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Abstract Regularization techniques are widely employed in optimization-based
approaches for solving ill-posed inverse problems in data analysis and scientific com-
puting. These methods are based on augmenting the objective with a penalty function,
which is specifiedbasedonprior domain-specific expertise to induce a desired structure
in the solution. We consider the problem of learning suitable regularization functions
from data in settings in which precise domain knowledge is not directly available. Pre-
vious work under the title of ‘dictionary learning’ or ‘sparse coding’ may be viewed
as learning a regularization function that can be computed via linear programming.
We describe generalizations of these methods to learn regularizers that can be com-
puted and optimized via semidefinite programming. Our framework for learning such
semidefinite regularizers is based on obtaining structured factorizations of data matri-
ces, and our algorithmic approach for computing these factorizations combines recent
techniques for rank minimization problems along with an operator analog of Sinkhorn
scaling. Under suitable conditions on the input data, our algorithm provides a locally
linearly convergent method for identifying the correct regularizer that promotes the
type of structure contained in the data. Our analysis is based on the stability properties
of Operator Sinkhorn scaling and their relation to geometric aspects of determinantal
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varieties (in particular tangent spaces with respect to these varieties). The regularizers
obtained using our framework can be employed effectively in semidefinite program-
ming relaxations for solving inverse problems.

Keywords Atomic norm ·Convex optimization · Low-rank matrices ·Nuclear norm ·
Operator scaling · Representation learning
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1 Introduction

Regularization techniques are widely employed in the solution of inverse problems in
data analysis and scientific computing due to their effectiveness in addressing difficul-
ties due to ill-posedness. In their most common manifestation, these methods take the
form of penalty functions added to the objective in optimization-based approaches for
solving inverse problems. The purpose of the penalty function is to induce a desired
structure in the solution, and these functions are specified based on prior domain-
specific expertise. For example, regularization is useful for promoting smoothness,
sparsity, low energy, and large entropy in solutions to inverse problems in image anal-
ysis, statistical model selection, and the geosciences [10,12,13,16,17,22,43,50,61].
In this paper, we study the question of learning suitable regularization functions from
data in settings in which precise domain knowledge is not directly available. The
regularizers obtained using our framework are specified as convex functions that can
be computed efficiently via semidefinite programming, and therefore, they can be
employed in tractable convex optimization approaches for solving inverse problems.

We begin our discussion by highlighting the geometric aspects of regularizers that
make them effective in promoting a desired structure. In particular, we focus on a
family of convex regularizers that are useful for inducing a general form of sparsity in
solutions to inverse problems. Sparse data descriptions provide a powerful formalism
for specifying low-dimensional structure in high-dimensional data, and they feature
prominently in a range of problem domains. For example, natural images are often
well approximated by a small number of wavelet coefficients, financial time seriesmay
be characterized by low-complexity factor models, and a small number of genetic
markers may constitute a signature for disease. Concretely, suppose A ⊂ R

d is a
(possibly infinite) collection of elementary building blocks or atoms. Then, y ∈ R

d

is said to have a sparse representation using the atomic setA if y can be expressed as
follows:

y =
k∑

i=1
ciai , ai ∈ A, ci ≥ 0,

for a relatively small number k. As an illustration, if A = {±e( j)}dj=1 ⊂ R
d is the

collection of signed standard basis vectors inRd , then concisely described objects with
these atoms are those vectors in R

d consisting of a small number of nonzero coordi-
nates. Similarly, if A is the set of rank-one matrices, then the corresponding sparsely
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represented entities are low-rank matrices; see [16] for a more exhaustive collection
of examples. An important virtue of sparse descriptions based on an atomic set A is
that employing the atomic norm induced by A—the gauge function of the atomic set
A—as a regularizer in inverse problems offers a natural convex optimization approach
for obtaining solutions that have a sparse represention using A [16]. Continuing with
the examples of vectors with few nonzero coordinates and of low-rank matrices, reg-
ularization with the �1 norm (the gauge function of the signed standard basis vectors)
and with the matrix nuclear norm (the gauge function of the unit Euclidean norm
rank-one matrices) are prominent techniques for promoting the corresponding sparse
descriptions in solutions to inverse problems [12,13,17,22,26,43,50,61]. The reason
for the effectiveness of atomic norm regularization is the favorable facial structure of
the convex hull of A, which has the feature that all its low-dimensional faces contain
points that have a sparse description using A. Indeed, in many contemporary data
analysis applications the solutions of regularized optimization problems with generic
input data tend to lie on low-dimensional faces of sublevel sets of the regularizer
[14,22,50]. Based on this insight, atomic norm regularization has been shown to be
effective in a range of tasks such as statistical denoising, model selection, and system
identification [8,47,54].

The difficulty with employing an atomic norm regularizer in practice is that one
requires prior domain knowledge of the atomic setA—the extreme points of the atomic
norm ball—that underlies a sparse description of the desired solution in an inverse
problem.While such information may be available based on domain expertise in some
problems (e.g., certain classes of signals having a sparse representation in a Fourier
basis), identifying a suitable atomic set is challenging formany contemporary data sets
that are high-dimensional and are typically presented to an analyst in an unstructured
fashion. In this paper, we study the question of learning a suitable regularizer directly
from observations {y( j)}nj=1 ⊂ R

d of a collection of structured signals or models
of interest. Specifically, as motivated by the preceding discussion, our objective is
to identify a norm ‖·‖ in R

d such that each y( j)/‖y( j)‖ lies on a low-dimensional
face of the unit ball of ‖·‖. An equivalent formulation of this question in terms of
extreme points is that we want to obtain an atomic set A such that each y( j) has a
sparse representation usingA; the corresponding regularizer is simply the atomic norm
induced byA. A normwith these characteristics is adapted to the structure contained in
the data {y( j)}nj=1, and it can be used subsequently as a regularizer in inverse problems

to promote solutions with the same type of structure as in the collection {y( j)}nj=1.
When considered in full generality, our question is somewhat ill-posed for several

reasons. First, if ‖·‖ is a norm that satisfies the properties described above with respect
to the data {y( j)}nj=1, then so doesα‖·‖ for any positive scalarα. This issue is addressed
by learning a norm from a suitably scaled class of regularizers. A second source of
difficulty is that the Euclidean norm ‖·‖�2 trivially satisfies our requirements for a
regularizer as each y( j)/‖y( j)‖�2 is an extreme point of the Euclidean norm ball inRd ;
indeed, this is the regularizer employed in ridge regression. The atomic set in this case
is the collection of all points with Euclidean norm equal to one, i.e., the dimension
of this set is d − 1. However, data sets in many applications throughout science and
engineering arewell approximated as sparse combinations of elements of atomic sets of
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much smaller dimension [7,10,16,21,37,46,49]. Identifying such lower-dimensional
atomic sets is critical in inverse problems arising in high-dimensional data analysis in
order to address the curse of dimensionality; in particular, as discussed in some of these
preceding references, the benefits of atomic norm regularization in problemswith large
ambient dimension d are a consequence of measure concentration phenomena that
crucially rely on the small dimensionality of the associated atomic set in comparison
with d. We circumvent this second difficulty in learning a regularizer by considering
atomic setswith appropriately bounded dimension.A third challengewith our question
as it is stated is that the gauge function of the set {±y( j)/‖y( j)‖�2}nj=1 also satisfies the
requirements for a suitable atomic norm as each y( j)/‖y( j)‖�2 is an extreme point of
the unit ball of this regularizer. However, such a regularizer suffers from overfitting and
does not generalize well as it is excessively tuned to the data set {y( j)}nj=1. Further, for
large n this gauge function becomes intractable to characterize and it does not offer a
computationally efficient approach for regularization. We overcome this complication
by considering regularizers that have effectively parametrized sets of extreme points
and consequently are tractable to compute.

The problem of learning a suitable polyhedral regularizer—an atomic norm with a
unit ball that is a polytope—from data points {y( j)}nj=1 corresponds to identifying an
appropriate finite atomic set to concisely describe each y( j). This problem is equivalent
to the question of ‘dictionary learning’ (also called ‘sparse coding’) on which there is a
substantial amount of prior work [1–6,33,46,52,53,56,59,60,65] (see also the survey
articles in [25,41]). To see this connection, suppose without loss of generality that we
parametrize a finite atomic set via a matrix L ∈ R

d×p so that the columns of L and
their negations specify the atoms. The associated atomic norm ball is the image under
L of the �1 ball in R

p. The columns of L are typically scaled to have unit Euclidean
norm to address the scaling issues mentioned previously (see Sect. 2.4). The number
of columns pmay be larger than d (i.e., the ‘overcomplete’ regime), and it controls the
complexity of the atomic set as well as the computational tractability of describing the
atomic norm. With this parametrization, learning a polyhedral regularizer to promote
the type of structure contained in {y( j)}nj=1 may be viewed as obtaining a matrix L

(given a target number of columns p) such that each y( j) is well approximated as Lx( j)

for a vector x( j) ∈ R
p with few nonzero coordinates. Computing such a representation

of the data is precisely the objective in dictionary learning, although this problem is
typically not phrased as a quest for a polyhedral regularizer in the literature.We remark
further on some recent algorithmic developments in dictionary learning in Sects. 1.3.1
and 2.4, and we contrast these with the methods proposed in the present paper.

1.1 From Polyhedral to Semidefinite Regularizers

The objective of this paper is to investigate the problem of learning more general non-
polyhedral atomic norm regularizers; in other words, the associated set of extreme
points may be infinite. On the approximation-theoretic front, infinite atomic sets offer
the possibility of concise descriptions of data sets with much richer types of structure
than those with a sparse representation using finite atomic sets; in turn, the associated
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regularizers could promote a broader class of structured solutions to inverse problems
than polyhedral regularizers. On the computational front, many families of convex
optimization problems beyond linear programs can be solved tractably and reliably
[45]. However, building on the challenges outlined previously, there are two important
factors in identifying non-polyhedral regularizers from data. First, it is crucial that
any infinite atomic set A we consider has an effective parametrization so that it is
tractable to characterize data that have a sparse representation using the elements
of A. Second, we require that the convex hull of the atomic set A has an efficient
description so that the associated atomic norm provides a computationally tractable
regularizer. As described next, we address these concerns by considering atomic sets
that are efficiently parametrized as algebraic varieties (of a particular form) and that
have convex hulls with tractable semidefinite descriptions. Thus, previous efforts in
the dictionary learning literature on identifying finite atomic sets may be viewed
as learning zero-dimensional ideals, whereas our approach corresponds to learning
atomic sets that are larger-dimensional varieties. From a computational viewpoint,
dictionary learning provides atomic norm regularizers that are computed via linear
programming, while our framework leads to semidefinite programming regularizers.
Consequently, although our framework is based on a much richer family of atomic
sets in comparison with the finite sets considered in dictionary learning, we still retain
efficiency of parametrization and computational tractability based on semidefinite
representability.

Formally, we consider atomic sets in Rd that are images of rank-one matrices:

Aq(L) = {
L

(
uv′

) | u, v ∈ R
q , ‖u‖�2 = 1, ‖v‖�2 = 1

}
, (1)

where L : Rq×q → R
d specifies a linear map. We focus on settings in which the

dimension q is such that q2 > d, so the atomic setsAq(L) that we study in this paper
are projections of rank-one matrices from a larger-dimensional space (in analogy to
the overcomplete regime in dictionary learning). By construction, elements of Rd

that have a sparse representation using the atomic set Aq(L) are those that can be
specified as the image under L of low-rank matrices in R

q×q . As the convex hull of
unit Euclidean norm rank-one matrices in Rq×q is the nuclear norm ball in Rq×q , the
corresponding atomic norm ball is given by:

conv
(
Aq(L)

) = {
L(X) | X ∈ R

q×q , ‖X‖� ≤ 1
}
, (2)

where ‖X‖� := ∑
i σi (X). As the nuclear norm ball has a tractable semidefinite

description [26,50], the atomic norm induced by Aq(L) can be computed efficiently
using semidefinite programming.

Given a collection of data points {y( j)}nj=1 ⊂ R
d and a target dimension q, our

goal is to find a linear map L : Rq×q → R
d such that each y( j), upon normalization

by the gauge function of Aq(L), lies on a low-dimensional face of conv(Aq(L)).
For each y( j) to have this property, it must have a sparse representation using the
atomic set Aq(L); that is, there must exist a low-rank matrix X ( j) ∈ R

q×q with
y( j) = L(X ( j)). The matrix X ( j) provides a concise description of y( j) ∈ R

d in the
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Dictionary learning Our work

Atomic set

{±Le(i) | e(i) ∈ R
p is the i’th {L(uv′) | u,v ∈ R

q ,
standard basis vector} ‖u‖�2 = ‖v‖�2 = 1}

L : Rp → R
d (linear map) L : Rq×q → R

d (linear map)

Algebraic/geometric Zero-dimensional ideal Image of determinantal varietystructure of atoms
Concisely specified Image under L of Image under L of

data using atomic set sparse vectors low-rank matrices

Atomic norm ball
{
Lx | x ∈ R

p, ‖x‖�1 ≤ 1
} {L(X) | X ∈ R

q×q , ‖X‖� ≤ 1
}

Computing atomic Linear programming Semidefinite programmingnorm regularizer
Learning regularizer Identify L and sparse x(j) ∈ R

p Identify L and low-rank X(j) ∈ R
q×q

from data {y(j)}n
j=1 such that y(j) ≈ Lx(j) for each j such that y(j) ≈ L(X(j)) for each j

Fig. 1 A comparison between prior work on dictionary learning and the present paper

higher-dimensional spaceRq×q . Consequently, the problemof learning a semidefinite-
representable regularizer with a unit ball that is a linear image of the nuclear norm ball
may be phrased as one of matrix factorization. In particular, let Y = [y(1)| · · · |y(n)] ∈
R
d×n denote the data matrix, and let Li ∈ R

q×q , i = 1, . . . , d be the matrix that
specifies the linear functional corresponding to the i’th component of a linear map
L : Rq×q → R

d . Then, our objective can be viewed as one of finding a collection of
matrices {Li }di=1 ⊂ R

q×q specifying linear functionals and a set of low-rank matrices
{X ( j)}nj=1 ⊂ R

q×q specifying concise descriptions such that:

Yi, j =
〈
Li , X

( j)
〉

i = 1, . . . , d, j = 1, . . . , n. (3)

Here 〈A, B〉 = trace(A′B) denotes the trace inner product between matrices. Note
the distinction with dictionary learning in which one seeks a factorization of the data
matrix Y such that the X ( j)’s are sparse vectors as opposed to low-rank matrices as in
our approach. Figure 1 summarizes the key differences between dictionary learning
and the present paper.

1.2 An Alternating Update Algorithm for Matrix Factorization

Achallengewith identifying a semidefinite regularizer by factoring a given datamatrix
as in (3) is that such a factorization is not unique. Specifically, consider any linear
map M : Rq×q → R

q×q that is a rank-preserver, i.e., rank(M(X)) = rank(X) for
all X ∈ R

q×q ; examples of rank-preservers include operators that act via conjuga-
tion by non-singular matrices and the transpose operation. If each y( j) = L(X ( j))

for a linear map L and low-rank matrices {X ( j)}nj=1, then we also have that each

y( j) = L ◦ M−1(M(X ( j))), where by construction each X ( j) has the same rank as
the corresponding M(X ( j)). This non-uniqueness presents a difficulty as the image
of the nuclear norm ball under a linear map L is, in general, different than it is under
L ◦M−1 for an arbitrary rank-preserver M . Consequently, due to its invariances the
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factorization (3) does not uniquely specify a regularizer. We investigate this point in
Sect. 2.2 by analyzing the structure of rank-preserving linear maps, and we describe
an approach to associate a unique regularizer to a family of linear maps obtained from
equivalent factorizations. Our method entails putting linear maps in an appropriate
‘canonical’ form using the Operator Sinkhorn iterative procedure, which was devel-
oped by Gurvits to solve certain quantum matching problems [34]; this algorithm
is an operator analog of the diagonal congruence scaling technique for nonnegative
matrices developed by Sinkhorn [55].

