
Discrete & Computational Geometry (2021) 66:510–551
https://doi.org/10.1007/s00454-020-00258-0

Fitting Tractable Convex Sets to Support Function
Evaluations

Yong Sheng Soh1 · Venkat Chandrasekaran2

Received: 9 May 2019 / Revised: 23 October 2019 / Accepted: 14 October 2020 /
Published online: 3 January 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The geometric problem of estimating an unknown compact convex set from evalua-
tions of its support function arises in a range of scientific and engineering applications.
Traditional approaches typically rely on estimators that minimize the error over all
possible compact convex sets; in particular, thesemethods allow for limited incorpora-
tion of prior structural information about the underlying set and the resulting estimates
become increasingly more complicated to describe as the number of measurements
available grows.We address both of these shortcomings by describing a framework for
estimating tractably specified convex sets from support function evaluations. Build-
ing on the literature in convex optimization, our approach is based on estimators that
minimize the error over structured families of convex sets that are specified as lin-
ear images of concisely described sets—such as the simplex or the spectraplex—in
a higher-dimensional space that is not much larger than the ambient space. Convex
sets parametrized in this manner are significant from a computational perspective as
one can optimize linear functionals over such sets efficiently; they serve a different
purpose in the inferential context of the present paper, namely, that of incorporating
regularization in the reconstruction while still offering considerable expressive power.
We provide a geometric characterization of the asymptotic behavior of our estimators,
and our analysis relies on the property that certain sets which admit semialgebraic
descriptions are Vapnik–Chervonenkis classes. Our numerical experiments highlight
the utility of our framework over previous approaches in settings inwhich themeasure-
ments available are noisy or small in number as well as those in which the underlying
set to be reconstructed is non-polyhedral.
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1 Introduction

We consider the problem of estimating a compact convex set given (possibly noisy)
evaluations of its support function. Formally, let K � ⊂ R

d be a set that is compact and
convex. The support function hK � (u) of the set K � evaluated in the direction u ∈ Sd−1

is defined as

hK � (u) := sup
x∈K �

〈x, u〉.

Here Sd−1 := {x | ‖x‖2 = 1} ⊂ R
d denotes the (d − 1)-dimensional unit sphere.

In words, the quantity hK � (u) measures the maximum displacement in the direction
u intersecting K �. Given noisy support function evaluations {(u(i), y(i)) | y(i) =
hK � (u(i)) + ε(i), 1 ≤ i ≤ n}, where each ε(i) denotes additive noise, our goal is to
reconstruct a convex set K̂ that is close to K �.

The problem of estimating a convex set from support function evaluations arises in
a wide range of problems such as computed tomography [24], target reconstruction
from laser-radar measurements [18], and projection magnetic resonance imaging [13].
For example, in tomography the extent of the absorption of parallel rays projected
onto an object provides support information [24,30], while in robotics applications
support information can be obtained from an arm clamping onto an object in different
orientations [24]. A natural approach to fit a compact convex set to support function
data is the following least-squares estimator (LSE):

K̂LSE
n ∈ argmin

compact, convex K⊂Rd

1

n

n∑

i=1

(y(i) − hK (u(i)))2. (1)

An LSE always exists and it is not defined uniquely, although it is always possible to
select a polytope that is an LSE; this is the choice that is most commonly employed and
analyzed in prior work. For example, the algorithm proposed by Prince and Willsky
[24] for planar convex sets reconstructs a polygonal LSE described in terms of its
facets, while the algorithm proposed by Gardner and Kiderlen [10] for convex sets in
any dimension provides a polytopal LSE reconstruction described in terms of extreme
points. The least-squares estimator K̂LSE

n is a consistent estimator of K �, but it has
a number of significant drawbacks. In particular, as the formulation (1) does not
incorporate any additional structural information about K � beyond convexity, the
estimator K̂LSE

n can provide poor reconstructions when the measurements available
are noisy or small in number. The situation is problematic even when the number of
measurements available is large, as the complexity of the resulting estimate growswith
the number of measurements in the absence of any regularization due to the regression
problem (1) being non-parametric (the collection of all compact convex sets inRd is not
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finitely parametrized); consequently, the facial structure of the reconstruction provides
little information about the geometry of the underlying set.1 Finally, if the underlying
set K � is not polyhedral, a polyhedral choice for the solution K̂LSE

n (as is the case with
much of the literature on this topic) can provide poor reconstructions. Indeed, even
for intrinsically “simple” convex bodies such as the Euclidean ball, one necessarily
requiresmany vertices or facets to obtain accurate polyhedral approximations. Figure 1
provides an illustration of these points.

1.1 Our Contributions

To address the drawbacks underlying the least-squares estimator, we seek a framework
that regularizes the complexity of the reconstruction in the formulation (1). A natural
approach to developing such a framework is to design an estimator with the same
objective as in (1) but in which the decision variable K is constrained to lie in a
subclassF of the collection of all compact, convex sets. For such amethod to be useful,
the subclass F must balance several considerations. First, F should be sufficiently
expressive in order to faithfully model various attributes of convex sets that arise
in applications (for example, sets consisting of both smooth and singular features
in their boundary). Second, the elements of F should be suitably structured so that
incorporating the constraint K ∈ F leads to estimates that are more robust to noise;
further, the type of structure underlying the sets in F also informs the analysis of the
statistical properties of the constrained analog of (1) as well as the development of
efficient algorithms for computing the associated estimate. Building on the literature
on lift-and-project methods in convex optimization [12,34], we consider families F
in which the elements are specified as images under linear maps of a fixed ‘concisely
specified’ compact convex set; the choice of this set governs the expressivity of the
family F and we discuss this in greater detail in the sequel. Due to the availability of
computationally tractable procedures for optimization over linear images of concisely
described convex sets [21], the study of such descriptions constitutes a significant topic
in optimization.We employ these ideas in a conceptually different context in the setting
of the present paper, namely that of incorporating regularization in the reconstruction,
which addresses many of the drawbacks with the LSE outlined previously. Formally,
we consider the following regularized convex set regression problem:

K̂ C
n ∈ argmin

K :K=A(C),A∈L(Rq ,Rd )

1

n

n∑

i=1

(y(i) − hK (u(i)))2. (2)

Here C ⊂ R
q is a user-specified compact convex set and L(Rq ,Rd) denotes the set

of linear maps from R
q to R

d . The set C governs the expressive power of the family
{A(C) | A ∈ L(Rq ,Rd)}. In addition to this consideration, our choices for C are
also driven by statistical and computational aspects of the estimator (2). Our analysis

1 We note that this is the case even though the estimator K̂LSE
n is consistent; in particular, consistency

simply refers to the convergence as n → ∞ of K̂LSE
n to K � in a topological sense (e.g., in Hausdorff

distance) and it does not provide any information about the facial structure of K̂LSE
n relative to that of K �.
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of the statistical properties of the estimator (2) relies in part on the observation that
sets F that admit certain semialgebraic descriptions form VC classes; this fact serves
as the foundation for our characterization based on stochastic equicontinuity of the
asymptotic properties of the estimator K̂ C

n as n → ∞. On the computational front,
the algorithms we propose for (2) require that the support function associated to C
as well as its derivatives (when they exist) can be computed efficiently. Motivated by
these issues, the choices ofC that we primarily discuss in our examples and numerical
illustrations are the simplex and the spectraplex:

Example The simplex in Rq is the set

�q := {x ∈ R
q | x ≥ 0, 〈x, 1〉 = 1},

where 1 = (1, . . . , 1)T . Convex sets expressed as projections of �q are precisely
polytopes with at most q extreme points.

Example Let Sp ∼= R(p+1
2 ) denote the space of p × p real symmetric matrices. The

spectraplex O p ⊂ S
p (also called the free spectrahedron) is the set

O p := {X ∈ S
p | X � 0, 〈X , I 〉 = 1},

where I ∈ S
p is the identity matrix. The spectraplex is a semidefinite analog of the

simplex, and it is especially useful if we seek non-polyhedral reconstructions, as can
be seen in Fig. 1 and in Sect. 5; in particular, linear images of the spectraplex exhibit
both smooth and singular features in their boundaries.

The specific selection ofC from the families {�q}∞q=1 and {O p}∞p=1 is governed by the
complexity of the reconstruction one seeks, which is typically based on prior informa-
tion about K �. Our analysis in Sect. 3 of the statistical properties of the estimator (2)
relies on the availability of such additional knowledge about the complexity of K �.
In practice in the absence of such information, cross-validation may be employed to
obtain a suitable reconstruction; see Sect. 6.

In Sect. 2 we discuss preliminary aspects of our technical setup such as properties
of the set of minimizers of the problem (2) as well as a stylized probabilistic model
for noisy support function evaluations. These serve as a basis for the subsequent
development in the paper. In Sect. 3 we provide the main theoretical guarantees of our
approach. In our first result,we show that the sequence of estimates {K̂ C

n }∞n=1 converges
almost surely (as n → ∞) in the Hausdorff metric to that linear image of C which is
closest to the underlying set K � (see Theorem 3.1). Under additional conditions, we
also characterize certain asymptotic distributional aspects of the sequence {K̂ C

n }∞n=1
(see Theorem 3.4); this result is based on a functional central limit theorem, which
requires the computation of appropriate entropy bounds for Vapnik–Chervonenkis
(VC) classes of sets that admit semialgebraic descriptions, and it is here that our
choice of C as either a simplex or a spectraplex plays a prominent role. Our third
result describes the facial structure of {K̂ C

n }∞n=1 in relation to the underlying set K �.
We prove under appropriate conditions that if K � is a polytope, our approach provides
a reconstruction that recovers all the simplicial faces (for sufficiently large n); if K � is
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(a) Reconstructions of the unit �2-ball from 50
noisy support function measurements as the pro-
jection of O3 (our approach, left), and the LSE
(right).

(b) Reconstructions of the convex mesh of a hu-
man lung from 300 noiseless support function
measurements as the projection of O6 (our ap-
proach, left), and the LSE (right).

Fig. 1 Comparison between our approach and the LSE

a simplicial polytope, we recover a polytope that is combinatorially equivalent to K �.
This result also applies more generally to ‘rigid’ faces for non-polyhedral K � (see
Theorem 3.9).

In the sequel,we relate our formulation (2) (whenC is a simplex) to the task of fitting
piecewise affine convex functions to data (known as max-affine regression) as well as
K -means clustering. Accordingly, the algorithm we propose in Sect. 4 for computing
K̂ C
n bears significant similarities with methods for max-affine regression [20] as well

as Lloyd’s algorithm for clustering problems.
A restriction in the development in this paper is that the simplex and the spectraplex

represent particular affine slices of the non-negative orthant and the cone of positive
semidefinite matrices. In principle, one can further optimize these slices (both their
orientation and their dimension) in (2) to obtain improved reconstructions. However,
this additional degree of flexibility in (2) leads to technical complications in establish-
ing asymptotic normality in Sect. 3.2 as well as to challenges in developing algorithms
for solving (2) (even to obtain a local optimum). The root of these difficulties lies in
the fact that it is hard to characterize the variation in the support function with respect
to small changes in the slice.We remark on these challenges in greater detail in Sect. 6,
and for the remainder of the paper we proceed with investigating the estimator (2).

1.2 RelatedWork

1.2.1 Consistency of Convex Set Regression

There is a well-developed body of prior work on the consistency of convex set regres-
sion (1). Gardner et al. [11] prove that the (polyhedral) estimates K̂LSE

n converge
almost surely to the underlying set K � in the Hausdorff metric as n → ∞ provided the
directions {u(i)}ni=1 cover the sphere in a suitably uniform manner. Guntuboyina [14]
analyzes rates of convergence in minimax settings, and also notes that constraining the
growth of the number of vertices in the reconstruction as the number of measurements
increases provides a form of robustness. Cai et al. [6] study the impact of choosing
the directions {u(i)}ni=1 adaptively in estimating planar convex sets. In contrast, the
consistency result in the present paper corresponding to the constrained estimator (2)
is qualitatively different. On the one hand, for a given compact convex set C ⊂ R

q ,
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we prove that the sequence of estimates {K̂ C
n }∞n=1 converges to that linear image of C

which is closest to the underlying set K �; in particular, {K̂ C
n }∞n=1 only converges to K �

if K � can be represented as a linear image of C . On the other hand, there are several
advantages to the framework presented in this paper in comparison with prior work.
First, the constrained estimator (2) lends itself to a precise asymptotic distributional
characterization which is unavailable in the unconstrained case (1). Second, under
appropriate conditions, the constrained estimator (2) recovers the facial structure of
the underlying set K � unlike K̂LSE. More significantly, beyond these technical dis-
tinctions, the constrained estimator (2) also yields concisely described non-polyhedral
reconstructions (as well as associated consistency and asymptotic distributional char-
acterizations) based on linear images of the spectraplex, in contrast to the usual choice
of a polyhedral LSE in the previous literature.

