FD(x, x�) ≤
∑k

i=1 I[(xi−1, xi) ∈ Tnull].56

Proof of Lemma 9. For any covering pairs (x, y) and (u, v) with v � x, we cannot have that f(x, y; z) = f(u, v; z) for all z ∈ L.57

Suppose as a point of contradiction that for every z ∈ L, f(x, y; z) = f(u, v; z). Let z = v. Then, by the third property of58

a similarity valuation (see Definition 1), ρ(u, z) = rank(u) and ρ(v, z) = rank(v); thus, for this choice of z, f(u, v; z) = 1.59

On the other hand, again by the third property of a similarity valuation and for the choice of z = v, since u � v � x � y,60

ρ(x, z) = ρ(y, z) = rank(v) and thus f(x, y; z) = 0.61
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1

2 3

(a) C1

1

2 3

(b) C2

1

2 3

(c) C3

1

2 3

(d) C4

Fig. S1. Four CPDAGs. Here, CPDAGs C3 and C4 are both largest complexity models that are smaller (in partial order sense) than C1 and C2. Similarly, CPDAGs C1 and C2
are the smallest complexity models that are larger (in a partial order sense) than C3 and C4.
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IV. Analysis in the Continuous Examples 8 and 962

For notational ease, we let x̂
(�)
base = x̂base(D(�)). Notice that for any l = 1, 2, . . . , B:

FD(x̂stable, x�) = rank(x̂stable) − ρ(x̂stable, x�)

=
[
rank(x̂stable) − ρ(x̂stable, x̂

(�)
base)

]
+

[
rank(x̂(�)

base) − ρ(x̂(�)
base, x�)

]
+ κ(x̂stable, x�, x̂

(�)
base),

where
κ(x̂stable, x�, x̂

(�)
base) := ρ(x̂(�)

base, x�) − rank(x̂(�)
base) + ρ(x̂stable, x̂

(�)
base) − ρ(x̂stable, x�).

Since the choice of l was arbitrary, we note that:

FD(x̂stable, x�) = 2
B

B/2∑
�=1

min
t∈{0,1}

{ [
rank(x̂stable) − ρ(x̂stable, x̂

(2�−t)
base )

]
+

[
rank(x̂(2�−t)

base ) − ρ(x̂(2�−t)
base , x�)

]
+ κ(x̂stable, x�, x̂

(2�−t)
base )

}

≤ 2
B

B/2∑
�=1

min
t∈{0,1}

{ [
rank(x̂(2�−t)

base ) − ρ(x̂(2�−t)
base , x�)

] }
+ 2

B

B∑
�=1

[
rank(x̂stable) − ρ(x̂stable, x̂

(�)
base)

]

+ 2
B

B∑
�=1

κ(x̂stable, x�, x̂
(�)
base)

≤ 2
B

B/2∑
�=1

∏
t∈{0,1}

√
rank(x̂(2�−t)

base ) − ρ(x̂(2�−t)
base , x�) + 2αrank(x̂stable) + 2

B

B∑
�=1

κ(x̂stable, x�, x̂
(�)
base).

Here, the second inequality follows from min{a + b, c + d} ≤ min{a, c} + b + d for a, b, c, d ≥ 0. The third inequality follows63

from min{a, b} ≤
√

ab for a, b ≥ 0 and64

1
B

B∑
�=1

rank(x̂stable) − ρ(x̂stable, x̂
(�)
base) =

rank(x̂stable)∑
k=1

1
B

B∑
�=1

1 − [ρ(xk, x̂
(�)
base) − ρ(xk−1, x̂

(�)
base)] ≤ αrank(x̂stable), [16]65

where (x0, x1, . . . , xk̂) is a sequence specifying a path from the least element x0 to xk̂ = x̂stable with rank(x̂stable) = k̂. Thus,
1
B

∑B

�=1 ρ(x̂stable, x̂
(�)
base) ≥ (1 − α)rank(x̂stable). As ρ(x̂stable, x̂

(�)
base) ≤ rank(x̂(�)

base), we can then conclude that E[rank(x̂stable)] ≤
E[rank(x̂sub)]

1−α
. Taking expectations and using the fact that the data across complementary bags is IID, we obtain:

FD(x̂stable, x�) ≤ E[
√

FD(x̂sub, x�)]2 + 2α

1 − α
E[rank(x̂sub)] + 2

B

B∑
�=1

E[κ(x̂stable, x�, x̂
(�)
base)].

It remains to bound 2
B

∑B

�=1 E[κ(x̂stable, x�, x̂
(�)
base)] for subspace selection and blind-source separation.66

67

Subspace-selection: We will use the similarity valuation ρ := ρsubspace in Eq. (3). Note that:68

rank(x) − ρ(x, y) = trace
(
PxPy⊥

)
= trace

(
PxPzPy⊥ Pz

)
+ trace

(
PxPz⊥ Py⊥ Pz⊥

)
+ trace

(
PxPz⊥ Py⊥ Pz

)
+ trace

(
PxPzPy⊥ Pz⊥

)
≤ trace

(
Py⊥ Pz

)
+ trace (PxPz⊥ ) + trace

(
[Px, Pz⊥ ]

[
Pz, Py⊥

])
= rank(z) − ρ(y, z) + rank(x) − ρ(x, z) + trace

(
[Px, Pz⊥ ]

[
Pz, Py⊥

])
.