In Sect. 2, we describe an alternating update algorithm to compute a factorization
of form (3). With the Li ’s fixed, updating the X ( j)’s entails the solution of affine rank
minimization problems. Although this problem is intractable in general [44], in recent
years several tractable heuristics have been developed and proven to succeed under
suitable conditions [30,36,50]. With the X ( j)’s fixed, the Li ’s are updated by solving
a least-squares problem followed by an application of the Operator Sinkhorn iterative
procedure to put the map L in a canonical form as described above. Our alternating
update approach is a generalization of methods that are widely employed in dictionary
learning for identifying finite atomic sets (see Sect. 2.4).

Section 3 contains the main theorem of this paper on the local linear convergence
of our alternating update algorithm. Specifically, suppose a collection of data points
{y( j)}nj=1 ⊂ R

d is generated as y( j) = L�(X ( j)�), j = 1, . . . , n for a linear map

L� : Rq×q → R
d that is nearly isometric restricted to low-rank matrices (formally,

L� satisfies a restricted isometry property [50]) and a collection {X ( j)�}nj=1 ⊂ R
q×q

of low-rank matrices that is isotropic in a well-defined sense. Given the data {y( j)}nj=1
as input, our alternating update approach is locally linearly convergent to a linear map
L̂ : Rq×q → R

d with the property that the image of the nuclear norm ball in R
q×q

under L̂ is equal to its image under L�, i.e., our procedure identifies the appropriate
regularizer that promotes the type of structure contained in the data {y( j)}nj=1; see
Theorem 3. Our analysis relies on geometric aspects of determinantal varieties (in
particular tangent spaces with respect to these varieties) and their relation to stability
properties of Operator Sinkhorn scaling.

We demonstrate the utility of our framework with a series of experimental results
on synthetic as well as real data in Sect. 4.

1.3 Related Work

1.3.1 Dictionary Learning

As outlined above, our approach for learning a regularizer from data may be viewed
as a semidefinite programming generalization of dictionary learning. The alternating
update algorithm we propose in Sect. 2.3 for computing a factorization (3) gener-
alizes similar methods previously developed for dictionary learning [1,3,4,46] (see
Sect. 2.4), and the local convergence analysis of our algorithm in Sect. 3 also builds on
previous analyses for dictionary learning [1,4]. In contrast to these previous results, the
development and the analysis of our method in the present paper are more challenging
due to the invariances and associated identifiability issues underlying the factorization
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(3), which necessitate the incorporation of the Operator Sinkhorn scaling procedure
in our algorithm.

An unresolved matter in our paper—one that has been investigated previously in
the context of dictionary learning—is the question of a suitable initialization for our
algorithm. In particular, our theory states that our algorithmexhibits linear convergence
to the desired solution provided the initial guess is sufficiently close to a linear map
that specifies the correct regularizer (in an appropriate metric). We employ random
initializations in our experiments with real data in Sect. 4.2, and these are useful in
identifying effective semidefinite regularizers that outperform polyhedral regularizers
obtained via dictionary learning. Random initialization is the most common technique
utilized in practice in dictionary learning as well as in many other structured matrix
factorization problems arising in data analysis. To build support for this idea, several
researchers have proven that random initialization succeeds with high probability in
recovering a desired factorization under suitable conditions in a number of problems
[29,58], including in a restricted form of dictionary learning [59,60] in which the
polyhedral regularizer is specified as the image of the �1 ball under an invertible
linear map (as described previously, dictionary learning in full generality allows for
polyhedral regularizers thatmaybe specified as an imageof the�1 ball under amany-to-
one linear map). In a different direction, some recent papers also describe data-driven
initialization strategies for dictionary learning based on variants of clustering [2,5]. It
would be of interest to develop both these sets of ideas in our context, and we comment
on this point in Sect. 5.

1.3.2 Lifts of Convex Sets

A second body of work with which our paper is conceptually related is the literature on
lift-and-project representations (or extended formulations) of convex sets. A tractable
lift-and-project representation refers to a description of a ‘complicated’ convex set in
R
d as the projection of a more concisely specified convex set in R

d ′ , with the lifted
dimension d ′ not being too much larger than the original dimension d. As discussed
in [32,66], obtaining a suitably structured factorization—of a different nature than
that considered in the present paper—of the slack matrix of a polytope (and more
generally, of the slack operator of a convex set) corresponds to identifying an efficient
lift-and-project description of the polytope. On the other hand, we seek a structured
factorization of a data matrix to identify a convex set (i.e., the unit ball of a regularizer)
with an efficient extended formulation and with the additional requirement that the
data points (upon suitable scaling) lie on low-dimensional faces of the set. This latter
stipulation arises in our context fromdata analysis considerations, and it is a distinction
between our setup and the optimization literature on extended formulations.

1.3.3 Sinkhorn Scaling

A third topicwithwhich our paper has synergies—and towhichwemake contributions
in the course of our analysis—is the literature on Sinkhorn scaling. This algorithm is
an iterative procedure for transforming an entrywise nonnegative matrix to a doubly
stochastic matrix by diagonal congruence scaling [55]. There is a substantial body of
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work on the properties of this algorithm (see [35] and the references therein) as well as
on its applications in domains such as combinatorial optimization (approximating the
permanent of amatrix [40]) and data analysis (efficiently computing distances between
probability distributions [19]). The operator analog of Sinkhorn scalingwas developed
by Gurvits, and this work was motivated by certain operator analogs of the bipartite
matching problem that arise in matroid theory [34]. To the best of our knowledge, our
work represents the first application of Operator Sinkhorn scaling in a problem in data
analysis. Further, in our investigation of the properties of Algorithm 1, we describe
results on the stability of Operator Sinkhorn scaling; these may be of independent
interest beyond the specific context of our paper (see “Appendix C”).

1.4 Paper Outline

In Sect. 2, we discuss our alternating update algorithm for computing the factorization
(3) based on an analysis of the invariances arising in (3). Section 3 gives the main
theoretical result concerning the local linear convergence of the algorithm described in
Sects. 2, and 4 describes numerical results obtained using our algorithm. We conclude
with a discussion of further research directions in Sect. 5.

Notation We denote the Euclidean norm by ‖·‖�2 . We denote the operator or spectral
norm by ‖·‖2. The kth largest singular value of a linear map is denoted by σk(·), and
the largest and smallest eigenvalues of a self-adjoint linear map are denoted by λmax(·)
and λmin(·), respectively. The space of q × q symmetric matrices is denoted S

q , and
the set of q × q symmetric positive-definite matrices is denoted S

q
++. The projection

map onto a subspace V is denotedPV . The restriction of a linear map M to a subspace
V is denoted by MV . Given a self-adjoint linear map M : V → V with V being a
subspace of a vector space V̄ , we denote the extension of M to V̄ by [M]V̄ : V̄ → V̄;
the component in V of the image of any x ∈ V̄ under this map is MPV (x), while the
component in V⊥ is the origin. Given a vector space V , we denote the set of linear
operators fromV toV byEnd(V).Givenmatrices A, B ∈ R

q×q , the linearmap A�B ∈
End(Rq×q) is specified as A � B : X → 〈B, X〉A. The Kronecker product between
two linear maps is specified using the standard⊗ notation. For a collection of matrices
X := {X ( j)}nj=1 ⊂ R

q×q , the covariance is specified as�(X) = 1
n

∑n
j=1 X ( j) � X ( j).

Two quantities associated with this covariance that play a role in our analysis are
Λ(X) = 1

2 (λmax(�(X))+ λmin(�(X))) and Δ(X) = 1
2 (λmax(�(X))− λmin(�(X))).

Given amatrix X ∈ R
q×q of rank r , the tangent space at X with respect to the algebraic

variety of q × q matrices of rank at most r is specified as1:

T (X) = {X A + BX | A, B ∈ R
q×q}.

1 A rank-r matrix X ∈ R
q×q is a smooth point with respect to the variety of q × q matrices of rank at

most r .
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2 An Alternating Update Algorithm for Learning Semidefinite
Regularizers

In this section, we describe an alternating update algorithm to factor a given data
matrix Y = [y(1)| · · · |y(n)] ∈ R

d×n as in (3). As discussed previously, the difficulty
with obtaining a semidefinite regularizer using a factorization (3) is the existence of
infinitely many equivalent factorizations due to the invariances underlying (3). We
begin by investigating and addressing this issue in Sects. 2.1 and 2.2, and then, we
discuss our algorithm to obtain a regularizer in Sect. 2.3. We contrast our method with
techniques that have previously been developed in the context of dictionary learning
in Sect. 2.4.

2.1 Identifiability Issues

Building on the discussion in the introduction, for a linear map L : Rq×q → R
d

obtained from the factorization (3) and for any linear rank-preserver M : Rq×q →
R
q×q , there exists an equivalent factorization inwhich the linearmap isL◦M (note that

M−1 is also a rank-preserver if M is a rank-preserver). As the image of the nuclear
norm ball in R

q×q is not invariant under an arbitrary rank-preserver, a regularizer
cannot be obtained uniquely from a factorization due to the existence of equivalent
factorizations that lead to non-equivalent regularizers. To address this difficulty, we
describe an approach to associate a unique regularizer to a family of linear maps
obtained from equivalent factorizations. We begin by analyzing the structure of rank-
preserving linear maps based on the following result [42]:

Theorem 1 [42, Theorem 1], [64, Theorem 9.6.2] An invertible linear operatorM :
R
q×q → R

q×q is a rank-preserver if and only ifM is of one of the following two forms
for non-singular matrices W1,W2 ∈ R

q×q:M(X) = W1XW2 orM(X) = W1X ′W2.

This theorem brings the preceding discussion into sharper focus, namely, that the
lack of identifiability boils down to the fact that the nuclear norm is not invariant under
conjugation of its argument by arbitrary non-singular matrices. However, we note that
the nuclear norm ball is invariant under the transpose operation and under conjugation
by orthogonal matrices. This observation leads naturally to the idea of employing the
polar decomposition to describe a rank-preserver:

Corollary 1 Every rank-preserver M : Rq×q → R
q×q can be uniquely decomposed

as M = Mor ◦Mpd for rank-preservers Mpd : Rq×q → R
q×q and Mor : Rq×q →

R
q×q with the following properties:

– The operator Mpd is specified as Mpd(X) = P1X P2 for some positive-definite
matrices P1, P2 ∈ S

q
++.

– The operator Mor is of one of the following two forms for orthogonal matrices
U1,U2 ∈ R

q×q :Mor(X) = U1XU2 orMor(X) = U1X ′U2.

Proof The result follows by combining Theorem 1 with the polar decomposition. ��

123



Found Comput Math

We refer to rank-preservers of the type Mpd in this corollary as positive-definite
rank-preservers and to those of the type Mor as orthogonal rank-preservers. This
corollary highlights the point that the key source of difficulty in identifying a reg-
ularizer uniquely from a factorization is due to positive-definite rank-preservers.
A natural approach to address this challenge is to put a given linear map L
into a ‘canonical’ form that removes the ambiguity due to positive-definite rank-
preservers. In other words, we seek a distinguished subset of normalized lin-
ear maps with the following properties: (a) for a linear map L, the set {L ◦
Mpd | Mpd is a positive-definite rank-preserver} intersects the collection of normal-
ized maps at precisely one point, and (b) for any normalized linear map L, every
element of the set {L ◦Mor |Mor is an orthogonal rank-preserver} is also normalized.
The following definition possesses both of these attributes:

Definition 1 Let L : Rq×q → R
d be a linear map, and let Li ∈ R

q×q , i = 1, . . . , d
be the component linear functionals of L. Then, L is said to be normalized if∑d

i=1 LiLi
′ = q I and

∑d
i=1 Li

′Li = q I .

The utility of this definition in resolving our identifiability issue is based on a paper
by Gurvits [34]. Specifically, for a generic linear map L : Rq×q → R

d , the results in
[34] imply that there exists a unique positive-definite rank-preserver NL : Rq×q →
R
q×q so that L◦NL is normalized (see Corollary 2 in the sequel); this feature address

our first requirement above. One can also check that the second requirement above is
satisfied by this definition—any normalized linear map composed with any orthogonal
rank-preserver is also normalized. Further, the collection of normalized maps defined
above may be viewed as an affine algebraic variety specified by polynomials of degree
two. One can check that any notion of normalization (specified as a real variety) that
satisfies the two attributes described previously cannot be an affine space and therefore
must be specified by polynomials of degree at least two. Consequently, our definition
of normalization is in some sense also as ‘simple’ as possible from an algebraic
perspective.2

In addition to satisfying these appealing properties, our notion of normalization
also possesses an important computational attribute—given a (generic) linear map, a
normalizing positive-definite rank-preserver for the map can be computed using the
Operator Sinkhorn iterative procedure developed in [34]. Thus, the following method
offers a natural approach for uniquely associating a regularizer to an equivalence class
of factorizations.

Obtaining a regularizer from a linear map: Given a linear map L : Rq×q → R
d

obtained from a factorization (3), the unit ball of the regularizer we associate with
this factorization is the image of the nuclear norm ball in R

q×q under the linear map
L ◦ NL; here NL is the unique positive-definite rank-preserver that normalizes L (as
discussed in the sequel in Corollary 2, such unique normalizing rank-preservers exist
for generic maps L).

2 Note that any affine variety over the reals may be defined by polynomials of degree at most two by
suitably adding extra variables; in our discussion here on normalization, we consider varieties defined
without additional variables.
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The soundness of this approach follows from the fact that linear maps from equiv-
alent factorizations produce the same regularizer. We prove a result on this point in
the next section (see Proposition 1), and we also discuss algorithmic consequences of
the Operator Sinkhorn scaling procedure of [34].

2.2 Normalizing Maps via Operator Sinkhorn Scaling

From the discussion in the preceding section, a key step in associating a unique reg-
ularizer to a collection of equivalent factorizations is to normalize a given linear map
L : Rq×q → R

d . In this section, we describe how this may be accomplished by
appealing to the work of Gurvits [34].

Given a linear operator T : Sq → S
q that leaves the positive-semidefinite cone

invariant, Gurvits consider the question of the existence (and computation) of positive-
definite matrices P1, P2 ∈ S

q
++ such that the rescaled operator T̃ = (P1⊗P1) ◦ T ◦

(P2⊗P2) has the property that T̃(I ) = T̃′(I ) = I , i.e., the identity matrix is an
eigenmatrix of the rescaled operator T̃ and its adjoint [34]. This problem is an operator
analog of the classical problem of transforming entrywise square nonnegativematrices
to doubly stochastic matrices by diagonal congruence scaling. This matrix scaling
problemwas originally studied bySinkhorn [55], and he developed an iterative solution
technique that is known as Sinkhorn scaling. Gurvits developed an operator analog of
classical Sinkhorn scaling that proceeds by alternately performing the updates T ←
(T(I )−1/2⊗T(I )−1/2) ◦ T and T ← T ◦ (T′(I )−1/2⊗T′(I )−1/2), this sequence of
operations is known as theOperator Sinkhorn Iteration. The next theorem concerning
the convergence of this iterativemethod is proved in [34]. Following the terminology in
[34], a linear operatorT : Sq → S

q is rank indecomposable if it satisfies the inequality
rank (T(Z)) > rank(Z) for all Z � 0 with 1 ≤ rank(Z) < q; this condition is an
operator analog of a matrix being irreducible.

Theorem 2 [34, Theorems 4.6 and 4.7] Let T : Sq → S
q be a rank indecomposable

linear operator. There exist unique positive-definite matrices P1, P2 ∈ S
q
++ with

det(P1) = 1 such that T̃ = (P1⊗P1) ◦ T ◦ (P2⊗P2) satisfies the conditions T̃(I ) =
T̃′(I ) = I . Moreover, the Operator Sinkhorn Iteration initialized with T converges to
T̃.

Remark The condition det(P1) = 1 is imposed purely to avoid the ambiguity that
arises from setting P1 ← αP1 and P2 ← 1

α
P2 for positive scalars α. Other than

this degree of freedom, there are no other positive-definite matrices that satisfy the
property that the rescaled operator T̃ in this theorem as well as its adjoint both have
the identity as a eigenmatrix.

