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Abstract
We present a generalization of the notion of neighborliness to non-polyhedral convex
cones. Although a definition of neighborliness is available in the non-polyhedral case
in the literature, it is fairly restrictive as it requires all the low-dimensional faces to
be polyhedral. Our approach is more flexible and includes, for example, the cone of
positive-semidefinite matrices as a special case (this cone is not neighborly in general).
We term our generalization Terracini convexity due to its conceptual similarity with
the conclusion of Terracini’s lemma from algebraic geometry. Polyhedral cones are
Terracini convex if and only if they are neighborly. More broadly, we derive many
families of non-polyhedral Terracini convex cones based on neighborly cones, linear
images of cones of positive-semidefinite matrices, and derivative relaxations of Ter-
racini convex hyperbolicity cones. As a demonstration of the utility of our framework
in the non-polyhedral case, we give a characterization based on Terracini convexity
of the tightness of semidefinite relaxations for certain inverse problems.
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1 Introduction

The combinatorial view of polytopes is a pillar of polyhedral theory which has played
a prominent role both in deepening our understanding of the structure of polytopes as
well as in illuminating those attributes of polytopes that are significant in the context
of particular applications such as linear programming. A parallel perspective for non-
polyhedral convex sets—even in the presence of additional structure—has generally
been lacking. This limitation may be attributed to the fact that the central object of
study in polyhedral combinatorics is the face lattice, and consequently, many of the
key ideas and definitions in the field are face-centric. However, face-centric notions do
not always carry over naturally to the non-polyhedral setting for a number of reasons;
in particular, non-polyhedral closed convex sets consist of infinitely many faces, may
contain non-exposed faces, may lack faces of all dimensions, may not be closed under
linear images, and so forth. Motivated by this broad challenge of bridging the gap
in our understanding between the polyhedral and non-polyhedral cases, we focus in
this article on the question of obtaining a suitable generalization of neighborliness for
non-polyhedral convex sets, with a less face-centric reformulation of neighborliness
of polytopes playing a central role in our development.

A polyhedral cone that is pointed is called k-neighborly if the cone over any subset
of up to k extreme rays forms a face [13].1 Neighborliness arises in many contexts
in geometry and polyhedral combinatorics, most notably in the characterization of
various extremal classes of polytopes [13] and in conditions under which linear pro-
gramming relaxations are tight for certain nonconvex inverse problems [9].

1.1 Motivation

Weare aware that there is a definition available for non-polyhedral k-neighborly convex
cones that are closed and pointed which parallels the polyhedral setting [14]—that is,
the cone over any subset of up to k extreme rays forms an exposed face. However, this
notion is too restrictive in the non-polyhedral case as it essentially requires that all
the low-dimensional faces are polyhedral, and, in particular, are linearly isomorphic
to orthants. This limitation restricts the utility of neighborliness in the non-polyhedral
context in a number of ways.

As one example, the cone of positive semidefinite matrices is not k-neighborly for
any k > 1 as all the faces other than the extreme rays are non-polyhedral, and as a
consequence, neighborliness is not useful for characterizing tightness of semidefinite
relaxations for nonconvex problems that are ubiquitous inmany applications [8, 15], in
contrast to the situation with linear programming. Concretely, Donoho and Tanner [9]
used neighborliness of polytopes to characterize the exactness of linear programming
relaxations for identifying nonnegative vectors with the smallest number of nonzeros
in affine spaces. A similar characterization of the success of semidefinite relaxations
for identifying low-rank positive semidefinite matrices in affine spaces—a problem

1 Neighborliness is usually defined for convex polytopes but it is more convenient in this article to consider
the polyhedral cones. One can recover equivalent notions for compact convex sets by taking bases of convex
cones that are closed and pointed.
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Terracini convexity 401

that arises in a range of applications such as factor analysis, collaborative filtering, and
phase retrieval, and contains NP-hard problems as special cases—has been lacking.
Thus, we seek a more flexible notion for non-polyhedral cones that specializes to the
usual definition of neighborliness for polyhedral cones.

In a different vein, the utility of neighborliness lies in the fact that it provides a suc-
cinct characterization of the geometry of the ‘most singular’ pieces of the boundary of
a polyhedral cone. It is of intrinsic interest to understand such geometrymore generally
for other families of structured cones. Hyperbolicity cones serve as an instructive case
study in this regard. These are convex cones derived from hyperbolic polynomials,
with the nonnegative orthant and the positive semidefinite matrices being prominent
examples. Relaxations based on derivatives of hyperbolicity cones offer the prospect
of computationally less expensive approaches for obtaining bounds on conic opti-
mization problems with respect to hyperbolicity cones, and an intriguing feature of
these relaxations is that they tend to preserve the low-dimensional faces of the origi-
nal hyperbolicity cone. Formalizing and quantifying this assertion by leveraging the
perspective of neighborliness would provide new insights into the facial geometry of
a large class of structured convex cones.

In this paper, we describe a generalization of neighborliness for non-polyhedral
cones that addresses the preceding objectives.

1.2 Towards a definition for non-polyhedral cones

In aiming at an appropriate generalization of neighborliness for non-polyhedral cones
that overcomes the limitation of polyhedrality of the low-dimensional faces, a natural
approach is to reformulate neighborliness via other geometric attributes that are less
face-centric. As a first attempt, for a convex cone C that is closed and pointed but
not necessarily polyhedral, let SC (x) denote the linear span of the smallest exposed
face of C that contains x . Then one can check that if the extreme rays of C are
exposed, k-neighborliness of C is equivalent to the following condition for any col-
lection x (1), . . . , x (k) of generators of the extreme rays of C :

SC

(
k∑

i=1

x (i)

)
=

k∑
i=1

SC

(
x (i)
)

. (1)

One can check that the left-hand-side of this equation always contains the right-
hand-side, with the containment being strict in general and equality holding only for
k-neighborly cones. It is instructive to consider the three cones in R

3 that are shown
in Fig. 1 from the perspective of the relation (1). The cone C1 is isomorphic to the
orthant in R

3, which is 3-neighborly, and therefore the relation (1) holds for any sub-
set of the generators of the three extreme rays. The cone C2 is not 2-neighborly as
the cone over the generators x (1), x (2) is not a face of C2; accordingly, we note that
SC2(x

(1)+x (2)) � SC2(x
(1))+SC2(x

(2)). Finally, the ice-cream coneC3 is evidently
not 2-neighborly by considering the cone over the generators x (1), x (2); as expected,
we again have the strict containmentSC3(x

(1) + x (2)) � SC3(x
(1))+SC3(x

(2)). The
cone C3 presents an interesting case study as it is also linearly isomorphic to the cone
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402 J. Saunderson , V. Chandrasekaran

Fig. 1 Illustration of neighborliness properties of three cones. C1 is neighborly while C2 is not. C3 is not
neighborly but it serves as an instructive example for the definition of Terracini convexity

of 2×2 symmetric positive semidefinite matrices. As mentioned previously, develop-
ing a suitable generalization of neighborliness that encompasses the cone of positive
semidefinite matrices is one of the motivations for this article, and we investigate next
what precisely fails with the relation (1) for C3.

For a polyhedral cone C that is pointed, the map SC (x) represents a kind of
“local linearization” of C around the point x ; concretely, the setSC (x) is the largest
subspace—also called the lineality space—in the cone of feasible directions from x
into C . However, the interpretation of SC (x) as a local linearization of C at x no
longer holds in general if C is not polyhedral. For the cone C3 in Fig. 1, the set
SC3(x

(1)) does not fully represent a local linearization of C3 around x (1) as it fails to
account for the curvature of the boundary ofC3 at x (1). Rather, the subspaceLC3(x

(1))

in Fig. 1, akin to a tangent space at x (1) with respect to the boundary of C3, provides a
more accurate local linearization of C3 at x (1). LettingLC3(x

(2)) similarly denote an
accurate local linearization ofC3 at x (2), we observe thatLC3(x

(1))+LC3(x
(2)) = R

3.
As x (1) + x (2) lies in the interior of C3, a natural local linearization of C3 at x (1) + x (2)

is the full space R
3, i.e., LC3(x

(1) + x (2)) = R
3. Consequently, we have that the

relation (1) holds for C3 with k = 2 if we substituteSC3 withLC3 . Motivated by this
discussion, our generalization of neighborliness to closed, convex, pointed cones is
based on a criterion analogous to (1) with amore accurate notion of local linearization;
as we discuss in the sequel, this criterion is satisfied by neighborly polyhedral cones,
cones of positive semidefinite matrices, as well as many other families.

1.3 Terracini convex cones

Webegin by giving a formal definition of themapLC (x). In the examplewith the cone
C3 from Fig. 1, the setLC3(x) corresponds to a tangent space. However, convex cones
in general have both smooth and singular features in their boundary, and therefore we
do not explicitly appeal to any differential notions. Our definition is stated in terms of
the feasible directions KC (x) into a convex cone C ⊂ R

d that is closed and pointed
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Terracini convexity 403

from any x ∈ C :

KC (x) = cone{z − x : z ∈ C }.

The closure of the cone of feasible directions KC (x) is called the tangent cone of C
at x .

Definition 1 Let C ⊂ R
d be a convex cone that is closed and pointed. For any x ∈ C ,

the convex tangent space of C at x is denoted byLC (x) and is defined as the lineality
space of the tangent cone of C at x :

LC (x) = KC (x) ∩ −KC (x).

In some sense, the subspace LC (x) represents all those directions from x in which
the cone C is locally “flat”. For smooth convex cones C that are closed and pointed,
the convex tangent space LC (x) at a point x ( �= 0) on the boundary is indeed the
tangent space with respect to the boundary of C at x . For polyhedral cones C that
are pointed, one can check that LC (x) = SC (x). With this definition, we are in a
position to present the main object of investigation of this article.

Definition 2 A convex coneC ⊂ R
d that is closed and pointed is k-Terracini convex if

the following condition holds for any collection x (1), . . . , x (k) of generators of extreme
rays of C :

LC

(
k∑

i=1

x (i)

)
=

k∑
i=1

LC

(
x (i)
)

. (2)

If C is k-Terracini convex for all k, then we say that C is Terracini convex.

One inclusion always holds as LC

(∑k
i=1 x

(i)
)

⊇ ∑k
i=1LC

(
x (i)
)
, and the relevant

portion of this definition is the other inclusion. The reason for the terminology ‘Ter-
racini convexity’ is that the stipulation in this definition mirrors the consequence of
Terracini’s lemma in algebraic geometry [19], with convex tangent space playing the
role in our context that a tangent space does in Terracini’s lemma.2 We give next some
preliminary examples of k-Terracini convex cones:

Example 1 To begin with, it is instructive to compare k-Terracini convexity to k-
neighborliness for polyhedral cones. For a polyhedral cone C that is pointed, we
observed previously that LC (x) = SC (x) for x ∈ C . As C has exposed extreme
rays and as the relation (1) is equivalent to k-neighborliness, we have that k-Terracini
convexity and k-neighborliness are equivalent for pointed polyhedral cones. We also
prove this fact as a special case of a more general result (see Theorem 1 and Corol-
lary 2).

2 Consider a projective variety V over an algebraically closed field, and let V (k) be the k’th secant variety
of V obtained by taking the closure of the set of spans of every collection of k points in V . Informally,
Terracini’s lemma states that for k generic points X (1), . . . , X (k) ∈ V , the tangent space at a generic point
in the span of {X (1), . . . , X (k)} with respect to V (k) is equal to the sum of the tangent spaces at each X (i)

with respect to V .
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404 J. Saunderson , V. Chandrasekaran

Example 2 All convex cones that are closed and pointed are trivially 1-Terracini
convex. As a contrast, based on the generalization of [14] of neighborliness to non-
polyhedral cones, a convex cone that is closed and pointed is 1-neighborly if and only
if all its extreme rays are exposed.

Example 3 Let C ⊂ R
d be a smooth convex cone that is closed and pointed. Then C

is Terracini convex. To see this, consider any collection x (1), . . . , x (k) of generators
of extreme rays of C . Due to the smoothness of C , we have that

∑k
i=1LC

(
x (i)
) =

span(C ) for k ≥ 2, unless all the x (i)’s generate the same extreme ray (in which case
the Terracini convexity condition is trivially satisfied).

Example 4 Asour next example,we consider the cone of positive semidefinitematrices
S
d+ in the space of d×d real symmetric matrices S

d . This cone consists of both smooth
and singular features in its boundary. For X ∈ S

d+, one can check that L
S
d+(X) =

{MX + XM : M ∈ S
n}, from which it follows that S

d+ is Terracini convex. We
give an alternative proof of this fact via a dual perspective on Terracini convexity; see
Example 5 after Proposition 1.

It is instructive to consider the definition of Terracini convexity from a dual per-
spective, as this leads to a characterization that is more easily verified in some cases.
In preparation to state this dual criterion, we recall that the polar of a cone S ⊂ R

d

is the collection of linear functionals that are nonpositive on S and is denoted S ◦.
With this notation, the normal cone to a convex cone C ⊂ R

d at x ∈ C is denoted
NC (x) and is the polar KC (x)◦ of the cone of feasible directions from x into C . As
C is a cone, one can check that the normal cone to C at x ∈ C is given by:

NC (x) = KC (x)◦ = {� ∈ C ◦ : �(x) = 0}, (3)

which is the set of linear functionals that are nonpositive on C and vanish at x . We
now establish an equivalent dual formulation of Terracini convexity.

Proposition 1 A closed, pointed, convex cone C ⊂ R
d is k-Terracini convex if and

only if for any collection x (1), . . . , x (k) of generators of extreme rays of C ,

span

(
k⋂

i=1

NC (x (i))

)
=

k⋂
i=1

span
(
NC (x (i))

)
. (4)

Remark 1 In the result above, one inclusion is trivial—we always have that the span of
the intersection of the normal cones is contained inside the intersection of the spans of
the normal cones. Terracini convexity corresponds to the reverse inclusion being true,
and this is all we need to verify. This remark is dual to the assertion after Definition 2
about one inclusion always being true.

Proof The normal cone and the closure of the cone of feasible directions at a
point x ∈ C are related via NC (x) = KC (x)◦ = KC (x)

◦
, which implies that
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Terracini convexity 405

LC (x)⊥ = span(NC (x)). Taking orthogonal complements in the definition of k-
Terracini convexity, we see thatC is k-Terracini convex if and only if for any collection
x (1), . . . , x (k) of generators of extreme rays of C ,

span

(
NC

(
k∑

i=1

x (i)

))
=

k⋂
i=1

span
(
NC (x (i))

)
. (5)

Here we have used that the orthogonal complement of a sum of subspaces is the
intersection of the orthogonal complements. To complete the proof, we note that

NC

(∑k
i=1 x

(i)
)

= ⋂k
i=1NC (x (i)) whenever x (1), . . . , x (k) ∈ C . For one inclusion,

if � ∈ C ◦ and �(x (i)) = 0 then �
(∑k

i=1 x
(i)
)

= 0. For the other inclusion, if � ∈ C ◦

and �
(∑k

i=1 x
(i)
)

= ∑k
i=1 �(x (i)) = 0, then we have that �(x (i)) ≤ 0 for each i (as

� ∈ C ◦) and therefore �(x (i)) = 0 for each i (as
∑k

i=1 �(x (i)) = 0). ��
To illustrate the utility of this dual formulation, we show that the positive semidef-

inite cone is Terracini convex.