[17]69

Here, for matrices A, B ∈ R
p×p, [A, B] = AB − BA represents the commutator. Furthermore, note that:70

trace
(
[Px, Pz⊥ ]

[
Pz, Py⊥

])
≤ ‖ [Px, Pz⊥ ] ‖�‖

[
Pz, Py⊥

]
‖2

≤ 2
√

rank(x)
√

rank(x) − ρ(x, z)‖ [Pz, Py] ‖2.
[18]71

Combining the bounds Eq. (17) and Eq. (18), we find that:

rank(x) − ρ(x, y) ≤ rank(z) − ρ(y, z) + rank(x) − ρ(x, z) + 2
√

rank(x)
√

rank(x) − ρ(x, z)‖ [Pz, Py] ‖2

≤ rank(z) − ρ(y, z) + rank(x) − ρ(x, z) +
√

rank(x)
√

rank(x) − ρ(x, z).
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Here, the second inequality follows from the fact that for projection matrices A and B, ‖[A, B]‖2 ≤ 1/2. From this inequality,
we conclude that in the subspace selection setting,

1
B

B∑
�=1

κ(x̂stable, x�, x̂
(�)
base) ≤

√
rank(x̂stable) 1

B

B∑
l=1

√
rank(x̂stable) − ρ(x̂stable, x̂

(�)
base)

≤
√

rank(x̂stable)

√√√√ 1
B

B∑
l=1

rank(x̂stable) − ρ(x̂stable, x̂
(�)
base)

≤
√

αrank(x̂stable).

Here, the second equality follows from Cauchy-Schwartz and the last inequality follows from the bound Eq. (16). Recalling
that E[rank(x̂stable)] ≤ E[rank(x̂sub)]

1−α
, we obtain the final bound:

FD(x̂stable, x�) ≤ E[
√

FD(x̂sub, x�)]2 + 2α +
√

α

1 − α
E[rank(x̂sub)].

Blind-source separation We will use the similarity valuation ρ := ρsource-separation in Eq. (4). For simplicity of notation, associ-72

ated with any element z ∈ L, we consider a block-diagonal p2 ×p2 projection matrix where each p×p block is a projection matrix73

of the subspace spanned by a vector in z. We denote this projection matrix Pz. Then, ρ(x, y) = max
Π∈S

p2
block

trace
(
PxΠPyΠT

)
74

where S
p2

block is the space of p2 × p2 permutation matrices that are block-diagonal where each block is of size p × p.75

76

Note that:

rank(x) − ρ(x, y) = min
Π∈S

p2
block

trace
(
PxΠPy⊥ ΠT

)
≤ min

Π̃∈S
p2
block

min
Π∈S

p2
block

trace
(
ΠPy⊥ ΠT Π̃PzΠ̃T

)
+ trace

(
PxΠ̃Pz⊥ Π̃T

)

+ 2
√

rank(x)
√

trace
(
PxΠ̃Pz⊥ Π̃T

)
‖[Π̃PzΠ̃T , ΠPyΠT ]‖2

≤ min
Π̃∈S

p2
block

trace
(
PxΠ̃Pz⊥ Π̃T

)
+ 2

√
rank(x)

√
trace

(
PxΠ̃Pz⊥ Π̃T

)
max

Π̄, ¯̃Π∈S
p2
block

‖[ ¯̃ΠPz
¯̃ΠT , Π̄PyΠ̄T ]‖2

+ max
Π̃∈S

p
block

min
Π∈S

p
block

trace
(
Π(Id − Py)ΠT Π̃PzΠ̃T

)

= [rank(x) − ρ(x, z] + [rank(z) − ρ(z, y)]

+ 2
√

rank(x)
√

rank(x) − ρ(x, z) max
Π̄, ¯̃Π∈S

p2
block

‖[ ¯̃ΠPz
¯̃ΠT , Π̄PyΠ̄T ]‖2.