These ideas and results are directly relevant in our context as follows. For any lin-
ear map L : Rq×q → R

d , we may associate an operator TL : Sq → S
q defined

as TL(Z) = 1
q

∑d
i=1 Li ZLi

′, which has the property that it leaves the positive-
semidefinite cone invariant. Rescaling the operator TL via positive-definite matrices
P1, P2 ∈ S

q
++ to obtain T̃L = (P1⊗P1) ◦ TL ◦ (P2⊗P2) corresponds to conjugating

the component linear functionals {Li }di=1 of L by P1 and P2. Consequently, rescaling
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Algorithm 1 Normalizing a linear map via the Operator Sinkhorn Iteration

Input: A linear map L : Rq×q → R
d with component functionals Li , i = 1, . . . , d

Require: A normalized map L ◦M where M : Rq×q → R
d is a rank-preserver that acts via conjugation

by positive-definite matrices
Algorithm: Repeat until convergence
1. R = ∑d

i=1 LiLi
′

2. Li ←√
qR−

1
2Li , i = 1, . . . , d

3. C = ∑d
i=1 Li

′Li

4. Li ←√
qLi C

− 1
2 , i = 1, . . . , d

TL so that T̃L = (P1⊗P1) ◦ TL ◦ (P2⊗P2) and its adjoint both have the identity
as an eigenmatrix is equivalent to composing L by a positive-definite rank-preserver
N = P1⊗P2 so that L ◦N is normalized. Based on this correspondence, Algorithm 1
gives a specialization of the general Operator Sinkhorn Iteration to our setting for
normalizing a linear map L.3 We also have the following corollary to Theorem 2:

Corollary 2 Let L : Rq×q → R
d be a linear map, and suppose rank(

∑d
i=1 Li ZLi

′)
> rank(Z) for all Z � 0 with 1 ≤ rank(Z) < q (i.e., the operator TL(Z) =
1
q

∑d
i=1 Li ZLi

′ is rank indecomposable). There exists a unique positive-definite rank-
preserverNL : Rq×q → R

q×q such thatL◦NL is normalized. Moreover, Algorithm 1
initialized with L converges to L ◦ NL.

Proof The existence of a positive-definite rank-preserver NL and the convergence of
Algorithm 1 follow directly from Theorem 2. We need to prove that NL is unique.
Let ÑL : Rq×q → R

q×q be any positive-definite rank-preserver such that L ◦ ÑL is
normalized. By Theorem 1, there exists positive-definite matrices P1, P2, P̃1, P̃2 such
that NL = P1 ⊗ P2 and ÑL = P̃1 ⊗ P̃2. Without loss of generality, we may assume
that det(P1) = det(P̃1) = 1. By Theorem 2, we have P1 = P̃1 and P2 = P̃2 and
consequently that NL = ÑL. ��

Generic linear maps L : R
q×q → R

d (for d ≥ 2) satisfy the condition
rank(

∑d
i=1 Li ZLi

′) > rank(Z) for all Z � 0 with 1 ≤ rank(Z) < q. Therefore,
this assumption in Corollary 2 is not particularly restrictive. A consequence of the
uniqueness of the positive-definite rank-preserver NL in Corollary 2 is that our nor-
malization scheme associates a unique regularizer to every collection of equivalent
factorizations:

Proposition 1 LetL : Rq×q → R
d be a linearmap, and suppose rank(

∑d
i=1 Li ZLi

′)
> rank(Z) for all Z � 0 with 1 ≤ rank(Z) < q. Let M : Rq×q → R

q×q be any
rank-preserver. SupposeNL andNL◦M are positive-definite rank-preservers such that
L ◦NL and L ◦M ◦NL◦M are normalized. Then, the image of the nuclear norm ball
under L ◦ NL is the same as it is under L ◦M ◦ NL◦M .

3 Algorithm 1 requires the computation of a matrix square root at every iteration. By virtue of the fact that
the operator TL which we wish to rescale is completely positive, it is possible to normalize L using only
rational matrix operations via a modified scheme known as the Rational Operator Sinkhorn Iteration [34].
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Remark Note that if the linearmapL satisfies the property that rank(
∑d

i=1 Li ZLi
′) >

rank(Z) for all Z � 0 with 1 ≤ rank(Z) < q, then so does the linear map L ◦M for
any rank-preserver M .

Proof As M−1 ◦ NL is a rank-preserver, we can apply Corollary 1 to obtain the
decomposition M−1 ◦ NL = M̄or ◦ M̄pd, where M̄or is an orthogonal rank-preserver
and M̄pd is a positive-definite rank-preserver.

We claim that NL◦M = M−1 ◦ NL ◦ M̄or′ . First, we have M−1 ◦ NL ◦ M̄or′ =
M̄or ◦ M̄pd ◦ M̄or′ , which implies that this operator is positive-definite. Next, we
note that a linear map that is obtained by right multiplication of a normalized linear
map with an orthogonal rank-preserver is also normalized, and hence, the linear map
L ◦M ◦M−1 ◦ NL ◦ M̄or′ = L ◦ NL ◦ M̄or′ is normalized. By applying Corollary 2,
we conclude that NL◦M = M−1 ◦ NL ◦ M̄or′ .

Consequently, we have L ◦M ◦NL◦M = L ◦NL ◦ M̄or′ . As the nuclear norm ball
is invariant under the action of the orthogonal rank-preserver M̄or′ , it follows that the
image of the nuclear norm ball under the map L ◦ NL is the same as it is under the
map L ◦M ◦ NL◦M . ��

The polynomial-time complexity of the (general) Operator Sinkhorn iterative
procedure—in terms of the number of iterations required to obtain a desired accuracy
to the fixed point—has recently been established in [28]. In summary, this approach
provides a computationally tractable method to normalize linear maps, and conse-
quently to associate a unique regularizer to a collection of equivalent factorizations.

2.3 An Alternating Update Algorithm for Matrix Factorization

Given the resolution of the identifiability issues in the preceding two sections, we are
now in a position to describe an algorithmic approach for computing a factorization (3)
of a data matrix Y = [y(1)| · · · |y(n)] ∈ R

d×n to obtain a semidefinite regularizer that
promotes the type of structure contained in Y . Specifically, given a target dimension
q, our objective is to obtain a normalized linear map L : Rq×q → R

d and a collection
{X ( j)}nj=1 of low-rank matrices such that

∑n
i=1 ‖y( j)−L(X ( j))‖2�2 is minimized. Our

procedure is an alternating update technique that sequentially updates the low-rank
X ( j)’s followed by an update of L. We assume that our algorithm is provided with a
data matrix Y ∈ R

d×n , a target dimension q, and an initial guess for the normalized
map L. Our method is summarized in Algorithm 3.

2.3.1 Updating the Low-Rank Matrices {X ( j)}nj=1

In this stage, a normalized linear map L : Rq×q → R
d is fixed, and the objective is

to find low-rank matrices {X ( j)}nj=1 such that y( j) ≈ L(X ( j)) for each j = 1, . . . , n.

Without the requirement that the X ( j)’s be low rank, such linear inverse problems are
ill-posed in our context as q2 is typically taken to be larger than d. With the low-rank
restriction, this problem is well-posed and it is known as the affine rank minimization
problem. This problem is NP-hard in general [44]. However, due to its prevalence in
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Algorithm 2 Obtaining a low-rank matrix near an affine space via Singular Value
Projection

Input: A linear map L : Rq×q → R
d , a point y ∈ R

d , a target rank r , an initial guess X ∈ R
q×q , and a

damping parameter ν ∈ (0, 1]
Require: A matrix X̂ of rank at most r such that ‖y− L(X̂)‖�2 is minimized, i.e., solve (5)
Initialization X = 0
Algorithm: Repeat until convergence
1. X ← X + νL′(y− L(X)) (i.e., take a gradient step with respect to the objective of (5))
2. Compute top-r singular vectors and singular values of X : Ur , Vr ∈ R

q×r , Σr ∈ R
r×r

3. X ← UrΣr V ′r

a range of application domains [26,50], significant efforts have been devoted toward
the development of tractable heuristics that are useful in practice and that succeed on
certain families of problem instances. We describe next two popular heuristics for this
problem.

Thefirst approach—originally proposedbyFazel in her thesis [26] and subsequently
analyzed in [12,50]—is based on a convex relaxation in which the rank constraint is
replaced by the nuclear norm penalty, which leads to the following convex program:

X̂ = arg min
X∈Rq×q

1
2‖y− L(X)‖2�2 + λ‖X‖�. (4)

Here y ∈ R
d and L : Rq×q → R

d are the problem data specifying the affine space
near which we seek a low-rank solution, and the parameter λ > 0 provides a trade-
off between fidelity to the data (i.e., fit to the specified affine space) and rank of the
solution X̂ . This problem is a semidefinite program, and it can solved to a desired
precision in polynomial time using standard software [45,62].

Another popular method for the affine rank minimization problem is based on
directly attempting to solve the following non-convex optimization problem via alter-
nating projection for a specified rank r < q:

X̂ = arg min
X∈Rq×q

‖y− L(X)‖2�2
s.t. rank(X) ≤ r.

(5)

This problem is intractable to solve globally in general, but the heuristic described
in Algorithm 2 provides an approach that provably succeeds under certain conditions
[30,36]. The utility of this method in comparison with convex program (4) is that
applying the procedure described in Algorithm 2 is much more tractable in large-scale
settings in comparison with solving (4).

The analyses in [27,30,36,50] rely on the map L satisfying the following type of
restricted isometry condition introduced in [50]:

Definition 2 Consider a linear map L : Rq×q → R
d . For each k = 1, . . . , q the

restricted isometry constant of order k is defined as the smallest δk(L) such that:
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1− δk(L) ≤ ‖L(X)‖2�2
‖X‖2�2

≤ 1+ δk(L)

for all matrices X ∈ R
q×q with rank less than or equal to k.

If a linear map L has a small restricted isometry constant for some order k, then the
affine rank minimization problem is, in some sense, well-posed when restricted to
matrices of rank less than or equal to k. The results in [27,30,36,50] go much further
by demonstrating that if y = L(X�) + ε for ε ∈ R

d and with rank(X�) ≤ r , and
if the map L satisfies a bound on the restricted isometry constant δ4r (L), then both
convex program (4) and the procedure in Algorithm 2 applied to solve (5) provide
solutions X̂ such that ‖X̂ − X�‖�2 � C‖ε‖�2 . Due to the qualitative similarity in
the performance guarantees for these approaches, either of them is appropriate as a
subroutine for updating the X ( j)’s in our alternating update method for computing
a factorization of a given data matrix Y ∈ R

d×n . Algorithm 3 is therefore stated in
a general manner to retain this flexibility. In our main theoretical result in Sect. 3.3,
we assume that the X ( j)’s are updated by solving (5) using the heuristic outlined in
Algorithm 2; our analysis could equivalently be carried out by assuming that the X ( j)’s
are updated by solving (4).

2.3.2 Updating the Linear Map L

In this stage, the low-rank matrices {X ( j)}nj=1 are fixed and the goal is to obtain

a normalized linear map L such that
∑n

i=1 ‖y( j) − L(X ( j))‖2�2 is minimized. Our
procedure for this update consists of two steps. First, we solve the following least-
squares problem:

L̃ = arg min
L̄:Rq×q→R

d

L̄ is a linear map

n∑

i=1
‖y( j) − L̄(X ( j))‖2�2 (6)

This problem can be solved, for example, via a pseudoinverse computation. Next, we
apply the procedure described in Algorithm 1 to the updated L̃ obtained from (6) in
order to normalize it.

2.4 Comparison with Dictionary Learning

As described in Sect. 1.1, the dictionary learning literature considers the following
factorization problem: given a collection of data points {y( j)}nj=1 ⊂ R

d and a target

dimension p, find a linear map L : Rp → R
d and a collection of sparse vectors

{x( j)}nj=1 ⊂ R
p such that y( j) = Lx( j) for each j . As with (3), the linear map L

does not lead to a unique polyhedral regularizer. Specifically, for any linear sparsity-
preserverM : Rp → R

p, there is an equivalent factorization inwhich the linearmap is
LM . In parallel to Corollary 1, one can check that M is a sparsity-preserver if and only
if M is a composition of a positive-definite diagonal matrix and a signed permutation
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Algorithm 3 Computing a factorization via alternating updates

Input: A data matrix Y = [y(1)| · · · |y(n)] ∈ R
d×n , a target dimension q, an initial guess for a normalized

linear map L : Rq×q → R
d , a target rank r < q

Require: A normalized linear map L̂ : Rq×q → R
d and a collection of matrices {X̂ ( j)}nj=1 with rank at

most r such that
∑n

i=1 ‖y( j) − L̂(X̂ ( j))‖2
�2

is minimized
Algorithm: Repeat until convergence
1.[Update X ( j)’s;L fixed]Obtainmatrices {X ( j)}nj=1 of rank atmost r such that

∑n
i=1 ‖y( j)−L(X ( j))‖2

�2
is minimized. This can be accomplished either via Algorithm 2 or by solving (4) for a suitable choice of λ.
2.[Update L; X ( j)’s fixed] L̃← arg min

L̄:Rq×q→R
d

L̄ is a linear map

∑n
i=1 ‖y( j) − L̄(X ( j))‖2

�2

3.[Normalize L] Normalize updated linear map from previous step using Algorithm 1.

matrix. Since the �1 ball is invariant under the action of a signed permutation, the
main source of difficulty in obtaining a unique regularizer from a factorization is
due to sparsity-preservers that are positive-definite diagonal matrices. A common
convention in dictionary learning that addresses this identifiability issue is to require
that each of the columns of L has unit Euclidean norm; for a generic linear map L ,
there is a unique positive-definite diagonal matrix D such that LD consists of unit-
norm columns. Adopting a similar reasoning as in Sect. 2.2, one can check that this
normalization resolves the issue of associating a unique regularizer to an equivalence
of factorizations.

The most popular approach for computing a factorization in dictionary learning
is based on alternately updating the map L and the sparse vectors {x( j)}nj=1. For a
fixed linear map L , updating the x( j)’s entails the solution of a sparse linear inverse
problem for each j . That is, for each j we seek a sparse vector x( j) in the affine
space y( j) = Lx. Although this problem in NP-hard in general, there is a significant
literature on tractable heuristics that succeed under suitable conditions [13,14,17,22–
24]; indeed, this work predates and served as a foundation for the literature on the
affine rank minimization problem. Prominent examples include the lasso [61], which
is a convex relaxation approach akin to (4), and iterative hard thresholding [9], which
is analogous to Algorithm 2. For a fixed collection {x( j)}nj=1, the linear map L is then
updated by solving a least-squares problem followed by a rescaling of the columns so
that they have unit Euclidean norm.

We note that each step in this procedure has a direct parallel to a corresponding
step of Algorithm 3. In summary, our proposed approach for obtaining a semidefinite
regularizer via matrix factorization is a generalization of previous methods in the
dictionary learning literature for obtaining a polyhedral regularizer.

3 Convergence Analysis of Our Algorithm

This section describes the main theoretical result on the local convergence of our
algorithm.We begin by discussing the setup and an outline of our analysis in Sects. 3.1
and 3.2, respectively. The statement of ourmain theoremwith deterministic conditions
is given in Sect. 3.3, and we describe natural random ensembles that satisfy these
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deterministic conditions with high probability in Sect. 3.4. The proof of our theorem
is discussed in Sect. 3.5.

3.1 Theoretical Setup

The setup underlying our main theorem is as follows. We assume that we are given

a collection of data points {y( j)�}nj=1 ⊂ R
d with each y( j)� = L�

(
X ( j)�

)
, where

L� : Rq×q → R
d is a linear map and X� := {X ( j)�}nj=1 ⊂ R

q×q is a collection of
low-rank matrices. Without loss of generality, we may take L� to be normalized and
surjective. Our objective is to obtain a linear map L̂ : Rq×q → R

d with the property
that the image of the nuclear norm ball in Rq×q under L� is the same as it is under L̂.
To this end, we seek a linear map L̂ that can be expressed as the composition of L�

with an orthogonal rank-preserver (recall that the nuclear norm ball is invariant under
the action of an orthogonal rank-preserver).