Example 5 (Positive semidefinite cone) Let C = S
d+ be the cone of d × d positive

semidefinite matrices. Given an extreme ray vv′ for v ∈ R
d , the corresponding normal

cone from (3) is NC (vv′) = {Q ∈ −S
d+ : v′Qv = 0} = {Q ∈ −S

d+ : Qv =
0}. For any collection of generators of extreme rays v(1)v(1)′, . . . , v(k)v(k)′ of C for
v(1), . . . , v(k) ∈ R

d , we have that:

span

(
k⋂

i=1

NC

(
v(i)v(i)′)) = {Q ∈ S

d : Qv(i) = 0, i = 1, . . . , k}

=
k⋂

i=1

{Q ∈ S
d : Qv(i) = 0}.

As span
(
NC

(
v(i)v(i)′

))
= {Q ∈ S

d : Qv(i) = 0} and as k was arbitrary, it

follows that S
d+ is Terracini convex.

1.4 Outline of contributions

We initiate our study of Terracini convex cones by investigating the face structure of
such cones. Specifically, in Sect. 2 we provide two conditions for a closed, pointed,
convex cone to be Terracini convex based on order-theoretic properties of the faces of
the cone. The first condition states that if a cone is k-Terracini convex for a sufficiently
large k, which is a function of the height of the partially ordered set of faces, then
the cone is Terracini convex. The second condition gives a necessary and sufficient
characterization for a cone to be Terracini convex based on the collection of all convex
tangent spaces of the cone inheriting some of the lattice structure of the subspace
lattice.
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406 J. Saunderson , V. Chandrasekaran

From the examples in the previous subsection we see that Terracini convexity is
equivalent to neighborliness for polyhedral cones, but there are many families of non-
polyhedral cones that are alsoTerracini convex. Thus, a natural question is to clarify the
distinction between Terracini convexity and neighborliness for non-polyhedral cones.
In one direction, the cone of positive semidefinite matrices serves as an example that
there areTerracini convex cones that are not neighborly. In the other direction,we prove
in Sect. 3 that subject to a non-degeneracy condition that is of the form of a quadratic
growth property, k-neighborly cones are k-Terracini convex. As a consequence of this
result, we obtain that the cone over the (homogeneous) moment curve, which was
studied by Kalai and Wigderson in [14], is Terracini convex; see Sect. 3.3 for more
examples.

Nextwedemonstrate the utility of the notion ofTerracini convexity in characterizing
tightness of semidefinite relaxations for the problem of finding a positive semidefinite
matrix of smallest rank in an affine space.A commonly employed heuristic to solve this
problem is to compute the positive semidefinite matrix of smallest trace in the given
affine space, which can be obtained via a tractable semidefinite program. In Sect. 4, we
show that the success of this heuristic is closely tied to a certain cone being Terracini
convex. Our result may be viewed as a generalization of Donoho and Tanner’s result on
using neighborliness to characterize the exactness of linear programming relaxations
for identifying nonnegative vectors with the smallest number of nonzeros in affine
spaces [9]. As a by-product of our result, we obtain that ‘most’ linear images of a cone
of positive semidefinite matrices are k-Terracini convex, where the value of k depends
on the dimension of the image of the linear map; see Theorem 4.

In Sect. 5, we investigate the Terracini convexity properties of derivative relaxations
of hyperbolicity cones. We study conditions under which derivatives of Terracini
convex hyperbolicity cones continue to be k-Terracini convex (for suitable k), and in
particular the relationship between the number of derivatives and k. As a consequence,
we obtain new examples of Terracini convex cones, and in particular ones that are basic
semialgebraic; it is instructive to contrast these examples with the ones described
in Sect. 4.3 of linear images of cones of positive semidefinite matrices, which are
semialgebraic but not necessarily basic semialgebraic.

Sections 3, 4, and 5 illustrate the role that Terracini convexity plays in illuminating
various aspects of the facial structure of convex cones. In each case, we obtain new
examples of Terracini convex cones in the course of our discussion. We conclude in
Sect. 6 with some open questions.

2 Order-theoretic conditions for Terracini convexity

In this section we discuss conditions under which a closed, pointed, convex cone is
Terracini convex based on the order structure underlying the faces of a convex cone.
Section 2.1 shows that a cone that is k-Terracini convex for sufficiently large k is
Terracini convex, with the threshold value of k depending on the length of the longest
chain of faces of the cone. In Sect. 2.2 we give a lattice-theoretic condition on the
collection of lineality spaces that is necessary and sufficient for a cone to be Terracini
convex.
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Terracini convexity 407

In preparation for our discussion, we recall briefly a few relevant facts about the
face structure of a convex cone. Let C be a closed, pointed, convex cone. A subset
F ⊆ C is a face if x, y ∈ C and x + y ∈ F implies that x, y ∈ F . A face
F ⊆ C is exposed if F can be expressed as the intersection of C and a hyperplane
specified by a linear functional � ∈ C ◦, i.e., F = {x ∈ C : �(x) = 0}. By
convention C is itself an exposed face as one can take � = 0. The collection of
(exposed) faces of C form a partially ordered set (poset) by inclusion. For any subset
X ⊆ C , let FC (X ) (respectively, F exp

C (X )) denote the inclusion-wise minimal
(exposed) face of C containing X . For any element x ∈ C , one can check that the
normal coneNC (x) depends only onF exp

C (x), which in turn depends only onFC (x);
consequently, the convex tangent spaceLC (x) depends only onF exp

C (x) and in turn
FC (x) [18]. Formally, for any x (1), x (2) ∈ C :

FC (x (1)) = FC (x (2)) ⇔ F
exp
C (x (1)) = F

exp
C (x (2))

⇔ NC (x (1)) = NC (x (2)) ⇔ LC (x (1)) = LC (x (2)). (6)

2.1 Terracini convexity and the height of the poset of faces

Given a closed, pointed, convex coneC , consider a collection of points x (1), . . . , x (k) ∈
C . For large k, it is possible to replace the convex tangent space LC (

∑k
i=1 x

(i)) by
LC (

∑
i∈I x (i)) for a subset I ⊆ {1, . . . , k} that is potentially much smaller than k,

by appealing to the observation that the convex tangent space at a point depends only
on the smallest face containing the point. This allows us to conclude that if C is
k-Terracini convex for sufficiently large k, then C is Terracini convex.

We describe next the relevant terminology that we use in our result. A collection
of faces F (i), i = 1, . . . ,m of C that satisfies F (1)

� · · · � F (m) is called a chain
of faces. For a closed, pointed, convex cone C , let H (C ) denote the height of the
poset of faces of C , which is the length of the longest chain of faces of C . As the
dimension always increases strictly along chains of faces and as any maximal-length
chain of faces begins with the zero-dimensional face3 {0} and ends with C , we have
thatH (C ) ≤ dim(C ) + 1. We have next a result that allows us to replace the convex
tangent space of a large sum of elements of C by that of a smaller subset based on
H (C ):

Lemma 1 Let C be a closed, pointed, convex cone, and consider a collection of points
x (1), . . . , x (k) ∈ C . There exists I ⊆ {1, . . . , k} with |I | ≤ H (C ) − 1 such that

FC

(∑k
i=1 x

(i)
)

= FC
(∑

i∈I x (i)
)
.

Proof Weexplicitly construct a set I with |I | ≤ H (C )−1. Set j = 0, I0 = ∅,F (0)
C =

{0}. Running sequentially through i = 1, . . . , k, if x (i) /∈ FC (I j ), then (a) increase

j by one, (b) set I j = I j−1 ∪ {i}, and (c) setF ( j)
C = FC

(∑
m∈I j x

(m)
)
.

The sequence of facesF (0)
C , . . . ,F

( j)
C has the property thatF (0)

C � · · · � F
( j)
C =

FC
({x (1), . . . , x (k)}), and therefore forms a chain of faces of C of length at most

3 We do not consider the empty set to be a face of C .
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408 J. Saunderson , V. Chandrasekaran

H (C ). AsFC
({x (1), . . . , x (k)}) = FC

(∑k
i=1 x

(i)
)
and as the index set I j satisfies

|I j | ≤ H (C ) − 1, setting I = I j leads to the desired conclusion. ��
We are now in a position to state and prove the main result of this section.

Proposition 2 Let C be a closed, pointed, convex cone that is (H (C ) − 1)-Terracini
convex. Then C is Terracini convex.

Proof Let x (1), . . . , x (k) be a collection of generators of extreme rays of C . By
Lemma 1, we know that there exists I ⊆ {1, . . . , k} with |I | ≤ H (C ) − 1 such

that FC

(∑k
i=1 x

(i)
)

= FC
(∑

i∈I x (i)
)
. From (6) we have that:

LC

(
k∑

i=1

x (i)

)
= LC

(∑
i∈I

x (i)

)
. (7)

Since C is (H (C ) − 1)-Terracini convex, it is |I |-Terracini convex and therefore

LC

(∑
i∈I

x (i)

)
=
∑
i∈I

LC

(
x (i)
)

. (8)

Combining (7) and (8), and noting that
∑k

i=1LC
(
x (i)
) ⊆ LC

(∑k
i=1 x

(k)
)
as well

as
∑

i∈I LC
(
x (i)
) ⊆ ∑k

i=1LC
(
x (i)
)
, we conclude that C is k-Terracini convex.

Since k was arbitrary, we have shown that C is Terracini convex. ��
As a consequence of this result, we have the following corollary:

Corollary 1 Let C be a closed, pointed, convex cone that is dim(C )-Terracini convex.
Then C is Terracini convex.

Proof This follows from the observation that H (C ) ≤ dim(C ) + 1. ��

2.2 Terracini convexity and the lattice of subspaces

Motivated by the order-theoretic structure underlying the faces of a closed, pointed,
convex cone C ⊂ R

d , we consider the order-theoretic aspects of the collection of
convex tangent spaces associated to C :

L(C ) = {LC (x) : x ∈ C }

As L(C ) is a subset of the collection of subspaces in R
d , one may view L(C ) as a

poset by inclusion. However, the collection of all subspaces in R
d additionally forms

a lattice (called the subspace lattice in R
d ) with the join of two subspaces given by

their sum and the meet given by their intersection. In this section we relate Terracini
convexity of C to L(C ) inheriting some of the lattice structure of the collection of all
subspaces in R

d .
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Terracini convexity 409

In preparation to present this result, we discuss next a link between the elements
of L(C ) and the exposed faces of C . As noted previously in (6), the convex tangent
space at a point x ∈ C depends only on the smallest exposed face of C containing
x so that the elements of L(C ) are in one-to-one correspondence with the exposed
faces of C . The next result describes how one obtains an exposed face of C given an
element of L(C ):

Lemma 2 Let C be a closed, pointed, convex cone. For any x ∈ C we have that:

F
exp
C (x) = C ∩ LC (x).

Proof One can check thatF exp
C (x) ⊆ LC (x), and thereforeF exp

C (x) ⊆ C ∩LC (x).
In the other direction, we begin by observing that any hyperplane supporting C that
contains F exp

C (x) must contain LC (x). Consider a hyperplane H supporting C that
exposes F exp

C (x), i.e., C ∩ H = F
exp
C (x) (such a hyperplane must exist as F exp

C (x)
is an exposed face). As LC (x) ⊆ H , we have that C ∩ LC (x) ⊆ F

exp
C (x). This

concludes the proof. ��
With this result in hand, we are now in a position to state and prove the following

proposition:

Proposition 3 Let C ⊂ R
d be a closed, pointed, convex cone. The cone C is Terracini

convex if and only if L(C ) is a join sub-semilattice of the lattice of all subspaces in
R
d (i.e., the poset L(C ) has a join given by the sum of two subspaces).

Proof Suppose first that C is Terracini convex. Consider any pair LC (x),LC (y) ∈
L(C ) corresponding to x, y ∈ C , and let x = ∑

i x
(i) and y = ∑

j y
( j) be decom-

positions in terms of generators of extreme rays of C . As C is Terracini convex, we
have that:

LC (x) + LC (y) =
∑
i

LC

(
x (i)
)

+
∑
j

LC

(
y( j)

)

= LC

⎛
⎝∑

i

x (i) +
∑
j

y( j)

⎞
⎠ = LC (x + y).

Since LC (x + y) ∈ L(C ), the poset L(C ) is a join sub-semilattice of the lattice of
all subspaces in R

d .
In the other direction, suppose that the poset L(C ) is a join sub-semilattice of

the lattice of all subspaces in R
d . Consider any collection x (1), . . . , x (k) ∈ C of

generators of extreme rays of C . As the join is given by subspace sum, we have that∑k
i=1LC

(
x (i)
) ∈ L(C ), which implies that

∑k
i=1LC

(
x (i)
)
is the convex tangent

space at some point y ∈ C . Then, from Lemma 2 we see that C ∩∑k
i=1LC

(
x (i)
) =

F
exp
C (y), and in particular,

∑k
i=1 x

(i) ∈ F
exp
C (y) as each x (i) ∈ LC

(
x (i)
)
. We

also have that C ∩ LC

(∑k
i=1 x

(i)
)

= F
exp
C

(∑k
i=1 x

(i)
)
. As

∑k
i=1LC

(
x (i)
) ⊆
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LC

(∑k
i=1 x

(i)
)
, we conclude that F exp

C (y) ⊆ F
exp
C

(∑k
i=1 x

(i)
)
, which in turn

implies thatF exp
C (y) = F

exp
C

(∑k
i=1 x

(i)
)
because

∑k
i=1 x

(i) ∈ F
exp
C (y). Appealing

to (6), we can then conclude that
∑k

i=1LC
(
x (i)
) = LC

(∑k
i=1 x

(i)
)
. ��

Therefore, Terracini convexity of a cone C is linked to the poset L(C ) inheriting
the join structure of the lattice of subspaces. In general, L(C ) does not inherit the
meet structure of the lattice of subspaces as the intersection of the convex tangent
spaces corresponding to two exposed faces does not usually yield a convex tangent
space corresponding to an exposed face of C (the positive semidefinite cone provides
a counterexample); indeed, the preceding proposition makes no assumptions on the
existence of a meet operation.