Here, the first inequality follows from a similar analysis as arriving to Eq. (17) in subspace selection. The second inequality follows77

from the fact that mina,b f(a) + g(b) ≤ mina f(a) + maxb f(b). Note that projection matrices A, B, [A, B] ≤ 1
2 . Then, following78

the same exact reasoning as the subspace case, we have that in the blind-source separation setting 1
B

∑B

�=1 κ(x̂stable, x�, x̂
(�)
base) ≤79 √

αrank(x̂sub). The result follows subsequently.80

V. Specializing Bound Eq. (8) for Different Problem Settings81

V.I. Partial Ranking. Let S = {a1, a2, . . . , ap} be the set of p elements. We use the similarity valuation ρ := ρmeet in Eq. (1) of82

the main paper.83

V.I.1. Characterizing S for Partial Ranking. We construct a set S satisfying the properties in Definition 3 of the main paper.
Specifically, we let:

S = {(ai, aj) : i 	= j},

with |S1| = p(p − 1) and Sk = ∅ for every k ≥ 2.84

We will show that set S as constructed above satisfies Definition 3. First, consider any covering pair (u′, v′) /∈ S. Here, u′

and v′ are relations and v′ = u′ ∪ (ai, aj) for some i 	= j. Then, for any z ∈ L, it is easy to see that

ρ(v′, z) − ρ(u′, z) = I[(ai, aj) ∈ z] = ρ(v, z) − ρ(u, z),

where v = {(ai, aj)} and u = ∅. Clearly, rank(v) ≤ rank(v′).85

To show the second property, consider covering pairs ({(ai, aj)}, ∅) ∈ S and ({(ak, al)}, ∅) ∈ S. By construction of86

the set S, (ai, aj) 	= (ak, al). Let z = {(ai, aj)}. Then, it is straightforward to see that ρ({(ai, aj)}, z) − ρ(∅, z) = 1 but87

ρ({(ak, al)}, z) − ρ(∅, z) = 0.88
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V.I.2. Characterizing cL(x, y) for Covering Pair (x, y). Since for any z, ρ(y, z) − ρ(x, z) = I((ai, aj) ∈ z) for some (ai, aj). Thus,89

cL(x, y) = 1.90

V.I.3. Refined False Discovery Bound for Partial Ranking. Let x̂stable be output of Algorithm 1 with Ψ = Ψstable. Then:

E[FD(x̂stable, x�)] ≤ q2
1

(1 − 2α)p(p − 1)
,

where
q1 =

∑
i�=j

I[(ai, aj) ∈ x̂sub].

Here, x̂sub is the estimated partial ranking from supplying n/2 samples to the base estimator. We can use the following91

data-driven approximation for q1:q1 ≈ 1
B

∑B

�=1
∑

i�=j
I[(ai, aj) ∈ x̂base(D(�))] with x̂base(D(�)), l = 1, 2, . . . , B representing the92

estimates from subsampling.93

V.II. Total Ranking. Let S = {a1, a2, . . . , ap} be the set of p elements. Let πnull(ai) = i for every i = 1, 2, . . . , p. We use the94

similarity valuation ρ := ρtotal-ranking in Eq. (2) of the main paper. As each element in the poset corresponds to a function95

π : S → S, we will use this functional notation throughout.96

V.II.1. Characterizing S for Total Ranking. We construct a set S satisfying the properties in Definition 3 of the main paper. Initialize
S = ∅. Then, for every relation (ai, aj) with i < j, we augment S as follows:

S = S ∪ (π1, π2),

where π1, π2 are covering pairs. Here, π2 is any rank j − i element in the poset with the relation (ai, aj) in its corresponding
inversion set. Furthermore, we let π1 be a rank j − i − 1 element that is covered by π2 and does not contain (ai, aj) in its
inversion set. Recalling that Sk = {(π1, π2) ∈ S, rank(π2) = k}, we have that for every k = 1, 2, . . . , p − 1

|Sk| = p − k.

We will show that set S as constructed above satisfies Definition 3. First, consider any covering pair (π̃1, π̃2) /∈ S. Then
by definition, the corresponding inversion sets are nested, i.e. inv(π̃2; πnull) ⊇ inv(π̃1; πnull) with the difference being a single
relation. We will denote this relation by (ai, aj) with j > i. Consider the covering pair (π1, π2) ∈ S where (ai, aj) is in the
inversion set of π2 but not in the inversion set of π1. Then, for any π, we have that

ρ(π2, π) − ρ(π1, π) = I((ai, aj) ∈ inv(π; πnull)) = ρ(π̃2, π) − ρ(π̃1, π).

Furthermore, it is straightforward to check that rank(π̃2) ≥ j − i = rank(π2). We have thus shown that S satisfies the first97

property in Definition 3.98

To show the second property, consider covering pairs (π1, π2) ∈ S where the difference between the two inversion sets is the
relation (ai, aj). Let (π3, π4) ∈ S where the difference between the two inversion sets is the relation (ak, al). By construction of
the set S, (ai, aj) 	= (ak, al). Let π be a permutation with (ai, aj) in its inversion set. Then, as desired,

ρ(π2, π) − ρ(π1, π) = I((ai, aj) ∈ inv(π; πnull)) 	= ρ(π4, π) − ρ(π3, π).