1.2.2 Incorporating Prior Information and Fitting Smooth Boundaries

The problem of integrating prior information about the underlying convex set has
been considered in [25], where the authors propose a method of incorporating certain
structural or shape priors for fitting convex sets in two dimensions, with a particular
focus on settings in which the underlying set is a disc or an ellipsoid. However, the
reconstructions produced by the method in [25] are still polyhedral, and the method
assumes that the support function evaluations are available at angles that are equally
spaced. We are also aware of a line of work [8,15] on fitting convex sets in two
dimensions with smooth boundaries to support function measurements. The first of
these papers estimates a convex set with a smooth boundary without any vertices,
while the second proposes a two-step method in which one initially estimates a set of
vertices followed by a second step that connects these vertices via smooth boundaries.
In both cases, splines are used to interpolate between the support function evaluations
with a subsequent smoothing procedure using the von Mises kernel. The smoothing
is done in a local fashion and the resulting reconstruction is increasingly complex to
describe as the number of measurements available grows. In contrast, our approach to
producing non-polyhedral estimates based on fitting linear images of spectraplices is
more global in nature, andwe explicitly regularize the complexity of our reconstruction
based on the dimension of the spectraplex. Further, the approaches proposed in [8,15]
estimate the singular and the smooth parts of the boundary separately, whereas our
framework based on linear images of spectraplices estimates these features in a unified
manner (for example, see the illustration in Fig. 12). Finally, the methods described
in [8,15,25] are only applicable to two-dimensional reconstruction problems, while
problems of a three-dimensional nature arise in many contexts (see Sect. 5.4 for an
example that involves the reconstruction of a human lung).

1.2.3 Piecewise Affine Convex Regression

The formulation (2) when C = �q may be viewed as a fitting a piecewise linear
function (with at most q pieces) to the given data. This is a special case of the max-
affine regressionproblem inwhichone is interested infitting a piecewise affine function

123



516 Discrete & Computational Geometry (2021) 66:510–551

(typically with a bound on the number of pieces) to data, which is a topic that has been
studied previously [2,16,20]. In particular, our algorithm in Sect. 4 when specialized
to the setting C = �q is analogous to the methods described in [20]. However, our
framework and the algorithm in Sect. 4 may also be employed to fit more general
convex functions that are not piecewise linear, but that can still be specified in a
tractable manner via linear images of the spectraplex.

1.3 Outline

In Sect. 2 we discuss the geometric, algebraic, and analytic aspects of the optimization
problem (2); this section serves as the foundation for the subsequent statistical analysis
in Sect. 3. Throughout both of these sections, we give several examples that provide
additional insight into our mathematical development. We describe algorithms for
solving (2) in Sect. 4, and we demonstrate the application of these methods in a range
of numerical experiments in Sect. 5.We concludewith a discussion of future directions
in Sect. 6.

Notation: Given a convex set C ⊂ R
q , we denote the associated induced norm by

‖A‖C,2 := supx∈C ‖Ax‖2. We denote the unit ‖ · ‖-ball centered at x by B‖·‖(x) :=
{y | ‖y− x‖ ≤ 1}, and we denote the Frobenius norm by ‖ · ‖F. Given a point a ∈ R

q

and a subsetU ⊆ R
q , we define dist(a,U ) := infb∈U ‖a−b‖, where the norm ‖ · ‖ is

the Euclidean norm. Last, given any two subsets U , V ⊂ R
q , the Hausdorff distance

between U and V is denoted by

dH(U , V ) := inf
t≥0

{
t | U ⊆ V + t B‖·‖2(0), V ⊆ U + t B‖·‖2(0)

}
.

2 Problem Setup and Other Preliminaries

In this section, we begin with a preliminary discussion of the geometric, algebraic, and
analytical aspects of our procedure (2); these underpin our subsequent development
in this paper. We make the following assumptions about our problem setup for the
remainder of the paper:

(A1) The set K � ⊂ R
d is compact and convex.

(A2) The set C ⊂ R
q is compact and convex.

(A3) Probabilistic Model for Support Function Measurements: We assume that we
are given n independent and identically distributed support function evaluations
{(u(i), y(i))}ni=1 ⊂ Sd−1 × R from the following probabilistic model:

PK � : y = hK � (u) + ε. (3)

Here u ∈ Sd−1 is a vector distributed uniformly at random (u.a.r.) over the unit
sphere, ε is a centered random variable with variance σ 2 (i.e., E[ε] = 0 and
E[ε2] = σ 2), and u and ε are independent.
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In our analysis, we quantify dissimilarity between convex sets in terms of a metric
applied to their respective support functions. Let K1, K2 be compact convex sets
in R

d , and let hK1( · ), hK2( · ) be the corresponding support functions. We define the
L p metric to be

ρp(K1, K2) :=
(∫

Sd−1
|hK1(u) − hK2(u)|p μ(du)

)1/p

, 1 ≤ p < ∞, (4)

where the integral is with respect to the Lebesgue measure over Sd−1; as usual, we
denote ρ∞(K1, K2) = maxu |hK1(u) − hK2(u)|. We prove our convergence guaran-
tees in Sect. 3.1 in terms of the ρp-metric. This metric represents an important class
of distance measures over convex sets. For instance, it features prominently in the
literature on approximating convex sets as polytopes [5]. In addition, the specific case
of p = ∞ coincides with the Hausdorff distance [27, p. 66].

Due to the form of the estimator (2), one may reparametrize the optimization prob-
lem in terms of the linear map A. In particular, by noting that hA(C)(u) = hC (AT u),
the problem (2) can be reformulated as follows:

Ân ∈ argmin
A∈L(Rq ,Rd )

1

n

n∑

i=1

(
y(i) − hC (AT u(i))

)2
. (5)

Based on this observation, we analyze some properties of the set of minimizers of (2)
via an analysis of (5). (The reformulation (5) is alsomore conducive to the development
of numerical algorithms for solving (2).) In turn, a basic strategy for investigating the
asymptotic properties of the estimator (5) is to analyze the minimizers of the loss
function at the population level. Concretely, for any probability measure P over pairs
(u, y) ∈ Sd−1 × R, the loss function with respect to P is defined as

�C (A, P) := EP
[
(hC (AT u) − y)2

]
. (6)

Thus, the focus of our analysis is on studying the set of minimizers of the population
loss function �C ( · , PK � ):

MK �,C := argmin
A

�C (A, PK � ). (7)

2.1 Geometric Aspects

In this subsection, we focus on the convex sets defined by the elements of the set of
minimizers MK �,C . In the next subsection, we consider the elements of MK �,C as
linear maps. To begin with, we state a simple lemma on the continuity of �C ( · , P):

Proposition 2.1 Let P be any probability distribution overmeasurement pairs (u, y) ∈
Sd−1 × R satisfying EP [|y|] < ∞. Then the function �C ( · , P) defined in (6) is
continuous.
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The proof uses a simple bound. We state the result formally as we require it at a later
part.

Lemma 2.2 Given any pair of linear maps A1, A2 ∈ L(Rq ,Rd), any unit-norm vec-
tor u, and any scalar y, we have

∣∣|hC (AT
1 u)− y|− |hC (AT

2 u)− y|∣∣ ≤ |hC (AT
1 u)− hC (AT

2 u)| ≤ ‖A1− A2‖C,2. (8)

Proof First note that hC (AT
1 u) ≤ hC (AT

2 u)+hC ((A1− A2)
T u). Since u is unit-norm,

we have hC (AT
1 u) − hC (AT

2 u) ≤ hC ((A1 − A2)
T u) ≤ ‖A1 − A2‖C,2. Similarly we

have hC (AT
2 u) − hC (AT

1 u) ≤ ‖A1 − A2‖C,2. Hence (8) follows. ��
Proof of Proposition 2.1 Let ε > 0 be arbitrary. Let r = 1 + ‖A‖C,2 and pick δ =
min {ε/(3E[r + |y|]), r}. Then for any A0 satisfying ‖A − A0‖C,2 < δ, we have

|�(A, P) − �(A0, P)| = ∣∣EP
[
(hC (AT u) − y)2 − (hC (AT

0 u) − y)2
]∣∣

≤ EP
[|hC (AT u) − hC (AT

0 u)| · |hC (AT u) + hC (AT
0 u) − 2y|].

We apply Lemma 2.2 to obtain the bound

|hC (AT u) + hC (AT
0 u) − 2y| ≤ 2|hC (AT u)| + 2|y| + ‖A0 − A‖C,2 < 2r + 2|y| + δ.

Combining this bound with our earlier expression, it follows that |�(A, P) −
�(A0, P)| < EP [δ(2r + δ + 2|y|)] ≤ ε. ��
The following result gives a series of properties about the set MK �,C . Crucially, it
shows that MK �,C characterizes the optimal approximations of K � as linear images
of C :

Proposition 2.3 Suppose that the assumptions (A1), (A2), (A3) hold. Then the set of
minimizers MK �,C defined in (7) is compact and non-empty. Moreover, we have

Â ∈ MK �,C ⇐⇒ Â ∈ argmin
A∈L(Rq ,Rd )

ρ2(A(C), K �).

Proof Define the event Gr ,v := {(u, y) | 〈v, u〉 ≥ 1/2, |y| ≤ r/4} over v ∈ Sd−1. In
addition, define the function s(v) := P[(u, y) | 〈v, u〉 ≥ 1/2]. For every r ≥ 0, con-
sider the function gr (v) := P[Gr ,v]. By noting that gr ≤ gr ′ whenever r ≤ r ′ (i.e., the
sequence {gr }r≥0 is monotone increasing), gr ( · ) ↑ s( · ), and that gr ( · ) is a continu-
ous function over the compact domain Sd−1, we conclude that gr ( · ) converges to s( · )
uniformly. Thus there exists r̂ sufficiently large so that r̂2P[Gr̂ ,v]/16 > �C (0, PK � )

for all v ∈ Sd−1.
Next, we show that MK �,C ⊆ r̂ B‖·‖C,2(0). Let A /∈ r̂ B‖·‖C,2(0). Then, for such an

A, there exists x̂ ∈ C such that ‖Ax̂‖2 > r̂ . Define v̂ = Ax̂/‖Ax̂‖2. We have

�C (A, PK � ) ≥ E
[
1(Gr̂ ,v̂)(hC (AT u) − y)2

] ≥ r̂2P[Gr̂ ,v̂]/16 > �C (0, PK � ).
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Here, 1(Gr̂ ,v̂) denotes the indicator function for the event Gr̂ ,v̂ . As such, the above
inequality implies that A /∈ MK �,C . ThereforeMK �,C ⊆ r̂ B‖·‖C,2(0), and henceMK �,C

is bounded.
By Proposition 2.1, the function A �→ �C (A, PK � ) is continuous. As the mini-

mizers of �C ( · , PK � ), if they exist, must be contained in r̂ B‖·‖C,2(0), we can view
MK �,C as the set of minimizers of a continuous function restricted to the compact set
r̂ B‖·‖C,2(0), and hence it is non-empty. Moreover, since MK �,C is the pre-image of a
closed set under a continuous function, it is also closed and thus compact.

By Fubini’s theorem, we have E[ε(hC (K �) − hC (AT u))] = Eu[Eε[ε(hC (K �) −
hC (AT u))]] = 0. Hence �C (A, PK � ) = E

[
(hC (K �) + ε − hC (AT u))2

] =
E
[
(hC (K �) − hC (AT u))2

]+ E[ε2], from which the last assertion follows. ��
It follows from Proposition 2.3 that an optimal approximation of K � as the projection
of C always exists. In Sect. 3.1, we show that the estimators obtained using our
method converge to an optimal approximation of K � as a linear image of C if such an
approximation is unique. While this is often the case in applications one encounters
in practice, the following examples demonstrate that the uniqueness condition need
not always hold:

Example Suppose K � is the regular q-gon in R
2, and C is the spectraplex O2. Then

MK �,C uniquely specifies an 
2-ball.

Example Suppose K � is the unit 
2-ball in R
2, and C is the simplex �q . Then the

sets specified by the elements MK �,C are not unique; they all correspond to a centered
regular q-gon, but with an unspecified rotation.

A natural question then is to identify settings in which MK �,C defines a unique
set. Unfortunately, obtaining a complete characterization of this uniqueness prop-
erty appears to be difficult due to the interplay between the invariances underlying the
sets K � and C . However, based on Proposition 2.3, we can provide a simple sufficient
condition under which MK �,C defines a unique set:

Corollary 2.4 Assume that the conditions of Proposition 2.3 hold. Suppose further that
we have K � = A�(C) for some A� ∈ L(Rq ,Rd). Then the set of minimizers MK �,C

described in (7) uniquely defines K �; i.e., K � = A(C) for all A ∈ MK �,C .

Proof It is clear that A� ∈ MK �,C . Note that hC (AT u) is a continuous function of u
over a compact domain for every A ∈ L(Rq ,Rd). Hence it follows that Â ∈ MK �,C

if and only if hC (A�T u) = hC ( ÂT u) everywhere. By applying Proposition 2.3 and
using the fact that a pair of compact convex sets that have the same support function
must be equal, it follows that K � = Â(C) for all Â ∈ MK �,C .

��

2.2 Algebraic Aspects of Our Method

While the preceding subsection focused on conditions under which the set of mini-
mizers MK �,C specifies a unique convex set, the aim of the present section is to obtain
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a more refined picture of the collection of linear maps in MK �,C . We begin by dis-
cussing the identifiability issues that arise in reconstructing a convex set by estimating
a linear map via (5). Given a compact convex set C , let g be a linear transformation
that preserves C ; i.e., g(C) = C . Then the linear map defined by Ag specifies the
same convex set as A because Ag(C) = A(g(C)) = A(C). As such, every linear map
A ∈ L(Rq ,Rd) is a member of the equivalence class defined by

A ∼ Ag, g ∈ AutC . (9)

Here AutC denotes the subset of linear transformations that preserve C . When C is
non-degenerate, the elements of AutC are invertible matrices and form a subgroup of
GL(q,R). As a result, the equivalence class A ·AutC := {Ag | g ∈ AutC} specified
by (9) can be viewed as the orbit of A ∈ L(Rq ,Rd) under (right) action of the group
AutC . In the sequel, we focus our attention on convex sets C for which the associated
automorphism group AutC consists of isometries:

(A4) The automorphismgroupofC is a subgroupof the orthogonal group, i.e.,AutC�
O(q,R).