3 Neighborliness and Terracini convexity

Terracini convexity is one approach to extend neighborliness from polyhedral cones
to non-polyhedral convex cones. As discussed in the introduction, there is already a
previous notion of neighborliness available in the non-polyhedral case due toKalai and
Wigderson [14]. In this section we investigate the relationship between these two con-
cepts, and in particular we show that k-neighborly convex cones (formally defined in
Sect. 3.1) are k-Terracini convex subject to mild non-degeneracy conditions. Through-
out this section we view R

m as being equipped with an inner product (which varies
based on context and is specified clearly in each case), and we define an associated set
S m−1 ⊂ R

m of unit-norm elements induced by the inner product. Doing so allows
us to work with a distinguished set ext(K ) ∩S m−1 of normalized extreme rays of a
closed, pointed, convex cone K ⊆ R

m .

3.1 k-Neighborly convex cones

In [14] Kalai and Wigderson extend the notion of a neighborly polytope to define a k-
neighborly embedded smooth manifold. This concept serves as the point of departure
for a definition of a k-neighborly convex cone that is expressed in convex-geometric
terms with no reference to an underlying embedded manifold.

Definition 3 Let M be a smooth manifold and let φ : M → R
m be an embedding

of M in R
m . The image φ(M ) is a k-neighborly embedded manifold if for any

collection x (1), x (2), . . . , x (k) of elements of φ(M ), there exists an affine function
� : R

m → R such that �(x (i)) = 0 for i = 1, 2, . . . , k and �(x) > 0 for all x ∈
φ(M ) \ {x (1), x (2), . . . , x (k)}.
This definition is a slight reformulation of that of Kalai and Wigderson and it is stated
in a manner that is more convenient for our presentation. The neighborliness of φ(M )

clearly only depends on the convex hull of φ(M ), which suggests the following notion
of a k-neighborly convex cone.
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Terracini convexity 411

Definition 4 A closed, pointed, convex cone K ⊆ R
m is k-neighborly if for every

collection x (1), x (2), . . . , x (k) of normalized extreme rays of K , there exists a linear
functional � : R

m → R such that �(x (i)) = 0 for i = 1, 2, . . . , k and �(x) > 0 for all
x ∈ ext(K ) ∩ S m−1 \ {x (1), x (2), . . . , x (k)}.
It is straightforward to check that if an embedded smooth manifold φ(M ) ⊆ R

m is
k-neighborly, then the cone over φ(M ), i.e., cone({1} × φ(M )) ⊆ R

m+1, is a k-
neighborly convex cone. A basic observation about k-neighborly convex cones is that
all of their sufficiently low-dimensional faces are linearly isomorphic to a nonnegative
orthant.

Proposition 4 Consider a closed, pointed, convex coneK ⊆ R
m that is k-neighborly,

and supposeF is a face ofK of dimension d ≤ k. ThenF is linearly isomorphic to
R
d+.

Proof As K is a closed, pointed, convex cone, so is F . Hence, F is the conic
hull of its extreme rays. Let x (1), . . . , x (d) be a choice of d linearly independent
normalized extreme rays ofF (and hence ofK ). Let � be a linear functional satisfying
�(x (i)) = 0 for i = 1, 2, . . . , d and �(x) > 0 for all other normalized extreme
rays of K , whose existence is guaranteed due to the k-neighborliness of K . Let
F̃ = {x ∈ K : �(x) = 0} be the face of K exposed by �. Since every extreme ray
ofK that belongs to F̃ is also an extreme ray of F̃ , it follows from the definition of �
that x (1), x (2), . . . , x (d) are exactly the normalized extreme rays of F̃ . As such, F̃ is
a closed, pointed, convex cone with exactly d linearly independent extreme rays, and
therefore it must be linearly isomorphic to R

d+. Finally, F̃ andF are both faces ofK
such that their relative interiors have a point in common, so F̃ = F [18, Corollary
18.1.2]. ��
Proposition 4 makes it clear that k-Terracini convex cones are not necessarily k-
neighborly. Indeed, we have seen that the positive semidefinite cone is Terracini
convex, and yet its faces are not linearly isomorphic to nonnegative orthants in gen-
eral. We describe next an example that serves as a running illustration throughout this
section. This cone was considered by Kalai and Wigderson [14] in the language of
neighborly manifolds.

Cone over the Veronese embedding The Veronese embedding φn,2d : R
n → R(n+2d−1

2d )

is defined by the homogeneous moment map φn,2d(z) = (zα)α∈An,2d where An,2d =
{α ∈ N

n : ∑n
i=1 αi = 2d} and zα := ∏n

i=1 z
αi
i . We denote the cone over this

embedding by

Cn,2d := cone{φn,2d(z) : z ∈ R
n}.

When discussing this example, we let m = (n+2d−1
2d

)
and equip R

m with the inner
product4 that satisfies

〈φ(y), φ(z)〉B := 〈y, z〉2d for all y, z ∈ R
n

4 This inner product is variously referred to as the apolar, Bombieri, Weyl-Bombieri, Fisher, or Calderón
inner product.
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where the inner product on the right is the Euclidean inner product on R
n . The norms

associated with these inner products are denoted ‖ · ‖B and ‖ · ‖, respectively. Any
linear functional � : R

m → R restricted to the extreme rays of the cone Cn,2d can be
interpreted as a homogeneous polynomial of degree 2d in n variables, i.e.,

�(φn,2d(z)) =
∑

α∈An,2d

�αz
α.

Under this interpretation, the dual cone −C ◦
n,2d is the cone of (coefficients of) non-

negative homogeneous polynomials of degree 2d in n variables.

Example 6 (Neighborliness of cones over Veronese embeddings [14]) The coneCn,2d
is a d-neighborly convex cone. To see this, consider a collection of up to d normalized
extreme rays

{φn,2d(z
(1)), . . . , φn,2d(z

(d))} ⊆ ext(Cn,2d) ∩ S m−1

and define the linear functional

�(φn,2d(z)) =
d∏

i=1

(‖z‖2‖z(i)‖2 − 〈z, z(i)〉2).

From the Cauchy-Schwarz inequality, we can see that this is a nonnegative polynomial
in z. (In fact, it is a sum of squares.) As such, � defines a linear functional that is
nonnegative on the extreme rays of Cn,2d , and hence on Cn,2d itself. Furthermore, the
only normalized extreme rays at which � vanishes are φn,2d(z(i)) for i = 1, 2, . . . , d.

3.2 Non-degeneracy and regularity of convex cones

Our approach to showing that a k-neighborly cone is k-Terracini convex is based on
the dual characterization of k-Terracini convexity from Proposition 1. Specifically,
for any collection of normalized extreme rays x (1), . . . , x (k) of a k-neighborly cone

K ⊆ R
m , we wish to prove that

⋂k
i=1 span

(
NK (x (i))

) ⊆ span
(⋂k

i=1NK (x (i))
)
.

Our strategy is to identify an � ∈ −⋂k
i=1NK (x (i)) such that

� +U ∩
[

k⋂
i=1

span
(
NK (x (i))

)]
⊆ −

k⋂
i=1

NK (x (i)) (9)

for an open set U ⊆ R
m containing the origin. The linear functional that supports

K at the points x (1), . . . , x (k), which is available to us from the definition of k-
neighborliness, serves as a natural candidate for �. The key issue with executing this
strategy is that we need to control the extent to which any� ∈ ⋂k

i=1 span
(
NK (x (i))

)
perturbs �. In particular, as � ∈ ⋂k

i=1 span
(
NK (x (i))

)
may be decomposed as � =
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�
(i)
+ − �

(i)
− for each i = 1, . . . , k, (with �

(i)
+ ,�

(i)
− ∈ −NK (x (i))), we need to

bound the amount that the ‘negative’ parts �
(i)
− perturb �. We consider two conditions

to address this point. The first one ensures that �(x) grows sufficiently fast around
{x (1), x (2), . . . , x (k)}. The second one controls the growth of any linear functional in
−NK (x) for any normalized extreme ray x ∈ K . Under these conditions—with
the second one applied to each �

(i)
− —we show that � dominates �

(i)
− ; consequently,

we prove that for each � ∈ ⋂k
i=1 span

(
NK (x (i))

)
there exists γ �= 0 such that

� + γ� ∈ −⋂k
i=1NK (x (i)). The first condition is a requirement on k-neighborly

cones and takes the form of a quadratic growth criterion, while the second one is
a regularity property applicable to arbitrary closed, pointed, convex cones. Both of
these conditions are mild; for example, we show that the cone over the Veronese
embedding satisfies them. (That being said, we are unaware of a method to prove
that a k-neighborly cone is k-Terracini convex without these two conditions.) We
precisely describe the conditions next, and we prove in Sect. 3.3 that k-neighborly
cones satisfying these conditions are k-Terracini convex.

3.2.1 Non-degenerate neighborliness

We present a non-degenerate extension of the notion k-neighborliness in which the
linear functional exposing a subset of k extreme rays satisfies an additional growth
condition when restricted to nearby extreme rays.

Definition 5 Aclosed, pointed, convex coneK ⊆ R
m isnon-degenerate k-neighborly

if for every collection x (1), x (2), . . . , x (k) of normalized extreme rays of K , there
exist ε > 0, μ > 0, and a linear functional � : R

m → R, such that �(x (i)) = 0 for
i = 1, 2, . . . , k, �(x) > 0 for all x ∈ (ext(K ) ∩ S m−1) \ {x (1), . . . , x (k)}, and

�(x) ≥ μ min
i=1,2,...,k

‖x − x (i)‖2 for all x ∈ (ext(K ) ∩ S m−1) ∩ (∪k
i=1B(x (i), ε)).

(10)

The quadratic growth condition (10) is a mild restriction, and it is satisfied by the
examples of k-neighborly convex cones we consider in this section.

Example 7 (k-neighborly polyhedral cones are non-degenerate k-neighborly) IfK ⊆
R
m is a k-neigborly polyhedral cone, then for any collection x (1), x (2), . . . , x (k) of

normalized extreme rays there is a linear functional � such that �(x (i)) = 0 for i =
1, 2, . . . , k and �(x) > 0 for all other normalized extreme rays of K . As the set of
normalized extreme rays is finite, one can choose ε smaller than half the minimum
distance between normalized extreme rays and obtain that

(ext(K ) ∩ S m−1) ∩ (∪k
i=1B(x (i), ε)) = {x (1), x (2), . . . , x (k)},

which implies that (10) is vacuously satisfied for any positive μ.
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Example 8 (ConeCn,2d over theVeronese embedding is non-degenerate d-neighborly)
For y, z ∈ R

n with unit Euclidean norm so that ‖φ(y)‖B = ‖φ(z)‖B = 1 (this is the
norm associated with the Bombieri inner product on R

m), we have that

1
2‖φn,2d(y) − φn,2d(z)‖2B = 1 − 〈y, z〉2d

= (1 − 〈y, z〉2)(1 + 〈y, z〉2 + · · · + 〈y, z〉2d−2)

≤ d(1 − 〈y, z〉2).

Here, the inequality follows from the Cauchy-Schwarz inequality and the fact that y
and z have unit Euclidean norm. For unit Euclidean norm z(i), i = 1, 2, . . . , d and
unit Euclidean norm z ∈ R

n , the linear functional � from Example 6 satisfies

�(φn,2d(z)) =
d∏

i=1

(1 − 〈z, z(i)〉2) ≥
d∏

i=1

‖φn,2d(z) − φn,2d(z(i))‖2B
2d

.

Choosing ε = 1
2 mini �= j ‖φ(z(i)) − φ(z( j))‖B > 0, whenever φn,2d(z) ∈⋃k

i=1B(φn,2d(z(i)), ε) and ‖z‖2 = 1 we have that

�(φn,2d(z)) ≥ 1
2d ( ε2

2d )d−1 min
i

‖φn,2d(z) − φn,2d(z
(i))‖2B .

It follows that Cn,2d is non-degenerate d-neighborly.

Although the definition of being non-degenerate k-neighborly only requires quadratic
growth locally around the set of minimizers, compactness of the sphere means that
local quadratic growth implies global quadratic growth.

Lemma 3 If a closed, pointed, convex coneK ⊆ R
m is non-degenerate k-neighborly

then for every collection x (1), x (2), . . . , x (k) of normalized extreme rays of K , there
exists μ0 > 0, and a linear functional �, such that �(x (i)) = 0 for i = 1, 2, . . . , k and

�(x) ≥ μ0 min
i=1,2,...,k

‖x − x (i)‖2 for all x ∈ ext(K ) ∩ S m−1.

Proof Let x (1), x (2), . . . , x (k) be a collection of normalized extreme rays ofK . Let ε
and μ be the positive constants, and let � be the linear functional, that exist because
K is non-degenerate k-neighborly. Let

W = {x ∈ ext(K ) ∩ S m−1 : min
i=1,2,...,k

‖x − x (i)‖ < ε}

and let W c = ext(K ) ∩ S m−1 \ W be its complement in normalized extreme rays.
By compactness of W c and the fact that �(x) > 0 on W c, there exists some M > 0
such that

�(x) ≥ M ≥ M
4 min

i=1,2,...,k
‖x − x (i)‖2 for all x ∈ W c
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where the second inequality holds because ‖x − y‖2 ≤ 4 whenever x, y ∈ S m−1.
Since

�(x) ≥ μ min
i=1,2,...,k

‖x − x (i)‖2 for all x ∈ W ,

taking μ0 = min{μ, M/4} completes the proof. ��
3.2.2 Regular cones

Our notion of regularity for a closed, pointed, convex cone requires that no linear
functional in the dual cone grows too fast around its minimizer when restricted to
extreme rays. This holds whenever the restriction of a linear functional to the extreme
rays is smooth.

Definition 6 A closed, pointed, convex cone K ⊆ R
m is regular if for each x0 ∈

ext(K ) and each � ∈ −NK (x0), there exist δ > 0 and ν > 0 such that

�(x) ≤ ν‖x − x0‖2 for all x ∈ (ext(K ) ∩ S m−1) ∩ B(x0, δ). (11)

Example 9 (Polyhedral cones are regular) If K ⊆ R
m is a proper polyhedral cone,

then the set of normalized extreme rays is finite. Therefore, for sufficiently small δ,
(ext(K ) ∩S m−1) ∩B(x0, δ) = {x0}. If � ∈ −NK (x0), then �(x0) = 0 and so (11)
is vacuously satisfied for any ν > 0.

Example 10 (Cone over the Veronese embedding is regular) Suppose that z0 ∈ S n−1

and �(φn,2d(z)) is nonnegative and vanishes at z0. Consider the nonnegative homoge-
neous quadratic ‖z‖2‖z0‖2 − 〈z, z0〉2, which vanishes only on the line spanned by z0.
Since both �(φn,2d(z)) and its gradient vanish at z = z0, there exists M > 0 such that
�(φn,2d(z)) ≤ M(‖z‖2‖z0‖2 − 〈z, z0〉2) for all z ∈ S n−1. Then if z ∈ S n−1,

�(φn,2d(z)) ≤ M(1 − 〈z, z0〉2) ≤ M(1 − 〈z, z0〉2d) = M
2 ‖φn,2d(z) − φn,2d(z0)‖2B .

Since z0 was arbitrary, it follows that Cn,2d is regular.