V.II.2. Characterizing cL(π1, π2) for Covering Pair (π1, π2). Since for any π, ρ(π2, π) − ρ(π1, π) = I((ai, aj) ∈ inv(π; πnull)) for some99

pair of elements (ai, aj), then cL(π1, π2) = 1.100

V.II.3. Refined False Discovery Bound for Total Ranking. Let π̂stable be output of Algorithm 1 with Ψ = Ψstable. Then:

E[FD(π̂stable, π�)] ≤
p−1∑
k=1

q2
k

(1 − 2α)(p − k)
,

where
qk =

∑
(π1,π2)∈Sk

E[ρ(π2, π̂sub) − ρ(π1, π̂sub)] =
∑

(i,j),j−i=k

[I[(ai, aj) ∈ inv(π̂sub; πnull)] .

Here, π̂sub represents ranking from supplying n/2 samples to the base estimator. We can use the following data-driven101

approximation for qk:qk ≈ 1
B

∑
(i,j),j−i=k

∑B

�=1

[
I[(ai, aj) ∈ inv(π̂base(D(�)); πnull)]

]
, where π̂base(D(�)) represents the total102

ranking obtained by supplying the base estimator on dataset D(�).103
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V.III. Clustering. We have a collection of p items {a1, a2, . . . , ap} that we wish to cluster. We let x0 = {{a1}, {a2}, . . . , {ap}} be
the least element. As described in the main paper, will use the similarity valuation ρ := ρmeet defined in Eq. (1) of the main
paper. Since the clustering poset is meet semi-lattice, ρ computes the rank of the meet of two elements; in this setting, the
meet x ∧ z of x = {G1, . . . , Gq} and z = {G̃1, . . . , G̃s} is

x ∧ z = {Gi ∩ G̃j : Gi ∩ G̃j 	= ∅}.

Subsequently, ρ(x, z) = rank(x ∧ y) is p − # groups in x ∧ z, which can be equivalently expressed as:

ρ(x, z) =
∑

i,j:|Gi∩G̃j |�=∅
|Gi ∩ G̃j | − 1.

For sets G1, G2 ⊆ {1, 2, . . . , p} with G1 ∩ G2 = ∅, we define:

RG1,G2 := {{a1}, {a2}, . . . , {ap}} \ {{ai} : ai ∈ G1 ∪ G2}.

V.III.1. Characterizing S for Clustering. We construct a set S satisfying the properties in Definition 3. Initialize S = ∅. Then, for
every k = 1, 2, . . . , p − 1 and pairs of groups of variables G1 ⊆ {a1, . . . , ap} and G2 ⊆ {a1, . . . , ap} with |G1| + |G2| = k + 1 and
G1 ∩ G2 = ∅, we generate covering pairs (x, y) with y = {G1 ∪ G2, RG1,G2 } and x = {G1, G2, RG1,G2 }, and let

S = S ∪ (x, y).

Recalling that Sk = {(x, y) ∈ S, rank(y) = k}, it is straightforward to check that for every k = 1, 2, . . . , p − 1

|Sk| =
(

p
k + 1

) k∑
�=1

(
k + 1

l

)
.

Here, the terms
(

p
k+1

)
counts the number of possible items in G1 ∪ G2 and the term

∑k+1
�=1

(
k+1

l

)
counts the number of104

possible configurations of the group G2. We will show that the constructed set S satisfies Definition 3 of the main paper. Our105

analysis is based on the following lemma.106

Lemma 10. Consider the covering pairs (x, y) with x = {G1, G2, . . . , Gq} and y = {G1 ∪ G2, G3, . . . , Gq} where Gi ⊆107

{1, 2, . . . , px} and Gi∩Gj = ∅ for every i 	= j. Let (x̃, ỹ) be covering pairs with ỹ = {G1∪G2, RG1,G2 } and x̃ = {G1, G2, RG1,G2 }.108

Then, for every z ∈ L, ρ(y, z) − ρ(x, z) = ρ(ỹ, z) − ρ(x̃, z).109

Proof of Lemma 10. Let z = {G̃1, . . . , G̃s} with G̃i ⊆ {a1, a2, . . . , ap} and G̃i ∩ G̃j = ∅ for every i 	= j. Then:

ρ(y, z) =
∑

j:(G1∪G2)∩G̃j �=∅
|(G1 ∪ G2) ∩ G̃j | − 1 +

∑
i≥3,j:Gi∩G̃j �=∅

|Gi ∩ G̃j | − 1,

and
ρ(x, z) =

∑
j:G1∩G̃j �=∅

|G1 ∩ G̃j | − 1 +
∑

j:G2∩G̃j �=∅
|G2 ∩ G̃j | − 1 +

∑
i≥3,j:Gi∩G̃j �=∅

|Gi ∩ G̃j | − 1.

Since RG1,G2 consists of groups of size one, we have that:

ρ(ỹ, z) =
∑

j:(G1∪G2)∩G̃j �=∅
|(G1 ∪ G2) ∩ G̃j | − 1,

and
ρ(x̃, z) =

∑
j:G1∩G̃j �=∅

|G1 ∩ G̃j | − 1 +
∑

j:G2∩G̃j �=∅
|G2 ∩ G̃j | − 1.