This assumption leads to structural consequences that are useful in our analysis. In
particular, as AutC can be viewed as a compact matrix Lie group, the orbit A ·
AutC inherits structure as a smooth manifold of the ambient space L(Rq ,Rd). The
assumption (A4) is satisfied for the choices of C that are primarily considered in this
paper—the automorphism group of the simplex is the set of permutation matrices, and
the automorphism group of the spectraplex is the set of linear operators specified as
conjugation by an orthogonal matrix.

Based on this discussion, it follows that the space of linear maps L(Rq ,Rd) can
be partitioned into orbits A · AutC . Further, the population loss �C ( · , PK � ) is also
invariant over orbits of A: for every g ∈ AutC we have that hC (AT u) = hC ((Ag)T u).
Thus, the set of minimizers MK �,C can also be partitioned into a union of orbits.
Consequently, in our analysis in Sect. 3 we view the problem (5) as one of recovering
an orbit rather than a particular linearmap. The convergence resultswe obtain in Sect. 3
depend on the number of orbits in MK �,C , with sharper asymptotic distributional
characterizations available when MK �,C consists of a single orbit.

WhenMK �,C specifiesmultiple convex sets, thenMK �,C clearly consists ofmultiple
orbits; as an illustration, in the example in the previous subsection in which K � is the
unit 
2-ball in R

2 and C = �q , the corresponding set MK �,C is a union of multiple
orbits in which each orbit specifies a unique rotation of the centered regular q-gon.
However, even when MK �,C specifies a unique convex set, it may still be the case that
it consists of more than one orbit:

Example Suppose K � is the interval [−1, 1] ⊂ R andC = �3. Then MK �,C is a union
of orbits, with an orbit specified as the set of all permutations of the vector (−1, 1, ε)
for each ε ∈ [−1, 1]. Nonetheless, MK �,C specifies a unique convex set, namely, K �.

More generally, it is straightforward to check that MK �,C consists of a single orbit if
K � is a polytope with q extreme points and C = �q . The situation for linear images
of non-polyhedral sets such as the spectraplices is much more delicate. One simple
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instance in which MK �,C consists of a single orbit is when K � is the image under a
bijective linear map A of Oq . Our next result states an extension to convex sets that
are representable as linear images of an appropriate slice of the outer product of cones
of positive semidefinite matrices.

Proposition 2.5 Let C = {X1 × · · · × Xk | Xi ∈ S
qi , Xi � 0,

∑k
i=1 trace Xi = 1

}
,

and let K � = A�(C) ⊂ R
d . Suppose that there is a collection of disjoint exposed faces

Fi ⊆ K � such that: (i) (A�)−1(Fi )∩C is the i-th block {0×· · ·×0×Xi×0×· · ·×0 |
Xi ∈ S

qi , Xi � 0, trace Xi = 1} ⊂ C, and (ii) dim Fi = dimOqi . Then MK �,C

consists of a single orbit.

Example By expressing C = �q = {
X1 × · · · × Xq | Xi ∈ S

1, Xi � 0,∑q
i=1 trace Xi = 1

}
and by considering K � to be a polytope with q extreme points,

Proposition 2.5 simplifies to our earlier remark noting that MK �,C consists of a single
orbit.

Example The nuclear norm ball Bnuc := {X ∈ S
2 | ‖X‖nuc ≤ 1} is expressible as

the linear image of O2 × O2. The extreme points of Bnuc comprise two connected
components of unit-norm rank-one matrices specified by {UT E11U | U ∈ SO(2,R)}
and {−UT E11U | U ∈ SO(2,R)}, where E11 is the 2 × 2 matrix with (1, 1)-entry
equal to one and other entries equal to zero. Furthermore, each connected component is
isomorphic toO2. It is straightforward to verify that the conditions of Proposition 2.5
hold for this instance, and thus MBnuc,O2×O2 consists of a single orbit.

The proof of Proposition 2.5 requires an impossibility result showing that a spectraplex
cannot be expressed as the linear image of the outer product of finitely many smaller-
sized spectraplices. The result follows as a consequence of a related result stated in
terms of the cone of positive semidefinite matrices [1,26]. In the following, Sq+ denotes
the cone of q × q dimensional positive semidefinite matrices.

Proposition 2.6 Suppose that Sq+ = A(S
q1+ × · · · × S

qk+ ∩ L) for some linear map A
and some affine subspace L. Then q ≤ max qi .

Proposition 2.7 Let C = {X1 × · · · × Xk | Xi ∈ S
qi+ ,
∑k

i=1 trace Xi = 1
}
. Suppose

Oq = A(C) for some A. Then q ≤ max qi .

Proof Express Sq+ as

A ◦ �

({
X1 × · · · × Xk × t

∣∣∣∣ Xi ∈ S
qi+ , t ∈ S

1+,

k∑

i=1

trace Xi = t

})
,

where � projects out the coordinate t . The result follows from Proposition 2.6. ��
Lemma 2.8 Let K = A(C) ⊂ R

d where C ⊂ R
q is compact convex, and suppose

that dim K = dimC. If K = Ã(C) for some Ã ∈ L(Rq ,Rd), then Ã = Ag for some
g ∈ AutC.
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Proof Suppose that 0 /∈ aff K . By applying a suitable rotation, we may assume that
K is contained in the first dim K dimensions. Then the maps A and Ã are of the form

A =
(
A1
0

)
, Ã =

(
Ã1
0

)
, A1, Ã1 ∈ L(Rq ,Rq).

Since dim K = dimC , the map A1 is invertible. Subsequently A−1
1 A1 ∈ AutC , and

thus Ã1 = A1g for some g ∈ AutC .
The proof is similar for the case where 0 ∈ aff K . The only necessary modification

is that we embed K into R
d+1 via the set K̃ := {(x, 1) | x ∈ K }, and we repeat the

same sequence of steps with K̃ in place of K . We omit the necessary details as they
follow in a straightforward fashion from the previous case. ��
Proof of Proposition 2.5 Let Ã ∈ MK �,C . We show that Ã defines a one-to-one cor-
respondence between the collection of faces {Fi }ki=1 and the collection of blocks
{{0×· · ·× X j ×· · ·×0 | X j ∈ Oq j }}kj=1 subject to the condition dim Fi = dimOq j .
We prove such a correspondence via an inductive argument beginning with the faces
of largest dimensions.

We assume (without loss of generality) that dim F1 = . . . = dim Fk′ > . . . and that
dimOq1 = . . . = dimOqk′ > . . . We further denote q = q1 = . . . = qk′ . As Fi is an
exposed face, the pre-image Ã−1(Fi )∩C must be an exposed face of C , and thus is of
the form Ui,1Xi,1U ′

i,1 × · · · ×Ui,k Xi,kU ′
i,k , where Xi, j ∈ Oqi, j for some qi, j ≤ q j ,

andwhereUi, j ∈ R
qi, j×q j are partial orthogonalmatrices. By Proposition 2.7,we have

max j qi, j ≥ qi = q. Subsequently, by noting that there are k′ blocks with dimensions
q×q, that there are also k′ faces Fi with dim Fi = q, and that the faces Fi are disjoint,
we conclude that each block in the collection {{0×· · ·×X j×· · ·×0 | X j ∈ Oq j }}kj=1
lies in the pre-image of a unique face Fi , 1 ≤ i ≤ k′. By repeating the same sequence
of arguments for the remaining faces of smaller dimensions, we establish a one-to-
one correspondence between faces and blocks. Finally, we apply Lemma 2.8 to each
face-block pair to conclude that, after accounting for permutations among blocks of
the same size, the maps A�

i and Ãi are equivalent up to conjugation by an orthogonal
matrix. The final assertion that MK �,C consists of a single orbit is straightforward to
establish. ��

2.3 Analytical Aspects of Our Method

In this third subsection, we describe some of the derivative computations that repeat-
edly play a role in our paper in our analysis, examples, and numerical experiments.
Given a compact convex set C , the support function hC ( · ) is differentiable at u if and
only if

argmax
x∈C

〈x, u〉 (10)

is a singleton; the derivative in these cases is given by (10) (see [27, p. 47]). We denote
the derivative of hC at a differentiable u by eC (u) := ∇u(hC (u)).
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Example Suppose C = �q ⊂ R
q is the simplex. The function hC ( · ) is the maximum

entry of the input vector, and it is differentiable at this point if and only if themaximum
is unique with the derivative eC ( · ) equal to the corresponding standard basis vector.

Example Suppose C = O p ⊂ S
p is the spectraplex. The function hC ( · ) is the largest

eigenvalue of the input matrix, and it is differentiable at this point if and only if the
largest eigenvalue has multiplicity one with the derivative eC ( · ) equal to the projector
onto the corresponding one-dimensional eigenspace.

The following result gives a formula for the derivative of �C ( · , PK � ).

Proposition 2.9 Let P be a probability distribution over the measurement pairs (u, y),
and suppose that EP [y2] < ∞. Let A ∈ L(Rq ,Rd) be a linear map such that hC ( · )
is differentiable at AT u for P-a.e. u. Then the function�C ( · , P) is differentiable with
derivative

2EP
[
(hC (AT u) − y)u ⊗ eC (AT u)

]
.

Proof Let λC ( · , A, D) denote the remainder term satisfying

(
hC ((A + D)T u) − y

)2 = (hC (AT u) − y)2 +〈∇A((hC (AT u) − y)2), D
〉

+ λC ( · , A, D)‖D‖C,2.

Since the function hC ( · ) is differentiable at AT u for P-a.e. u, we haveλC ( · , A, D) →
0 as ‖D‖C,2 → 0, P-a.e. Suppose D is in a bounded set. First, we can bound |hC ((A+
D)T u)+ hC (AT u)−2y| ≤ c1(1+|y|) for some constant c1. Second, by Lemma 2.2,
we have the inequality |hC ((A+D)T u)−hC (AT u)| ≤ ‖D‖C,2. Third, by noting that
|hC (AT u) − y| can be bounded by c2(1 + |y|) for some constant c2, and by noting
that the entries of the linear map u⊗ eC (AT u) are uniformly bounded, we may bound
‖(hC (AT u) − y)u ⊗ eC (AT u)‖C,2 by a function of the form c3(1 + |y|) for some
constant c3. Subsequently we may bound

|λC ( · , A, D)| ≤ ‖2(hC (AT u) − y)u ⊗ eC (AT u)‖C,2

+ |hC ((A + D)T u) − hC (AT u)| · |hC ((A + D)T u) + hC (AT u) − 2y|
‖D‖C,2

≤ c(1+ |y|)

for some constant c. Since EP [y2] < ∞, we have λC ( · , A, D) ∈ L2(P), and hence
λC ( · , A, D) ∈ L1(P). The result follows from an application of the Dominated
Convergence Theorem. ��

It turns out to be considerably more difficult to compute an explicit expression of the
second derivative of �C ( · , PK � ). For this reason, our next result applies in a much
more restrictive setting in comparison to Proposition 2.9.
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Proposition 2.10 Suppose that the underlying set K � = A�(C) for some A� ∈
L(Rq ,Rd). In addition, suppose that the function hC ( · ) is continuously differentiable
at A�T u for PK � -a.e. u. Then the map A �→ �C (A, PK � ) is twice differentiable at A�

and its second derivative is the operator  ∈ L(L(Rq ,Rd), L∗(Rq ,Rd)) defined by

(D) = 2E
[〈u ⊗ eC (A�T u), D〉u ⊗ eC (A�T u)

]
. (11)

Proof To simplify notation, we denote the operator norm ‖ · ‖C,2 by ‖ · ‖ in the remain-
der of the proof. By Proposition 2.9, the map A �→ �(A, P) is differentiable in an
open neighborhood around A� with derivative 2(hC (AT u)− y)u ⊗ eC (AT u). Hence
to show that the map is twice differentiable with second derivative , it suffices to
show that

lim‖D‖→0

1

‖D‖
∥∥E
[
2(hC ((A� + D)T u) − y)u ⊗ eC ((A� + D)T u)

]

− E
[
2(hC (A�T u) − y)u ⊗ eC (A�T u)

]− (D)
∥∥ = 0.

First we note that every component of ε(u)u⊗ eC ((A� + D)T u) is integrable because
E[ε(u)2] < ∞, and u ⊗ eC ((A� + D)T u) is uniformly bounded. Hence by Fubini’s
Theorem we have

E
[
(hC (A�T u)−y)u⊗eC ((A�+D)T u)

] = Eu
[
Eε(u)

[−ε(u)u⊗eC ((A�+D)T u)
]] = 0.
(12)

Similarly,
E
[
(hC (A�T u) − y)u ⊗ eC (A�T u)

] = 0. (13)

Second, by differentiability of the map A �→ �(A, P) at A� the limit

lim‖D‖→0

∥∥E
[
2(hC ((A� + D)T u) − y) − 2(hC (A�T u) − y) − 2〈u ⊗ eC (A�T u), D〉]∥∥

‖D‖

is 0. By noting that every component of u ⊗ eC ((A� + D)T u) is uniformly bounded,
and an application of the Dominated Convergence Theorem, we have

lim‖D‖→0

1

‖D‖
∥∥E
[(
2(hC ((A� + D)T u) − y)

− 2(hC (A�T u) − y)−2〈u ⊗ eC (A�T u), D〉)u ⊗ eC ((A� + D)T u)
]∥∥=0. (14)

Third, since hC ( · ) is continuously differentiable at A�T u for P-a.e. u, we have
eC ((A� + D)T u) → eC (A�T u) as ‖D‖ → 0, for P-a.e. u. By the Dominated Con-
vergence Theorem we have E[eC ((A� + D)T u)] → E[eC (A�T u)] as ‖D‖ → 0. It
follows that

123



Discrete & Computational Geometry (2021) 66:510–551 525

lim‖D‖→0

1

‖D‖
∥∥2E

[〈u ⊗ eC (A�T u), D〉u ⊗ eC ((A� + D)T u)
]

− 2E
[〈u ⊗ eC (A�T u), D〉u ⊗ eC (A�T u)

]∥∥ = 0.
(15)

The result follows by summing the contributions from (14) and (15), as well as noting
that the expressions in (12) and (13) vanish. ��

3 Main Results

In this section, we investigate the statistical aspects of minimizers of the optimization
problem (5). Our objective in this section is to relate a sequence ofminimizers { Ân}∞n=1
of �C ( · , Pn,K � ) to minimizers of �C ( · , PK � ). Based on this analysis, we draw con-
clusions about properties of sequences of minimizers {K̂ C

n }∞n=1 of the problem (2).
In establishing various convergence results, we rely on an important property of the
Hausdorff distance, namely that it defines ametric over collections of non-empty com-
pact sets; therefore, the collection of all orbits {A ·AutC | A ∈ L(Rq ,Rd)} endowed
with the Hausdorff distance defines a metric space.