As this goal is distinct from the more restrictive requirement that L̂must equal L�,
we need an appropriate measure of the ‘distance’ of a linear map to L�. A convenient
approach to addressing this issue is to express a linear map L : Rq×q → R

d in terms
of L� as follows, given any linear rank-preserver M : Rq×q → R

q×q :

L = L� ◦ (I+ E) ◦M, (7)

Here I ∈ End(Rq×q) is the identitymap and the error termE = L�+◦(L◦M−1−L�) ∈
End(Rq×q); the assumption that L� is surjective is key as L�+ is the right inverse of
L�. By varying the rank-preserver M in (7), the error term E changes. If there exists
an orthogonal rank-preserverM such that the corresponding error E is small, then in
some sense the image of the nuclear norm ball under L is close to the image under
L�. This observation suggests that the closeness between L and L� may be measured
as the smallest error E that one can obtain by varying M over the set of orthogonal
rank-preservers. The following result suggests that one can in fact varyM over all rank-
preservers, provided we have the additional condition that L is also normalized. The
additional flexibility provided by varying M over all rank-preservers is well suited
to characterizing the effects of normalization via Operator Sinkhorn scaling in our
analysis, as described in the next section.

Proposition 2 SupposeL,L� : Rq×q → R
d are normalized linear maps such that (i)

L� satisfies the restricted isometry condition δ1(L�) ≤ 1/10, and (ii)L = L�◦(I+E)◦
M for a linear rank-preserver M with ‖E‖�2 ≤ 1/(150

√
q‖L�‖2). Then, there exists

an orthogonal rank-preserver Mor such that ‖Mor −M‖2 ≤ 300
√
q‖L�‖2‖E‖�2 .

In words, if both L and L� are normalized and if there exists a rank-preserver M
such that ‖E‖�2 is small in (7), then M is close to an orthogonal rank-preserver;4 in
turn, this implies that the image of the nuclear norm ball underL� is close to the image

4 The restricted isometry condition in Proposition 2 is a mild one; we require a stronger restricted isometry
condition on L� in Theorem 3.
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of the nuclear norm ball underL. These observations motivate the following definition
as a measure of the distance between normalized linear maps L�,L : Rq×q → R

d for
surjective L�:

ξL� (L) := inf{‖E‖�2 | ∃E ∈ End(Rq×q) and a rank-preserver M ∈ End(Rq×q)
s.t. L = L� ◦ (I+ E) ◦M}. (8)

In Sect. 3.3, our main result gives conditions under which the sequence of normalized
linear maps obtained from Algorithm 3 converges to L� in terms of the distance
measure ξ .

3.2 An Approach for Proving a Local Convergence Result

We describe a high-level approach for proving a local convergence result, which moti-
vates the definition of the key parameters that govern the performance of our algorithm.
Our proof strategy is to demonstrate that under appropriate conditions the sequence of
normalized iteratesL(t) obtained fromAlgorithm3 satisfies ξL� (L(t+1)) ≤ γ ξL� (L(t))

for a suitable γ < 1. To bound ξL� (L(t+1)) with respect to ξL� (L(t)), we con-
sider each of the three steps in Algorithm 3. Fixing notation before, we proceed, let
L(t) = L� ◦ (I+E(t))◦M(t) for some linear rank-preserverM(t) and for a correspond-
ing error term E(t). Our objective is to show that there exists a linear rank-preserver
M(t+1) and corresponding error term E(t+1) with L(t+1) = L� ◦ (I+E(t+1))◦M(t+1),
so that ‖E(t+1)‖�2 is suitably bounded above in terms of ‖E(t)‖�2 . By taking limits,
we obtain the desired result in terms of ξL� (L(t)) and ξL� (L(t+1)).

The first step of Algorithm 3 involves the solution of the following optimization
problem for each j = 1, . . . , n:

X̂ ( j) = arg min
X∈Rq×q

∥∥∥y( j)� − L(t)(X)

∥∥∥
2

�2
s.t. rank(X) ≤ r.

As L(t) = L� ◦ (I + E(t)) ◦M(t) and as y( j)� = L�
(
X ( j)�

)
, the preceding problem

can be reformulated in the following manner:

M(t)(X̂ ( j)) = arg min
X̃∈Rq×q

∥∥∥L� ◦ (I+ E(t))
(
X ( j)�

)
− L� ◦ E(t)

(
X ( j)�

)

−L� ◦ (I+ E(t))(X̃)

∥∥∥
2

�2

s.t. rank(X̃) ≤ r.

If L� ◦ (I + E(t)) satisfies a suitable restricted isometry condition and if ‖L� ◦
E(t)

(
X ( j)�

)
‖�2 is small, then the results in [30,36] (as described in Sect. 2.3.1)

imply thatM(t)(X̂ ( j)) ≈ X ( j)�. In other words, if ‖E(t)‖�2 is small and if L� satisfies
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a restricted isometry condition, then M(t)(X̂ ( j)) ≈ X ( j)�; the following result states
matters formally:

Proposition 3 Let L� : Rq×q → R
d be a linear map such that (i) L� is normal-

ized, and (ii) L� satisfies the restricted isometry condition δ4r (L�) ≤ 1
20 . Suppose

L = L� ◦ (I + E) ◦ M such that (i) M is a linear rank-preserver and (ii) ‖E‖�2 ≤
min{1/(50√q), 1/(120r2‖L�‖2)}. Finally, suppose y = L�(X�), where X� ∈ R

q×q
is a rank-r matrix such that σr (X�) ≥ σ1(X�)/2 and that X̂ is the optimal solution to

X̂ = arg min
X∈Rq×q

‖y− L(X)‖2�2 s.t. rank(X) ≤ r. (9)

Then,

M(X̂) = X� −
[(

L�′
T (X�)L

�
T (X�)

)−1]

Rq×q
◦ L�′L� ◦ E (

X�
)+ G,

where ‖G‖�2 ≤ 800r5/2‖L�‖22‖X�‖2‖E‖2�2 .

In this proposition, the conclusion is well defined as the linear mapL�′
T (X�)

L�
T (X�)

:
T (X�) → T (X�) is invertible due to the restricted isometry condition on L� (see
Lemma 1). The proof appears in “Appendix F”, and it relies primarily on the first-
order optimality conditions of the problem (5). To ensure that the conditions required
by this proposition hold, we assume in our main theorem in Sect. 3.3 that L� satisfies
the restricted isometry property for rank-r matrices and that the initial guess L(0) that
is supplied to Algorithm 3 is such that ξL� (L(0)) is small (with a sufficiently good
initial guess and by an inductive hypothesis, we have that there exists an error term
E(t) at iteration t such that ‖E(t)‖�2 is small).

The second step of Algorithm 3 entails the solution of a least-squares problem. To
describe the implications of this step in detail, we consider the linear maps X� : z �→∑n

j=1 X ( j)�z j and X̂ : z �→ ∑n
j=1 X̂ ( j)z j from R

n to R
q×q . With this notation, the

second step of Algorithm 3 results in the linear map L(t) being updated as follows:

L̃(t+1) = L� ◦ X� ◦ X̂+. (10)

In order for the normalized version of L̃(t+1) to be close toL� (in terms of the distance
measure ξ ), we require a deeper understanding of the structure of X� ◦ X̂+, which is the
focus of the next proposition. This result relies on the set X� being suitably isotropic,
as characterized by the quantities Δ(X�) and Λ(X�).

Proposition 4 Let {A( j)}nj=1 ⊂ R
q×q and {B( j)}nj=1 ⊂ R

q×q be two collections

of matrices, and let A : z �→ ∑n
j=1 A( j)z j and B : z �→ ∑n

j=1 B( j)z j be linear
maps from R

n to R
q×q associated with these ensembles. Let Q : Rq×q → R

q×q
be any invertible linear operator and denote ω = max j

∥∥Q(B( j))− A( j)
∥∥

�2
. If ω ≤
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√
Λ

(
{A( j)}nj=1

)

20 and if
Δ

(
{A( j)}nj=1

)

Λ
(
{A( j)}nj=1

) ≤ 1
6 , then

A ◦ B+ =
⎛

⎝I− 1

nΛ
(
{A( j)}nj=1

)
n∑

j=1

(
Q(B( j))− A( j)

)
� A( j) + F

⎞

⎠ ◦Q, (11)

where ‖F‖�2 ≤ 20q ω2

Λ
(
{A( j)}nj=1

) + 2q
ωΔ

(
{A( j)}nj=1

)

Λ
(
{A( j)}nj=1

)3/2 .

The proof of this proposition appears in “Appendix G”, and it consists of two key
elements. First, asω is bounded, the operatorA◦B+may be approximated asA◦A+◦Q.
Second, as the set {A( j)}nj=1 is near isotropic based on the assumptions involving

Δ({A( j)}nj=1) and Λ({A( j)}nj=1), one can show that A ◦ A+ can be expanded suitably
around the identity map I. In the context of our analysis, we apply the conclusions of
Proposition 4 with the choice of A( j) = X ( j)�, B( j) = X̂ ( j), and Q = M(t).

The final step of our analysis is to consider the effect of normalization on the map
L̃(t) in (10). Denoting the positive-definite rank-preserver that normalizes L̃(t+1) by
NL̃(t+1) , we have from Propositions 3 and 4 that the normalized map L(t+1) obtained
after the application of the Operator Sinkhorn iterative procedure to L̃(t+1) can be
expressed as:

L(t+1) = L�◦
⎛

⎝I− 1

nΛ(X�)

n∑

j=1

(
M(t)(X̂ ( j))− X ( j)�

)
� X ( j)� + F

⎞

⎠◦M(t)◦NL̃(t+1) ,

where F ∈ End(Rq×q) is suitably bounded. As M(t) and NL̃(t+1) are both rank-
preservers, we need to prove that the expression within parentheses I − 1

nΛ(X�)∑n
j=1(M(t)(X̂ ( j))−X ( j)�)�X ( j)�+F iswell approximated as a rank-preserver so that

ξL� (L(t+1)) is suitably controlled. Tomake progress on this front,we note that I = I⊗I
is a rank-preserver. Therefore, if− 1

nΛ(X�)

∑n
j=1(M(t)(X̂ ( j))− X ( j)�) � X ( j)� +F is

small, a natural approach to characterizing how close I− 1
nΛ(X�)

∑n
j=1(M(t)(X̂ ( j))−

X ( j)�) � X ( j)� + F is to a rank-preserver is to express this quantity in terms of the
following tangent space at I with respect to the set of rank-preservers acting on the
space of q × q matrices:

W = span{I⊗W1 +W2⊗I | W1,W2 ∈ R
q×q}. (12)

The next result gives such an expression.

Proposition 5 Suppose D : Rq×q → R
q×q is a linear operator such that ‖D‖�2 ≤

1/10 and I : Rq×q → R
q×q is the identity operator. Then, we have that

I+ D = (I+ PW⊥(D)+ H) ◦W
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where H : Rq×q → R
q×q is a linear operator such that ‖H‖�2 ≤ 5‖D‖2�2/

√
q and

W : Rq×q → R
q×q is a linear rank-preserver such that ‖W − I‖2 ≤ 3‖D‖�2/

√
q.

Here, the space W is as defined in (12).

The proof of this proposition appears in “Appendix H”. As detailed in the proof
of Theorem 3 in Sect. 3.5, one can combine the preceding three results along with
the observation that c PT (X�) � [(L�

T (X�)
′L�

T (X�)
)−1]Rq×q � c̃ PT (X�) for suitable

constants c, c̃ > 0 (from Lemma 1 in Sect. 3.5 based on L� satisfying a suitable
restricted isometry condition) to conclude that there exists an error term E(t+1) at
iteration t + 1 (corresponding to the error term E(t) at iteration t that we fixed at the
beginning of this argument) such that

E(t+1) =PW⊥ ◦
⎡

⎣ 1

nΛ(X�)

n∑

j=1

(
X ( j)� � X ( j)�

)
⊗PT

(
X ( j)�

)

⎤

⎦
(
L�′L� ◦ E(t)

)

+ PW⊥(F)+O
(
‖E(t)‖2�2

)
.

(13)
Thus, there are two ‘significant’ terms in this expression that govern the size of
‖E(t+1)‖�2 . To control the first term, we require a bound on the following operator
norm:

Ω(X�) :=
∥∥∥∥∥∥
PW⊥ ◦

⎡

⎣1

n

n∑

j=1

(
X ( j)� � X ( j)�

)
⊗PT

(
X ( j)�

)

⎤

⎦

∥∥∥∥∥∥
2

. (14)

Note that this operator belongs to End(End(Rq×q)). In Sect. 3.5, we show that the

first significant term in (13) is bounded as
2‖L�‖22Ω(X�)

Λ(X�)
‖E(t)‖�2 . For the second term

in (13), we show in Sect. 3.5 that ‖F‖�2 � q2‖L�‖2Δ(X�)
Λ(X�)

‖E(t)‖�2 based on a bound on

ξL� (L(0)) on the initial guess. Consequently, two of the key assumptions in Theorem 3
concern bounds on the quantities Ω(X�)

Λ(X�)
and Δ(X�)

Λ(X�)
.

We note that theOperator Sinkhorn scaling procedure for normalization is crucial in
our algorithm.Aside from addressing the identifiability issues as discussed in Sect. 2.1,
the incorporation of this method also plays an important role in the convergence
of Algorithm 3. Specifically, if we do not apply this procedure in each iteration of
Algorithm 3, then the estimate of L� at the end of iteration t + 1 would be L̃(t+1)
from (10). In analyzing how close the image of the nuclear norm ball under L̃(t+1) is
to the image of the nuclear norm ball under L�, we would need to consider how close
X� ◦ X̂+ is to an orthogonal rank-preserver as opposed to an arbitrary rank-preserver;
in particular, we cannot apply Proposition 2 as L̃(t+1) is not normalized. In analogy to
the discussion preceding Proposition 5 and by noting that I = I⊗I is an orthogonal
rank-preserver, we could attempt to express X� ◦ X̂+ in terms of the following tangent
space at I with respect to the set of orthogonal rank-preservers:

S = span{I⊗S1 + S2⊗I | S1, S2 ∈ R
q×q and skew-symmetric}. (15)
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Following similar reasoning as in the preceding paragraph, the convergence of our
algorithm without normalization would be governed by ‖PS⊥ ◦ [ 1n

∑n
j=1(X ( j)� �

X ( j)�)⊗PT
(
X ( j)�

)]‖2. This operator norm is, in general, much larger than the quan-

tity Ω(X�) defined in (14) as S ⊂ W , which can in turn affect the convergence of
our algorithm. In particular, for a natural random ensemble X� of low-rank matrices
described in Proposition 8 in Sect. 3.4, the condition on Ω(X�) in Theorem 3 is satis-
fied while the analogous condition on ‖PS⊥ ◦ [ 1n

∑n
j=1(X ( j)� � X ( j)�)⊗PT

(
X ( j)�

)]‖2
is violated (both of these conclusions hold with high probability), thus highlighting
the importance of the inclusion of the normalization step for the convergence of our
method; see the remarks following Proposition 8 for details.

3.3 Main Result

The following theorem gives the main result concerning the local convergence of our
algorithm:

Theorem 3 Let y( j) = L�(X ( j)�), j = 1, . . . , n, where L� : Rq×q → R
d is a linear

map andX� := {X ( j)�}nj=1 ⊂ R
q×q . Suppose the collectionX� satisfies the following

conditions:

1. There exists r < q and s > 0 such that rank(X ( j)�) = r and s ≥ σ1(X ( j)�) ≥
σr (X ( j)�) ≥ s/2 for each j = 1, . . . , n;

2. Ω(X�)
Λ(X�)

≤ d
40q2

; and

3. Δ(X�)
Λ(X�)

≤
√
d

100q3
.

Suppose the linear map L� : Rq×q → R
d satisfies the following conditions:

1. L� satisfies the restricted isometry condition δ4r (L�) ≤ 1
20 , where r is the rank of

each X ( j)�;
2. L� is normalized and surjective; and

3. ‖L�‖22 ≤ 5q2

d .