We thus can see that ρ(y, z) − ρ(x, z) = ρ(ỹ, z) − ρ(x̃, z).110

Showing S satisfies Definition 3 With Lemma 10 at hand, we show that out constructed S satisfies Definition 3 of the main111

paper. We start with the first property. Consider any (u′, v′) ⊆ L. Without loss of generality, we take v′ = {G1∪G2, G3, . . . , Gq}112

and u′ = {G1, G2, . . . , Gq}. We let v = {G1 ∪ G2, RG1,G2 } and u = {G1, G2, RG1,G2 }. Then, according to Lemma 10, we have113

that ρ(v′, z) − ρ(u′, z) = ρ(v, z) − ρ(u, z). Furthermore, since rank(x) = p − # groups in x, we have that rank(v) ≤ rank(v′).114

Thus, the first property of S is satisfied. We demonstrate the second property. Consider any (u, v) ∈ S and (u′, v′) ∈ S115

that are different. Let u = {G1, G2, RG1,G2 } and v = {G1 ∪ G2, RG1,G2 }. Additionally, let u′ = {G′
1, G′

2, RG′
1,G′

2
} and116

v′ = {G′
1 ∪ G′

2, RG′
1,G′

2
}. Since the covering pairs (u, v) and (u′, v′) are different, there must exist two items ai, aj such117

that either (ai, aj) are grouped together in v but are not together in u or (ai, aj) are grouped together in v′ but are not118

together in u′. Let z = {{ai, aj}, R{ai},{aj }}. Since ρ(v, z) − ρ(u, z) = I[(ai, aj) grouped together in v but not in u] and119

ρ(v′, z) − ρ(u′, z) = I[(ai, aj) grouped together in v′ but not in u′], we have that ρ(v, z) − ρ(u, z) 	= ρ(v′, z) − ρ(u′, z).120
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V.III.2. Characterizing cL(u, v) for Covering Pair (u, v).121

Lemma 11. Let v = {G1 ∪ G2, RG1,G2 } and u = {G1, G2, RG1,G2 } be a covering pair (u, v) ∈ S. Then, cL(u, v) =122

min{|G1|, |G2|}.123

Proof of Lemma 11. Let z = {G̃1, . . . , G̃q}. Then, from proof of Lemma 10, we have that:

ρ(v, z) − ρ(u, z) =

⎡
⎣ ∑

j:(G1∪G2)∩G̃j �=∅
|(G1 ∪ G2) ∩ G̃j | − 1

⎤
⎦ −

⎡
⎣ ∑

j:G1∩G̃j �=∅
|G1 ∩ G̃j | − 1

⎤
⎦ −

⎡
⎣ ∑

j:G2∩G̃j �=∅
|G2 ∩ G̃j | − 1

⎤
⎦ .

Let I1 := {j : G̃j ∩ G1 	= ∅} and I2 := {j : G̃j ∩ G2 	= ∅}. Then,

ρ(v, z) − ρ(u, z) =

[ ∑
j∈I1∪I2

|(G1 ∪ G2) ∩ G̃j | − 1

]
−

[∑
j∈I1

|G1 ∩ G̃j | − 1

]
−

[∑
j∈I2

|G2 ∩ G̃j | − 1

]
.

Simple manipulations yield:

ρ(v, z) − ρ(u, z) =

[ ∑
j∈I1∩I2

|(G1 ∪ G2) ∩ G̃j | − 1

]
−

[ ∑
j∈I1∩I2

|G1 ∩ G̃j | − 1

]
−

[ ∑
j∈I1∩I2

|G2 ∩ G̃j | − 1

]
.

Clearly, if I1 ∩ I2 = ∅, then ρ(v, z) − ρ(u, z) = 0. Suppose I1 ∩ I2 	= ∅. Then,

ρ(v, z) − ρ(u, z) = |I1 ∩ I2| +

[ ∑
j∈I1∩I2

|(G1 ∪ G2) ∩ G̃j | − |G1 ∩ G̃j | − |G2 ∩ G̃j |

]
= |I1 ∩ I2|.

Notice that |I1∩I2| ≤ min{|G1|, |G2|}. Then, the upper bound can be achieved by for example setting z = {N, {{a1}, {a2}, . . . , {ap}\124

N} with N = {(ai, aj) : ai ∈ G1, aj ∈ G2}.125

V.III.3. Refined False Discovery Bound for Clustering. Let x̂stable be output of Algorithm 1 with Ψ = Ψstable. Then:

E[FD(x̂stable, x�)] ≤
p−1∑
k=1

q2
k

(1 − 2α)
(

p
k + 1

) ∑k

�=1

(
k + 1

l

) ,

where,126

qk =
∑

(u,v)∈Sk

E[ρ(v, x̂sub) − ρ(u, x̂sub)]
c(u, v)

=
∑

G1⊆{a1,...,ap},G2⊆{a1,...,ap}
G1∩G2=∅;|G1|+|G2|=k+1

E[# groups Ĝj in x̂sub satisfying Ĝj ∩ G1 	= ∅ and Ĝj ∩ G2 	= ∅]
min{|G1|, |G2|} .