Our results provide progressively sharper recovery guarantees based on increas-
ingly stronger assumptions. Specifically, Sect. 3.1 focuses on conditions under which
a sequence of minimizers {K̂ C

n }∞n=1 of (2) converges to K �; this result relies only on
the fact that the optimal approximation of K � by a convex set specified by an ele-
ment of MK �,C is unique (see Sect. 2.1 for the relevant discussion). Next, Sect. 3.2
gives a limiting distributional characterization of the sequence {K̂ C

n }∞n=1 based on an
asymptotic normality analysis of the sequence { Ân}∞n=1; among other assumptions,
this analysis relies on the stronger requirement that MK �,C consists of a single orbit.
Finally, based on additional conditions on the facial structure of K �, we describe in
Sect. 3.3 how the sequence {K̂ C

n }∞n=1 preserves various attributes of the face structure
of K �.

3.1 Strong Consistency

We describe conditions for convergence of a sequence of minimizers {K̂ C
n }∞n=1 of (2).

Our main result essentially states that such a sequence converges to an optimal ρ2
approximation of K � as a linear image of C , provided that such an approximation is
unique:

Theorem 3.1 Suppose that the assumptions (A1)–(A4) hold. Let { Ân}∞n=1 be a
sequence of minimizers of the empirical loss function �C ( · , Pn,K � ) with the corre-
sponding reconstructions given by K̂C

n = Ân(C). We have that dist( Ân, MK �,C ) → 0
a.s. and

inf
A∈MK�,C

dH( Ân · AutC, A · AutC) → 0 a.s.
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As a consequence, if MK �,C specifies a unique set—there exists K̂ ⊂ R
d such that

K̂ = A(C) for all A ∈ MK �,C—then ρp(K̂ C
n , K̂ ) → 0 a.s. for 1 ≤ p ≤ ∞. Further,

if K � = A�(C) for some linear map A� ∈ L(Rq ,Rd), then ρp(K̂ C
n , K �) → 0 a.s. for

1 ≤ p ≤ ∞.

When MK �,C defines multiple sets, our result does not imply convergence of the
sequence {K̂ C

n }∞n=1. Rather, we obtain the weaker consequence that the sequence
{K̂ C

n }∞n=1 eventually becomes arbitrarily close to the collection {A(C) | A ∈ MK �,C }.
Example Suppose K � is the unit 
2-ball in R2, and C = �q . The optimal ρ2 approxi-
mation is the regular q-gon with an unspecified rotation. The sequence {K̂ C

n }∞n=1 does
not have a limit; rather, there is a sequence {gn}∞n=1 ⊂ SO(2,R) such that gn K̂ C

n
converges to a centered regular q-gon (with fixed orientation) a.s.

The proof of Theorem 3.1 comprises two parts. First, we show that there exists a ball
in L(Rq ,Rd) such that Ân belongs to this ball for all sufficiently large n a.s. Second,
we appeal to the following uniform convergence result. The structure of our proof is
similar to that of a corresponding result for K -means clustering (see the main theorem
in [22]).

Lemma 3.2 Let U ⊂ L(Rq ,Rd) be bounded and suppose the set C ⊂ R
q satisfies

assumption (A3). Let P be a probability distribution over the measurement pairs
(u, y) ⊂ Sd−1 × R satisfying EP [y2] < ∞, and let Pn be the empirical measure
corresponding to drawing n i.i.d. observations from the distribution P. Consider the
collection of functions G := {(hC (AT u)− y)2 | A ∈ U } in the variables (u, y). Then
supg∈G |EPn [g] − EP [g]| → 0 as n → ∞ a.s.

The proof of Lemma 3.2 follows from an application of the following uniform strong
law of large numbers (SLLN) [23, Thm. 3, p. 8].

Theorem 3.3 (Uniform SLLN) Let Q be a probability measure and let Qn be the
corresponding empirical measure. Let G be a collection of Q-integrable functions.
Suppose that for every ε > 0 there exists a finite collection of functions Gε such that
for every g ∈ G there exist g, g ∈ Gε satisfying

(i) g ≤ g, and
(ii) EQ[g − g] < ε.

Then supg∈G |EQn [g] − E[g]| → 0 a.s.

Proof of Lemma 3.2 Based on Theorem 3.3, it suffices to construct the finite collection
of functions Gε . Pick r sufficiently large so thatU ⊂ r B‖·‖C,2(0). LetDδ be a δ-cover
for U in the ‖ · ‖C,2-norm, where δ is chosen so that 4δEP [r + |y|] ≤ ε. We define
Gε := {((|hC (AT u) − y| − δ)+)2}A∈Dδ

∪ {(|hC (AT u) − y| + δ)2}A∈Dδ
.

We proceed to verify (i) and (ii). Let g = (hC (AT u) − y)2 ∈ G be arbitrary. Let
A0 ∈ Dδ be such that ‖A − A0‖C,2 ≤ δ. Define g = ((|hC (AT

0 u) − y| − δ)+)2 and

g = (|hC (AT
0 u) − y| + δ)2. It follows that g ≤ g ≤ g, which verifies (i). Next, we

have E[g − g] ≤ 4δE[|hC (AT
0 u) − y|] ≤ 4δE[r + |y|] ≤ ε, which verifies (ii). ��
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Proof of Theorem 3.1 To simplify notation in the following proof, we denote B :=
B‖·‖C,2(0). First, we recall the definition of the event Gr ,v and the function s(v) from
the proof of Proposition 2.3. Using a sequence of arguments identical as in the proof of
Proposition 2.3, it follows that there exists r̂ sufficiently large so that r̂2P[Gr̂ ,v]/16 >

�C (0, PK � ) for all v ∈ Sd−1. We claim that Ân ∈ r̂ B eventually a.s. We prove this
assertion via contradiction. Suppose on the contrary that Ân /∈ r̂ B i.o. For every
Ân /∈ r̂ B, there exists x̂n ∈ C such that ‖ Ân x̂n‖ > r̂ . The sequence of unit-norm
vectors Ân x̂n/‖ Ân x̂n‖2, defined over the subset of indices n such that Ân /∈ r̂ B,
contains a convergent subsequence whose limit point is v̂ ∈ Sd−1. Then

lim sup
n

�C ( Ân, Pn,K � ) = lim sup
n

EPn,K� [(hC ( ÂT
n u) − y)2]

≥ lim sup
n

EPn,K� [1(Gr̂ ,v̂)(hC ( ÂT
n u) − y)2]

≥ lim sup
n

EPn,K�

[
r21(Gr̂ ,v̂)

16

]

≥ lim
n

r2PPn,K� [Gr̂ ,v̂]
16

= r2PPK� [Gr̂ ,v̂]
16

> �C (0, PK � ).

Here, the last equality follows from the SLLN. This implies �C ( Ân, Pn,K � ) >

�C (0, Pn,K � ) i.o., which contradicts the minimality of Ân . Hence Ân ∈ r̂ B even-
tually a.s.

Second, we show that dist( Ân, MK �,C ) → 0 a.s. It suffices to show that Ân ∈ U
eventually a.s., where U is any open set containing MK �,C . Let Â ∈ MK �,C be arbi-
trary. By Proposition 2.1, the function A �→ �C (A, PK � ) is continuous. By noting
that the set of minimizers of�C ( · , PK � ) is compact from Proposition 2.3, we can pick
ε > 0 sufficiently small so that {A | �C (A, PK � ) < �C ( Â, PK � ) + ε} ⊂ U . Next,
since Ân is defined as the minimizer of an empirical sum, we have �C ( Ân, Pn,K � ) ≤
�C ( Â, Pn,K � ) for all n. By applying Lemma 3.2 with the choice of P = PK � , we
have�C ( Ân, Pn,K � ) → �C ( Ân, PK � ), and�C ( Â, Pn,K � ) → �C ( Â, PK � ), both uni-
formly and in the a.s. sense. Subsequently, by combining the previous two conclusions,
we have �C ( Ân, PK � ) < �C ( Â, PK � )+ ε eventually, for any ε > 0. This proves that
dist( Ân, MK �,C ) → 0 a.s.

Third, we conclude that

inf
A∈MK�,C

dH( Ân · AutC, A · AutC) → 0 a.s. (16)

Fix an integer n, and let tn = dist( Ân, MK �,C ). Since MK �,C is compact, we may
pick Ā ∈ MK �,C such that ‖ Ân − Ā‖F = tn . Given A ∈ Ân · AutC , we have
A = Âng for some g ∈ AutC . Then Āg ∈ Ā · AutC , and since g is an isometry
by assumption (A4), we have ‖ Âng − Āg‖F = ‖ Ân − Ā‖F = tn . This implies that
dH( Ân · AutC, Ā · AutC) ≤ tn . Since tn → 0 as n → 0, (16) follows. ��
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3.2 Asymptotic Normality

In our second main result, we characterize the limiting distribution of a sequence of
estimates {K̂ C

n }∞n=1 corresponding to minimizers of (2) by analyzing an associated
sequence of minimizers of (5). Specifically, we show under suitable conditions that
the estimation error in the sequence ofminimizers of the empirical loss (5) is asymptot-
ically normal. After developing this theory, we illustrate in Sect. 3.2.1 through a series
of examples the asymptotic behavior of the set K̂ C

n , highlighting settings in which K̂ C
n

converges, as well as situations in which our asymptotic normality characterization
fails due to the requisite assumptions not being satisfied. Our result relies on two key
ingredients, which we describe next.

Thefirst set of requirements pertains to non-degeneracyof the function�C ( · , PK � ).
First, we require that the minimizers of �C ( · , PK � ) constitute a unique orbit under
the action of the automorphism group of the set C ; this guarantees the existence of
a convergent sequence of minimizers of the empirical losses �C ( · , Pn,K � ), which is
necessary to provide a Central Limit Theorem (CLT) type of characterization. Second,
we require the function �C ( · , PK � ) to be twice differentiable at a minimizer with a
positive definite Hessian (modulo invariances due to AutC); such a condition allows
us to obtain a quadratic approximation of �C ( · , PK � ) around a minimizer Â, and to
subsequently compute first-order approximations ofminimizers of the empirical losses
�( · , Pn,K � ). These conditions lead to a geometric characterization of confidence
regions of the extreme points of the limit of the sequence {K̂ C

n }∞n=1.
Our second main assumption centers around the collection of sets that serves as the

constraint in the optimization problem (2). Informally, we require that this collection
is not “overly complex,” so that we can appeal to a suitable CLT. The field of empir-
ical processes provides the tools necessary to formalize matters. Concretely, as our
estimates are obtained via minimization of an empirical process, we require that the
following divided differences of the loss function are well controlled:

dC,A1,A2(u, y) = (hC (AT
1 u) − y)2 − (hC (AT

2 u) − y)2

‖A1 − A2‖F .

In particular, a natural assumption is that the graph associated to these divided differ-
ences, indexed over a collection centered at Â, is of suitably “bounded complexity”:

{{
(u, y, s) | dC,A, Â(u, y) ≥ s ≥ 0 or dC,A, Â(u, y) ≤ s ≤ 0

} ∣∣∣ A ∈ B‖·‖F( Â)\{ Â}
}
.

(17)
A powerful framework to quantify the ‘richness’ of such collections is based on the
notion of a Vapnik–Chervonenkis (VC) class [33]. VC classes describe collections of
subsetswith bounded complexity, and they feature prominently in the field of statistical
learning theory, most notably in conditions under which generalization of a learning
algorithm is possible.

Definition (Vapnik–Chervonenkis class) Let F be a collection of subsets of a set F .
A finite set D is said to be shattered by F if for every A ⊂ D there exists G ∈ F such
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that A = G ∩ D. The collection F is said to be a VC class if there is a finite k such
that all sets with cardinality greater than k cannot be shattered by F .