Although the definition of a cone being regular only bounds the growth of a linear
functional on normalized extreme rays locally around itsminimizer, such a local bound
can be extended to a global bound.

Lemma 4 If a closed, pointed, convex cone K ⊆ R
m is regular then for each x0 ∈

ext(K ) and each � ∈ −NK (x0) there exists ν0 > 0 such that �(x) ≤ ν0‖x − x0‖2
for all x ∈ ext(K ) ∩ S m−1.

Proof If x0 ∈ ext(K ), the cone K is regular, and � ∈ −NK (x0), then there exist
δ > 0 and ν ≥ 0 such that x ∈ ext(K ) ∩ S m−1 and ‖x − x0‖ < δ implies
�(x) ≤ ν‖x − x0‖2. If, on the other hand, ‖x0−x‖

δ
≥ 1 and L = maxx∈S m−1 �(x) then

�(x) = �(x − x0) ≤ Lδ

(‖x − x0‖
δ

)
≤ Lδ

(‖x − x0‖
δ

)2

= L
δ
‖x − x0‖2.

Choosing ν0 = max{ν, L/δ} completes the proof. ��
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3.3 Terracini convexity of neighborly cones

We are now in a position to state and prove the main result of this section.

Theorem 1 If a closed, pointed, convex cone is non-degenerate k-neighborly and reg-
ular, then it is k-Terracini.

Proof Let x (1), x (2), . . . , x (k) be a collection of normalized extreme rays of a closed,
pointed, non-degenerate k-neighborly convex cone K . To establish that K is k-
Terracini convex, by Remark 1 it suffices to show that

⋂k
i=1 span

(
NK (x (i))

) ⊆
span

(⋂k
i=1NK (x (i))

)
. As such, let � ∈ ⋂k

i=1 span
(
NK (x (i))

)
be arbitrary.

Let �be a linear functional from thedefinitionof non-degenerate k-neighborliness of
K . Since this functional is nonnegative onK and vanishes on x (i) for i = 1, 2, . . . , k,
it follows that � ∈ −⋂k

i=1NK (x (i)). Further, from Lemma 3 there exists μ0 > 0
such that

�(x) ≥ μ0 min
i=1,2,...,k

‖x − x (i)‖2 for all x ∈ ext(K ) ∩ S m−1. (12)

Since � ∈ ⋂k
i=1 span

(
NK (x (i))

)
, for each i we have a decomposition of � as � =

�
(i)
+ −�

(i)
− where�

(i)
+ ,�

(i)
− ∈ −NK (x (i)). AsK is regular, for each i = 1, 2, . . . , k,

there exists ν
(i)
0 > 0 such that �

(i)
− ≤ ν

(i)
0 ‖x − x (i)‖2 for all x ∈ ext(K ) ∩ S m−1

from Lemma 4. Setting ν0 = maxi {ν(i)
0 } we have that

�(x) ≥ −ν0 min
i=1,2,...k

‖x − x (i)‖2 for all x ∈ ext(K ) ∩ S m−1. (13)

If we choose 0 < γ < μ0/ν0 it follows from (12) and (13) that

(� + γ�)(x) ≥ (μ0 − γ ν0) min
i=1,2,...,k

‖x − x (i)‖2 for all x ∈ ext(K ) ∩ S m−1.(14)

Using the fact that�(x (i)) = �(x (i)) = 0 for i = 1, 2, . . . , k, we can conclude that �+
γ� ∈ −⋂k

i=1NK (x (i)). Since γ �= 0, it follows that � ∈ span
(⋂k

i=1NK (x (i))
)
,

and soK is k-Terracini convex. ��
This theoremyields two immediate corollaries based on the examples in Sects. 3.2.1

and 3.2.2.

Corollary 2 A pointed k-neighborly polyhedral cone is k-Terracini convex.

Proof This follows immediately from Theorem 1 and Examples 7 and 9. ��
Corollary 3 The cone Cn,2d over the Veronese embedding is d-Terracini convex.

Proof This follows immediately from Theorem 1 and Examples 8 and 10. ��
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WhileCorollary 3holds for general cones overVeronese embeddings, for the special
case of the cone over the moment curve, i.e., the case n = 2, a stronger conclusion is
possible.

Corollary 4 The cone C2,2d over the homogeneous moment curve is Terracini convex,
i.e., is k-Terracini convex for all k.

Proof Let x (1), . . . , x (k) generate distinct extreme rays ofC2,2d . Then there exist points

z(1), . . . , z(k) ∈ R
2 such that φ2,2d(z(i)) = x (i) for i = 1, 2, . . . , k and z(i)1 z( j)2 −

z( j)1 z(i)2 �= 0 whenever i �= j . In other words, the z(i) represent distinct elements of
the real projective line. Since C2,2d is d-Terracini convex, to conclude that C2,2d is
Terracini convex it suffices to show that if k ≥ d + 1 then

k⋂
i=1

span
(
NC2,2d (x

(i))
)

= {0} ⊆ span

(
k⋂

i=1

NC2,2d (x
(i))

)
.

Elements � ∈ NC2,2d (x
(i)) are exactly the linear functionals with the property that

�(φ2,2d(z)) is a bivariate homogeneous polynomial of degree 2d that is non-positive
and vanishes at z(i). As such � ∈ ⋂d

i=1NC2,2d (x
(i)) if and only if �(φ2,2d(z)) is a non-

negative multiple of p(z) = −∏d
i=1(z1z

(i)
2 − z2z

(i)
1 )2. From d-Terracini convexity

of C2,2d , it follows that � ∈ ⋂d
i=1 span

(
NC2,2d (x

(i))
)
if and only if �(φ2,2d(z)) is a

scalar multiple of p(z).
Consider any �̃ ∈ ⋂k

i=1 span
(
NC2,2d (x

(i))
)
for k ≥ d + 1 and let q(z) =

�̃(φ2,2d(z)). Then q(z) = α p(z) for some scalar α since

�̃ ∈
d⋂

i=1

span
(
NC2,2d (x

(i))
)

⊆
k⋂

i=1

span
(
NC2,2d (x

(i))
)

.

Furthermore, q(z(d+1)) = 0 since �̃ ∈ span(NC2,2d (x
(d+1))). Since z(i)1 z( j)2 −

z( j)1 z(i)2 �= 0 whenever i �= j , this is only possible if α = 0 and hence �̃ = 0.
��

A natural question at this stage is whether cones Cn,2d over Veronese embeddings for
n > 2 are also Terracini convex, rather than merely being d-Terracini convex. For the
case of n = 3, this question is open, and (to the best of our knowledge) cannot be
resolvedgiven the current understandingof the structure ofC3,2d . For the case ofn = 4,
the following example shows that C4,4 is not Terracini convex based on Blekherman’s
study of dimensional differences between faces of nonnegative polynomials and sums
of squares [5].

Example 11 ([5, Section 2.2]) Consider the cone C4,4, which can be viewed as dual
to nonnegative quartic forms in four variables. Let S = {(1, 1, 0, 0), (1, 0, 1, 0),
(1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 1, 1)}. Blekherman shows that
the face of nonnegative quartic forms in four variables that vanish on S has dimen-
sion 6, i.e.,
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dim span

(⋂
z∈S

NC4,4(φ4,4(z))

)
= 6. (15)

Furthermore, each of the subspaces span(NC4,4(φ4,4(z))) for z ∈ S has codimension 4
in the 35-dimensional space of quartic forms in four variables. The intersection (over
z ∈ S) of these subspaces are exactly the forms that double vanish on S. Consequently

dim

(⋂
z∈S

span
(
NC4,4(φ4,4(z))

)) ≥ 35 − 4|S| = 7. (16)

In Blekherman’s language, the set S is not 2-independent. It follows from (15) and (16)
that C4,4 is not 7-Terracini convex, and hence not Terracini convex.

4 Preservation of Terracini convexity under linear images

In this section, we consider the Terracini convexity properties of linear images of
Terracini convex cones such as the nonnegative orthant and the positive semidefi-
nite matrices. We carry out our investigation by analyzing the performance of convex
relaxations for nonconvex inverse problems. Specifically, we consider the problem of
finding the componentwise nonnegative vector with the smallest number of nonzero
entries (i.e., nonnegative sparse vectors) in an affine space, and that of finding the
smallest rank positive semidefinite matrix in an affine space. Both of these problems
arise commonly in many applications and they have been widely studied in the lit-
erature. In Sect. 4.1 we consider sparse vector recovery and we reprove a result of
Donoho and Tanner that a natural linear programming relaxation succeeds in recover-
ing nonnegative sparse vectors in an affine space if and only if a particular linear image
of the nonnegative orthant is k-Terracini convex for an appropriate k [9]. Donoho and
Tanner’s original proof was given in the language of neighborly polytopes.We provide
an alternate proof in Sect. 4.1 by appealing to the dual relation Proposition 1 as it is
instructive in our subsequent analysis on recovering low-rankmatrices in affine spaces.
In Sect. 4.2 we prove that the success of a semidefinite programming relaxation in
recovering positive semidefinite low-rank matrices implies k-Terracini convexity of a
particular linear image of the cone of positive semidefinite matrices for a suitable k; in
the reverse direction, we show that a ‘robust’ analog of k-Terracini convexity implies
success of the semidefinite relaxation. The results in Sect. 4.2 lead to a new family of
non-polyhedral Terracini convex cones, which we describe in Sect. 4.3. Thus, this sec-
tion supplies new examples of Terracini convex cones, and our results also highlight
the utility of our definition of Terracini convexity in generalizing neighborly polyhe-
dral cones, as the usual notion of neighborliness for non-polyhedral cones is not the
right one for characterizing the performance of semidefinite relaxations for low-rank
matrix recovery.
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4.1 Linear images of the nonnegative orthant

In applications ranging from feature selection inmachine learning to recovering signals
and images froma limited number ofmeasurements, a frequently encountered question
is that of finding vectors with the smallest number of nonzero entries in a given affine
space. Consider the following model problem:

min
x∈Rd

|support(x)| (P0)

s.t. Ax = b, x ≥ 0.

Here A : R
d → R

n is a linear map, b ∈ R
n , x ≥ 0 denotes componentwise

nonnegativity of x , and |support(x)| denotes the number of nonzero entries of x .
As solving (P0) is NP-hard in general, the following tractable linear programming
relaxation is the method of choice that is employed in most contexts:

LP(A, b) = arg min
x∈Rd

〈1, x〉 (P1)

s.t. Ax = b, x ≥ 0.

In assessing the performance of the relaxation (P1), the usual mode of analysis is
to suppose that there exists a nonnegative vector x
 ∈ R

d with a small number of
nonzeros such that b = Ax
, and to then ask whether x
 is the unique optimal solution
of (P1), i.e., whether LP(A, Ax
) = {x
}. The main result of Donoho and Tanner
[9] relates the success of (P1) to neighborliness properties of images of the d-simplex
�d = {x ∈ R

d : x ≥ 0, 〈1, x〉 = 1} under the map A.
In Theorem 2, to follow, we state a conic analog of the result in [9], and we reprove

it in two stages. The proof we give offers a template for our generalization in Sect. 4.2
on relating the performance of semidefinite relaxations for low-rank matrix recovery
to Terracini convexity of linear images of the cone of positive semidefinite matrices.
Our analysis relies on relating the following three properties; each of these is stated
with respect to a positive integer k, which will be clear from context.

– A linear map A : R
d → R

n satisfies the exact recovery property if, for each x
 ∈
R
d+ with |support(x
)| ≤ k, the unique optimal solution of the linear programming

relaxation (P1) is LP(A, Ax
) = {x
}.
– Consider a linear map B : R

d → R
N . The cone B(Rd+) satisfies the unique

preimage property if, for each x
 ∈ R
d+ with |support(x
)| ≤ k, the point Bx
 has

a unique preimage in R
d+.

– Consider a linear map B : R
d → R

N . The cone B(Rd+) satisfies the Terracini
convexity property if it is pointed, it has d extreme rays, and it is k-Terracini convex.

Given these notions we state next the result of Donoho and Tanner in conic form:

Theorem 2 Consider a linear map A : R
d → R

n that is surjective and define the

linear map B : R
d → R

n+1 as Bx =
(

Ax
〈1, x〉

)
. Suppose that null(A) ∩ R

d++ �= ∅.
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420 J. Saunderson , V. Chandrasekaran

Fix a positive integer k < d. The map A satisfies the exact recovery property if and
only if the cone B(Rd+) satisfies the Terracini convexity property.

Remark 2 This result is a conic analog of those in [9]. The assumption that A is
surjective is to ensure a cleaner argument; if this condition is not satisfied, the proof
can be adapted by restricting to the image of A. Finally, the results in [9] do not require
the condition null(A) ∩ R

d++ �= ∅, and they are described in terms of a property
termed ‘outward neighborliness’. However, the particular restriction on which we
focus suffices for our purposes and leads to a simpler exposition.

This result leads to two types of consequences in [9]. In one direction, Donoho
and Tanner leveraged results on constructions of neighborly polytopes to obtain new
families of linearmaps A forwhich the linear program (P1) succeeds in sparse recovery.
Conversely, by building on results in the sparse recovery literature, they constructed
new families of neighborly polytopes.

Our proof proceeds in two steps and is based on the following intermediate results.

Lemma 5 Consider a linear map A : R
d → R

n and define the linear map B : R
d →

R
n+1 as Bx =

(
Ax

〈1, x〉
)
. Suppose that null(A) ∩ R

d++ �= ∅. Fix a positive integer

k < d. The map A satisfies the exact recovery property if and only if the cone B(Rd+)

satisfies the unique preimage property.

Proof For the case x
 = 0, one can check that LP(A, 0) = {0} and that the unique
preimageof 0 ∈ R

n+1 under themap B inR
d+ is also {0}. For nonzero x
, in considering

the exact recovery property and the unique preimage property, wemay assumewithout
loss of generality that 〈1, x
〉 = 1. The reason for this that LP(A, αb) = αLP(A, b)
for any α > 0; the unique preimage property is similarly unaffected by such scaling.
With this normalization, the exact recovery property is equivalent to the fact that for
any x
 ∈ R

d+ with |support(x
)| ≤ k, the point Ax
 has a unique preimage in the solid
simplex �d

0 = {x ∈ R
d : 〈1, x〉 ≤ 1, x ≥ 0}.

Consider the implication that the exact recovery property implies the unique preim-
age property. Assume that the unique preimage property does not hold. Then there
exists x
 ∈ R

d+ with |support(x
)| ≤ k and x̃ ∈ R
d+ such that Bx̃ = Bx
, x̃ �= x
.

Based on the description of B, we can conclude that 〈1, x̃〉 = 1 and therefore x̃ ∈ �d .
This violates the property that Ax
 has a unique preimage in �d

0 ; hence the exact
recovery property does not hold.