127

Here, x̂sub represents clustering from supplying n/2 samples to the base estimator. We will use the following data-driven
approximation to estimate qk

qk ≈ 1
B

∑
G1⊆{a1,...,ap},G2⊆{a1,...,ap}

G1∩G2=∅;|G1|+|G2|=k+1

B∑
�=1

# groups Ĝj in x̂base(D(�)) satisfying Ĝj ∩ G1 	= ∅ and Ĝj ∩ G2 	= ∅]
min{|G1|, |G2|} ,

with x̂base(D(�)) represents the partition obtained from supplying D(�) to the base estimator.128

V.IV. Causal Structure Learning. Throughout, we consider covering pairs (Cu, Cv) where each connected component in the129

skeletons of Cu, Cv have a diameter at most two. We denote this set by T . Note that for any covering pair (Cu, Cv) ∈ T , Cv is a130

polytree. Throughout, we will use the similarity valuation ρ := ρmeet. Our analysis in this section will build on the following131

result.132

Lemma 12. Let Cu and Cv be two CPDAGs that are polytrees with Cu � Cv. Then, the following statements hold:133

(a) for any pairs of nodes E, the set of DAGs that result from removing edges among pairs E in any DAG Gv form a Markov134

equivalence class.135

(b) for every DAG Gv ∈ Cv, there exists a DAG Gu ∈ Cu such that Gu is a directed subgraph of Gv.136
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Proof of Lemma 12. We first prove part (a). By the polytree assumption, it follows that for any DAG Gv in the CPDAG Cv,137

removing the edges among pairs in E does not create any v-structures, and removes the same (potentially empty) v-structures.138

That means that the collection of DAGs obtained by taking any DAG in Cv and removing the edges between the pairs of nodes139

E will have the same skeleton and same v-structures, and are thus in the same Markov equivalence class.140

We next prove part (b). Let (i, j) be the pair of nodes that are connected in Cv but not in Cu. Recall that Cu � Cv implies141

there exists a DAG Gu ∈ Cu and a DAG Gv ∈ Cv where Gu is a subgraph of Gv, where Gu does not have the edge among pairs142

(i, j). Appealing to the result in part (a), we have that removing the edge (i, j) from any other DAG in Cv results in a DAG in143

the same equivalence class, which is Cu.144

V.IV.1. Characterizing S for Causal Structure Learning. We construct the set S as follows. Initialize S = ∅. For every reference node,
and k = 1, . . . , p − 1, let Cy be a CPDAG generated with k edges, where every edge is between the reference node and another
node; no other edges can be added without violating the condition that the largest undirected path has size less than or equal
to two. A consequence of Lemma 12 is that there are k CPDAGs Cx1 , . . . , Cxk that form a covering pair with Cy. We then let

S = S ∪ (Cxi , Cy),

for every i = 1, 2, . . . , k. Recall that Sk := {(Cx, Cy) ∈ S, rank(Cy) = k}. Then,

|Sk| = p

(
p − 1

k

) ∑
i∈{0,2...,k}

(
k
i

)
.

The result above follows from noting that for every reference node and k other nodes, there are
∑

i∈{0,2...,k}
(

k
i

)
possible145

CPDAGs that are polytrees can formed by connecting the k nodes to the reference node; the factor p
(

p−1
k

)
comes from p total146

possible reference nodes and
(

p−1
k

)
possible set of k nodes to connect to the reference node.147

148

We will show that the constructed set S satisfies Definition 3 of the main paper. Our analysis is based on the following lemma.149

Lemma 13. Let Cỹ be a CPDAG that contains m disconnected subgraphs (both directed and undirected). Let Cỹi be each
disconnected subgraph for i = 1, 2, . . . , m. Then, for any CPDAG Cz,

ρ(Cỹ, Cz) =
m∑

i=1

ρ(Cỹi , Cz).

150

Proof. We will first show that ρ(Cỹ, Cz) ≤
∑m

i=1 ρ(Cỹi , Cz). Let Cx̃ ∈ argmaxCx�Cỹ,Cx�Cz
rank(Cx). By definition, Cx � Cỹ if

there is a DAG Gx in Cx and a DAG Gỹ in Cỹ such that Gx is a subgraph of Gỹ. Since Gỹ has disconnected components, so must
Gx. We let Cx̃i be the subgraphs of Cx̃ where every subgraph Cx̃i only contains edges among nodes that are connected (to other
nodes) in the graph Cỹi . By construction, Cx̃i � Cỹi , rank(Cx̃) =

∑m

i=1 rank(Cx̃i ), and Cx̃i � Cz. Thus, rank(Cx̃i ) ≤ ρ(Cỹi , Cz).
Then, we can conclude that

m∑
i=1

ρ(Cỹi , Cz) ≥
m∑

i=1

rank(Cx̃i ) = rank(Cx̃) = ρ(Cỹ, Cz).