Whether or not the collection (17) is VC depends on the particular choice of C . If C is
chosen to be either a simplex or a spectraplex then such a property is indeed satisfied—
see Sect. 3.2.2 for further details. Our analysis relies on a result by Stengle and Yukich
showing that certain collections of sets admitting semialgebraic representations are
VC [31]. We are now in a position to state our main result of this section:

Theorem 3.4 Suppose that the assumptions (A1)–(A4) hold. Suppose that there exists
Â ∈ L(Rq ,Rd) such that the set of minimizers MK �,C = Â · AutC (i.e., MK �,C

consists of a single orbit), the function hC ( · ) is differentiable at ÂT u for PK � -a.e. u,
the function �C ( · , PK � ) is twice differentiable at Â, and the associated Hessian 

at Â is positive definite restricted to the subspace T⊥, i.e., |T⊥ � 0; here T :=
TÂMK �,C denotes the tangent space of MK �,C at Â. In addition, suppose that the

collection of sets specified by (17) forms aVC class. Let Ãn ∈ argminA �C (A, Pn,K � ),
n ∈ N, be a sequence of minimizers of the empirical loss function, and let Ãn ∈
argminA∈ Ân ·AutC ‖ Â − A‖F, n ∈ N, specify an equivalent sequence defined with

respect to the minimizer Â of the population loss. Setting ∇ = ∇A((hC (AT u)− y)2),
we have that

√
n( Ãn − Â)

D−→ N (0, (|T⊥)−1(EPK� [∇ ⊗ ∇|A= Â]|T⊥)(|T⊥)−1).

The proof of this theorem relies on ideas from the literature of empirical processes,
which we describe next in a general setting.

Proposition 3.5 Suppose P is a probability measure over Rq and Pn is the empirical
measure corresponding to n i.i.d. draws from P. Suppose f ( · , · ) : Rq×R

p → R is a
Lebesgue-measurable function such that f ( · , t) : Rq → R is P-integrable for all t ∈
R

p. Denote the expectations F(t) = EP [ f ( · , t)] and Fn(t) = EPn [ f ( · , t)]. Let t̂ ∈
argmint F(t) be a minimizer of the population loss, let {t̂n}∞n=1, t̂n ∈ argmint Fn(t),
be a sequence of empirical minimizers, and let f ( · , t) = f ( · , t̂) + 〈t − t̂,�( · )〉 +
‖t − t̂‖2 r( · , t) denote the linearization of f ( · , t) about t̂ (we assume that f ( · , t)
is differentiable with respect to t at t̂ P-a.e., with derivative denoted by �( · )). Let
D = {dt,t̂ ( · ) | t ∈ B‖·‖2(t̂) \ {t̂}}, where dt1,t2( · ) = ( f ( · , t1)− f ( · , t2))/‖t1− t2‖2,
denote the collection of divided differences. Suppose

(i) t̂n → t̂ a.s.,
(ii) the Hessian ∇2 := ∇2F(t)|t=t̂ about t̂ is positive definite,
(iii) the collection of sets

{{( · , s) | dt,t̂ ( · ) ≥ s ≥ 0 or dt,t̂ ( · ) ≤ s ≤ 0} | t ∈
B‖·‖2(t̂) \ {t̂}

}
form a VC class, and

(iv) there is a function d̄( · ) : Rq → R such that |d( · )| ≤ d̄( · ) for all d ∈ D,
|〈�( · ), e〉| ≤ d̄( · ) for all unit-norm vectors e, d̄( · ) > 0, and d̄( · ) ∈ L2(P).

Then
√
n(t̂n − t̂)

D→ N (0, (∇2)−1[(EP [��T ]) − (EP [�])(EP [�])T ](∇2)−1
)
.

The proof of Proposition 3.5 is based on a series of ideas developed in [23, Ch. VII]
(see in particular Example 19). These rely on computing entropy numbers for certain
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function classes. More formally, given a probability measure P and a collection of
functionsF with eachmember being amapping fromR

q toR, we define η(ε, P,F) to
be the size of the smallest ε-cover ofF in the L2(P)-distance. As these steps are built
on substantial background material from [23], we state the key conceptual arguments
in the following proof and refer the reader to specific pointers in the literature for
further details.

Proof of Proposition 3.5 To simplify notation we denote Bt̂ := B‖·‖2(t̂) \ {t̂}. The
graphs of D := {dt,t̂ ( · ) | t ∈ Bt̂ } form a VC class by assumption. By [23, Cor. 17,
p. 20], these graphs have polynomial discrimination (see [23, Ch. II]). In addition, the
collection D have an enveloping function d̄ by assumption. Hence by [23, Lem. 36,
p. 34], there exist constants αD, βD such that η(δ(EPn [d̄2])1/2, Pn,D) ≤ αD(1/δ)βD ,
for all 0 < δ ≤ 1 and all n.

We obtain a similar bound for graphs of E := {〈�( · ), (t − t̂)/‖t − t̂‖2〉 | t ∈ Bt̂ }.
First, we note that E is a subset of a finite dimensional vector space. By [17, Lem. 9.6,
p. 159], the collection of subgraphs {{(t, s) | f (t) ≤ s} | f ∈ E} forms a VC class.
Then, by noting that the singletons {{(t, s) | s ≤ 0}} form a VC class, and that
the collection of sets formed by taking intersections of members of two VC classes
is also a VC class (see [17, Lem. 9.7, p. 159]), we conclude that the collection of
sets {{(t, s) | f (t) ≤ s ≤ 0} | f ∈ E} is a VC class. A similar sequence of steps
shows that the collection of sets {{(t, s) | f (t) ≥ s ≥ 0} | f ∈ E} also forms a
VC class. The collection of graphs of E is the union of the previous two collections.
Hence by [17, Lem. 9.7, p. 159] it is also a VC class. Subsequently, by applying
the same sequence of steps as we did for D, there exists constants αE , βE such that
η(δ(EPn [d̄2])1/2, Pn, E) ≤ αE (1/δ)βE , for all 0 < δ ≤ 1 and all n.

Next, consider the collection of functions F := {r( · , t) | t ∈ Bt̂ }. We have
r( · , t) = dt,t̂ ( · )+〈�( · ), (t−t̂)/‖t−t̂‖2〉, andhence every element inF is expressible

as a sum of functions inD and E respectively. Given (δ/
√
2)-covers forD and E in any

L2-distance, one can show via the AM-GM inequality that the union of these covers
forms a δ-cover for F . Subsequently, we conclude that there exists constants α and β

such that η(δ(EPn [d̄2])1/2, Pn,F) ≤ α(1/δ)β .
The remaining sequence of arguments is identical to those in [23, Ch. VII]. Our

bound on the quantity η(δ(EPn [d̄2])1/2, Pn,F) implies that there exists θ such that∫ θ

0 (η(t, Pn,F)/t)1/2dt < ε for all n and all ε > 0. We apply [23, Lem. 15, p. 150] to
obtain the following stochastic equicontinuity property: given γ > 0 and ε > 0, there
exists θ such that

lim sup
n

P

[
sup

f1, f2∈F :EP [( f1− f2)2]≤θ

|EEn [ f1 − f2]| > γ

]
< ε.

Here, En denotes the signed measure
√
n(Pn − P). One can check measurability of

the inner supremum using the notion of permissibility—see [23, App. C] (in essence,
we simply require f to be measurable and the index t to reside in an Euclidean space).
Finally we apply [23, Thm. 5, p. 141] to conclude the result. ��

123



Discrete & Computational Geometry (2021) 66:510–551 531

Proof of Theorem 3.4 The first step is to verify that the sequence { Ãn}∞n=1 quotients
out the appropriate equivalences. Since Ãn ∈ Ân ·AutC , we have Ãn = Ângn for an
isometry gn . Subsequently we have ‖ Ãn − Â‖F = ‖ Ângn − Â‖F = ‖ Ân − Âg−1

n ‖F ≤
dH( Ân, MK �,C ). Following the conclusions of Theorem 3.1, we have Ãn → Â a.s.
Furthermore, as a consequence of the optimality conditions in the definition of Ãn ,
we also have Ãn − Â ∈ T⊥.

The second step is to apply Proposition 3.5 to the sequence { Ãn}∞n=1 with
(hC (AT u) − y)2 as the choice of loss function f ( · , t), PK � as the probability mea-
sure P , (u, y) as the argument, and A as the index t . First, the measurability of the loss
as a function in A and (u, y) is straightforward to establish. Second, the differentiabil-
ity of the loss function at Â for PK � -a.e. (u, y) follows from the assumption that hC ( · )
is differentiable at ÂT u for PK � -a.e. u. Third, we have shown that Ãn → Â a.s. in the
above. Fourth, the Hessian |T⊥ is positive definite by assumption. Fifth, the graphs
of {dC,A, Â(u, y) | A ∈ B‖·‖F( Â)\{ Â}} form aVC class by assumption. Sixth, we need
to show the existence of an appropriate function d( · ) to bound the divided differences
dC,A, Â( · ) and the inner products 〈∇( · )|A= Â, E〉, where ‖E‖F = 1. In the former case,

we note that |(hC (AT
1 u)− y)+(hC (AT

2 u)− y)| ≤ ‖A1− A2‖C,2 ≤ c1‖A1− A2‖F for
some c1 > 0; here, the first inequality follows fromLemma2.2 and the second inequal-
ity follows from the equivalence of norms. Then, by noting that A ∈ B‖·‖F( Â) \ Â is
bounded, the expression |(hC (AT u) − y) + (hC ( ÂT u) − y)| is bounded above by a
function of the form c2(1+|y|). By expanding the divided difference expression and by
combining the previous two bounds, one can show that |dC,A, Â( · )| ≤ c3(1+ |y|) for
some c3 > 0. In the latter case, the derivative is given by 2(hC ( ÂT u)−y)u⊗eC ( ÂT u).
By noting that hC ( ÂT u), u, and eC ( ÂT u) are uniformly bounded over u ∈ Sd−1,
and by performing a sequence of elementary bounds, one can show that 〈∇, E〉 is
bounded above by c4(1 + |y|) uniformly over all unit-norm E . We pick d̄( · ) to be
c(1+|y|), where c = max {1, c3, c4}. Then d̄( · ) > 0 by construction and furthermore,
d̄ ∈ L2(PK � ) as EPK� [ε2] < ∞.

Finally, the result follows from an application of Proposition 3.5. ��

This result gives an asymptotic normality characterization corresponding to a sequence
of minimizers { Ân}∞n=1 of the empirical losses �C ( · , Pn,K � ). In the next result, we
specialize this result to the setting in which the underlying set K � is in fact expressible
as a projection of C , i.e., K � = A�(C) for some A� ∈ L(Rq ,Rd). This specialization
leads to a particularly simple formula for the asymptotic error covariance, and we
demonstrate its utility in the examples in Sect. 3.2.1.

Corollary 3.6 Suppose that the conditions of Theorem 3.4 and of Proposition 2.10 hold.
Using the notation of Theorem 3.4, we have thatE[∇⊗∇|A=A�] = 2σ 2 with given

by (11). In particular, the conclusion of Theorem 3.4 simplifies to
√
n( Ãn − Â)

D→
N (0, 2σ 2(|T⊥)−1

)
.

Proof One can check that ∇A((hC (AT u) − y)2)|A=A� = −2εu ⊗ eC (A�T u), from
which we have that E[∇ ⊗ ∇|A=A� ] = 2σ 2. This concludes the result. ��
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3.2.1 Examples

Here we give examples that highlight various aspects of the theoretical results
described previously. In all of our examples, the noise {ε(i)}ni=1 is given by i.i.d. cen-
tered Gaussian random variables with variance σ 2. We begin with an illustration in
which the assumptions of Theorem 3.4 are not satisfied and the asymptotic normality
characterization fails to hold:

Example Let K � := {0} ⊂ R be a singleton. As S0 ∼= {−1, 1}, the random variables
u(i) are±1 u.a.r. Further, hK � (u) = 0 for all u and the support function measurements
are simply y(i) = ε(i) for all i = 1, . . . , n. ForC being either a simplexor a spectraplex,
the set MK �,C = {0} ⊂ L(Rq ,R) is a singleton consisting only of the zero map. First,
we consider fitting K � with the choice of C = �1 ⊂ R

1. Then we have Ân =
(1/n)

∑n
i=1 ε(i)u(i), from which it follows that

√
n( Ân − 0) is normally distributed

with mean zero and variance σ 2—this is in agreement with Theorem 3.4. Second, we
consider fitting K � with the choice C = �2 ⊂ R

2. Define U− = {i | ui = −1} and
U+ = {i | ui = 1}, and

α− = − 1

|U−|
∑

i∈U−
ε(i) and α+ = 1

|U+|
∑

j∈U+
ε( j).

Then K̂ C
n = {x | α− ≤ x ≤ α+} if α− ≤ α+ and K̂ C

n = {
(1/n)

∑n
i=1 ε(i)u(i)

}

otherwise. Notice that α− and α+ have the same distribution, and hence K̂ C
n is a closed

interval with non-empty interior w.p. 1/2, and is a singleton w.p. 1/2. Thus, one can
see that the linear map Ân does not satisfy an asymptotic normality characterization.
The reason for this failure is that the function �C ( · , PK � ) is twice differentiable
everywhere excluding the line {(c, c) | c ∈ R}; in particular, it is not differentiable at
the minimizer (0, 0).

The above example is an instance where the function �C ( · , PK � ) is not twice differ-
entiable at Â. The manner in which an asymptotic characterization of {K̂ C

n }∞n=1 fails
in instances where MK �,C contains multiple orbits is also qualitatively similar. Next,
we consider a series of examples in which the conditions of Theorem 3.4 hold, thus
enabling an asymptotic normality characterization behavior of K̂ C

n . To simplify our
discussion, we describe settings in which the choices of C and A� satisfy the condi-
tions of Corollary 3.6, which leads to simple formulas for the second derivative  of
the map A �→ �C (A, PK � ) at A�.

Polyhedral Examples

We present two examples in which K � is polyhedral, and we choose C = �q where
q is the number of vertices of K �. With this choice, the set MK �,C comprises linear
maps A ∈ L(Rq ,Rd) whose columns are the extreme points of K �.