Conversely, consider the implication that the unique preimage property implies
the exact recovery property. Assume for the sake of a contradiction that there exists
x
 ∈ R

d+ with |support(x
)| ≤ k and x̃ ∈ �d
0 such that Ax̃ = Ax
, x̃ �= x
. As

null(A)∩ R
d++ �= ∅, there exists x0 ∈ �d with |support(x0)| = d such that Ax0 = 0.

The point x ′ = (1 − 〈1, x̃〉)x0 + x̃ has the property that Bx ′ = Bx
. Consequently,
we have that x
 = x ′ = (1 − 〈1, x̃〉)x0 + x̃ , which in turn implies that x0 and x̃
belong to the smallest face of R

d+ containing x
, i.e., support(x0) ⊆ support(x
) and
support(x̃) ⊆ support(x
). However, as |support(x0)| = d but |support(x
)| ≤ k < d,
we have the desired contradiction. ��
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Our next result relates the unique preimage property to the Terracini convexity
property:

Proposition 5 Consider a linear map A : R
d → R

n and define the linear map B :
R
d → R

n+1 as Bx =
(

Ax
〈1, x〉

)
. Suppose the map B is surjective. Fix a positive

integer k. The cone B(Rd+) satisfies the unique preimage property if and only if it
satisfies the Terracini convexity property.

Proof First, we give a dual reformulation of the unique preimage property. For each
x
 ∈ R

d+ with |support(x
)| ≤ k, the property that Bx
 has a unique preimage in R
d+

is equivalent to the transverse intersection condition null(B) ∩ K
R
d+(x
) = {0}. The

cone K
R
d+(x
) is closed and therefore one can check that this transverse intersection

condition is equivalent to null(B)⊥ ∩ ri(N
R
d+(x
)) �= ∅. As the nonnegative orthant is

a self-dual cone, the normal coneN
R
d+(x
) is given by a face of R

d+ of co-dimension

at most k. In summary, the unique preimage property states that for any face � of R
d+

of co-dimension at most k, we have that null(B)⊥ ∩ ri(�) �= ∅.
Second, we note that the cone B(Rd+) is pointed by construction. As the linear

map B is surjective, elements of the normal coneNB(Rd+)(Bx) for any x ∈ R
d+ are in

one-to-one correspondence with null(B)⊥ ∩ N
R
d+(x). Consequently, by appealing to

Proposition 1, the cone B(Rd+) being k-Terracini convex is equivalent to the condition
that for any face�ofRd+ of co-dimension atmost k,wehave that span(null(B)⊥∩�) =
null(B)⊥ ∩ span(�).

With these two reformulations of the unique preimage property and the Terracini
convexity property in hand, we proceed to establish the desired result.

Consider the implication that the unique preimage property implies the Terracini
convexity property. Based on the unique preimage property applied to elements of
R
d+ with one nonzero entry, we conclude that B(Rd+) has d extreme rays. Let v ∈

null(B)⊥ ∩ ri(�). Letting U be an open set in R
d containing the origin, we have that

v + ε[U ∩ null(B)⊥ ∩ span(�)] ⊂ null(B)⊥ ∩ ri(�) for a sufficiently small ε > 0.
Consequently, we can conclude that span(null(B)⊥ ∩ �) = null(B)⊥ ∩ span(�),
which is equivalent to B(Rd+) being k-Terracini convex.

Next, consider the implication that the Terracini convexity property implies the
unique preimage property. We prove this by induction on k. For the base case k = 1,
as the cone B(Rd+) has d extreme rays,we have that the unique preimage property holds
for k = 1. For k > 1, suppose for the sake of a contradiction that null(B)⊥∩ri(�) = ∅.
Thus, there exists a face �̂ of R

d+ contained strictly in �, i.e., �̂ � � such that
null(B)⊥ ∩ �̂ = null(B)⊥ ∩ �. We have the following sequence of containment
relations:

null(B)⊥ ∩ span(�̂) ⊆ null(B)⊥ ∩ span(�)

= span(null(B)⊥ ∩ �)

= span(null(B)⊥ ∩ �̂)

⊆ null(B)⊥ ∩ span(�̂).
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The first relation follows from �̂ ⊆ �, the second one follows from the Terracini
convexity property, the third one follows from null(B)⊥ ∩ �̂ = null(B)⊥ ∩�, and the
final one follows from the fact that the span of the intersection of two sets is contained
inside the intersection of the spans of the sets. In conclusion, all the containments are
satisfied with equality and we have that null(B)⊥ ∩ span(�̂) = null(B)⊥ ∩ span(�),
or equivalently that:

null(B) + span(�̂)⊥ = null(B) + span(�)⊥. (17)

As R
d+ is a polyhedral cone, we note that span(�̂)⊥ and span(�)⊥ are themselves

spans of faces of R
d+. In particular, let F , F̂ be faces of R

d+ such that F � F̂ ,

and span(F ) = span(�)⊥, span(F̂ ) = span(�̂)⊥. The relationship (17) implies
that there exists a generator x̂ of an extreme ray of R

d+ in F̂\F such that x̂ =
(x (+) − x (−)) + v for x (+), x (−) ∈ F with disjoint supports and v ∈ null(B). Hence,
we have that B(x̂ + x (−)) = Bx (+). As dim(F ) = k, the sum of the sizes of the
supports of x̂ + x (−) and of x (+) is at most k + 1. If x (+) �= 0 we have a contradiction
due to the inductive hypothesis. If x (+) = 0 we have 〈1, (x̃ + x (−))〉 = 0, which
implies that x̂ + x (−) = 0 and in turn that x̂ = 0, also a contradiction. ��

Based on these two results, we are now in a position to prove Theorem 2.

Proof of Theorem 2 As null(A) ∩ R
d++ �= ∅ and k < d by assumption, we can apply

Lemma 5. Specifically, the exact recovery property for A is equivalent to the unique
preimage property for B(Rd+).

Next, in preparation to apply Proposition 5, we need to verify that the linear map
B is surjective. The surjectivity of B is equivalent to A being surjective and 1 /∈
null(A)⊥. The former condition holds by assumption and the latter condition is in turn
equivalent to null(A) � span(1)⊥. The assumption null(A) ∩ R

d++ �= ∅ implies that
null(A) � span(1)⊥. Thus, we are in a position to apply Proposition 5 and obtain that
the unique preimage property of the cone B(Rd+) is equivalent to B(Rd+) satisfying
the Terracini convexity property. This concludes the proof. ��

4.2 Linear images of the positive semidefinite matrices

Thedevelopment of convex relaxations for obtaining low-rankmatrices in affine spaces
largely paralleled and built upon the literature on sparse recovery. Notable examples
of such problems include factor analysis and collaborative filtering. Concretely, given
an affine space in S

d of the form {X ∈ S
d : A (X) = b} where A : S

d → R
n is a

linear map and b ∈ R
n , consider the following optimization problem for identifying

a positive-semidefinite low-rank matrix in this space:

min
X∈Sd

rank(X) (R0)

s.t. A (X) = b, X � 0.
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As with the problem (P0), the program (R0) is also NP-hard to solve in general.
Consequently, the following semidefinite relaxation is widely employed in practice:

SDP(A , b) = arg min
X∈Sd

tr(X) (R1)

s.t. A (X) = b, X � 0.

By analogywith the analysis of the performance of (P1), we are interested in obtaining
conditions under which the unique optimal solution of (R1) with b = A (X
) for a
low-rankmatrix X
 ∈ S

d+ is equal to X
, i.e., whether SDP(A ,A (X
)) = {X
}. Our
objective in the remainder of this section is to relate such exact recovery to Terracini
convexity of an appropriate linear image of S

d+.
As with the previous subsection, our analysis is organized in terms of three prop-

erties:

– A linearmapA : S
d → R

n satisfies the exact recovery property if for any X
 ∈ S
d+

with rank(X
) ≤ k, the unique optimal solution of the semidefinite programming
relaxation (R1) is SDP(A ,A (X
)) = {X
}.

– Consider a linear map B : S
d → R

N . The cone B(Sd+) satisfies the unique
preimage property if for any X
 ∈ S

d+ with rank(X
) ≤ k, the pointB(X
) has a
unique preimage in S

d+.
– Consider a linear map B : S

d → R
N . The cone B(Sd+) satisfies the Terracini

convex property if it is closed and pointed, its extreme rays are in one-to-one
correspondence with those of S

d+, and it is k-Terracini.

In what follows, let Od = {X ∈ S
d : tr(X) = 1, X � 0} be the spectraplex. This

plays the same role as the simplex �d did in Sect. 4.1. We are now in a position to
state the main new result of this section.

Theorem 3 Consider a linear map A : S
d → R

n and fix a positive integer k < d.
Then the following two statements hold:

1. Suppose that A is surjective and null(A ) ∩ S
d++ �= ∅. Consider the linear map

B : S
d → R

n+1 defined as B(X) =
(
A (X)

tr(X)

)
. If the map A satisfies the exact

recovery property, then the coneB(Sd+) satisfies the Terracini convexity property.

2. Assume that n >
(d+1

2

)− (d−k+1
2

)
. Suppose there exists an open setS in the space

of linear maps from S
d to R

n with the following properties:

– A ∈ S
– For each ˜A ∈ S, the map ˜A is surjective and satisfies null( ˜A ) ∩ S

d++ �= ∅.
– For each ˜A ∈ S with associated B̃ : S

d → R
n+1 defined as B̃(X) =( ˜A (X)

tr(X)

)
, the cone B̃(Sd+) satisfies the Terracini convexity property.

Then the map A satisfies the exact recovery property.

Theproof in the direction from the exact recoveryproperty to theTerracini convexity
property largely follows the same sequence of steps as the proof of the analogous
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direction of Theorem 2, although technical care is required due to the fact that the cone
of feasible directions into the cone of positive-semidefinite matrices is not closed. In
the direction from the Terracini convexity property to the exact recovery property, we
require a robust analog of theTerracini convexity property. This condition is in the same
spirit as constraint qualification type assumptions that are required in the semidefinite
programming literature in order to guarantee strict complementarity [16].

Inspired by the two-stage proof in Sect. 4.1, we begin with the following result that
parallels Lemma 5:

Lemma 6 Consider a linear mapA : S
d → R

n and define the linear mapB : S
d →

R
n+1 asB(X) =

(
A (X)

tr(X)

)
. Suppose that null(A )∩S

d++ �= ∅. Fix a positive integer
k < d. The mapA satisfies the exact recovery property if and only if the coneB(Sd+)

satisfies the unique preimage property.

Proof As with the proof of Lemma 5, in considering the exact recovery property and
the unique recovery property, we assume without loss of generality that tr(X
) = 1.
With this normalization, the exact recovery property is equivalent to the fact that for
any X
 ∈ S

d+ with rank(X
) ≤ k, the pointA (X
) has a unique preimage in the solid
spectraplex Od

0 = {X ∈ S
d : tr(X) ≤ 1, X � 0}.

Consider the implication that the exact recovery property implies the unique preim-
age property. Assume that the unique preimage property does not hold. Then there
exists X
 ∈ S

d+ with rank(X
) ≤ k and X̃ ∈ S
d+ such thatB(X̃) = B(X
), X̃ �= X
.

Based on the description ofB, we can conclude that tr(X̃) = 1 and therefore X̃ ∈ Od .
This violates the property that A (X
) has a unique preimage in Od

0 ; hence the exact
recovery property does not hold.

Conversely, consider the implication that the unique preimage property implies
the exact recovery property. Assume for the sake of a contradiction that there exists
X
 ∈ S

d+ with rank(X
) ≤ k and X̃ ∈ Od
0 such that A (X̃) = A (X
), X̃ �= X
. As

null(A ) ∩ S
d++ �= ∅, there exists X0 ∈ Od with rank(X0) = d such that A (X0) =

0. The point X ′ = (1 − tr(X̃))X0 + X̃ has the property that B(X ′) = B(X
).
Consequently, we have that X
 = X ′ = (1− tr(X̃))X0+ X̃ , which in turn implies that
X0 and X̃ belong to the smallest face of S

d+ containing X
. However, as rank(X0) = d
but rank(X
) ≤ k < d, we have the desired contradiction. ��

The next proposition represents themain new component of the proof of Theorem3:

Proposition 6 Consider a linear map A : S
d → R

n and define the linear map

B : S
d → R

n+1 as B(X) =
(
A (X)

tr(X)

)
. Fix a positive integer k. Then we have the

following two results:

1. Suppose the mapB is surjective. If the coneB(Sd+) satisfies the unique preimage
property, then it satisfies the Terracini convexity property.

2. Assume that n >
(d+1

2

)− (d−k+1
2

)
. Suppose there exists an open setS in the space

of linear maps from S
d to R

n satisfying the following conditions:
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– A ∈ S
– For each ˜A ∈ S, the associated linear map B̃ : S

d → R
n+1 defined as

B̃(X) =
( ˜A (X)

tr(X)

)
is surjective and the cone B̃(Sd+) satisfies the Terracini

convexity property.

Then the cone B(Sd+) satisfies the unique preimage property.

Remarks: In the direction from the Terracini convexity property to the unique preim-
age property, the fact that S

d+ is not polyhedral, unlike R
d+, complicates matters in

comparison to the proof of Proposition 5. Specifically, translated to the context of the
present theorem, the reasoning up to (17) in Proposition 5 continues to hold, but the
sentence immediately after (17) is no longer true. As stated previously, the nature of
this difficulty is akin to the lack of strict complementarity in semidefinite programs (in
contrast to linear programs), thus necessitating some type of constraint qualification
assumption. The ‘robust Terracini’ form of the assumption in the second part of this
result is similar in spirit to assumptions discussed in [16] to ensure strong duality in
conic programs.