Now we will show that ρ(Cỹ, Cz) ≥
∑m

i=1 ρ(Cỹi , Cz). Let Cx̃i ∈ argmaxCx�Cỹi
,Cx�Cz

rank(Cx). Now form a CPDAG Cȳ by
combining all the disjoint graphs Cx̃i for every i = 1, 2, . . . , m into one graph. Since these graphs are disjoint (i.e. nodes that
are connected in each graph are distinct), we have that Cȳ � Cỹ and Cȳ � Cz and that rank(Cȳ) =

∑m

i=1 rank(Cx̃i ). So we
conclude that

ρ(Cỹ, Cz) ≥ rank(Cȳ) =
m∑

i=1

rank(Cx̃i ) =
m∑

i=1

ρ(Cỹi , Cz).

151

Showing S satisfies Definition 3 For the first property, consider covering pairs (Cu′ , Cv′ ) ∈ T . Let (i, j) be the pair of nodes
that are connected in Cv′ and are not connected in Cu′ . Since every undirected path in Cv′ has size at most 2, then Cv′ decouples
into two disconnected CPDAGs Cv and C1, where Cv only involves nodes adjacent to (i, j). Similarly, Cu′ decouples into two
disconnected CPDAGs Cu and C2, where C2 = C1 and Cu is covered by Cv. From Lemma 13, we have that for any CPDAG Cz

ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = ρ(Cv, Cz) − ρ(Cu, Cz).

Notice that (Cu, Cv) ∈ S. Furthermore, since the number of edges (directed and undirected) in Cv′ is larger than Cv, we have152

that rank(Cv) ≤ rank(Cv′ ).153

We next show the second property in Definition 3. Let (Cu, Cv) ∈ S and (Cu′ , Cv′ ) ∈ S. Our objective is to show that154

ρ(Cv, Cz) − ρ(Cu, Cz) = ρ(Cv′ , Cz) − ρ(Cu′ , Cz) for all Cz ⇔ Cu = Cu′ and Cv = Cv′ . The direction ← trivially holds, and hence155

we focus on the direction →. We consider multiple scenarios; throughout the extra edge that is present in Cv and not in Cu is156

between the pair of nodes (i, j), and the extra edge that is present in Cv′ and not in Cu′ is between the pair of nodes (k, l).157
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(1) Suppose that the nodes (k, l) are not connected in Cv. Letting Cz be a CPDAG with only an edge between nodes (k, l),158

we find that ρ(Cv, Cz) − ρ(Cu, Cz) = 0 and ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = 1. So this scenario cannot occur.159

(2) Suppose there is an edge between pairs (s, t) in Cu′ that is missing in Cv (and as a result in Cu). Construct CPDAG160

Cz with two edges, one between the pair (i, j) and another between the pair (s, t) with the property that Cz 	� Cv′ ;161

this construction is possible since (Cu′ , Cv′ ) ∈ S, meaning that if there is an edge between pair of nodes (i, j) in Cv′ ,162

this edge is incident to the edge between the pair of nodes (s, t). Then, it is evident that ρ(Cv, Cz) − ρ(Cu, Cz) = 1 but163

ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = 0. So this scenario cannot occur.164

(3) Suppose there is an edge between pairs (s, t) in Cu′ that is missing in Cu but is not missing in Cv. Let Cz be a CPDAG165

only containing an edge between (s, t). Then it follows that ρ(Cv, Cz) − ρ(Cu, Cz) = 1 but ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = 0. So166

this scenario cannot occur.167

From the impossibilities of scenarios 1-2, and noting that a similar argument can be made by swapping Cu′ with Cu, and Cv′168

with Cv, we conclude that Cv, Cv′ have edges between the same pairs of nodes. Combining this result with the impossibility of169

scenario 3, we conclude that Cu, Cu′ have edges between the same pairs of nodes. We then continue with the final scenario.170

(4) Suppose that Cv and Cv′ are not identical CPDAGs. Since both Cv and Cv′ have maximum undirected path length171

less than or equal to two, they both must have the same reference node i (where the other nodes are connected to).172

Furthermore, since Cv and Cv′ have the same skeleton and are different, they must have strictly more than one edge, and173

they must have different v-structures. As a first sub-case, suppose Cv′ have a v-structure s → i ← t that is not present in174

Cv, so that s ← i or s − i in Cv. Then, let Cz be a CPDAG containing two edges between the pairs (i, j) and (i, s) with175

Cz � Cv. By construction, ρ(Cv, Cz) − ρ(Cu, Cz) = 1 but ρ(Cv′ , Cz) − ρ(Cu′ , Cz) = 0. Swapping Cu′ with Cu, and Cv′ with176

Cv, and following similar arguments, we arrive again at a contradiction if Cv has a v-structure that is not present in Cv′ .177

From the impossibility of scenario 4, we conclude that Cv and Cv′ have the same skeleton and v-structure and consequently178

Cv = Cv′ . We thus have that Cu � Cv and Cu′ � Cv. Furthermore, since Cu′ and Cu have the same skeleton, both are missing an179

edge between pair of nodes (i, j) that is connected in Cv. Appealing to part a of Lemma 12, we conclude that Cu = Cu′ .180