Proposition 3.7 Let K � be a polytope with q extreme points and let A� be the linear
map whose columns are the extreme points of K � (in any order). The second derivative
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of �C ( · , P) at A� is given by (D) =∑q
j=1

∫
u∈HA�, j

〈u ⊗ e j , D〉u ⊗ e j du, where

HA, j := {u ∈ Sd−1 | uT Ae j > uT Aek for all k  = j}.
Proof Let A ∈ L(Rq ,Rd) be a linear map whose columns are pairwise distinct. Then
the set VA := {u | uT Aei = uT Ae j , 1 ≤ i < j ≤ d} is a subset of Sd−1 withmeasure
zero. We note that the function hC ( · ) is differentiable at AT u whenever u ∈ Sd−1 \
{VA}, and hence the function hC (AT u) is differentiable with respect to u P-a.e. By
Proposition 2.9, the derivative of�C ( · , P) at A is 2EP [(hC (AT u)− y)u⊗eC (AT u)].

The subset of linear maps whose columns are pairwise distinct is open. Hence the
derivative of �C ( · , P) exists in a neighborhood of A�. It is clear that the derivative is
also continuous at A�. Finally, we note that the collection {HA�, j }qj=1 forms a disjoint

cover of Sd−1 up to a subset of measure zero, and apply Proposition 2.10 to conclude
the expression for . ��
We note that the operator  has block diagonal structure since each integral∫
u∈HA�, j

〈u ⊗ e j , D〉u ⊗ e j du is supported on a d × d dimensional sub-block. Sub-

sequently, by combining the conclusions of Theorem 3.1 and Proposition 3.7, we can
conclude the following about K̂ C

n : (i) it is a polytope with q extreme points, (ii) each
vertex of K̂ C

n is close to a distinct vertex of K �, (iii) the deviations (after scaling by a
factor of

√
n) between every vertex-vertex pair are asymptotically normal with inverse

covariance specified by a d × d block of , and further these deviations are pairwise
independent.

Example Let K � be the regular q-gon in R
2 with vertices vk := (cos(2kπ/q),

sin(2kπ/q))T , k = 0, . . . , q − 1. Let v̂n,k be the vertex of K̂ C
n closest to vk . The

deviation
√
n(v̂n,k − vk) is asymptotically normal with covariance 2σ 2M−1

k,k , where

Mk,k = I

q
+ sin(2π/q)

2π

(
cos(4kπ/q) sin(4kπ/q)

sin(4kπ/q) − cos(4kπ/q)

)
.

The eigenvalues of Mk,k are 1/q + (1/2π) sin(2π/q) and 1/q − (1/2π) sin(2π/q),
and the corresponding eigenvectors are (cos(2kπ/q), sin(2kπ/q))T and (sin(2kπ/q),

− cos(2kπ/q))T respectively. Consequently, the deviation v̂n,k − vk has magnitude
≈ σ

√
q/n in the direction vk , and has magnitude ≈ σ

√
3q3/π2n in the direction v⊥k .

Figure 2 shows K � as well as the confidence intervals (ellipses) of the vertices of K̂ C
n

for large n and q = 5.

Example Let K � be the 
∞-ball in R
d . For any vertex v of K �, let ŵn,v denote the

vertex of K̂ C
n closest to v. The deviation

√
n(ŵn,v − v) is asymptotically normal with

covariance 2σ 2M−1
v,v , where

Mv,v = 1

2dd

((
1− 2

π

)
I + 2

π
vvT

)
.

Hence thedeviation ŵn,v−v hasmagnitude≈ σ2(d+1)/2(2/π+(1−2/π)/d)−1/2n−1/2

in the span of v and magnitude ≈ σ2(d+1)/2(1 − 2/π)−1/2√d/n in the orthogonal
complement v⊥.
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Fig. 2 Estimating a regular pentagon as the projection of �5. In the limit (large n), the estimator K̂C
n is a

pentagon. The typical deviation of the vertices of K̂C
n from that of the pentagon (scaled by a factor of

√
n)

is represented by the surrounding ellipses

Non-Polyhedral Examples

Next we present two examples in which K � is non-polyhedral. Unlike the previous
polyhedral examples in which columns of the linear map Ãn map directly to vertices,
our description of K̂ C

n requires a different interpretation of Corollary 3.6 that is suitable
for sets with infinitelymany extreme points. Specifically, we characterize the deviation√
n( Ãn − A�) in terms of a perturbation to the set K � = A�(C) by considering the

image of C under the map
√
n( Ãn − A�).

Example Suppose K � = B‖·‖2(c) is the unit 
2-ball in R
d with center c. We con-

sider C := {(1, v)T | ‖v‖2 ≤ 1} ⊂ R
d+1, and A� is any linear map of the form

[c Q] ∈ L(Rd+1,Rd), where Q ∈ O(d,R) is any orthogonal matrix. Then the
restricted Hessian |T⊥ is a self-adjoint operator with rank d + (d+1

2

)
. The eigenvec-

tors of |T⊥ represent ‘modes of oscillations’, which we describe in greater detail. We
begin with the case d = 2, c = 0. The set resulting from the deviation

√
n( Ãn − A�)

applied toC can be decomposed into five differentmodes of perturbation (these exactly
correspond to the eigenvectors of the operator|T⊥ ). Parametrizing the extreme points
of A�(C) by {(cos θ sin θ)T | θ ∈ [0, 2π)}, the contribution of each mode at the point
(cos θ sin θ)T is a small perturbation in the directions (1 0)T , (0 1)T , (cos θ sin θ)T ,
(cos θ − sin θ)T , and (sin θ cos θ)T respectively—Fig. 3 provides an illustration. The
first and second modes represent oscillations of K̂ C

n about c, the third mode represents
dilation, and the fourth and fifth modes represent flattening. The analysis for a gen-
eral d is similar,with dmodes representing oscillations about c and

(d+1
2

)
modeswhose

contributions represent higher-dimensional analogs of flattening (of which dilation is
a special case).

Example Let K � be the spectral norm ball in S
2. The extreme points of K � consist

of three connected components: {I }, {−I }, and {UDUT | U ∈ SO(2,R)} where
D is a diagonal matrix with entries (1,−1). To simplify our discussion, we apply a
scaled isometry to K � so that {I }, {−I }, and {UDUT | U ∈ SO(2,R)} are mapped
to the points {(0, 0, 1)T }, {(0, 0,−1)T }, and {(cos θ, sin θ, 0)T | θ ∈ [0, 2π)} in R

3,
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(a) (1 0)T (b) (0 1)T (c) (cos θ sin θ)T (d) (cos θ − sin θ)T (e) (sin θ cos θ)T

Fig. 3 Modes of oscillations for an estimate of the 
2-ball in R2

respectively. We choose

C := {X ∈ O4 | X12 = X13 = X14 = X23 = X24 = X21

= X31 = X41 = X32 = X42 = 0} ∼= O1 ×O1 ×O2,
(18)

and A� to be the map defined by A�(X) = (〈A1, X〉, 〈A2, X〉, 〈A3, X〉)T where

A1 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟⎠ , A2 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ , A3 =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ .

For large n, K̂ C
n is a convex set with extreme points P1 and P2 near (0, 0, 1)T and

(0, 0,−1)T respectively, and a set of extreme points specified by an ellipse P3 near
{(cos θ, sin θ, 0)T | θ ∈ [0, 2π)}. The operator|⊥T is block diagonal with rank 14—it
comprises two 3-dimensional blocks 1 and 2 associated with P1 and P2, and an
8-dimensional block 3 associated with P3. One conclusion is that the distributions of
P1, P2, and P3 are asymptotically independent. Moreover, the deviations of P1 and P2
about {(0, 0, 1)T } and {(0, 0,−1)T } are asymptotically normalwith inverse covariance
specified by 1 and 2, respectively. We consider the behavior of P3 in further detail.
The operator 3 is the sum of an operator 3,xy with rank 5 describing the variation of
P3 in the xy-plane, and another operator 3,z with rank 3 describing the variation of
P3 in the direction of the z-axis. The operator 3,xy , when restricted to the appropriate
subspace and suitably scaled, is equal to the operator we encountered in the previous
example in the setting in which K � is the 
2-ball in R

2. The operator 3,z comprises
a single mode representing oscillations of P3 in the z direction (see subfigure (b) in
Fig. 4), and two modes representing “wobbling” of P3 with respect to the xy-plane
(see subfigures (c) and (d) in Fig. 4). The set C we consider in this example is the
intersection of the spectraplex O4 with an appropriate subspace specified by (18).
A natural question is if the same analysis holds for C = O4. Unfortunately, the
introduction of additional dimensions introduces degeneracies (in the form of zero
eigenvalues into |T⊥ ) which violates the requirements of Theorem 3.4.
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(a) Extreme points of K�
(b) (0, 0, 1)T (c) (0, 0, cos θ)T (d) (0, 0, sin θ)T

Fig. 4 Estimating K �, the spectral norm ball in S
2, as the projection of the set C (18). The above figure

describes the modes of oscillation corresponding to the set of extreme points of K̂C
n given by an ellipse

(see the above accompanying discussion). There are eight modes altogether—five occur in the xy-plane
described in Fig. 3 and the remaining three are shown in (b), (c), and (d)

3.2.2 Specialization of Theorem 3.4 to Linear Images of Spectraplices

Proposition 3.8 Let C be the spectraplex. Then the collection specified by (17) forms
a VC class.

Proof Define the polynomial

p(u, y, s, D, e1, e2, e3, e4) := 〈 ÂT u − y I , e1e
T
1 〉2

−〈( Â + D)T u − y I , e2e
T
2 〉2 − s〈e3, De4〉,

where e1, e2, e4 ∈ R
q and e3 ∈ R

d . By [31, Thm. 1], the following collection of sets
forms a VC class:

{{
(u, y, s)

∣∣∣ sup
‖e1‖≤1

inf‖e2‖,‖e3‖,‖e4‖≤1
p(u, y, s, D, e1, e2, e3, e4) ≥ 0

} ∣∣∣ D ∈ L(Rq ,Rd )

}
.

Similarly, by [31, Thm. 1], the collection {{(u, y, s) | s ≥ 0} | D ∈ L(Rq ,Rd)} also
forms a VC class. By [17, Lem. 9.7, p. 159], the collection of sets formed by taking
intersections of members of two VC classes is a VC class. Hence it follows that the
collection {(u, y, s) | (hC (( Â + D)T u) − y)2 − (hC ( ÂT u) − y)2 ≥ s‖D‖F ≥ 0} is
a VC class. Subsequently, by setting D = A − Â and by noting that a sub-collection
of a VC class is still a VC class, the collection {{(u, y, s) | dC,A, Â(u, y) ≥ s ≥ 0} |
A ∈ B‖·‖F( Â) \ { Â}} forms a VC class. A similar sequence of arguments shows that
the collection {{(u, y, s) | dC,A, Â(u, y) ≤ s ≤ 0} | A ∈ B‖·‖F( Â) \ { Â}} also forms a
VC class. Last, by [17, Lem. 9.7, p. 159], a union of VC classes is a VC class, and so
our result follows. ��

3.3 Preservation of Facial Structure

Our third result describes conditions under which the constrained estimator (2) pre-
serves the facial structure of the underlying set K �.We begin our discussion with some
stylized numerical experiments that illustrate various aspects that inform our subse-
quent theoretical development. First, we consider reconstruction of the 
1-ball in R

3
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Fig. 5 Reconstructions of the unit 
1-ball (left) inR3 from 200 noisy support function measurements using
our method with C = �6 (second from left), and with C = �12 (third from left). The LSE is the rightmost
figure

Fig. 6 Two reconstructions of the unit 
∞-ball in R
3 from 75 noisy support function measurements using

our method. The choice of lifting set is C = �8. The 
∞-ball is the leftmost figure, and the reconstructions
are the second and third figures from the left

from 200 noisy support function evaluations with the choices C = �6 and C = �12.
Figure 5 shows these reconstructions along with the LSE. When C = �6, our results
show a one-to-one correspondence between the faces of the reconstruction obtained
using our method (second subfigure from the left) with those of the 
1-ball (leftmost
subfigure); in contrast, we do not observe an analogous correspondence in the other
two cases.

Second, we consider reconstruction of the 
∞-ball in R
3 from 75 noisy support

function measurements with C = �8. From Fig. 6 we see that both reconstructions
(obtained from two different sets of 75 measurements) break most of the faces of the

∞-ball. In these examples the association between the faces of the underlying set
and those of the reconstruction is somewhat transparent as the sets are polyhedral.
The situation becomes more delicate with non-polyhedral sets. We describe next a
numerical experiment in which we estimate the Race Track in R

2 from 200 noisy
support function measurements with C = O4:

Race Track := conv
{
(x, y)T | ‖(x, y)T − (−1, 0)T ‖2 ≤ 1 or ‖(x, y)T − (1, 0)T ‖2 ≤ 1

}
.

From this experiment, it appears that the exposed extreme points of the Race Track
are recovered, although the two one-dimensional edges are not recovered and seem
to be distorted into curves. However, the exact correspondence between faces of the
Race Track and those of the reconstruction seems less clear (Fig. 7).

Our first technical contribution in this subsection is a formal notion of ‘preservation
of face structure’. Motivated by the preceding example, the precise manner in which
we do so is via the existence of an invertible affine transformation between the faces
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Fig. 7 Reconstructions of the Race Track from 200 noisy support function measurements using (2) with
C = O4

of the underlying set and the faces of the reconstruction. For analytical tractability,
our result focuses on exposed faces (faces that are expressible as the intersection of
the underlying set with a hyperplane).