Proof We begin by presenting a dual reformulation of the unique preimage prop-
erty. For each X
 ∈ S

d+ with rank(X
) ≤ k, the property that B(X
) ∈ C

has a unique preimage in S
d+ is equivalent to the transverse intersection condition

null(B) ∩ K
S
d+(X
) = {0}. Unlike the situation with Proposition 5, the cone of fea-

sible directions K
S
d+(X
) is not closed, which presents additional complications. We

prove next that we must have null(B) ∩ K
S
d+(X
) = {0} by reasoning that if there

exists a nonzero M ∈ null(B)∩K
S
d+(X
) then there is a low-rank matrix near X
 for

which the unique preimage property does not hold.
Concretely, suppose for the sake of a contradiction that M ∈ null(B) ∩ K

S
d+(X
)

with M �= 0. Without loss of generality, we assume that X
 has rank r ∈ {1, . . . , k}
with the row/column space equal to the span of the first r standard basis vectors.
For such an X
, the closure of the cone of feasible directions K

S
d+(X
) takes on a

convenient block-diagonal form, so that M ∈ K
S
d+(X
) may be viewed as follows:

M =
(
P V ′
V Q

)
,

with P ∈ S
r , V ∈ R

(n−r)×r , Q ∈ S
(n−r)
+ . We now construct a rank-r matrix for which

the unique preimage property does not hold, thus violating the given assumption.
Choose any matrix W ∈ S

r such that W and W + P are strictly positive definite. We

have that the matrix

(
W −V ′
−V VW−1V ′

)
belongs to S

d+ and has rank equal to r . Further,

we also have that the matrix

(
W + P 0

0 Q + VW−1V ′
)
lies in S

d+. Consequently, we
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have that the matrix:(
W + P 0

0 Q + VW−1V ′
)

−
(
W −V ′
−V VW−1V ′

)
=
(
P V ′
V Q

)

lies in the cone of feasible directions from

(
W −V ′
−V VW−1V ′

)
into S

d+. Since M ∈
null(B),

B

(
W −V ′
−V VW−1V ′

)
= B

(
W + P 0

0 Q + VW−1V ′
)

and so the image of the rank-r matrix

(
W −V ′
−V VW−1V ′

)
under the map B does not

have a unique preimage in S
d+, which gives us the desired contradiction. In summary,

we have for each X
 ∈ S
d+ with rank(X
) ≤ k that null(B) ∩K

S
d+(X
) = {0}, which

in turn is equivalent to null(B)⊥ ∩ ri(N
S
d+(X
)) �= ∅. In analogy to the case of the

nonnegative orthant, the positive-semidefinite cone S
d+ is self-dual and the normal

coneN
S
d+(X
) is given by a face of S

d+ of dimension at least
(d−k+1

2

)
(corresponding

to positive-semidefinite matrices with row/column space orthogonal to those of X
).
Thus, the unique preimage property states that for any face � of S

d+ of dimension at
least

(d−k+1
2

)
, we have that null(B)⊥ ∩ ri(�) �= ∅.

Next, we note that for each ˜A ∈ S, the associated linear map B̃ is such that
the cone B̃(Sd+) is closed and pointed by construction. Further, each B̃ is surjective
by assumption. Thus, elements of the normal cone NB̃(Sd+)

(B(X)) are in one-to-

one correspondence with those of null(B̃)⊥ ∩ N
S
d+(X) for each X ∈ S

d+. Hence,
by appealing to Proposition 1, the Terracini convexity property states that for any
face � of S

d+ of dimension at least
(d−k+1

2

)
, we have that span(null(B̃)⊥ ∩ �) =

null(B̃)⊥ ∩ span(�).
With these reformulations of the unique preimage property and the Terracini con-

vexity property, we now proceed to establish the result.
Proof of Statement 1 To prove the first result, we begin by noting that unique

preimage property applied to rank-one elements of S
d+ implies that the cone B(Sd+)

has extreme rays in one-to-one correspondence with those of S
d+. Next, let M ∈

null(B)⊥ ∩ ri(�). Letting U be an open set in S
d containing the origin, we have that

M + ε[U ∩ null(B)⊥ ∩ span(�)] ⊂ null(B)⊥ ∩ ri(�) for a sufficiently small ε > 0.
Consequently, we can conclude that span(null(B)⊥ ∩ �) = null(B)⊥ ∩ span(�),
which is equivalent to the Terracini convexity condition.

Proof of Statement 2 Next we consider the second statement. Fix a face � of
S
d+ of co-dimension at least

(d−k+1
2

)
. Suppose for the sake of a contradiction that

span(null(B)⊥ ∩ ri(�)) = ∅. As n >
(d+1

2

) − (d−k+1
2

)
, we have that null(B)⊥ ∩

span(�) is a subspace of positive dimension in S
d . By the Terracini convexity prop-

erty applied to the cone B(Sd+), we have that null(B)⊥ ∩ � �= ∅. Hence, there
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exists a proper face �̂ of S
d+ such that �̂ � �, null(B)⊥ ∩ � = null(B)⊥ ∩ �̂,

and null(B)⊥ ∩ ri(�̂) �= ∅. As a consequence, there also exists an element W ∈
[� ∩ span(�̂)⊥]\{0}.

We use the W available to us to construct a linear map ˜A inS. Specifically, there
exists ε > 0 such that:

null( ˜A )⊥ = {M − ε‖M‖W : M ∈ null(A )⊥}

for some ˜A ∈ S. Associated to this ˜A is the linear map B̃. We show next that
null(B̃)⊥ ∩ � = {0}. As B̃ is surjective, we may consider the direct sum decompo-
sition null(B̃)⊥ = null( ˜A )⊥ ⊕ span(I ). Thus, for any Y ∈ null(B̃)⊥, we have the
decompositionY = M−ε‖M‖W+cI for someM ∈ null(A )⊥, c ∈ R. IfY ∈ � then
one can check that Y + ε‖M‖W ∈ �, and in particular, that Y + ε‖M‖W /∈ �̂ based
on the construction ofW , unlessM = 0. But we also have that Y +ε‖M‖W = M+cI
and M + cI ∈ �̂, which implies that M = 0 and in turn that c = 0. In summary, we
obtain that null(B̃)⊥ ∩ � = {0}.

Next, we prove that null(B̃)⊥ ∩ span(�) is a subspace of positive dimension by
constructing a nonzero element in this subspace. Recall that null(B)⊥ ∩ ri(�̂) �= ∅
and that �̂ ⊂ �. Consider any Z ∈ [null(B)⊥ ∩ ri(�̂)], which by construction
is nonzero. We have the expression Z = M + cI with M ∈ null(A )⊥\{0} and
c ∈ R based on the surjectivity of B and that I /∈ �. It follows that Z − ε‖M‖W ∈
span(�)\{0} as Z ∈ �̂\{0} and W ∈ [� ∩ span(�̂)⊥]\{0}. Further, we also have
that Z − ε‖M‖W = M − ε‖M‖W + cI ∈ null(B̃)⊥, as M − ε‖M‖W ∈ null( ˜A )⊥
and null(B̃)⊥ = null( ˜A )⊥ ⊕ span(I ). As a result, we have that Z − ε‖M‖W ∈
null(B̃)⊥ ∩ span(�)\{0}.

Finally, we consider the preceding two paragraphs together in the context of the
Terracini convex property of the cone B̃(Sd+). Specifically, we have that null(B̃)⊥ ∩
� = {0} and that null(B̃)⊥ ∩ span(�) is a subspace of positive dimension. This
violates the reformulation of Terracini convexity of B̃(Sd+) that span(null(B̃)⊥∩�) =
null(B̃)⊥ ∩ span(�). This gives us the desired contradiction. ��

Given the preceding two results, we now prove Theorem 3:

Proof of Theorem 3 For the first statement, we are given that null(A ) ∩ S
d++ �= ∅.

Hence, we can apply Lemma 6 and obtain that the cone B(Sd+) satisfies the unique
preimage property. Next, in preparation to apply the first part of Proposition 6, we need
to check that the linear mapB is surjective, which is equivalent toA being surjective
and I /∈ null(A )⊥. The former condition holds by assumption and the latter condition
is in turn equivalent to null(A ) � span(I )⊥. The assumption null(A ) ∩ S

d++ �= ∅
implies that null(A ) � span(I )⊥. Thus, we are in a position to apply Proposition 6
and obtain that the cone B(Sd+) satisfies the Terracini convexity property.

For the second statement, we can apply the second part of Proposition 6 to conclude
that the cone B(Sd+) satisfies the unique preimage property. Applying Lemma 6, we
conclude that the map A satisfies the exact recovery property. ��
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4.3 New families of Terracini convex cones

The results from the preceding section lead naturally to new families of Terracini
convex cones. Specifically, from the literature on the semidefinite relaxation (R1) we
have that the exact recovery property is satisfiedwith high probability by random linear
mapsA of suitable dimension [7, 15]. Combined with the first part of Theorem 3, we
obtain Terracini convex cones that are specified as linear images of the cone of the
positive-semidefinite matrices.

Theorem 4 Let A1, . . . , An ∈ R
d×d be a collection of independent random matrices

in which each Ai is a Gaussian random matrix with i.i.d entries that have zero-mean
and variance 1

n , and suppose n ≤ (1/2− ε)
(d+1

2

)
for some ε ∈ (0, 1/2). Consider the

linear map B : S
d → R

n+1 defined as B(X) =

⎛
⎜⎜⎜⎝
tr(A1X)

...

tr(AnX)

tr(X)

⎞
⎟⎟⎟⎠. There exist constants

c1, c2 > 0 and c3(ε) > 0 (depending on ε), such that for k = � c1n
d �, the coneB(Sd) ⊂

R
n+1 is k-Terracini convex with probability greater than 1 − 2e−c2n − e−c3(ε)n.

Proof We begin with a geometric reformulation of the exact recovery property of
Sect. 4.2 based on the argument presented in Lemma 6. Specifically, for a given
linear map A : S

d → R
n and a positive integer k, the exact recovery property of

Sect. 4.2 is equivalent to the condition that for any X
 ∈ S
d with rank(X
) ≤ k

and tr(X
) = 1, we have that A (X
) has a unique preimage in the solid spectraplex
Od
0 = {X ∈ S

d : tr(X) ≤ 1, X � 0}.
The results in [7, 15] concern a more general geometric criterion which can be

specialized to our context. These results are stated in terms of the matrix nuclear
norm ‖ · ‖
 = ∑

i σi (·) (i.e., the sum of the singular values). Consider the linear map
ˆA : R

d×d → R
n defined in terms of the Gaussian random matrices A1, . . . , An as

ˆA (M) =
⎛
⎜⎝
tr(A1M)

...

tr(AnM)

⎞
⎟⎠. There exist constants c1, c2 > 0 such that if k = � c1n

d �,

then with probability at least 1 − 2e−c2n , for every M
 ∈ R
d×d with rank(M
) ≤ k

and ‖M
‖
 = 1, the point ˆA (M
) has a unique preimage in the nuclear norm ball
{M ∈ R

d×d : ‖M‖
 ≤ 1} [7]. Note that the solid spectraplex Od
0 ⊂ S

d ⊂ R
d×d is

a subset of the nuclear norm unit ball. Thus, with the same value of k = � c1n
d �, one

can conclude that the linear map A defined by the restriction of ˆA to the domain
S
d satisfies the exact recovery property of Sect. 4.2 for k = � c1n

d � with probability
greater than 1 − 2e−c2n .

Further, we have that null(A ) ∩ S
d++ �= ∅ with probability at least 1 − e−c3(ε)n .

This follows from the observation that the probability that null(A ) ∩ S
d++ �= ∅ is the

same as the probability that null(A )∩S
d+ �= {0}. This latter quantity can be estimated

using the results from [1, 8, 12], using the fact that the positive semidefinite cone is
self-dual.
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Therefore, by a union bound, the assumptions of the first part of Theorem 3 are
satisfied, and hence the cone B(Sd) is k-Terracini convex, with probability at least
1 − 2e−c2n − e−c3(ε)n . ��

Thus, in some sense ‘most’ linear images of the cone of positive semidefinite
matrices are k-Terracini convex for a suitable k depending on the dimension of the
image of the linear map. This result offers a semidefinite analog of the result of
Donoho and Tanner [9] on neighborliness of linear images the nonnegative orthant.
Linear images of the positive semidefinite cone are semialgebraic but are generally
not basic semialgebraic (as this property is not preserved under linear projections). In
the next section, we describe an approach to obtaining basic semialgebraic Terracini
convex cones from the positive semidefinite cone via an different construction based
on the viewpoint of hyperbolic programming.

5 Terracini convexity and derivative relaxations of hyperbolicity
cones

In this section, we study Terracini convexity from a more algebraic perspective by
focusing on a class of convex cones that are obtained from hyperbolic polynomials,
which are multivariate polynomials possessing certain real-rootedness properties. The
associated cones are called hyperbolicity cones, and among the prototypical examples
of such cones are the nonnegative orthant and the positive semidefinite cone.Where the
previous section demonstrated that generic linear images of the nonnegative orthant
and of the positive semidefinite cone are k-Terracini convex for suitable k, here we
show that the (algebraically defined) operation of taking derivative relaxations of the
nonnegative orthant and of the positive semidefinite cone lead to hyperbolicity cones
with non-trivial Terracini convexity properties. As hyperbolicity cones are basic semi-
algebraic, i.e., they are defined by finitely many polynomial inequalities, a remarkable
fact about the k-Terracini convex cones we construct in this section is that they are all
basic semialgebraic. In contrast, the k-Terracini convex cones constructed in Sect. 4
by taking projections of the positive semidefinite cone are, in general, not basic semi-
algebraic.

The rest of the section is organized in the following way. In Sect. 5.1, we briefly
state basic definitions and terminology related to hyperbolic polynomials, hyperbol-
icity cones, and their derivative relaxations, as well as reviewing properties of the
boundary and extreme rays of hyperbolicity cones. In Sect. 5.2 we study tangent
cones of hyperbolicity cones and how these interact with derivative relaxations. In
particular, we show that the tangent cone to a hyperbolicity cone at a point is the
hyperbolicity cone associated with the localization of the associated hyperbolic poly-
nomial at that point. This gives us an algebraic handle on the objects arising in the
definition of Terracini convexity. Sect. 5.3 is focused on establishing the main result
on Terracini convexity properties of derivative relaxations of a class of hyperbolicity
cones that includes the orthant, the positive semidefinite cone, and the cone of positive
semidefinite Hankel matrices.
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5.1 Hyperbolicity cones and their derivative relaxations

Hyperbolic polynomials Let p be a polynomial with real coefficients that is homoge-
neous of degreed inn variables, and let e ∈ R

n .We say that p ishyperbolicwith respect
to e if p(e) > 0 and, for each x ∈ R

n , the univariate polynomial t �→ p(te − x) has
only real roots. Given x ∈ R

n let λ
p,e
max(x) = λ

p,e
1 (x) ≥ λ

p,e
2 (x) ≥ · · · ≥ λ

p,e
d (x) =

λ
p,e
min(x) denote the roots of t �→ p(te−x), or hyperbolic eigenvalues of x with respect

to p and e. If p and e are clear from the context, we write λ1(x), · · · , λd(x). The rank
of x ∈ R

n , denoted rankp(x), is the number of non-zero hyperbolic eigenvalues of x
with respect to p and e. The multiplicity of x is multp(x) = deg(p) − rankp(x), the
number of zero hyperbolic eigenvalues of x .

Hyperbolicity conesAssociatedwith a hyperbolic polynomial p anddirection of hyper-
bolicity e is the closed hyperbolicity cone �+(p, e) = {x ∈ R

n : λ
p,e
min(x) ≥ 0}.

This is a convex cone, a result due to Gårding [11]. We denote the interior of this
cone by �++(p, e). If ẽ ∈ �++(p, e), then p is hyperbolic with respect ẽ and
�+(p, e) = �+(p, ẽ) [11]. If p and e are clear from the context, we write �+
instead of �+(p, e) for brevity of notation.