V.IV.2. Characterizing cL(Cu, Cv) for Covering Pairs (Cu, Cv). We have the following lemma.181

Lemma 14. Let (Cu, Cv) be CPDAGs that are polytrees and form a covering pair. Then, cL(Cu, Cv) = 1.182

Proof. Let the pair of nodes (i, j) be connected in Cv and not connected in Cu. Consider any CPDAG Cz. Let Cỹ ∈183

argmaxCy�Cv,Cy�Cz
rank(Cy). Since the CPDAG Cv is a polytree, so is the CPDAG Cỹ. Let Gv be any DAG in Cv. Then,184

by Lemma 12, there exists DAGs G(1)
ỹ ∈ Cỹ and Gu ∈ Cu such that G(1)

ỹ and Gu are both subgraphs of Gv. Suppose we185

remove an edge that may be present between the pair of nodes (i, j) in G(1)
ỹ and denote the resulting subgraph by G(1)

x . By186

construction, G(1)
x is also a subgraph of Gu. Since Cỹ � Cz, there exists a DAG G(2)

ỹ ∈ Cỹ and a DAG Gz ∈ Cz such that G(2)
ỹ is187

a subgraph of Gz. Suppose again we remove an edge that may be present between the pair of nodes (i, j) in G(2)
ỹ and denote188

the resulting subgraph by G(2)
x . By Lemma 12, G(2)

x and G(1)
x are in the same equivalence class, which we denote by Cx. By189

construction, Cx � z and Cx � Cu. Furthermore, rank(Cx) ≥ rank(Cỹ) − 1. Thus, we have shown that for any arbitrary Cz:190

ρ(Cv, Cz) − ρ(Cu, Cz) ≤ 1.191

V.IV.3. Refined False Discovery Bound for Causal Structure Learning. Let Ĉstable be output of Algorithm 1 with Ψ = Ψstable. Let C� be
the population CPDAG. Then:

E[FD(Ĉstable, C�)] ≤
p−1∑
k=1

q2
k

(1 − 2α)p
(

p − 1
k

) ∑
i∈{0,2...,k}

(
k
i

) ,

where,
qk =

∑
(Cu,Cv)∈Sk

E[ρ(Cv, Ĉsub) − ρ(Cu, Ĉsub)].

Here, Ĉsub represents the CPDAG from supplying n/2 samples to the base estimator. We will use the following data-driven
approximation to estimate qk

qk ≈ 1
B

B∑
�=1

∑
(Cu,Cv)∈Sk

E[ρ(Cv, Ĉbase(D(�)) − ρ(Cu, Ĉbase(D(�)))],

with Ĉbase(D(�)) represents the CPDAGs obtained from supplying dataset D(�) to base estimator Ĉbase.192
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VI. Assumptions 1 and 2 of the Main Paper for the Total Ranking Problem in Example 7193

Let S = {a1, a2, . . . , ap} be the set of p elements. Let πnull(ai) = i for every i = 1, 2, . . . , p. We use the similarity valuation
ρ := ρtotal-ranking in Eq. (2) of the main paper. As each element in the poset corresponds to a function π : S → S, we
will use this functional notation throughout. For a covering pair (π1, π2), there exists a single pair of elements (ai, aj) ∈
inv(π2; πnull) \ inv(π1; πnull) with j > i. Then, from the definition of ρ, for any permutation π, we have that

ρ(π2, π) − ρ(π1, π) = I[(ai, aj) ∈ inv(π; πnull)] = I[π(aj) < π(ai)].

Let π̂sub be the estimated ranking from applying a base procedure on a subsample of the data. Consider a fixed integer k194

with 1 ≤ k ≤ p − 1. Define the sets S1 and S2:195

S1 = {(ai, aj) ∈ inv(π�; πnull) : j − i = k},

S2 = {(ai, aj) 	∈ inv(π�; πnull) : j − i = k}.
196

The set S1 corresponds to non-null pairs (as described in the main paper) and the set S2 corresponds to null pairs.197

Then, appealing to the definition of S and the constant cL(·, ·) in the total ranking case (see Section V.II), Assumption 1 of198

the main paper reduces to the following inequality being satisfied199 ∑
(ai,aj )∈S1

P(π̂sub(aj) < π̂sub(ai))∑
(ai,aj )∈S2

P(π̂sub(aj) < π̂sub(ai))
≥ |S1|

|S2| . [19]200

Consider an estimator π̂sub = π̂random that randomly selects a total ranking in the space of permutations. Then, for every i201

and j, P(π̂sub(aj) < π̂sub(ai)) = 1
2 . Thus, in this case, Assumption 1 in Eq. (19) is satisfied with equality.202

It is also straightforward to check that Assumption 2 of the main paper is reduced to

P(π̂sub(aj) < π̂sub(ai)) being the same for every (aj , ai) ∈ S2.
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