Definition Let {Kn}∞n=1 ⊂ R
d be a sequence of compact convex sets converging to

some K ⊂ R
d . Let F ⊂ K be an exposed face. We say that F is preserved by the

sequence {Kn}∞n=1 if there is a sequence {Fn}∞n=n0 , Fn ⊆ Kn , such that:

(i) Fn → F .
(ii) Fn are exposed faces of Kn .
(iii) There is an invertible affine transformationbn such that F = bnFn and Fn = b−1

n F .

As our next contribution, we consider conditions under which exposed faces of K �

are preserved. To gain intuition for the types of assumptions that may be required,
we review the results of the numerical experiments presented above. In the setting
with K � being the 
1-ball in R

3, all the faces are simplicial and the reconstruction
with C = �6 preserves all the faces. In contrast, in the experiment with K � being the

∞-ball in R

3 and C = �8, some of the faces of the 
∞-ball are broken into smaller
simplicial faces in the reconstruction. These observations suggest that we should only
expect preservation of simplicial faces, at least in the polyhedral context. However, in
attempting to reconstruct the 
1-ball with C = �12, some of the simplicial faces of
the 
1-ball are broken into smaller simplicial faces in the reconstruction. This is due
to the overparametrization of the class of polytopes over which the regression (2) is
performed (polytopes with at most twelve vertices) relative to the complexity of the

1-ball (a polytope with six vertices). We address this point in our theorem via the
single-orbit condition discussed in Sect. 2.2, which also plays a role in Theorem 3.4.
Finally, in the non-polyhedral setting with K � being the Race Track and C = O4, the
two one-dimensional faces deform to curves in the reconstruction. This is due to the
fact that (generic) small perturbations to the linear image of O4 that gives K � lead
to a deformation of the edges of K � to curves. To ensure that faces remain robust to
perturbations of the linear images, we require that the normal cones associated to faces
that are to be preserved must be sufficiently large.

Theorem 3.9 Suppose that K � ⊆ R
d is a compact convex set with non-empty interior.

Let C ⊂ R
q be a compact convex set such that SpanC ∼= R

q . Suppose that there is a
linear map A� ∈ L(Rq ,Rd) such that K � = A�(C), and MK �,C = A� · AutC. Let
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{ Ân}∞n=1, Ân ∈ argminA �C (A, Pn,K � ), be a sequence of minimizers of the empirical

loss function, and let {K̂ C
n }∞n=1, K̂

C
n = Ân(C), be the corresponding sequence of

estimators of K �. Given an exposed face F� ⊂ K �, let G = {x | A�x ∈ F�} ∩ C be
its pre-image, and let NC (G) := {v | 〈v, x〉 ≥ 〈v, y〉 for all x ∈ G, y ∈ C} be the
normal cone of G w.r.t. C. If

(i) the linear map A� is injective when restricted to aff G, and
(ii) dim Span NC (G) > q − rank A�,

then F� is preserved by the sequence {K̂ C
n }∞n=1.

Before giving a proof of this result, we remark next on some of the consequences.

Remark Suppose K � is a full-dimensional polytope with q extreme points and we
choose C = �q . It is easy to see that there is a linear map A� such that K � = A�(�q)

and that MK �,�q = A� · Aut�q . Let F� ⊆ K � be any face (note that all faces of a
polytope are exposed), and let G be its pre-image in �q . Note that G is an exposed
face, and hence G is of the form {�x | x ≥ 0, 〈x, 1〉 = 1, xs+1 = . . . = xq = 0}
for some � ∈ Aut�q and some s ≤ q. The map A� being injective on aff G implies
that the image of G under A� is isomorphic to G; i.e., F� is simplicial. The normal
cone N�q (G) is given by {�z | z ≤ 0, z1 = . . . = zs = 0}, and the requirement
dim aff N�q (G) > q−rank A� holds precisely when s < d; i.e., the face F� is proper.
Thus, Theorem 3.9 implies that all proper simplicial faces of K � are preserved in the
reconstruction.

Remark Suppose K � is the image under A� of the spectraplex C = O p and that
MK �,C = A� · AutC . Let F� be an exposed face and let G be its pre-image in O p.
Then G is a face of O p, and is of the form

G =
{
UDUT

∣∣∣∣ D =
(
D11 0
0 0

)
, D11 ∈ Or

}

for some U ∈ O(p,R) and some r ≤ p. Note that

NO p (G) =
{
UDUT

∣∣∣∣ D =
(
0 0
0 −D22

)
, D22 ∈ S

p−r , D22 � 0

}
,

Thus, the requirement that dim aff NO p (G) >
(p+1

2

)− rank A� holds precisely when

d > pr−(r−1
2

)
. We consider this result in the context of our earlier example involving

the Race Track. Specifically, one can represent the Race Track as a linear image ofO4

given by the following linear map:

A�(X) =
(〈A1, X〉
〈A2, X〉

)
, A1 =

⎛

⎜⎜⎝

−1 1
1 −1

1 1
1 1

⎞

⎟⎟⎠ , A2 =

⎛

⎜⎜⎝

1
−1

1
−1

⎞

⎟⎟⎠ .
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It is clear that rank A� = 2. Let F� be the face connecting (−1, 0)T and (1, 0)T , and
let GO4 be the pre-image of F� in O4. One can check that

GO4 =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

x 0 0 0
0 0 0 0
0 0 y 0
0 0 0 0

⎞

⎟⎟⎠

∣∣∣∣ x, y ≥ 0, x + y ≤ 1

⎫
⎪⎪⎬

⎪⎪⎭
,

NO4(GO4) =

⎧
⎪⎪⎨

⎪⎪⎩
Z =

⎛

⎜⎜⎝

0 0 0 0
0 ∗ 0 ∗
0 0 0 0
0 ∗ 0 ∗

⎞

⎟⎟⎠

∣∣∣∣ Z " 0

⎫
⎪⎪⎬

⎪⎪⎭
.

It follows that dim aff NO4(GO4) = 3. As the dimension ofO4 is 10, our requirement
on dim aff NO4(GO4) is not satisfied.

Proof of Theorem 3.9 Aswenoted in the above, let Ãn ∈ argminA∈ Ân ·AutC ‖ Ân−A‖F,
and denote Fn = Ãn(G).

[Fn → F]: Since MK �,C = A� ·AutC , it follows from Theorem 3.1 that Ãn → A�,
from which we have Fn → F�.

[Fn are faces of Kn]: Since F� is an exposed face of K �, there exists y ∈ R
d and

c ∈ R such that 〈y, x〉 = c for all x ∈ F�, and 〈y, x〉 > c for all x ∈ K � \ F�. This
implies that 〈A�T y, x̃〉 = c for all x̃ ∈ G, and 〈A�T y, x̃〉 > c for all x̃ ∈ C \ G. In
particular, it implies that the row space of A� intersects the relative interior of NC (G)

in the direction A�y.
By combining the earlier conclusion that Ãn → A� a.s., and that dim Span NC (G))+

rank A� > q, we conclude that the row spaces of the maps Ãn eventually intersect the
relative interior of NC (G) a.s. That is to say, there are an integer n0 and sequences
{yn}∞n=n0 ⊂ R

d , {cn}∞n=n0 ⊂ R such that 〈yn, x〉 = cn for all x ∈ Fn , and 〈yn, x〉 > cn
for all x ∈ K̂ C

n \ Fn , n ≥ n0, a.s. In other words, the sets Fn are exposed faces of K̂ C
n

eventually a.s.

[One-to-one affine correspondence]: To establish a one-to-one affine correspondence
between Fn and F we need to treat the case where 0 ∈ aff G and the case where
0 /∈ aff G separately.

First suppose that 0 ∈ aff G. Let HF = aff F and HG = aff G. Since 0 ∈ HG , it
follows that HF and HG are subspaces. Moreover given that A� is injective restricted
to HG = aff G, it follows that HF and HG have equal dimensions. Hence the map
t defined as the restriction of A� onto L(HG, HF ) is square and invertible. Next let
HFn = aff Fn , and let tn denote the restriction of Ãn to L(HG , HFn ). Given that
Ãn → A�, the maps {tn}∞n=1 are also square and invertible eventually a.s. It follows
that one can define a linear map bn ∈ L(Rd ,Rd) that coincides with t ◦ t−1

n restricted
to L(HFn , HF ), is permitted to be any square invertible map on L(H⊥

Fn
, H⊥

F ), and is
zero everywhere else. Notice that bn is invertible by construction. It straightforward
to check that F = bnFn and Fn = b−1

n F .
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Next suppose that 0 /∈ aff G. The treatment in this case is largely similar as in the
previous case. Let HF be the smallest subspace containing {(x, 1) | x ∈ F} ⊆ R

d+1,
where the set F is embedded in the first d coordinates. Let HFn be similarly defined.
Let HG = aff (G ∪ {0})—note that this defines a subspace. Since 0 /∈ aff G, there is
a non-zero z ∈ R

q such that 〈z, x〉 = 1 for all x ∈ G (i.e., there exists a hyperplane
containing G). Define the linear map t ∈ L(HG, HF ) as

t = �HF

[(
A�

zT

) ∣∣∣∣
HG

]
,

where �HF is the projection map onto the subspace HF . Since A� is injective on G, it
follows that HF and HG have the same dimensions, and that t is square and invertible.
One can define a square invertible map tn analogously. The remainder of the proof
proceeds in a similar fashion to the previous case, and we omit the details. Here, note
that a linear invertible map operating on the lifted space Rd+1 defines an affine linear
invertible map in the embedded space Rd . ��

4 Algorithm

We describe a procedure based on alternating updates for solving the optimization
problem (2). In terms of the linear map A, the task of solving (2) can be reformulated
as follows:

argmin
A∈L(Rq ,Rd )

�(A, Pn) := 1

n

n∑

i=1

(y(i) − hC (AT u(i)))2. (19)

As described previously, the problem (19) is non-convex as formulated; consequently,
our approach is not guaranteed to return a globally optimal solution. However, we
demonstrate the effectiveness of thesemethodswith random initialization in numerical
experiments in Sect. 5.

We describe our method as follows. For a fixed A, we compute e(i) ∈ C , i =
1, . . . , n, so that 〈e(i), AT u(i)〉 = hC (AT u(i)), i.e., e(i) = eC (AT u(i)). With these
e(i)’s fixed, we update A by solving the following least squares problem:

argmin
A∈L(Rq ,Rd )

1

n

n∑

i=1

(y(i) − 〈e(i), AT u(i)〉)2. (20)

This least squares problem can sometimes be ill-conditioned, in which casewe employ
Tikhonov regularization (with debiasing); see Algorithm 1.

When specialized to the choice C = �q , our procedure reduces to the algorithm
proposed byMagnani and Boyd [20] for max-affine regression.More broadly, as noted
in [20], for C = �q our method is akin to Lloyd’s algorithm for K -means cluster-
ing [19]. Specifically, Lloyd’s algorithmbeginswith an initialization ofq centers, and it
alternates between (i) assigning data-points to centers based on proximity (keeping the
centers fixed), and (ii) updating the location of cluster centers tominimize the squared-
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loss error. In our context, suppose we express the linear map A = [a1| . . . |aq ] ∈ R
d×q

in terms of its columns. The algorithm begins with an initialization of the q columns,
and it alternates between (i) assigning measurement pairs (u(i), y(i)), 1 ≤ i ≤ n, to
the respective columns {a j }1≤ j≤q so that the inner product 〈u(i), a j 〉 is maximized
(keeping the columns fixed), and (ii) updating the columns {a j }1≤ j≤q to minimize the
squared-loss error.

Algorithm 1 Convex Regression via Alternating Minimization

Input: A collection {(u(i), y(i))}ni=1 ⊂ R
d × R of support function evaluations;

a compact convex set C ⊂ R
q ; an initialization A ∈ L(Rq ,Rd); a choice of

regularization parameter γ > 0
Algorithm: Repeat until convergence
1. [Update optimizers of support function] e(i) ← eC (AT u(i))

2. [Update A by solving (20) via Tikhonov regularization (with debiasing)]
A ← (V ⊗ V + γ I )−1(VY + γ A) where V ← (u(1) ⊗ e(1) | . . . | u(n) ⊗ e(n)),
Y ← (y(1), . . . , y(n))T

Output: Final iterate A

5 Numerical Experiments

In this section we describe the results of numerical experiments on fitting convex
sets to support function evaluations in which we contrast our framework based on
solving (2) to previous methods based on solving (1). The first few experiments are
on synthetically generated data, while the final experiment is on a reconstruction
problem with real data obtained from the Computed Tomography (CT) scan of a
human lung. For each experiment, we apply Algorithm 1 described in Sect. 4 with
multiple random initializations, and we select the solution that minimizes the least
squared error. The (polyhedral) LSE reconstructions in our experiments are based on
the algorithm proposed in [10, Sect. 4].

5.1 Reconstructing the �1-ball and the �2-ball

We consider reconstructing the 
1-ball {g | ‖g‖1 ≤ 1} ⊂ R
3 and the 
2-ball {g |

‖g‖2 ≤ 1} ⊂ R
3 from noiseless and noisy support function evaluations based on the

model (3). In particular, we evaluate the performance of our framework relative to the
reconstructions provided by the LSE for n = 20, 50, 200 measurements. For both the

1-ball and the 
2-ball in the respective noisy cases, the measurements are corrupted
with additive Gaussian noise of variance σ 2 = 0.1. The reconstructions based on our
framework (2) of the 
1-ball employ the choice C = �6, while those of the 
2-ball
use C = O3. Figures 8 and 9 give the results corresponding to the 
1-ball and the

2-ball, respectively.