If we supply Algorithm 3 with a normalized initial guess L(0) : Rq×q → R
d with

ξL� (L(0)) < 1
20,000q7/2r2‖L�‖22

, then the sequence {L(t)} produced by the algorithm

satisfies lim supt→∞
ξL� (L(t+1))
ξL� (L(t))

≤ 2‖L�‖22 Ω(X�)
Λ(X�)

+ 10q2‖L�‖2 Δ(X�)
Λ(X�)

< 1. In other

words, ξL� (L(t)) → 0with the rate of convergence bounded above by 2‖L�‖22 Ω(X�)
Λ(X�)

+
10q2‖L�‖2 Δ(X�)

Λ(X�)
.Weassumehere that Step 1ofAlgorithm3 is computed viaAlgorithm

2.

Remark (i) In this result, the assumption that Step 1 of Algorithm 3 is computed
via Algorithm 2 is made for the sake of concreteness. A similar result and proof are
possible if Step 1 of Algorithm 3 is instead computed by solving (4) for a suitable
choice of the regularization parameter. (ii) In conjunction with Proposition 2, this
result implies that we obtain a linear map L̂ upon convergence of our algorithm such
that the image of the nuclear norm ball in Rq×q under L̂ is the same as it is under L�.
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The proof of this theorem is given in Sect. 3.5. Inwords, our result states that under a
restricted isometry condition on the linearmapL� and an isotropy condition on the low-
rankmatrices {X ( j)�}nj=1, Algorithm 3 is locally linearly convergent to the appropriate
semidefinite-representable regularizer that promotes the type of structure contained

in the data {L�
(
X ( j)�

)
}nj=1. The restricted isometry condition on L� ensures that

the geometry of the set of points {X ( j)�}nj=1 in Rq×q is (approximately) preserved in

the lower-dimensional space Rd . The isotropy condition on the collection {X ( j)�}nj=1
ensures that we have observations that lie on most of the low-dimensional faces of the
regularizer, which gives us sufficient information to reconstruct the regularizer.

Results of this flavor have previously been obtained in the classical dictionary
learning literature [1,4], although our analysis is more challenging in comparison
with this prior work for two reasons. First, two nearby sparse vectors with the same
number of nonzero entries have the same support, while two nearby low-rank matrices
with the same rank have different row/column spaces; geometrically, this translates
to the point that two nearby sparse vectors have the same tangent space with respect
to a suitably defined variety of sparse vectors, while two nearby low-rank matrices
generically have different tangent spaces with respect to an appropriate variety of
low-rank matrices. Second (and more significant), the normalization step in classical
dictionary learning is simple—corresponding to scaling the columns of a matrix to
have unit Euclidean norm, as discussed in Sect. 2.4—while the normalization step
in our setting based on Operator Sinkhorn scaling is substantially more complicated.
Indeed, one of the key aspects of our analysis is the relation between the stability
properties of Operator Sinkhorn scaling and the tangent spaces to varieties of low-

rank matrices, as is evident from the appearance of the parameter Ω
(
{X ( j)�}nj=1

)
in

Theorem 3.
The distance measure ξL� that appears in Theorem 3 is defined up to an equivalence

relation, and with respect to the linear map L� to which we do not have access. In
practice, it is useful to have a stopping criterion that only depends on the sequence
of iterates. To this end, the next result states that under the same conditions as in
Theorem 3, the sequence of iterates {L(t)} obtained from our algorithm also con-
verges (the limit point is generically different fromL�, although they specify the same
regularizer):

Proposition 6 Under the same setup and assumptions as in Theorem 3, the sequence
of iterates {L(t)} obtained from our algorithm is a Cauchy sequence.

This result is proved in “Appendix I”.

Extension to the noisy case. In practice, the data points y( j) may be corrupted by
noise, and it is of interest to investigate whether our algorithm is robust to noise. One
can extend our analysis to demonstrate the robustness of our algorithm in a stylized
setting in which the data points y( j) in Theorem 3 are corrupted by additive noise.
Briefly, such an extension comprises two key steps. First, one can show that there exists
a normalized linear map Ľ that is close to L� (up to composition by an orthogonal
rank-preserver), and which is a fixed point of our algorithm. The key ingredient in
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demonstrating this is to prove that each iteration of our algorithm is contractive in a
neighborhood of L� and to appeal to a suitable fixed-point theorem. The proximity of
the regularizer defined by Ľ to the regularizer defined byL� is determined by the radius
of contraction, which depends linearly (under the conditions of Theorem 3) on the size
of the noise corrupting the measurements and inverse polynomially on the size of the
data set. Second, one can show that our algorithm is locally linearly convergent to Ľ
(up to composition by an orthogonal rank-preserver). This step essentially follows the
same sequence of arguments as in the proof of Theorem 3, and it relies on the radius
of contraction from the first step being smaller than the basin of attraction defined in
Theorem 3; this is true as long as the noise corruption is suitably small and the number
of data points is sufficiently large.

3.4 Ensembles Satisfying the Conditions of Theorem 3

Theorem 3 gives deterministic conditions on the underlying data under which our
algorithm recovers the correct regularizer. In this section, we demonstrate that these
conditions are in fact satisfied with high probability by certain natural random ensem-
bles. Our first result states that random Gaussian linear maps upon normalization
satisfy the requirements on the linear map in Theorem 3:

Proposition 7 Let L̃ : Rq×q → R
d be a linear map in which each of the d component

linear functionals are specified by matrices L̃i ∈ R
q×q with i.i.d random Gaussian

entries with mean zero and variance 1/d. Let L represent a normalized map obtained
by composing L̃ with a positive-definite rank-preserver. Fix any δ < 1. Then, there
exist positive constants c1, c2, c3 depending only on δ such that if d ≥ c1rq, then (i)

δ4r (L) ≤ δ and (ii) ‖L‖2 ≤
√

5q2
d with probability greater than 1− c2 exp(−c3d).

The proof of this result is given in “AppendixD”.As shown in [11] randomGaussian
linear maps from R

q×q to R
d satisfy the restricted isometry property for rank-4r

matrices if d � rq (and this bound is tight). Our result shows that under the same
scaling assumption on d, ‘most’ linear maps satisfy the more restrictive requirements
of Theorem 3. Next we consider families of random low-rank matrices:

Proposition 8 Let X := {X ( j)}nj=1 be an ensemble of matrices generated as X ( j) =
∑r

i=1 s
( j)
i u( j)

i v( j)′
i with each U ( j) = [u( j)

1 | . . . |u( j)
r ], V ( j) = [v( j)

1 | . . . |v( j)
r ] ∈ R

q×r
being drawn independently from theHaarmeasure on q×r matrices with orthonormal
columns, and each s( j)

i being drawn independently fromD, whereD is any distribution
supported on [s/2, s] for some s > 0. Then for any 0 < t1 ≤ 1/4 and 0 < t2, the
conditions (i) Δ(X)

Λ(X)
≤ t1 and (ii) Ω(X)

Λ(X)
≤ 80 r

q + t2, are satisfied with probability

greater than 1− 2q exp(− nt21
200q4

)− q exp(− nt22
200q4

). In particular, the requirements in

Theorem 3 for d � rq are satisfied with high probability by the ensemble X provided

n � q10

d .

Considering the requirements of Theorem3 in the regime d � rq is not restrictive as
this condition is necessary for the restricted isometry assumptions of Theorem 3 onL�
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to hold. The proof of this result is given in “Appendix B”. Thus, in some sense, ‘most’
(sufficiently large) sets of low-rank matrices satisfy the requirements of Theorem 3.
We also note that for a collection of low-rank matrices X generated according to the
ensemble in this proposition, the ratio Δ(X)

Λ(X)
→ 0 as n →∞, while one can show that

the ratio Ω(X)
Λ(X)

� r
q as n →∞. Based on Theorem 3, this observation implies that for

data generated according to the ensemble in Proposition 8, the rate of convergence of
Algorithm 3 improves with an increase in the amount of data, but only up to a certain
point beyond which the convergence rate plateaus. We illustrate this property with a
numerical experiment in Sect. 4.1.

Remark It is critical in the preceding result that we project onto the orthogonal com-
plement of the subspaceW from (14) in the definition of Ω(X). For a set of low-rank
matrices X drawn from the same ensemble as in Proposition 8, one can show that
‖PS⊥ ◦ 1

n

∑n
j=1(X ( j) � X ( j))⊗PT (X ( j))‖2 > cΛ(X) for a constant c > 0 with high

probability, where the subspace S is defined in (15). In the context of the discussion at
the end of the preceding section, we have that the conditions of Theorem 3 are violated
if we do not incorporate the normalization step via Operator Sinkhorn scaling, which
in turn impacts the convergence of our algorithm.

3.5 Proof of Theorem 3

Before giving a proof of Theorem 3, we state two relevant lemmas that are proved in
“Appendix A”.

Lemma 1 Suppose a linear map L : Rq×q → R
d satisfies the restricted isometry

condition δ2r (L) < 1. For any T := T (X) with X ∈ R
q×q and rank(X) ≤ r ,

we have that (i) 1 − δ2r ≤ λmin(L′T LT ) ≤ λmax(L′T LT ) ≤ 1 + δ2r , (ii)
‖(L′T LT )−1‖2 = ‖[(L′T LT )−1]Rq×q‖2 ≤ 1

1−δ2r
, (iii)‖PT ◦L′L‖2 ≤

√
1+ δ2r‖L‖2,

and (iv) ‖[(L′T LT )−1]Rq×q ◦L′L‖2 ≤
√
1+δ2r
1−δ2r

‖L‖2. Here L′T LT : T → T is a self-
adjoint linear map.

Lemma 2 Let X := {X ( j)}nj=1 ⊂ R
q×q be a collection of matrices, and let

smin := min j ‖X ( j)‖2�2 and smax := max j ‖X ( j)‖2�2 . Then, smin/q2−Δ(X) ≤ Λ(X) ≤
smax/q2 +Δ(X).

Proof (Theorem 3) To simplify the presentation of our proof, we define the following
quantities α0 := 20,000q7/2r2‖L�‖22, α1 := 800r5/2‖L�‖22, α2 := 2

√
r‖L�‖2, α3 :=

10q2‖L�‖2, α4 := 5(q2/
√
r)α1, α5 := 100q3α2

2, α6 := 5(q2/
√
r)α2, and α7 :=

α3 + α6/6+ 1/4. The specific interpretation of these quantities is not essential to the
proof—the pertinent detail is that they only depend on q, r, ‖L�‖2.

To simplify notation in the proof, we denote Δ := Δ(X), Λ := Λ(X), and
Ω := Ω(X). In addition, we also denote T ( j) := T (X ( j)�). Our proof proceeds
by establishing the following assertion. Suppose that the t th iterate L(t) is such that
L(t) = L� ◦ (I + E(t)) ◦ M(t), where M(t) is a rank-preserver and E(t) is a lin-
ear operator that satisfies ‖E(t)‖�2 < 1/α0. Then, the t + 1th iterate is of the form
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L(t+1) = L� ◦ (I+E(t+1)) ◦M(t+1) for some rank-preserverM(t+1), and some linear
operator E(t+1) that satisfies

‖E(t+1)‖�2 ≤ γ0‖E(t)‖�2 + γ1‖E(t)‖2�2 , (16)

where γ0 = 2‖L�‖22(Ω/Λ)+ α6(Δ/Λ), and γ1 = α4 + α5 + 5α2
7/
√
q .

Before we prove this assertion, we note how it allows us to conclude the result.
By taking the infimum over E(t) on the right- hand side of (16) and by noting that
ξL� (L(t+1)) ≤ ‖E(t+1)‖�2 , we have

ξL� (L(t+1)) ≤ γ0ξL� (L(t))+ γ1ξL� (L(t))2. (17)

One can check based on the initial assumption on ξL� (L(0)) that γ := γ0 +
γ1ξL� (L(0)) < 1. By employing an inductive argument, one can establish that
ξL� (L(t+1)) ≤ γ ξL� (L(t)). Thus, ξL� (L(t)) ≤ γ tξL� (L(0)) → 0 as t → ∞. By
dividing the expression in (17) throughout by ξL� (L(t)) and subsequently taking the
limit t →∞, we obtain the asymptotic rate of convergence

lim sup
t→∞

ξL� (L(t+1))
ξL� (L(t))

≤ lim sup
t→∞

(
γ0 + γ1ξL� (L(t))

) = γ0.

We proceed to prove the assertion.
[Applying Proposition 3]: Since ‖E(t)‖�2 ≤ min{1/(50√q), 1/(120r2‖L�‖2)}, by

applying Proposition 3 with the choice of X� = X ( j)�, E = E(t), M = M(t), and L�,
we have for each j = 1, . . . , n that

M(t)(X̂ ( j))− X ( j)� =−
[
[(L�′

T ( j)L�
T ( j) )

−1]Rq×q ◦ L�′L� ◦ E(t)
](

X ( j)�)+ G( j),

(18)
where G( j) is a matrix that satisfies ‖G( j)‖�2 ≤ α1‖X ( j)�‖2‖E(t)‖2�2 .

[Applying Proposition 4]: The next step is to apply Proposition 4 to the col-
lections of matrices {X ( j)�}nj=1 and {X̂ ( j)}nj=1. Let X�, X̂ denote the linear maps

X� : z �→ ∑n
j=1 X ( j)�z j , X̂ : z �→ ∑n

j=1 X̂ ( j)z j . First note that α1‖E(t)‖�2 ≤
α1/α0 ≤ √

r‖L�‖2. Second from the assumptions, we have Δ/Λ ≤ 1/21. Hence
by Lemma 2, we have Λ ≤ s2r/q2 + Δ ≤ s2r/q2 + Λ/21. It follows that
Δ ≤ s2r/(20q2), and thus by Lemma 2, we have Λ ≥ s2r/(5q2). Third by apply-
ing these inequalities and Lemma 1 to (18), we have ‖M(t)(X̂ ( j)) − X ( j)�‖�2 ≤
((
√
1+ δ4r )/(1− δ4r ))‖L�‖2‖X ( j)�‖�2‖E(t)‖�2 + α1‖X ( j)�‖2‖E(t)‖2�2 ≤ sα2/α0 ≤

sα2‖E(t)‖�2 ≤
√

Λ/20. Fourth note that the assumptions imply Δ/Λ ≤ 1/6. Hence
by Proposition 4 applied to {X ( j)�}nj=1 and {X̂ ( j)}nj=1 with the choice of Q = M(t),
we have

X� ◦ X̂+ = (I+ D) ◦M(t),
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where

D := 1

nΛ

n∑

j=1
([[(L�′

T ( j)L�
T ( j) )

−1]Rq×q ◦ L�′L� ◦ E(t)]
(
X ( j)�

)
) � X ( j)�

− 1

nΛ

n∑

j=1
G( j) � X ( j)� + F,

and

‖F‖�2 ≤ 20q(sα2‖E(t)‖�2)
2/Λ+ 2q(sα2‖E(t)‖�2)Δ/Λ3/2

≤ α5‖E(t)‖2�2 + α6(Δ/Λ)‖E(t)‖�2 . (19)

[Applying Proposition 5]: We proceed to bound ‖D‖�2 . Given a collection
{A( j)}nj=1, {B( j)}nj=1 ⊂ R

q×q one has 1
n ‖

∑
j=1 A( j) � B( j)‖�2 ≤ max j ‖A( j) �

B( j)‖�2 = max j ‖A( j)‖�2‖B( j)‖�2 . By combining this inequality with Lemma 1, we
obtain the bounds

1

nΛ

∥∥∥∥∥∥

n∑

j=1

([[(L�′
T ( j)L�

T ( j) )
−1]Rq×q ◦ L�′L� ◦ E(t)] (

X ( j)�
))

� X ( j)�

∥∥∥∥∥∥
�2

≤
(
2s2r‖L�‖2/Λ

)
‖E(t)‖�2 ≤ α3‖E(t)‖�2 , (20)

and

(1/nΛ)

∥∥∥∥∥∥

n∑

j=1
G( j) � X ( j)�

∥∥∥∥∥∥
�2

≤ (α1s
2√r/Λ)‖E(t)‖2�2 ≤ α4‖E(t)‖2�2 . (21)

Hence by combining (19), (20), and (21), we have ‖D‖�2 ≤ α3‖E(t)‖�2+α4‖E(t)‖2�2+
α5‖E(t)‖2�2 + α6(Δ/Λ)‖E(t)‖�2 ≤ α7‖E(t)‖�2 ≤ α7/α0 ≤ 1/10. Consequently, by
applying Proposition 5 with this choice of D, we have

X� ◦ X̂+ = (I+ PW⊥(D)+ H) ◦W ◦M(t), ‖H‖�2 ≤ (5α2
7/
√
q)‖E(t)‖2�2 , (22)

for some rank-preserver W .
[Conclusion]: Recall from the description of the algorithm that the next iterate is

given by L(t+1) = L� ◦X� ◦ X̂+ ◦NL�◦X�◦X̂+ , where NL�◦X�◦X̂+ is the unique positive-

definite rank-preserver that normalizesL�◦X�◦X̂+.We defineE(t+1) := PW⊥(D)+H,
and hence

L(t+1) = L� ◦ (I+ E(t+1)) ◦M(t+1), (23)

whereM(t+1) =W ◦M(t) ◦NL�◦X�◦X̂+ is a composition of rank-preservers and hence
is also a rank-preserver. It remains to bound ‖E(t+1)‖�2 .
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As ‖[(L�′
T ( j)L�

T ( j) )
−1]Rq×q‖2 ≤ 2 fromLemma 1,we have [(L�′

T ( j)L�
T ( j) )

−1]Rq×q �
2PT ( j) , and hence (X ( j)��X ( j)�)⊗[(L�′

T ( j)L�
T ( j) )

−1]
Rq×q � 2(X ( j)��X ( j)�)⊗PT ( j) .