Although the hyperbolic eigenvalues of x with respect to p depend on the choice
of e, the multiplicity, multp(x), and rank, rankp(x), are independent of the choice of
direction of hyperbolicity [17, Proposition 22]. The lineality space of the hyperbolicity
cone �+ is exactly the set of points with multiplicity deg(p) (or rank zero), i.e.,

�+ ∩ (−�+) = {x ∈ R
n : multp(x) = deg(p)}. (18)

(see, e.g., [17, Proposition 11]). If we expand p(x + te) in powers of t as

p(x + te) = a0t
d + a1(x)t

d−1 + · · · + ad−2(x)t
2 + ad−1(x)t + ad(x), (19)

then Descartes’ rule of signs gives an equivalent description of the hyperboicity cone
as

�+(p, e) = {x ∈ R
n : ad(x) ≥ 0, ad−1(x) ≥ 0, ad−2(x) ≥ 0, . . . , a1(x) ≥ 0}.

This shows that any hyperbolicity cone is a basic semialgebraic set, i.e., it can be
expressed via finitely many polynomial inequalities.

Derivative relaxations If p is hyperbolic with respect to e and ẽ ∈ �++(p, e), then
the directional derivative

Dẽ p(x) := d

dt
p(x + t ẽ)

∣∣∣∣
t=0

is again hyperbolic with respect to e (by Rolle’s theorem). The hyperbolicity cone
�+(Dẽ p, e) satisfies �+(Dẽ p, e) ⊇ �+(p, e). As such, it is often referred to as a
derivative relaxation of �+(p, e). When p, e, and ẽ are clear from the context we
abuse notation and write �′+ := �+(Dẽ p, e) for brevity.
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One of the most interesting aspects of derivative relaxations is that boundary points
(of high enough multiplicity) of �+ remain boundary points of �′+.

Theorem 5 (Renegar [17, Theorem 12]) Let p be hyperbolic with respect to e with
hyperbolicity cone �+, and for any ẽ ∈ �++(p, e) let the associated derivative
relaxation be �′+. If m ≥ 3 then

{x ∈ �+ : multp(x) = m} = {x ∈ �′+ : multDẽ p(x) = m − 1}.

As a straightforward corollary, we obtain a relationship between the lineality spaces
of a hyperbolicity cone and its derivative relaxation.

Corollary 5 Under the same hypotheses as Theorem 5, if deg(p) ≥ 3 then �+ ∩
(−�+) = �′+ ∩ (−�′+).

Proof This follows from Theorem 5 by noting that the lineality space of�+ is exactly
the set of x with multp(x) = deg(p) and the lineality space of �′+ is exactly the set
of x with multDẽ p(x) = deg(p) − 1. ��
One consequence of Corollary 5 is that if deg(p) ≥ 3 then �+ being a pointed cone
implies that any derivative relaxation �′+ is also pointed. Building on Corollary 5,
we can understand how the extreme rays of the derivative cone and the original cone
relate to each other. In particular, the extreme rays of derivative relaxations are either
extreme rays of the original cone or extreme rays of multiplicity one.

Corollary 6 Assume that �+ is pointed and deg(p) ≥ 3, and let �′+ be the derivative
relaxation associated to any ẽ ∈ �++(p, e). If x generates an extreme ray of�′+ then
either multDẽ p(x) = 1 or x generates an extreme ray of �+ and multp(x) ≥ 3.

Proof As�+ is pointed and deg(p) ≥ 3 it follows fromCorollary 5 that�′+ is pointed.
If x generates an extreme ray of �′+ and multDẽ p(x) ≥ 2 then, by Theorem 5, we can
conclude that multp(x) ≥ 3 and x ∈ �+. Since x ∈ �+ ⊇ �′+ and x generates an
extreme ray of �′, it follows that x generates an extreme ray of �+. ��

5.2 Tangent cones and derivative relaxations

In this section we study tangent cones of hyperbolicity cones, and in particular how
tangent cones change when we take derivative relaxations. We first show that the
tangent cone of a hyperbolicity cone �+(p, e) at a point x is again a hyperbolicity
cone (Theorem 6) and that the corresponding hyperbolic polynomial is the localization
of p at x (Definition 7). The main result of the section (Theorem 7) is that the tangent
cone to �′+ at a boundary point x is the corresponding derivative relaxation of the
tangent cone to �+ at that same point x . This is the key technical result that enables
us to understand how k-Terracini convexity is affected by taking derivative relaxations
(see Sect. 5.3).

Definition 7 If p is a hyperbolic polynomial with respect to e and with associated
hyperbolicity cone �+, then the localization of p at x ∈ �+ is the polynomial of
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degree multp(x) defined by

Locx (p)(y) = lim
λ→∞ λmultp(x) p(x + λ−1y) = lim

λ→∞ λ−rankp(x) p(λx + y).

Example 12 Let p(X) = det(X) where X is a d × d symmetric matrix of indeter-
minates, and let e = I . The corresponding hyperbolicity cone is the cone of d × d
positive semidefinite matrices. Suppose that X = [

Z 0
0 0

]
where Z is k × k and positive

definite. Then, by the formula for the determinant of a block matrix in terms of the
Schur complement,

LocX (p)

([
Y11 Y12
Y T
12 Y22

])
= lim

λ→∞ λd−k det

([
Z + λ−1Y11 λ−1Y12

λ−1Y T
12 λ−1Y22

])

= lim
λ→∞ λd−k det(λ−1Y22) det(Z + λ−1Y11 − λ−1Y12Y

−1
22 Y T

12)

= det(Z) det(Y22).

There is an alternative formulation of Locx (p) in terms of directional derivatives of p
in the x direction. This alternative formulation is particularly useful in understanding
how derivative relaxations interact with localization. In the forthcoming discussion,
we refer on several occasions to higher-order directional derivatives of a hyperbolic
polynomial, which we denote as a composition of first-order directional derivatives as
Dy(k) · · · Dy(1) p; if the directions y(1), . . . , y(k) are the same, we denote the associated
higher-order directional derivative in a more compact manner as Dk

y p.

Lemma 7 If p is a hyperbolic polynomial with respect to e then

Locx (p)(y) = 1

multp(x)!D
multp(x)
y p(x).

Proof By a Taylor expansion,

p(x + λ−1y) =
deg(p)∑
k=0

λ−k

k! Dk
y p(x).

Since p vanishes to order multp(x) as λ → ∞, and multp(x) is independent of the
choice of e in the interior of the hyperbolicity cone, it follows that Dk

y p(x) = 0
whenever y ∈ int(�+(p, e)) and 0 ≤ k < multp(x). As such, if k < multp(x) then
y �→ Dk

y p(x) is a polynomial that vanishes on the interior of the (full-dimensional)
hyperbolicity cone, so it must be identically zero. Hence

λmultp(x) p(x + λ−1y) =
deg(p)∑

k=multp(x)

λmultp(x)−k

k! Dk
y p(x).

Taking the limit as λ → ∞ we obtain the stated result. ��
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We now consider localization of a hyperbolic polynomial from the point of view of
its zeros. To do so, we use the following basic fact about how hyperbolic eigenvalues
change along different directions.

Lemma 8 ([3, Lemma 3.27]) Suppose p is hyperbolic with respect to e. If x, u ∈ R
n

then

p(x − te + su) = p(e)
deg(p)∏
i=1

(ti (s; x, u) − t)

where the functions s �→ ti (s; x, u) are real analytic functions of s. Furthermore, if
u ∈ �+(p, e) then t ′i (s; x, u) := d

ds ti (s; x, u) ≥ 0 for all s.

The roots of the polynomial t �→ p(x − te + su) are the eigenvalues of x + su, and
therefore each ti (s; x, u) in the above lemma is an eigenvalue of x + su. The assertion
that the functions s �→ ti (s; x, u) are real analytic functions of s corresponds to the
eigenvalues of x + su being analytic functions of s, and the nonnegativity of each of
the derivatives t ′i (s; x, u) (when u ∈ �+(p, e)) corresponds to each of the eigenvalues
of x + su being non-decreasing functions of s. This result is useful because it allows
us to understand localization from the point of view of eigenvalues.

Lemma 9 Suppose p is hyperbolic with respect to e and fix some x ∈ �+(p, e).
Letting m = multp(x) we have that

Locx (p)(y − te) = p(e)
deg(p)−m∏

i=1

λi (x)
deg(p)∏

j=deg(p)−m+1

(t ′j (0; x, y) − t). (20)

Proof If x ∈ �+(p, e) has multiplicitym := multp(x) then the functions ti in the fac-
torization of Lemma 8 have the property that t1(0; x, u) = · · · = tdeg(p)−m(0; x, u) >

0 and tdeg(p)−m+1(0; x, u), . . . , tdeg(p)(0; x, u) = 0 by virtue of ti (0; x, u) being
eigenvalues of x . Using the factorization of Lemma 8, we see that

λmultp(x) p(x + λ−1(y − te))

= p(e)
deg(p)−m∏

i=1

(ti (λ
−1; x, y) − λ−1t)

deg(p)∏
j=deg(p)−m+1

(λt j (λ
−1; x, y) − t). (21)

Expanding ti (λ−1; x, y) about ti (0; x, y), gives ti (λ−1; x, y) = λi (x)+λ−1t ′(0; x, y)+
O(λ−2). We obtain (20) by taking the limit as λ → ∞. ��
We are interested in the localization of a hyperbolic polynomial at a point because it
turns out to be the algebraic analogue of the geometric operation of taking the tangent
cone to a hyperbolicity cone at a point. Although this is probably well-known, we
have included a proof because we had difficulty finding an explicit statement of this
type in the literature.

We now show that localization at x is the algebraic analog of the tangent cone to
the hyperbolicity cone at x .
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Theorem 6 If p is hyperbolic with respect to e and x ∈ �+(p, e) then

1. Locx (p) is hyperbolic with respect to e; and
2. �+(Locx (p), e) = K�+(p,e)(x) is the tangent cone of �+(p, e) at x.

Proof The fact that the localization is hyperbolic with respect to e is exactly [3, Lemma
3.42], and also follows immediately from Lemma 9 and the fact that the t ′i (0; x, y) are
always real.

For the second part, we first show that the hyperbolicity cone of the localization at x
is contained in the tangent cone of �+(p, e) at x . Let z ∈ �++(Locx (p), e) be in the
interior of the hyperbolicity cone of the localization at x . Then, from (20) we know that
t ′j (0; x, z) > 0 for j = deg(p) − multp(x) + 1, . . . , deg(p). Furthermore, since x ∈
�+(p, e) we know that ti (0; x, z) = λi (x) > 0 for i = 1, . . . ,multp(x). From (21)
we know that the roots of t �→ λmultp(x) p(x + λ−1(z − te)) are λti (λ−1; x, z) =
λλi (x)+t ′i (0; x, z)+O(λ−1) for i = 1, . . . , deg(p). As such, there exists a sufficiently
large positive λ0 such that if λ ≥ λ0 then all of these roots are positive. Hence we
have that x + z/λ0 ∈ �++(p, e) and therefore z ∈ K�+(p,e)(x), the cone of feasible
directions with respect to �+(p, e) at x . We have shown that �++(Locx (p), e) ⊆
K�+(p,e)(x). Taking closures shows that �+(Locx (p), e) is contained in the tangent
cone of �+(p, e) at x .

For the reverse inclusion, suppose that z ∈ K�+(p,e)(x). In other words, there exists
a sufficiently large positive λ0 such that x + λ−1z ∈ �+(p, e) for all λ ≥ λ0. Then

t �→ λmultp(x) p(x + λ−1(z + te))

has nonnegative coefficients for all λ ≥ λ0. By continuity of the coefficients as func-
tions of λ, it follows that

t �→ lim
λ→∞ λmultp(x) p(x + λ−1(z + te)) = Locx (p)(z + te)

has non-negative coefficients. Consequently, we have that z ∈ �+(Locx (p), e) and
so the cone of feasible directions is contained in �+(Locx (p), e). Taking the closure
shows that the tangent cone is contained in �+(Locx (p), e), completing the proof. ��
Example 13 (Example 12 continued) Suppose that p(X) = det(X)where X is a d×d
symmetric matrix of indeterminates, e = I , and X = [

Z 0
0 0

]
where Z is k × k and

positive definite. The hyperbolicity cone of LocX (p) is

�+(LocX (p), I ) =
{[

Y11 Y12
Y T
12 Y22

]
: Y22 � 0

}

which coincides with the tangent cone to the positive semidefinite cone at X .

The main technical result of this section, a fairly immediate corollary of Lemma 7, is
that localization and taking derivatives commute.

Theorem 7 If p is hyperbolic with respect to e and x ∈ �+(p, e) withmultp(x) ≥ 1,
then �+(DẽLocx (p), e) = �+(Locx (Dẽ p), e) for any ẽ ∈ �++(p, e).
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Proof Let m = multp(x) ≥ 1. On the one hand Locx (p)(y) = 1
m! D

m
y p(x). Differen-

tiating in the direction ẽ gives

DẽLocx (p)(y) = d

dt

1

m!D
m
y+t ẽ p(x)

∣∣∣∣
t=0

= d

dt

1

m!

[
m∑
i=0

(
m

i

)
t i Di

ẽD
m−i
y p(x)

] ∣∣∣∣
t=0

= 1

(m − 1)!DẽD
m−1
y p(x).

where we have used the fact that Dy(1) · · · Dy(m) p(x) is invariant under permutations

of y(1), . . . , y(m). On the other hand x has multiplicitym−1 ≥ 0 with respect to Dẽ p.
As such

Locx (Dẽ p)(y) = 1

(m − 1)!D
m−1
y Dẽ p(x).

Wehave shown that DẽLocx (p) = Locx (Dẽ p), fromwhich the result directly follows.
��

The fact that localization and taking derivatives commute tells us that the convex
tangent space of a hyperbolicity cone is exactly the same as the convex tangent space
of its derivative relaxation at points of high enough multiplicity.

Corollary 7 If p is hyperbolic with respect to e, x ∈ �+, and multp(x) ≥ 3,
then L�′+(x) = L�+(x) for any derivative relaxation �′+ = �+(Dẽ p, e) for
ẽ ∈ �++(p, e).

Proof From Theorem 6, the convex tangent space of �+ at x is the lineality space
of �+(Locx (p), e). Similarly, the convex tangent space of �′+ at x is the lineality
space of �+(Locx (Dẽ p), e), which is the lineality space of �+(DẽLocx (p), e) from
Theorem 7. Since deg(Locx (p)) = multp(x) ≥ 3 Corollary 5 tells us that the lin-
eality space of �+(Locx (p), e) is equal to the lineality space of �+(DẽLocx (p), e),
completing the proof. ��

5.3 Derivative relaxations of Terracini convex hyperbolicity cones

In this sectionwe state and prove two results related toTerracini convexity properties of
derivative relaxations of hyperbolicity cones. The first, Proposition 7, gives a sufficient
condition under which any derivative relaxation of a hyperbolicity cone that is k-
Terracini convex also has non-trivial Terracini convexity properties. It is, a priori,
unclear whether the hypotheses of Proposition 7 hold for any interesting examples. In
the main result of this section (Theorem 8), we show that if�+ is a hyperbolicity cone
that is Terracini convex and for which all of its extreme rays have hyperbolic rank one,
then repeatedly taking derivative relaxations produces new examples of hyperbolicity
cones with Terracini convexity properties. Examples of hyperbolicity cones to which
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Theorem 8 applies are the nonnegative orthant and the positive semidefinite cone, as
well as other examples such as the cone of d×d positive semidefinite Hankel matrices.