Considering first a setting with noiseless measurements, we observe that our
approach gives an exact reconstruction for both the 
1-ball and the 
2-ball. For the

1-ball this occurs when we have n = 200 measurements, while the LSE provides a
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(a) 20 noiseless measurements (c) 200 noiseless measurements(b) 50 noiseless measurements

(d) 20 noisy measurements (e) 50 noisy measurements (f) 200 noisy measurements

Fig. 8 Reconstruction of the unit 
1-ball in R
3 from noiseless (first row) and noisy (second row) support

function measurements. The reconstructions obtained using our method (with C = �6 in (2)) are on the
left of every subfigure, while the LSE reconstructions are on the right of every subfigure

reconstructionwith substantiallymore complicated facial structure that does not reflect
that of the 
1-ball. Indeed, the LSE only approaches the 
1-ball with respect to the
Hausdorff metric, but despite being the best solution in terms of minimizing the least-
squares criterion, the reconstruction offered by this method provides little information
about the facial geometry of the 
1-ball. Further, even with n = 20, 50 measurements,
our reconstructions bear far closer resemblance to the 
1-ball, while the LSE in these
cases looks very different from the 
1-ball. For the 
2-ball, our approach provides an
exact reconstruction with just n = 20 measurements, while the LSE only begins to
resemble the 
2-ball with n = 200 measurements (and even then, the reconstruction
is a polyhedral approximation).

Turningour attention next to the noisy case, the contrast between the results obtained
using our framework and those of the LSE approach is even more stark. For both
the 
1-ball and the 
2-ball, the LSE reconstructions bear little resemblance to the
underlying convex set, unlike the estimates produced using our method. Notice that
the reconstructions of the 
2-ball using our algorithm are not even ellipsoidal when
the number of measurements is small (e.g., when n = 20), as linear images of the
spectraplexO3 may be non-ellipsoidal in general and need not even consist of smooth
boundaries. Nonetheless, as the number of measurements available to our algorithm
increases, the estimates improve in quality and offer improved reconstructions—with
smooth boundaries—of the 
2-ball.

In summary, these synthetic examples demonstrate that our framework is much
more effective than the LSE in terms of robustness to noise, accuracy of reconstruction
given a small number of measurements, and in settings in which the underlying set is
non-polyhedral.

5.2 Reconstruction via Linear Images of the Spectraplex

In the next series of synthetic experiments, we consider reconstructions of convex sets
with both smooth and non-smooth features on the boundary via linear images of the
spectraplex. In these illustrations, we consider sets inR2 and inR3 for which noiseless
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(a) 20 noiseless measurements (b) 50 noiseless measurements (c) 200 noiseless measurements

(d) 20 noisy measurements (e) 50 noisy measurements (f ) 200 noisy measurements

Fig. 9 Reconstruction of the unit 
2-ball in R
3 from noiseless (first row) and noisy (second row) support

function measurements. The reconstructions obtained using our method (with C = O3 in (2)) are on the
left of every subfigure, while the LSE reconstructions are on the right of every subfigure

Fig. 10 Approximating the 
1-ball in R
2 as a projection of the spectraplices O2 (left), O3 (center), and

O4 (right)

Fig. 11 Approximating the 
1-ball in R
3 as a projection of the spectraplices O3, O4, O5, and O6 (from

left to right)

support function evaluations are obtained and supplied as input to the problem (2),
with C equal to a spectraplex O p for different choices of p. For the examples in R

2,
the support function evaluations are obtained at 1000 equally spaced points on the unit
circle S1. For the examples inR3, the support function evaluations are obtained at 2562
regularly spaced points on the unit sphere S2 based on an icosphere discretization.

We consider reconstruction of the 
1-ball in R
2 and in R

3. Figure 10 shows the
output from our algorithm when d = 2 for p ∈ {2, 3, 4}, and the reconstruction is
exact for p = 4. Figure 11 shows the output from our algorithm when d = 3 for
p ∈ {3, 4, 5, 6}. Interestingly, when d = 3 the computed solution for p = 5 does
not contain any isolated extreme points (i.e., vertices) even though such features are
expressible as projections of the spectraplex O5.
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Fig. 12 Reconstructions of K � (defined in (21)) as the projection of O3 (top row) and O4 (bottom row).
The figures in each row are different views of a single reconstruction, and are orientated in the (0, 0, 1),
(0, 1, 0), (1, 0, 1), and (1, 1, 0) directions (from left to right) respectively

As our next illustration, we consider the following projection of O4:

UPillow = {(x, y, z)T | X ∈ O4, X12 = X21 = x,

X23 = X32 = y, X34 = X43 = z
} ⊂ R

3.
(21)

We term this convex set the ‘uncomfortable pillow’ and it contains both smooth and
non-smooth features on its boundary. Figure 12 shows the reconstruction of UPillow
as linear images of O3 and O4 computed using our algorithm. The reconstruction
based on O4 is exact, while the reconstruction based on O3 smoothens out some of
the ‘pointy’ features of UPillow; see for example the reconstructions based onO3 and
on O4 viewed in the (0, 1, 0) direction in Fig. 12).

5.3 Polyhedral Approximations of the �2-Ball and the Tammes Problem

In the third set of synthetic experiments, we consider polyhedral approximations of the

2-ball in R3. This problem has been studied in many contexts under different guises.
For instance, the Tammes problem seeks the optimal placement of q points on S2 so
as to maximize the minimum pairwise distance, and it is inspired by pattern formation
in pollens [32].2 Another body of work studies the asymptotics of polyhedral approx-
imations of general compact convex bodies (see, for example [5]). In the optimization
literature, polyhedral approximations of the second-order cone have been investigated
in [4]—in particular, the approach in [4] leads to an approximation that is based on
expressing the 
2-ball via a nested hierarchy of planar spherical constraints, and to
subsequently approximate these constraints with regular polygons.

Our focus in the present series of experiments is to investigate polyhedral approx-
imations of the Euclidean sphere from a computational perspective by employing the

2 The Tammes problem is a special case of Thompson’s problem as well as Smale’s 7th problem [29].
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Fig. 13 Approximating the 
2-ball in R3 as the projection of �q for q ∈ {4, 5, . . . , 12} (from left to right)

algorithmic tools developed in this paper. The experimental setup is similar to that of
the previous subsection: we supply 2562 regularly-spaced points in S2 (with corre-
sponding support function values equal to one) based on an icosphere discretization as
input to (2), and we select C to be the simplex�q for a range of values of q. Figure 13
shows the optimal solutions computed using our method for q ∈ {4, 5, . . . , 12}. It
turns out that the results obtained using our approach are closely related for certain
values of q to optimal configurations of the Tammes problem [7,28]:

argmax
{a j }qj=1⊂Sd−1

min
1≤k<l≤q dist(ak, al) = argmin

{a j }qj=1⊂Sd−1

max
1≤k<l≤q〈ak, al〉. (22)

Specifically, the face lattice of our solutions is isomorphic to that of the Tammes
problem forq ∈ {4, 5, 6, 7, 12}, which suggests that these configurations are stable and
optimal for a broader class of objectives. We are currently not aware if the distinction
between the solutions to the two sets of problems for q ∈ {8, 9, 10, 11} is a result
of our method recovering a locally optimal solution (in generating these results, we
apply 500 initializations for each instance of q), or if it is inherently due to the different
objectives that the two problems seek to optimize. For the case of q = 8, the difference
appears to be due to the latter reason as an initialization supplied to our algorithm based
on a configuration that is isomorphic to the Tammes solution led to a suboptimal local
minimum.

5.4 Reconstruction of a Human Lung

In the final set of experiments we apply our algorithm to reconstruct a convex mesh
of a human lung. The purpose of this experiment is to demonstrate the utility of
our algorithm in a setting in which the underlying object is not convex. Indeed, in
many applications in practice of reconstruction from support function evaluations, the
underlying set of interest is not convex; however, due to the nature of themeasurements
available, one seeks a reconstruction of the convex hull of the underlying set. In the
present example, the set of interest is obtained from the CT scan of the left lung of a
healthy individual [9]. We note that a priori it is unclear whether the convex hull of
the lung is well approximated as a linear image of either a low-dimensional simplex
or a low-dimensional spectraplex.

We first obtain n = 50 noiseless support function evaluations of the lung (note
that this object lies in R

3) in directions that are generated uniformly at random over
the sphere S2. In the top row of Fig. 14 we show the reconstructions as projections
of Oq for q ∈ {3, 4, 5, 6}, and we contrast these with the LSE. We repeat the same
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(a) O3 (b) O4 (c) O5 (d) O6 (e) LSE

(f) O3 (g) O4 (h) O5 (i) O6 (j) LSE

Fig. 14 Reconstructions of the left lung from 50 support function measurements (top row) and 300 support
function measurements (bottom row). Subfigures (a)–(d) and (f)–(i) are projections of spectraplices with
dimensions as indicated, and subfigures (e) and (j) are LSEs

experiment with n = 300measurements, with the reconstructions shown in the bottom
row of Fig. 14.

To concretely compare the results obtained using our framework and those based on
the LSE, we contrast the description complexity—the number of parameters used to
specify the reconstruction—of the estimates obtained from both frameworks. An esti-
mator computed using our approach is specified by a projection map A ∈ L(Rq ,Rd),
and hence it requires dq parameters, while the LSE proposed by the algorithm in [10]
assigns a vertex to every measurement, and hence it requires dn parameters. The LSE
using n = 300 measurements requires 3 × 300 parameters to specify whereas the
estimates obtained using our framework that are specified as projections of O5 and
O6—these estimates offer comparable quality to those of the LSE—require 3 × 15
and 3×21 parameters, respectively. This substantial discrepancy highlights the draw-
back of using polyhedral sets of growing complexity to approximate non-polyhedral
objects in higher dimensions.

6 Conclusions and Future Directions

In this paper we describe a framework for fitting tractable convex sets to noisy support
function evaluations. Our approach provides many advantages in comparison to the
previous LSE-based methods, most notably in settings in which the measurements
available are noisy or small in number as well as those in which the underlying set to
be reconstructed is non-polyhedral. We discuss here some potential future directions.
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Fig. 15 Choosing the lifting dimension in a data-drivenmanner. The left sub-plot shows the cross-validation
error of reconstructing the 
1-ball in R

3 as the projection of �q over different choices of q, and the right
sub-plot shows the same quantity for KS3 ⊂ R

3 (see accompanying text) as the projection of Op over
different choices of p

Informed selection of model complexity In practice, a suitable choice of the dimen-
sion of the simplex or the spectraplex to employ in (2) may not be available in advance.
Lower-dimensional choices for C provide more concisely-described reconstructions
but may not fit the data well, while higher-dimensional choices provide better fidelity
to the data at the risk of overfitting. Consequently, it is of practical relevance to develop
methods to select C in a data-driven manner. We describe next a stylized experiment
to choose C via cross-validation.

In the first illustration, we are given 100 support function measurements of the

1-ball inR3 corrupted by Gaussian noise with standard deviation σ = 0.1. We obtain
50 random partitions of this data into two subsets of equal size. For each partition, we
solve (2) with C = �q (with different choices of q) on the first subset and evaluate
the mean-squared error on the second subset. The left subplot of Fig. 15 shows the
average mean-squared error over the 50 partitions. We observe that initially the error
decreases as q increases as a more expressive model allows us to better fit the data, and
subsequently, the error plateaus out. Consequently, in this experiment an appropriate
choice ofC would be�6. In our second illustration, we are given 200 support function
measurements corrupted by Gaussian noise with standard deviation σ = 0.05 of a set
KS3 = conv(S1 ∪ S2 ∪ S3) ⊂ R

3, where S1, S2, S3 are defined as follows. For
j = 1, 2, 3:

S j = Q j

⎛

⎝

⎧
⎨

⎩

⎛

⎝
cos θ

1
sin θ

⎞

⎠
∣∣∣ θ ∈ R

⎫
⎬

⎭

⎞

⎠ , Q j =
⎛

⎝
cos(2π j/3) − sin(2π j/3) 0
sin(2π j/3) cos(2π j/3) 0

0 0 1

⎞

⎠ .

In words, the sets S1, S2, S3 are disjoint planar discs. One can check that KS3 is
representable as a linear image of O6. The other aspects remain the same as in the
first illustration, and as we observe from the right subplot of Fig. 15, an appropriate
choice for C would be O6.
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Approximation power of semidefinite descriptions Theorem 3.1 demonstrates that
our estimator converges almost surely to the linear image of C that best approximates
the underlying set K �. Consequently, a natural question is to understand the quality of
the approximation of general convex bodies provided by linear images of the simplex
(i.e., polytopes) or the spectraplex. There is a substantial body of priorwork that studies
approximations of convex bodies via polytopes (see, for instance [5]), but an analogous
theory for approximations that are specified as linear images of the spectraplex as
well as the more general collection of feasible regions of semidefinite programs is
far more limited—the closest piece of work of which we are aware is a result by
Barvinok [3]. Progress on these fronts would be useful for understanding the full
expressive power of our framework.More generally, and as noted in [3], obtaining even
a basic understanding about the approximation power of such descriptions has broad
algorithmic implications concerning the use of semidefinite programs to approximate
general convex programs.

Richer families of tractable convex sets A restriction in the development in this
paper is that we only consider reconstructions specified as linear images of a fixed
convex set C ; we typically choose C to be a simplex or a spectraplex, which are given
by particular slices of the non-negative orthant or the cone of positive semidefinite
matrices.As described in the introduction, optimizingovermore general affine sections
of these cones is likely to be intractable due to the lack of a compact description of
the sensitivity of the optimal value of conic optimization problems with respect to
perturbations of the affine section. Consequently, it would be useful to identify broader
yet structured families of sets than the ones we have considered in this paper for which
such a sensitivity analysis is efficiently characterized.
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