Moreover, since (X ( j)� � X ( j)�)⊗[(L�′
T ( j)L�

T ( j) )
−1]Rq×q and 2(X ( j)� � X ( j)�)⊗PT ( j)

are Kronecker products of positive-semidefinite operators, they too are
positive-semidefinite operators, and hence PW⊥ ◦ ( 1n

∑n
j=1(X ( j)� � X ( j)�)⊗[(L�′

T ( j)

L�
T ( j) )

−1]Rq×q )2 ◦ PW⊥ � PW⊥ ◦ ( 2n
∑n

j=1(X ( j)� � X ( j)�)⊗PT ( j) )2 ◦ PW⊥ . This
implies the bound

2Ω ≥
∥∥∥∥∥∥
PW⊥ ◦

⎛

⎝1

n

n∑

j=1
(X ( j)� � X ( j)�)⊗[(L�′

T ( j)L�
T ( j) )

−1]Rq×q

⎞

⎠

∥∥∥∥∥∥
2

.

Combining this bound with the identity L(X1) � X2 = L ◦ (X1 � X2), we obtain

1

nΛ

∥∥∥∥PW⊥

( n∑

j=1

([
[(L�′

T ( j)L�
T ( j) )

−1]Rq×q ◦ L�′L� ◦ E(t)
](

X ( j)�)
)

� X ( j)�
)∥∥∥∥

�2

= 1

nΛ

∥∥∥∥

[
PW⊥ ◦

( n∑

j=1

(
X ( j)� � X ( j)�)⊗[(L�′

T ( j)L�
T ( j) )

−1]Rq×q
)]

(L�′L� ◦ E(t))

∥∥∥∥
�2

≤ (2Ω/Λ)‖L�′L� ◦ E(t)‖�2 ≤ (2Ω/Λ)‖L�‖22‖E(t)‖�2 . (24)

From the definition of E(t+1), we have the relation

E(t+1) = PW⊥

(
1

nΛ

n∑

j=1
[[(L�′

T ( j)L�
T ( j) )

−1]Rq×q ◦ L�′L� ◦ E(t)](X ( j)�) � X ( j)�

+ 1

nΛ

n∑

j=1
G( j) � X ( j)� + F

)
+ H. (25)

Since PW⊥ defines a projection, we have (1/nΛ)‖PW⊥(
∑n

j=1 G( j) � X ( j)�)‖�2 ≤
(1/nΛ)‖∑n

j=1 G( j) � X ( j)�‖�2 , and ‖PW⊥(F)‖�2 ≤ ‖F‖�2 . Hence, by applying
bounds (19), (21), (22), and (24) to (25), we obtain

‖E(t+1)‖�2 ≤ ((2Ω/Λ)‖L�‖22 + α6(Δ/Λ))‖E(t)‖�2 + (α4 + α5 + 5α2
7/
√
q)‖E(t)‖2�2

= γ0‖E(t)‖�2 + γ1‖E(t)‖2�2 .

This completes the proof. ��
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4 Numerical Experiments

4.1 Illustration with Synthetic Data

Webeginwith a demonstration of the utility of our algorithm in recovering a regularizer
from synthetic data. Our experiment qualitatively confirms the predictions of Theorem
3 regarding the rate of convergence.

Setup. We generate a standard Gaussian linear map L : R7×7 → R
30 and we

normalize it; denote the normalized version asL�.Wegenerate data {y( j)}1000j=1 asy( j) =
L�(u( j)v( j)′), where each u( j), v( j) is drawn independently from the Haar measure on
the unit sphere in R

7. We generate standard Gaussian maps E (i) : R7×7 → R
30, i =

1, . . . , 20 that are used to corrupt L� in providing the initial guess to our algorithm.
Specifically, for each σ ∈ {0.125, 0.25, . . . , 2.5} and each E (i), i = 1, . . . , 20 we
supply as initial guess to our algorithm the normalized version of L� + σE (i). In
addition, we supply the subset {y( j)}mj=1 for each m ∈ {50, 100, . . . , 1000} to our
algorithm. The objective of this experiment is to investigate the role of the number of
data points (denoted by m) and the size of the error in the initial guess (denoted by σ )
on the performance of our algorithm.

Characterizing recovery of correct regularizer.Before discussing the results, we
describe a technique assessing whether our algorithm recovers the correct regularizer.
In particular, as we do not know of a tractable technique for computing the distance
measure ξ between two linear maps (8), we consider an alternative approach for
computing the ‘distance’ between two linear maps. For linear maps from R

q×q to
R
d , we fix a set of unit Euclidean norm rank-one matrices {s(k)t(k)′}�k=1, where each

s(k), t(k) ∈ R
q is drawn uniformly from the Haar measure on the sphere and � is

chosen to be larger than q2. Given an estimate L : Rq×q → R
d of a linear map

L� : Rq×q → R
d , we compute the following

distL� (L) := 1

�

�∑

k=1
inf

X∈Rq×q
rank(X)≤1

∥∥∥L�
(
s(k)t(k)

′)− L(X)

∥∥∥
2

�2
. (26)

To compute the minimum for each term in the sum, we employ the heuristic described
in Algorithm 2. If L� satisfies a suitable restricted isometry condition for rank-one
matrices and if L is specified as L� composed with a near-orthogonal rank-preserver,
then we have that distL� (L) ≈ 0; in the opposite direction, as � > q2, we have that
distL� (L) ≈ 0 implies ξL� (L) ≈ 0. In our setting with q = 7, we set � = 100. If our
algorithm provides an estimate L such that distL� (L) < 10−3, then we declare that
our method has succeeded in recovering the correct regularizer.

Results. In Fig. 2, we plot for each σ ∈ {0.125, 0.25, . . . , 2.5} the average number
of iterations—taken over the 20 different initial guesses specified by the normalized
versions of L� + σE (i), i = 1, . . . , 20—required for Algorithm 3 [with Step 1 com-
puted by solving (5) via Algorithm 2] to succeed in recovering the correct regularizer
as a function of the number of data points m supplied as input. The different curves
in the figure correspond to different noise levels (specified by σ ) in the initial guess;
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Fig. 2 Average number of
iterations required to identify
correct regularizer as a function
of the number of observations;
each line represents a fixed noise
level σ denoting the amount of
corruption in the initial guess
(see Sect. 4.1 for details of the
experimental setup)
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that is, the curves higher up in the figure are associated with larger noise levels. There
are two main conclusions to be drawn from this result. First, the average number of
iterations grows as the initial guess is of increasingly poorer quality. Second, and more
interesting, is that the number of iterations required for convergence improves with
an increase in the number of input data points, but only up to a certain stage beyond
which the convergence rate seems to plateau (this is a feature at every noise level in
this plot). This observation confirms the predictions of Theorem 3 and of Proposition
8 (specifically, see the discussion immediately following this proposition).

4.2 Illustration with Natural Images

4.2.1 Representing Natural Image Patches

The first stage of this experiment contrasts projections of low-rank matrices and pro-
jections of sparse vectors purely from the perspective of representing a collection of
image patches.

Setup. We consider a data set {y( j)}6480j=1 ∈ R
64 of image patches. These data are

obtained by taking 8×8 patches from larger images of seagulls and considering these
patches as well as their rotations, as is common in the dictionary learning literature;
Fig. 3 gives an example of a seagull image as well as several smaller patches. To ensure
that we learned a centered and suitably isotropic norm, we center the entire data set
to ensure that the average of the y( j)’s is the origin and then scale each data point
so that it has unit Euclidean norm. We apply Algorithm 3 (with Step 1 computed by
solving (5) via Algorithm 2) and the analog of this procedure for dictionary learning
described in Sect. 2.4.We assess the quality of the description of the data set {y( j)}6480j=1
as a projection of low-rank matrices (obtained using our approach) as opposed to a
projection of sparse vectors (obtained using dictionary learning).

Representation complexity. To assess the performance of each representation
framework, we require a characterization of the number of parameters needed to
specify an image patch in each representation as well as the resulting quality of
approximation. Given a collection {y( j)}nj=1 ⊂ R

d , suppose we represent each point

as y( j) ≈ L(X ( j)) for a linear mapL : Rq×q → R
d and a rank-r matrix X ( j) ∈ R

q×q .
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Fig. 3 Image patches (left) obtained from larger raw images (sample on the right)

The number of parameters required to specify each X ( j) is 2qr − r2, and the num-
ber of parameters required to specify L is dq2. Consequently, the average number of

parameters required to specify each y( j) is 2qr−r2+ dq2

n . In a similar manner, if each
y( j) ≈ Lx( j) for a linear map L : Rp × R

d and a vector x( j) ∈ R
p with s nonzero

coordinates, the average number of parameters required to each y( j) is 2s+ dp
n . In each

case, we assess the quality of the approximation by considering the average squared
error over the entire set {y( j)}nj=1.

Results. We initialize both our algorithm and the dictionary learning method with
random linear maps (suitably normalized in each case). Before contrasting the two
approaches, we highlight the improvement in performance our method provides over
a pure random linear map. Specifically, Fig. 4 shows for several random initializations
that our algorithm (as well as the alternating update method in dictionary learning)
provides a significant refinement in approximation quality as the number of iterations
increases. Therefore, there is certainly value in employing our algorithm (even with a
random initialization) to obtain better representations than pure random projections of
low-rankmatrices. Next we proceed to a detailed comparison of the two representation
frameworks.We employ our approach to learn a representation of the image patch data
set with q ∈ {9, 10, . . . , 15} and the values of the rank r chosen so that the overall
representation complexity lies in the range [17, 33]. Similarly, we employ dictionary
learning with p ∈ {100, 200, . . . , 1400} and the values of the sparsity level s chosen
so that the overall representation complexity lies in the range [17, 33]. The left subplot
in Fig. 6 gives a comparison of these two frameworks. (To interpret the y-axis of the
plot, note that the each data point is scaled to have unit norm.) Our approach provides
an improvement over dictionary learning for small levels of representation complexity
and is comparable at larger levels.

Comparison of atoms. Figure 5 gives an illustration of the atoms obtained from
classical dictionary learning (i.e., learning a polyhedral regularizer) as well as those
learned using our approach. The left subplot shows the finite collection of atoms of
a polyhedral regularizer (corresponding to the finite number of extreme points), and
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Fig. 4 Progression in mean-squared error with increasing number of iterations with random initializations
for learning a semidefinite regularizer (left) and a polyhedral regularizer (right)

Fig. 5 Comparison between atoms learned from dictionary learning (left) and our algorithm (right)

the right subplot shows a finite subset of the infinite collection of atoms learned using
our approach. The individual atoms in each case generally correspond to piecewise
smooth regions separated by boundaries. However, the geometry of the collection of
atoms is distinctly different in the two cases; in particular, the atoms learned using
our approach better represent the transformations underlying natural images. As we
discuss in the next set of experiments, our framework provides regularizers that lead
to improved denoising performance on natural images in comparison with polyhedral
regularizers.

4.2.2 Denoising Natural Image Patches

We compare the performance of polyhedral and semidefinite regularizers in denoising
natural image patches corrupted by noise.

Setup. The 6480 data points from the previous experiment are designated as a
training set. Here we consider an additional collection {y( j)

test}720j=1 ⊂ R
64 of 8 × 8

test image patches obtained from larger seagull images (as with the training set) and
subsequently shifted by an average of the pre-centered training set. We corrupt each of
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these test points by i.i.d. Gaussian noise to obtain y( j)
obs = y( j)

test+w( j), j = 1, . . . , 720,
where eachw( j) ∼ N (0, σ 2 I )with σ 2 chosen so that the average signal-to-noise ratio

1
720

∑n
j=1

‖y( j)
test‖2�2
64σ 2 ≈ 18. Our objective is to investigate the denoising performance of

the polyhedral and semidefinite regularizers (learned on the training set) on the data
set {y( j)

obs}720j=1. Specifically, we analyze the following proximal denoising procedure:

ŷdenoise = arg min
y∈R64

1
2‖yobs − y‖2�2 + λ‖y‖, (27)

where ‖·‖ is a regularizer learned on the training set and λ > 0 is a regularization
parameter.

Computational complexity of regularizer. To compare the performances of dif-
ferent regularizers, it is instructive to consider the cost associated with employing
a regularizer for denoising. In particular, the regularizers learned on the training
set have unit balls that are specified as linear images of the nuclear norm ball and
the �1 ball. Consequently, the main cost associated with employing a regularizer
is the computational complexity of solving the corresponding proximal denois-
ing problem (27). Thus, we analyze the normalized mean-squared denoising error

1
720

∑n
j=1

‖y( j)
obs−y( j)

denoise‖2�2
64σ 2 of a regularizer as a function of the computational complex-

ity of solving (27). For a polyhedral norm ‖·‖ : Rd → R with unit ball specified as
the image under a linear map L : Rp → R

d of the �1 ball in R
p, we solve (27) as

follows by representing the norm ‖·‖ in a lifted manner:

ŷdenoise = arg min
x,z∈Rp

s,t∈R

1
2 s + λt

s.t. ‖yobs − Lx‖2�2 ≤ s,
p∑

i=1
zi ≤ t,

(
z− x
z+ x

)
≥ 0.

(28)

To solve (28) to an accuracy ε using an interior-pointmethodwith the usual logarithmic
barriers for the nonnegative orthant and the second-order cone,wehave that the number
of operations required is

√
2p + 2 log( 2p+2

εη
((d + 2p + 2)3 + (2p + 2)3))—this

represents the number of outer loop iterations of the interior-pointmethod—multiplied
by (d+2q+2)3+(2q+2)3—this represents the number of operations required to solve
the associated linear system in the inner loop—for a barrier parameter η [45,51]. In a
similar manner, for a semidefinite regularizer ‖·‖ : Rd → R with unit ball specified
as the image under a linear map L : Rq×q → R

d of the nuclear norm ball in R
q×q ,

we again solve (27) as follows by representing the norm ‖·‖ in an analogous lifted
manner:
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Fig. 6 Comparison between dictionary learning (blue; dashed) and our approach (red; solid) in representing
natural image patches (left); comparison between polyhedral (blue; dashed) and semidefinite (red; solid)
regularizers in denoising natural image patches (right)

ŷdenoise = arg min
X∈Rq×q
Z1,Z2∈Sq
s,t∈R

1
2 s + λt

s.t. ‖yobs − L(X)‖2�2 ≤ s, 1
2 trace(Z1 + Z2) ≤ t,

(
Z1 X
X ′ Z2

)
� 0.