Proposition 7 Suppose that p is hyperbolic with respect to e, the degree deg(p) ≥
3, and the associated hyperbolicity cone �+ is pointed and k-Terracini convex. If
each collection x (1), . . . , x (k′) of k′ extreme rays of �+ satisfies one of the following
conditions:

– there exists j such that multp(x ( j)) ≤ 2, or

– multp
(∑k′

i=1 x
(i)
)

≥ 3,

then any derivative relaxation �′+ = �+(Dẽ p, e) for ẽ ∈ �++(p, e) is min{k, k′}-
Terracini convex.

Remarks: The case deg(p) = 1 is vacuous as�+ is a halfspace and Terracini convexity
requires a cone to be pointed. For similar reasons, the case deg(p) = 2 is not interesting
as deg(Dẽ p) = 1 and �′+ is a halfspace.

Proof Let � = min{k, k′} and let x (1), . . . , x (�) be extreme rays of �′+ (note that �′+
is pointed as �+ is pointed and deg(p) ≥ 3). We consider next two cases based on
the multiplicities of the x ( j)’s with respect to the derivative polynomial Dẽ p.
Case 1: Assume that there exists j such that multDẽ p(x

( j)) = 1. In this case, the
localization of Dẽ p at x ( j) has degree one, which implies that �+(Locx (Dẽ p), e) is a
halfspace; therefore, from the second part of Theorem 6, the convex tangent space of
�′+ at x ( j) is a subspace of codimension one. If all of x (1), . . . , x (�) generate the same

extreme ray, then so does
∑�

i=1 x
(i). This means that all of the convex tangent spaces

of �′+ at these points are the same, so certainly L�′+

(∑�
i=1 x

(i)
)

= ∑�
i=1L�′+(x).

Otherwise there is some x ( j ′) that generates an extreme ray that is distinct from x ( j).
Since L�′+(x ( j)) ∩ �′+ exposes the extreme ray generated by x ( j) (from Lemma 2,

as hyperbolicity cones are facially exposed [17, Theorem 23]), it follows that x ( j ′) /∈
L�′+(x ( j)). Since the convex tangent space of �′+ at x ( j) has codimension one and

does not contain x ( j ′),

�∑
i=1

L�′+(x (i)) ⊇ L�′+(x ( j ′)) + L�′+(x ( j))

⊇ span(x ( j ′)) + L�′+(x ( j)) = R
n ⊇ L�′+

(
�∑

i=1

x (i)

)
.

Case 2: Assume that multDẽ p(x
(i)) ≥ 2 for all i = 1, 2, . . . , �. From Corollary 6,

it follows that multp(x (i)) ≥ 3 for all i = 1, 2, . . . , � and that the x (i) all generate
extreme rays of �+. As � ≤ k′ and by our assumption on the extreme rays of �+, it
follows that multp

(∑�
i=1 x

(i)
)

≥ 3. Then
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L�′+

(
�∑

i=1

x (i)

)
= L�+

(
�∑

i=1

x (i)

)
=

�∑
i=1

L�+(x (i)) =
�∑

i=1

L�′+(x (i)). (22)

The first and third equalities in (22) follow from Corollary 7 together with the fact
that x (i) (for each i) and

∑�
i=1 x

(i) have multiplicity at least three with respect to p.
The second equality in (22) follows from the fact that �+ is k-Terracini convex and
� ≤ k. ��
While Proposition 7may appear rather technical, it is useful because it applieswhenwe
repeatedly take derivative relaxations. Indeed, we have as an immediate consequence
that for a hyperbolic polynomial p with deg(p) = 3, if�+ is Terracini convex then so
is any derivative relaxation �′+; this follows from the observation that multiplicity of
any generator of an extreme ray of �+ is at most two. For higher-degree hyperbolic
polynomials, we present next the main result of this section which shows that for
Terracini convex hyperbolicity cones with all the extreme rays having hyperbolic rank
one, the derivative relaxations yield new hyperbolicity cones with non-trivial Terracini
convexity properties. Recall that the rank of a point with respect to a hyperbolic
polynomial is the number of non-zero eigenvalues, and that a cone is Terracini convex
if it is k-Terracini convex for all k.

Theorem 8 Let p be hyperbolic with respect to e and let d = deg(p) with d > 3.
Suppose that�+(p, e) is pointed and Terracini convex and that whenever x generates
an extreme ray of �+(p, e) then rankp(x) = 1. If 1 ≤ � ≤ d − 3 is a positive integer
and e(1), . . . , e(�) ∈ �++(p, e) then �+(De(�)De(�−1) · · · De(1) p, e) is (d − � − 2)-
Terracini convex.

Proof For brevity of notation, wewrite p(i) = De(i) · · · De(1) p and�
(i)
+ = �+(p(i), e)

for i = 1, . . . , �.
It is helpful in our proof to use the observation that any x that generates an

extreme ray of �(�) either generates an extreme ray of �+ := �+(p, e) or satis-
fies multp(�) (x) = 1. We show both this secondary result as well as the primary result
via induction.

For the base case of the secondary result, note that if x generates an extreme ray
of �

(1)
+ then by Corollary 6 either multp(1) (x) = 1 or x is an extreme ray of �+

(with multp(x) ≥ 3). For the primary result, note that �+ is Terracini convex. If
x (1), . . . , x (d−3) are extreme rays of �+, then their sum has rank at most d − 3 (since
the hyperbolic rank function is subadditive [2]) and hence has multiplicity at least
three with respect to p. It follows from Proposition 7 that �

(1)
+ is (d − 3)-Terracini

convex.
For the inductive hypothesis of the secondary result, assume that if x generates an

extreme ray of�(�−1)
+ then either x generates an extreme ray of�+ or multp(�−1) (x) =

1. For the primary result, assume that �(�−1)
+ is (d − � − 1)-Terracini convex.

We now establish the inductive step for the secondary result. If x generates an
extreme ray of �

(�)
+ then by Corollary 6 either multp(�) (x) = 1 or x generates an

extreme ray of �
(�−1)
+ with multp(�−1) (x) ≥ 3, and so by the inductive hypothesis is

an extreme ray of �+.
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Finally we establish the inductive step of the primary result by applying Proposi-
tion 7. Let x (1), . . . , x (d−�−2) be extreme rays of �

(�−1)
+ . Assume that each x (i) has

multiplicity at least three with respect to p(�−1) (otherwise we are done). Based on the
inductive hypothesis, each x (i) must be an extreme ray of �+ and so must have rank
one with respect to p by assumption. Then

∑d−�−2
i=1 x (i) has rank at most d − � − 2,

and hence multiplicity at least � + 2, with respect to p. By applying Theorem 5 � − 1
times, and noting that p, p(1), . . . , p(�−1) all have degree at least three, we see that∑d−�−2

i=1 x (i) has multiplicity at least �+2− (�−1) = 3 with respect to p(�−1). Then,

by Proposition 7, �(�)
+ is (d − � − 2)-Terracini convex. ��

We conclude by discussing three concrete special cases of Theorem 8.

Example 14 (Hyperbolicity cones associated with permanents) If p(x) = ∏d
i=1 xi and

e is the vector of all ones, then the corresponding hyperbolicity cone is the nonnegative
orthant. This is Terracini convex and all of its extreme rays have rank one. In this case,
if e(1), . . . , e(�) ∈ R

d++, then De(�) · · · De(1) p(x) is the permanent of the d × d matrix
with columns e(1), . . . , e(�) and d − � copies of x . Theorem 8 then tells us that the
hyperbolicity cone associated with this permanent is (d − � − 2)-Terracini convex as
long as 1 ≤ � ≤ d − 3.

Example 15 [Hyperbolicity cones associated with mixed discriminants] If p(X) =
det(X) and e is the identity matrix, then the corresponding hyperbolicity cone is
the positive semidefinite cone. This is Terracini convex and all of its extreme rays
have rank one. In this case, if E (1), . . . , E (�) are positive definite matrices then the
quantity DE (�) · · · DE (1) p(X) is known as the mixed discriminant of the d-tuple of
matrices (E (1), . . . , E (�), X , . . . , X). Theorem 8 then tells us that the hyperbolicity
cone associated with this mixed discriminant is (d − � − 2)-Terracini convex as long
as 1 ≤ � ≤ d − 3.

Example 16 (Hyperbolicity cones associated with mixed discriminants of Hankel
matrices) Consider the coneHd+1 of (d + 1) × (d + 1) symmetric positive semidef-
inite Hankel matrices. This can be viewed as the hyperbolicity cone associated with
the determinant restricted to the 2d + 1-dimensional subspace of Hankel matrices. Its
extreme rays have the form

φ2,d(x, y)φ2,d(x, y)
′ =

⎡
⎢⎢⎢⎢⎢⎣

xd

xd−1y
...

xyd−1

yd

⎤
⎥⎥⎥⎥⎥⎦
[
xd xd−1y · · · xyd−1 yd

]

and are rank one as symmetric matrices, and therefore have rank one with respect
to the determinant polynomial. The cone Hd+1 is also linearly isomorphic to the
cone C2,2d over the homogeneous moment curve of degree 2d, which is Terracini
convex from Corollary 4. As such, if we choose E (1), . . . , E (�) to be positive definite
(d + 1) × (d + 1) Hankel matrices and if 1 ≤ � ≤ d − 2, then the mixed discriminant
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of (E (1), . . . , E (�), X , . . . , X) restricted to Hankel matrices X yields an associated
hyperbolicity cone that is (d − 1 − �)-Terracini convex.

6 Discussion

In this paper we introduced the notion of Terracini convex cones, generalizing the
notion of neighborly polyhedral cones to the non-polyhedral setting in a way that
includes examples such as the positive semidefinite cone and the cone over themoment
curve. This suggests the pursuit of a broader program that seeks to extend key notions
from polyhedral combinatorics to more general convex cones.

Explicit constructionsA significant feature of the literature on neighborly polytopes—
arguably, a principle reason for considering such polytopes in the first place—is that
they offer examples of various extremal polyhedral constructions. Obtaining similar
constructions with non-polyhedral Terracini convex cones would offer an interesting
point of comparison with the polyhedral case. For example, we are not aware whether
the non-degeneracy and regularity conditions of Sect. 3 are necessary to conclude that
k-neighborly cones are k-Terracini convex, and identifying potential counterexamples
would provide an interesting extremal class of convex cones. In a different direc-
tion, explicit constructions for linear images of the positive-semidefinite cone that are
Terracini-convex would immediately yield explicit (non-random) families of linear
maps for which the associated low-rank inverse problems considered in Sect. 4.2 may
be solved exactly via semidefinite programming; despite significant attention devoted
to this question, we are not aware of any such families of linear maps.

Beyond generalizing neighborlinessAsimplicial polytope is one inwhich every proper
face is a simplex. In the spirit of this paper, a natural analogue in the non-polyhedral
conic setting would be a closed pointed convex cone for which every proper face is
Terracini convex. Let us call such convex cones boundary Terracini convex. Clearly the
cone over any simplicial polytope is boundaryTerracini convex, but boundaryTerracini
convex cones are a much richer class. One interesting example is the epigraph of the
nuclear norm, i.e., {(X , t) ∈ R

m×m × R : ‖X‖
 ≤ t}. One can check that all of
the proper faces of this convex cone are linearly isomorphic to positive semidefinite
cones. Moreover, we can deduce from [17, Corollary 17] that if �+ is a hyperbolicity
cone that is boundary Terracini convex, then so are derivative relaxations of �+ (as
long as they are pointed). It would be interesting to study such boundary Terracini
convex cones in more detail.

Weaker notions of Terracini convexity The key condition (2) in the definition of k-
Terracini convexity is required to hold for every subset of at most k extreme rays. It
is natural to consider weaker notions of k-Terracini convexity that only require (2)
to hold for ‘many’ subsets of at most k extreme rays. By ruling out certain explicit
configurations of k extreme rays such a definition would generalize important existing
variations on neighborliness, such as k-neighborly centrally symmetric polytopes (in
which subsets of k extreme points containing an antipodal pair are excluded). Another
approach would be to require that (2) hold for suitably generic subsets of at most k
extreme rays. Seeking and studying examples of convex cones that are generically
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k-Terracini convex but not k-Terracini convex, would lead to a deeper understanding
of Terracini convexity and its variants.

Possible further constructions of k-Terracini convex cones We have seen that the
positive semidefinite cone and the cone over the moment curve (or equivalently the
cone of Hankel positive semidefinite matrices) are Terracini convex. These are both
examples of spectrahedral cones (intersections of a positive semidefinite cone with a
subspace) with all extreme rays having rank one. This very special class of spectra-
hedral cones were classified by Blehkerman, Sinn, and Velasco [6] and are closely
connected to questions about the relationship between nonnegative polynomials and
sums of squares. It would be interesting to investigate the Terracini convexity proper-
ties of spectrahedral coneswith only rank one extreme rays.Going one step further, one
could similarly investigate the Terracini convexity properties of hyperbolicity cones
with only (hyperbolic) rank one extreme rays. Unlike the spectrahedral setting, we are
not aware of any nontrivial characterization of this class of convex cones.

Theorem 4 shows that with high probability, Gaussian random linear images of
the positive semidefinite cone are k-Terracini convex, for a suitable k. The specific
properties of the positive semidefinite cone are only used in isolated places in the
argument, and do not seem to be essential. It is plausible that there an analogue of
Theorem 4 where the positive semidefinite cone is replaced with any Terracini convex
hyperbolicity cone, or perhaps even any Terracini convex cone. If this were the case,
it would be a substantial further generalization of the fact that Gaussian random linear
images of the simplex are k-neighborly polytopes, for suitable k [9]. It would also
suggest the broader applicability of the notion of Terracini convexity for understanding
convex relaxations of inverse problems.

Obstructions to lifts of convex sets Another setting in which neighborliness is useful,
and Terracini convexity may find applications, is in the study of lifted representations
of convex sets. Given a convex set C and a closed convex coneK , we say that C has
a K -lift if we can express C as the linear projection of an affine slice of K . Such
representations of convex sets are of importance when convex optimization problems
are expressed in conic form. In particular, they play a prominent role in the study of
the expressive power of linear, second-order cone, and semidefinite programming of
a given size (see, e.g., [10] for a recent survey). It turns out if a convex set satisfies
a notion of k-neighborliness that is somewhat weaker than that studied in this paper,
then it cannot have a K -lift where K is a product of finitely many k × k positive
semidefinite cones [4].Anatural extensionof this line of inquirywouldbe to investigate
whether Terracini convexity properties also provide obstructions to the existence of
certain lifted representations of convex sets.
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