(29)
As before, to solve (29) to an accuracy ε using an interior-point method with the usual
logarithmic barriers for the positive-semidefinite cone and the second-order cone, we
have that the number of operations required is√
2q + 2 log

(
2q+2
εη

((
d + 2

(q
2

)+ 2
)3 + (

2
(q
2

)+ 2
)3))

multiplied by
(
d + (2q

2

)+ 2
)3 +

((2q
2

)+ 2
)3

for a barrier parameter η [51].

Results.We learn semidefinite regularizers on the training set usingAlgorithm 3 for
q ∈ {9, . . . , 20} and for a rank of 1. We also learn polyhedral regularizers on the train-
ing set using dictionary learning for p ∈ {92, 102, . . . , 202} and with corresponding
sparsity levels in the range {√p − 1,

√
p} to ensure that the representation complex-

ity matches the corresponding representation complexity of the images of rank-one
matrices in the semidefinite case. As the lifted dimensions q2 and p increase, the
computational complexities of the associated proximal denoisers (with the learned
regularizers) also increase. The right subplot in Fig. 6 gives the average normal-
ized mean-squared error over the noisy test data (generated as described above). The
optimal choice of the regularization parameter λ for each regularizer is obtained by
sweeping over a range to obtain the best denoising performance, as we have access
to the underlying uncorrupted image patches {y( j)

test}720j=1. For both types of regulariz-
ers, the denoising performance improves initially before degrading due to overfitting.
More significantly, given a fixed computational budget, these experiments suggest that
semidefinite regularizers provide better performance than polyhedral regularizers in
denoising image patches in our data set. The denoising operation (27) is in fact a basic
computational building block (often referred to as a proximal operator) in first-order
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algorithms for solving convex programs that arise in a range of inverse problems [48].
As such, we expect the results of this section to be qualitatively indicative of the utility
of our approach in other inferential tasks beyond denoising.

5 Discussion

Our paper describes an algorithmic framework for learning regularizers from data in
settings in which prior domain-specific expertise is not directly available. We learn
these regularizers by computing a structured factorization of the data matrix, which
is accomplished by combining techniques for the affine rank minimization problem
with the Operator Sinkhorn scaling procedure. The regularizers obtained using our
method are convex, and they can be computed via semidefinite programming. Our
approach may be viewed as a semidefinite analog of dictionary learning, which can be
interpreted as a technique for learning polyhedral regularizers from data. We discuss
next some directions for future work.

5.1 Algorithmic Questions

It would be of interest to better understand the question of initialization for our algo-
rithm. Random initialization often works well in practice, and it would be useful to
provide theoretical support for this approach by building on recent work on other
factorization problems [29,58]. To this end, we describe two experimental setups on
synthetic data showing instances where our algorithm recovers the true regularizer
from random initialization. In the first setup, we generate a standard Gaussian linear
map L : R8×8 → R

50 and normalize it. Let L� denote the resulting normalized map.
We generate data {y( j)}104j=1 as y( j) = L�(u( j)v( j)′)/‖L�(u( j)v( j)′)‖�2 , where each

u( j), v( j) is drawn independently from the Haar measure on the unit sphere in R8. We
apply our algorithm to the data, and we supply as initialization the normalization of
a standard Gaussian linear map. The left subplot of Fig. 7 shows the progression of
the mean-squared error over 10 different initializations. As the measurements do not
contain any additional noise, the minimum attainable error is zero. We observe that
our algorithm recovers the regularizer in all 10 random initializations; moreover, we
observe local, linear convergence in the neighborhood of the global minimizer, which
agrees with our analysis. Note that the progress of our algorithm reveals interesting
behavior in that the global recovery of the regularizer is characterized by three distinct
phases—(i) an initial phase in which progress is significant; (ii) an intermediate phase
in which progress is incremental but stable; and (iii) a terminal phase that corresponds
to local, linear convergence. In particular, these graphs indicate that global convergence
to the underlying regularizer is not linear. The second setup is similar to the first one,
with the two main differences being that we consider a linear map L� : R8×8 → R

60

of slightly different dimensions and that the data points {y( j)}2×104j=1 are images of rank-
two matrices. The right subplot of Fig. 7 shows the progression of our algorithm over
10 different initializations. In contrast to the previous setup where every initialization
led to a global minimum, in this case our algorithm attains a local minimum in 4 out of
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Fig. 7 Progression of our algorithm in recovering regularizers in a synthetic experimental setup; the hori-
zontal axis represents the number of iterations, and each line corresponds to a different random initialization.
The left subplot shows a problem instance in which all 10 different random initializations recover a global
minimizer, while the right subplot shows a different problem instance in which 4 out of 10 random initial-
izations lead to local minima

10 initializations and a global minimum in the remaining 6 initializations. In summary,
our experiments suggest that random initialization may sometimes be effective, and
understanding this effectiveness warrants further investigation.

Beyond random initialization, there have also been efforts on data-driven strategies
for initialization in dictionary learning by reducing the question to a type of cluster-
ing/community detection problem [2,5]. While the relation between clustering and
estimating the elements of a finite atomic set is conceptually natural, identifying an
analog of the clustering problem for estimating the image of a variety of rank-one
matrices (which is a structured but infinite atomic set) is less clear; we seek such a
conceptual link in order to develop an initialization strategy for our algorithm. In a
completely different direction, there is also recent work on a convex relaxation for the
dictionary learning problem that avoids the difficulties associated with local minima
[6]; while this technique is considerably more expensive computationally in compari-
son with alternating updates, developing analogous convex relaxation approaches for
the problem of learning semidefinite regularizers may subsequently point the way to
efficient global techniques that are different from alternating updates.

5.2 Approximation-Theoretic Questions

The focus of our paper has been on the algorithmic aspects of learning semidefi-
nite regularizers from data. It is of interest to investigate the power of finite atomic
sets in comparison with atomic sets specified as projections of determinantal vari-
eties from a harmonic analysis perspective (for a fixed representation complexity;
see Sect. 4.2.1 for a discussion on how these are defined). For example, what
types of data are better described using one representation framework versus the
other? As a simple preliminary illustration, we generate two sets of 400 points in
R
500, with the first set being a random projection of sparse vectors in R

900 and
the second set being a random projection of rank-one matrices in R

900 of the form
(· · · cos(2πα j ti ), sin(2πα j ti ), · · · )′ (· · · cos(2πβ j ti ), sin(2πβ j ti ), · · · ) for ran-
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Fig. 8 Gram matrices of images of sparse vectors (left) and low-rank matrices (right)

domly chosen frequencies α j , β j ; the representation complexities of both these sets
is the same. Figure 8 gives the Gram matrices associated with these data sets. The
data set of projections of sparse vectors appears to consist of ‘clusters’ of ‘block’
structure, while the data set of projections of low-rank matrices appears to consist
of smoother ‘toroidal’ structure. We seek a better understanding of this phenomenon
by analyzing the relative strengths of representations based on finite atomic sets ver-
sus projections of low-rank matrices. In a different direction, it is also of interest to
explore other families of infinite atomic sets that yield tractable regularizers in other
conic programming frameworks. Specifically, dictionary learning and our approach
provide linear and semidefinite programming regularizers, but there are other families
of computationally efficient convex cones such as the power cone and the exponen-
tial cone; learning atomic sets that are amenable to optimization in these frameworks
would lead to a broader suite of data-driven approaches for identifying regularizers.
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Appendix A: Proofs of Lemmas 1 and 2

Proof (Lemma 1) Note that if Z ∈ T , then Z has rank at most 2r . As a consequence
of the restricted isometry property, we have (1 − δ2r )‖Z‖2�2 ≤ ‖[L ◦ PT ](Z)‖2�2 ≤
(1+δ2r )‖Z‖2�2 . Since Z ∈ T is arbitrary,wehave1−δ2r ≤ λ(L′T LT ) ≤ 1+δ2r ,which
proves (i). This immediately implies the bound in (ii). Moreover since ‖L ◦ PT ‖2 =
‖PT ◦L′L ◦PT ‖1/22 ≤ √

1+ δ2r , we have ‖PT ◦L′L‖2 ≤
√
1+ δ2r‖L‖2, which is

(iii). Last we have ‖[(L′T LT )−1]Rq×q ◦L′L‖2 ≤ ‖[(L′T LT )−1]Rq×q‖2‖PT ◦L′L‖2 ≤√
1+δ2r
1−δ2r

‖L‖2, which proves (iv). ��
Proof (Lemma 2) To simplify notation, we omit (X). Since trace(�) = 1

n

∑n
j=1

‖X ( j)‖2�2 , we have smin ≤ trace(�) ≤ smax. Next we have the inequalities (Λ−Δ)I �
� � (Λ+Δ)I. The result follows by applying trace. ��
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Appendix B: Proof of Proposition 8

In this section, we prove that the ensemble of randommatricesX described in Proposi-
tion 8 satisfy the deterministic conditions in Theorem3with high probability.We begin
with computingED[X ( j)�X ( j)], andED[(X ( j)�X ( j))⊗PT (X ( j))]. Note that the ran-
dommatrices {X ( j)�X ( j)}nj=1 and the randomoperators {(X ( j)�X ( j))⊗PT (X ( j))}nj=1
are almost surely bounded above in spectral norm by construction. This allows us to
conclude Proposition 8 with an application of the Matrix Hoeffding Inequality [63].

To simplify notation, we adopt the following. In the first two results, we omit the
superscript j from X ( j). In the remainder of the section, we let E = ED, s̄2 := E[s2],
{ei }qi=1 ⊂ R

q be the set of standard basis vectors, and {Ei j }qi, j=1 ⊂ R
q×q be the set

of matrices whose (i, j)th entry is 1 and is 0 everywhere else.

Proposition 9 Suppose X ∼ D as described in Proposition 8. Then, E[X � X ] =
s̄2(r/q2)I.

Proof It suffices to show that E〈X � X, ewe′x � eye′z〉 = E〈X, ewe′x 〉〈X, eye′z〉 =
δwyδxz s̄2(r/q2). Let X = ∑r

i=1 siuiv′i as described in the statement of Proposition 8.
Suppose we denote ui = (ui1, . . . , uiq)′, and vi = (vi1, . . . , viq)

′. By applying inde-
pendence, we have E〈X, ewe′x 〉〈X, eye′z〉 = E[(∑r

i=1 si uiwvi x )(
∑r

k=1 skukyvkz)] =∑r
i,k=1 E[si sk]E[uiwuky]E[vi xvkz]. There are two cases we need to consider.

[Case w �= y or x �= z]: Without loss of generality, suppose that w �= y. Then,
E[uiwuky] = 0 for all 1 ≤ i, k ≤ q, and hence E〈X � X, ewe′x � eye′z〉 = 0.
[Case w = y and x = z]: Note that if i �= k, then E[uiwuky] = E[uiw]E[uky] =
0. Since ui is a unit-norm vector distributed u.a.r., we have E[u2i x ] = 1/q. Hence
E〈X � X, ewe′x � eye′z〉 =

∑r
i=1 E[s2i ]E[u2iw]E[v2i x ] = s̄2r/q2. ��

Our next result requires the definition of certain subspaces ofRq×q and End(Rq×q).
We define the following subspaces in R

q×q : Let G := {W : W = W ′,W ∈ I⊥}
be the subspace of symmetric matrices that are orthogonal to the identity,H := {W :
W = −W ′} be the subspace of skew-symmetric matrices, and I = Span(I ). It is clear
that Rq×q = G ⊕H⊕ I.

In addition to the subspace W defined in (12), we define the following subspaces
in End(Rq×q):
1. WSS := Span({A⊗B : A, B ∈ G}),
2. WAA := Span({A⊗B : A, B ∈ H}),
3. WSA := Span({A⊗B : A ∈ G, B ∈ H}),
4. WAS := Span({A⊗B : A ∈ H, B ∈ G}).
Note that End(Rq×q) = W ⊕ WSS ⊕ WAA ⊕ WSA ⊕ WAS . To verify this, first
express an arbitrary linear map E ∈ End(Rq×q) as a sum of Kronecker products
E = ∑

i=1 Ai⊗Bi , second decompose each matrix Ai , Bi into components in the
subspaces {G,H, I}, and third expand the expression. The orthogonality between
subspaces is immediate from the identity 〈Ai⊗Bi , A j⊗Bj 〉 = 〈Ai , A j 〉〈Bi , Bj 〉.
Proposition 10 Suppose X ∼ D as described in Proposition 8. Then,

E[(X � X)⊗PT (X)] = cW IW + cWSS IWSS + cWAA IWAA + cWSA IWSA + cWAS IWAS ,
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where (i) cW = s̄2r( 1
q2

), (ii) cWSS = s̄2r( 1
q2
− (q−r)2

(q−1)2(q+2)2 ), (iii) cWAA = s̄2r( 1
q2
−

(q−r)2
q2(q−1)2 ), and (iv) cWSA = cWAS = s̄2r( 1

q2
− (q−r)2

q(q−1)2(q+2) ).

Proof The proof consists of two parts, namely (i) to prove that the mean, when
restricted to the respective subspaces described above, has diagonal entries as speci-
fied, and (ii) to prove that the off-diagonal elements are zero with respect to any basis
that obeys the specified decomposition of End(Rq×q). In addition, it suffices to only
consider linearmaps that areKronecker products since thesemaps generate the respec-
tive subspaces. The following identity for all matrices Ai , Bi , A j , Bj is particularly
useful

〈(A′i⊗Bi )�(A′j⊗Bj ),E[(X�X)⊗PT (X)]〉 = E〈PT (X)(Bj X A j ),PT (X)(Bi X Ai )〉.
(30)

One may equivalently describe the distribution of X as follows—let X = UΣRV ′,
where U, V are q × q matrices drawn from the Haar measure and ΣR is a diagonal
matrix whose first r entries are drawn from D, and the remaining entries are 0 (to
simplify notation, we omit the dependence on X in the matrices U, V ). Let IN =
diag(0, . . . , 0, 1, . . . , 1) be a diagonal matrix consisting of q − r ones. Under this
notation, the projector is simply the map PT (X)(Z) = Z − U INU ′ZV IN V ′. The
remainder of the proof is divided into the two parts outlined above.
[Part (i)]: The restriction to diagonal entries correspond to the case i = j , and hence,
equation (30) simplifies to E[‖PT (X)(BX A)‖2�2 ]. Consequently, we have

E[‖PT (X)(BX A)‖2�2 ] = E[‖BUΣRV
′A‖2�2 ] − E[‖INU ′AUΣRV

′BV IN‖2�2 ].

First, we compute E[‖INU ′AUΣRV ′BV IN‖2�2 ]. By the cyclicity of trace and iter-
ated expectations, we have

E[‖INU ′AUΣRV
′BV IN‖2�2 ]

= E[trace(Σ1/2
R U ′A′U INU

′AUΣRV
′BV IN V

′B ′VΣ
1/2
R )]

= EU [EV [trace(Σ1/2
R U ′A′U INU

′AUΣRV
′BV IN V

′B ′VΣ
1/2
R )]].

It suffices to computeE[Σ1/2
R V ′BV IN V ′B ′VΣ

1/2
R ] = Σ

1/2
R E[V ′BV IN V ′B ′V ]Σ1/2

R
in the three cases corresponding to B ∈ {G,H, I}, respectively. Using linearity and
symmetry, it suffices to compute E[V ′BV E11V ′B ′V ]. We split this computation into
the following three separate cases.

[Case B ∈ I]: We have INΣ
1/2
R = 0, and hence the mean is the zero matrix.

[Case B ∈ H]: Claim: If B ∈ H, and ‖B‖�2 = 1, then E[V ′BV E11V ′B ′V ] =
(I − E11)/(q(q − 1)).
Proof Denote V = [v1| . . . |vq ]. The off-diagonal entries vanish as E〈Ei j , V ′BV
E11V ′B ′V 〉 = E(v′1Bvi )(v′1Bv j ) = 0 whenever i �= j , as one of the indices i, j
appears exactly once. By a symmetry argument, we haveE[V ′BV E11V ′B ′V ] = α I+
βE11 for some α, β. First E[trace(V ′BV E11V ′B ′V )] = E[trace(BV E11V ′B ′)] =

123



Found Comput Math

trace(BE[V E11V ′]B ′) = trace(B(I/q)B ′) = 1/q, which gives αq + β = 1/q. Sec-
ond since B is asymmetric, V ′BV is also asymmetric and hence is 0 on the diagonals.
Thus, 〈V ′BV E11V ′B ′V, E11〉 = 0, which gives α + β = 0. The two equations yield
the values of α and β.

[Case: B ∈ G]: Claim: If B ∈ G, and ‖B‖�2 = 1, then E[V ′BV E11V ′B ′V ] =
(I + (1− 2/q)E11)/((q − 1)(q + 2)).
Proof With an identical argument as the previous claim, one has E[V ′BV E11V ′B ′
V ] = α I + βE11, where αq + β = 1/q. Next E[〈V ′BV E11V ′B ′V, E11〉] =
E[(v′1Bv1)2], where v1 is a unit-norm vector distributed u.a.r. Since conjugation by
orthogonal matrices preserves trace, and v1 has the same distribution as Qv1 for
any orthogonal Q, we may assume that B = diag(b11, . . . , bqq) is diagonal with-
out loss of generality. Suppose we let v1 = (v1, . . . , vq)

′. Then, E[(v′1Bv1)2] =
E[∑ b2i iv

4
i +

∑
i �= j bii b j jv

2
i v

2
j ] = μ1(

∑
b2i i )+μ2(

∑
i �= j bii b j j ), whereμ1 = E[v41],

and μ2 = E[v21v22]. Since trace(B) = 0, we have
∑

b2i i = −∑
i �= j bii b j j . Last from

Theorem 2 of [18], we have μ1 = 3/(q(q + 2)), and μ2 = 1/(q(q + 2)), which gives
E[(v′1Bv1)2] = 2/(q(q + 2)), and hence α + β = 2/(q(q + 2)). The two equations
yield the values of α and β.

With a similar set of computations, one can show thatE[‖BUΣRV ′A‖2�2 ] = s̄2r/q2

for arbitrary unit-norm A, B. An additional set of computations yields the diagonal
entries, which completes the proof. We omit these computations.
[Part (ii)]:We claim that it suffices to show thatE[V ′AiV E11V ′A′j V ] is the zeromatrix
whenever Ai , A j ∈ {G,H, I}, and satisfy 〈Ai , A j 〉 = 0.We show how this proves the
result. Suppose Ai⊗Bi , A j⊗Bj satisfy 〈Ai⊗Bi , A j⊗Bj 〉 = 〈Ai , A j 〉〈Bi , Bj 〉 = 0.
Without loss of generality, we may assume that 〈Ai , A j 〉 = 0. From equation (30),
we have

E〈PT (X)(Bj X A j ),PT (X)(Bi X Ai )〉 = E[trace(A′j VΣRU
′B ′j BiUΣRV

′Ai )]
−E[trace(A′j VΣRU

′B ′jU INU
′BiUΣRV

′AiV IN V
′)].

By cyclicity of trace and iterated expectations, we have

E[trace(A′j VΣRU
′B ′jU INU

′BiUΣRV
′AiV IN V

′)]
= EU [trace(Σ1/2

R U ′B ′jU INU
′BiUΣ

1/2
R

(EV [Σ1/2
R V ′AiV IN V

′A′j VΣ
1/2
R ]))] = 0,

which proves part (ii) of the proof. It leaves to prove the claim. We do so by verifying
that the matrix E[V ′AiV E11V ′A′j V ] is 0 in every coordinate, which is equivalent to
showing that E(v′m Aiv1)(v′n A jv1) = 0 for all m, n. There are three cases.

[Case m �= n]: Without loss of generality, suppose that m �= 1. Then,
E(v′m Aiv1)(v′n A jv1) = E[E[(v′m Aiv1)(v′n A jv1)|v1, vn]] = 0.

[Case m = n = 1]: We divide into further subcases depending on the sub-
spaces Ai , A j belong to. If Ai ∈ H, then v′1Aiv1 = 0 since it is a scalar.
Hence, we eliminate the case where either matrix is in H. Since 〈Ai , A j 〉 = 0
it cannot be that both Ai , A j ∈ I. Suppose that Ai = I/

√
q and A j ∈ G.
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Then, E[(v′1Aiv1)(v′1A jv1)] = E[(v′1A jv1)]/√q = E[trace(A jv1v′1)]/
√
q = 0.

Our remaining case is when Ai , A j ∈ G, and 〈Ai , A j 〉 = 0. As before, we let
v1 = (v1, . . . , vq)

′. Then,

E[(v′1Aiv1)(v′1A jv1)] = E[
∑

pqrs

Ai,pq A j,rsvpvqvrvs]

=
∑

p

Ai,pp A j,ppE[v4p] +
∑

p �=r
Ai,pp A j,rrE[v2pv2r ] + 2

∑

p �=q
Ai,pq A j,pqE[v2pv2q ],

where in the second equality we used the fact that Ai , A j are symmetric to obtain a fac-
tor of 2 in the last term. Next we apply the relationsE[v4p] = 3/(q(q+2)),E[v2pv2r ] =
1/(q(q + 2)), as well as the relations 0 = 〈Ai , I 〉〈A j , I 〉 = ∑

p Ai,pp A j,pp +∑
p �=r Ai,pp A j,rr , and 0 = 〈Ai , A j 〉 = ∑

p Ai,pp A j,pp +∑
p �=q Ai,pq A j,pq to con-

clude that the mean is zero.
[Case m = n �= 1]: We have

E[(v′m Aiv1)(v′m A jv1)] = E[E[trace(Aiv1v′1A′jvmv′m)]|v1]
= E[trace(Aiv1v′1A′j (I − v1v′1)/(q − 1))|v1]
= E[trace(Aiv1v′1A′j/(q − 1))]
= E[trace(Ai I A

′
j/(q(q − 1)))] = 0,

where the first equality applies the fact that conditioned on v1, E[vmv′m] is the identity
matrix in the subspace T (v1v′1)⊥ suitably scaled, and the second inequality applies
the previous case. ��
Proof (Proposition 8) First, we have 0 � X ( j) � X ( j) � s2r I. By Proposition 9, we
have E[X ( j) � X ( j)] = (s̄2r/q2)I. Since (X ( j) � X ( j) − (s̄2r/q2)I)2 � s4r2I, we
have P(‖(1/n)

∑n
i=1 X ( j) � X ( j) − (s̄2r/q2)I‖ > trs2) ≤ 2q exp(−t2n/8) via an

application of the Matrix Hoeffding Inequality (Theorem 1.3 in [63]).
Second we have ‖X ( j) � X ( j)‖2 ≤ s2r , and ‖PT (X ( j))‖2 = 1, and hence (X ( j) �

X ( j))⊗PT (X ( j)) � s2r I⊗I =: s2rI. From Proposition 10, we have

E[(X ( j) � X ( j))⊗PT (X ( j))] �
s̄2r

q2
IW + 16s̄2r2

q3
IW⊥ .

Since ((X ( j) � X ( j))⊗PT (X ( j)) − rI)2 � s4r2I, we have

P

(
λmax

(
1

n

n∑

i=1
(X ( j) � X ( j))⊗PT (X ( j)) − E[(X ( j) � X ( j))⊗PT (X ( j))]

)
≥ trs2

)

≤ q exp(−t2n/8)

by an application of the Matrix Hoeffding Inequality.
Let t = t1/(5q2) in the first concentration bound, and t = t2/(5q2) in

the second concentration bound. Then, Δ(X) ≤ t1s2r/(5q2), and Ω(X) ≤
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16s2r2/q3+ t2s2r/(5q2), with probability greater than 1− 2q exp(−nt21 /(200q4))−
q exp(−nt22 /(200q4)). We condition on the event that both inequalities hold. Since
Δ(X) ≤ t1s2r/(5q2) ≤ s2r/(20q2), by Lemma 2, we have Λ(X) ≥ s2r/(5q2), and
hence Δ(X)/Λ(X) ≤ t1, and Ω(X)/Λ(X) ≤ 80r/q + t2. ��

Appendix C: Stability of Matrix and Operator Scaling

In this section,we prove a stability property of Sinkhorn scaling andOperator Sinkhorn
scaling. For Sinkhorn scaling, we show that if a matrix is close to being doubly
stochastic and has entries that are suitably bounded away from 0, then the resulting
row and column scalings are close to 1 := (1, . . . , 1)′. We also prove the operator
analog of this result. These results are subsequently used to prove Propositions 2
and 7. We note that there is an extensive literature on the stability of matrix scaling,
with results of a similar flavor to ours. However, Proposition 11 in this section is stated
in a manner that is directly suited to our analysis, and we include it for completeness.

5.3 Main Results

Proposition 11 (Local stability of Matrix Scaling) Let T ∈ R
q×q be a matrix such

that

1. |〈ei , T (e j )〉 − 1/q| ≤ 1/(2q) for all standard basis vectors ei , e j ; and
2. ε := max{‖T 1− 1‖∞, ‖T ′1− 1‖∞} ≤ 1/(48

√
q).

Let D1, D2 be diagonal matrices such that D2T D1 is doubly stochastic. Then,

‖D2⊗D1 − I‖2 ≤ 96
√
qε.

Proposition 12 (Local stability of Operator Scaling) Let T : Sq → S
q be a rank-

indecomposable linear operator such that

1. |〈vv′,T(uu′)〉 − 1/q| ≤ 1/(2q) for all unit-norm vectors u, v ∈ R
q; and

2. ε := max{‖T(I )− I‖2, ‖T′(I )− I‖2} ≤ 1/(48
√
q).

Let N1, N2 ∈ S
q be positive-definite matrices such that (N2⊗N2) ◦ T ◦ (N1⊗N1) is

doubly stochastic. Then, ‖N 2
2⊗N 2

1 −I‖2 ≤ 96
√
qε. Furthermore, we have ‖N2⊗N1−

I‖2 ≤ 96
√
qε.

5.4 Proofs

The proof of Proposition 11 relies on the fact that matrix scaling can be cast as the
solution of a convex program; specifically, we utilize the correspondence between
diagonal matrices D1, D2 such that D2T D1 is doubly stochastic, and the vectors
ε := (ε1, . . . , εq)

′, η := (η1, . . . , ηq)
′ that minimize the following convex function

F(ε, η) =
∑

i j

Ti j exp(εi + η j )−
∑

i

εi −
∑

η j
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via the maps (D2)i i = exp(εi ) and (D1) j j = exp(η j ) [31] (see also [39])—this holds
for all matrices T with positive entries. We remark that one can derive the above
relationship from first-order optimality. In the following, we prove bounds on the
minima of F (see Lemma 5).

The proof of Proposition 12 relies on a reduction to the setup in Proposition 11.
We begin with a lower estimate of the sum of exponential functions. We use the

estimate to prove Proposition 11.

Definition 3 Let α ≥ 0. Define the function cα : R→ R

cα(x) =
{

1
2 exp(−α)x2 if |x | ≤ α
1
2 exp(−α)α|x | if |x | ≥ α

.

Remark Note that the function cα(·) is continuous.

Lemma 3 For all x
exp(x) ≥ 1+ x + cα(x).

Proof (Lemma 3) The second derivative of exp(x) is exp(x), and it is greater than
exp(−α) over all x such that |x | ≤ α. Hence, by strong convexity of exp(x), we have
exp(x) ≥ 1+ x + (1/2) exp(−α)x2 over the interval [−α, α].

It follows that exp(α) ≥ 1 + α + cα(α), and exp(−α) ≥ 1 − α + cα(−α). Since
the function exp(x) is convex, and cα is linear in the intervals (−∞,−α] and [α,∞),
respectively, it suffices to check that (i) the gradient of exp(x) at x = α, which is
exp(α), exceeds that of cα(·), and (ii) the gradient of cα(·) exceeds that of exp(x) at
x = −α, which is exp(−α).

First, we prove (i). Since α ≥ 0, we have 1+ 2α ≥ √
1+ 2α. Hence, 2 exp(α) ≥

2 + 2α ≥ 1 + √
1+ 2α. By noting that the quadratic 2z2 − 2z − α = 0 has roots

(1/2)± (1/2)
√
1+ 2α, we have the inequality exp(α) ≥ 1+ (1/2) exp(−α)α, from

which (i) follows.
Next we prove (ii). Since α ≥ 0, we have exp(α) ≥ 1 + α ≥ 1 + α/2, and hence

1− (1/2) exp(−α)α ≥ exp(−α) from which (ii) follows. ��

Lemma 4 Let {εi }qi=1 and {η j }qj=1 be a collection of reals satisfying (
∑

i εi ) +
(
∑

j η j ) ≥ −2q. Then, there is a constant d ∈ R for which

1

q

∑

i j

exp(εi + η j ) ≥ q +
(

∑

i

(εi + cα(εi + d))

)
+

⎛

⎝
∑

j

(η j + cα(η j − d))

⎞

⎠ .

Proof Consider the function

f (d) :=
∑

i

(εi + d + cα(εi + d))−
∑

j

(
η j − d + cα(η j − d)

)
.
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Then, f (·) is continuous in d, and f (d) → ±∞ as d → ±∞. By the Intermediate
Value Theorem, there is a d� for which f (d�) = 0. Then,

∑

i

(
1+ εi + d� + cα(εi + d�)

) =
∑

j

(
1+ η j − d� + cα(η j − d�)

)
.

By summing both sides and noting that cα(·) ≥ 0, we have that each side of the above
equation is nonnegative. It follows that

1

q

∑

i j

exp(εi + η j ) = 1

q

(
∑

i

exp(εi + d�)

) ⎛

⎝
∑

j

exp(η j − d�)

⎞

⎠

≥ 1

q

(
∑

i

(
1+ εi + d� + cα(εi + d�)

)
)

⎛

⎝
∑

j

(
1+ η j − d� + cα(η j − d�)

)
⎞

⎠

≥ q +
(

∑

i

(εi + cα(εi + d))

)
+

⎛

⎝
∑

j

(η j + cα(η j − d))

⎞

⎠ .

��
Lemma 5 Given vectors ε := (ε1, . . . , εq) and η := (η1, . . . , ηq) define

F(ε, η) =
∑

i j

Ti j exp(εi + η j )−
∑

i

εi −
∑

j

η j , (31)

and εi j := Ti j−1/q. Suppose (i) |εi j | ≤ 1/2q, and (ii) ε := max{|∑i εi j |, |
∑

j εi j |} ≤
1/(24

√
q). Let ε�, η� be a minimizer of F. Then, |ε�

i + η�
j | ≤ 48

√
qε, for all i, j .

Proof Suppose |εi + η j | > 48
√
qε for some (i, j). We show that ε, η cannot be a

minimum. We split the analysis to two cases.
[(

∑
i εi ) + (

∑
j η j ) < −2q]: Since Ti j > 0, we have F(ε, η) > −(

∑
i εi ) −

(
∑

j η j ) ≥ 2q. Then, F(0, 0) = ∑
i (

∑
j Ti j ) = ∑

i (1 +
∑

j εi j ) ≤ q(1 +
1/(24

√
q)) ≤ 2q < F(ε, η).

[(
∑

i εi )+ (
∑

j η j ) ≥ −2q]: Let α = 24
√
qε, and define the sets

1. S(ε) = {i : |εi | ≥ α};
2. T(ε) = {i : α > |εi | ≥ 4ε exp(α)}; and
3. U(ε) = {i : 4ε exp(α) > |εi |}.
Similarly define the sets S(η),T(η),U(η).

First since α ≤ 1, we have α ≥ α exp(α)/3 ≥ 8
√
qε exp(α) ≥ 8ε exp(α), and

hence
1

4

( ∑

i∈S(ε)

cα(εi )+
∑

j∈S(η)

cα(η j )

)
≥ ε

( ∑

i∈S(ε)

|εi | +
∑

j∈S(η)

|η j |
)

.
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Second

1

2

( ∑

i∈T(ε)

cα(εi )+
∑

j∈T(η)

cα(η j )

)
=

∑

i∈T(ε)

1

4
exp(−α)ε2i +

∑

j∈T(η)

1

4
exp(−α)η2j

≥ ε

( ∑

i∈T(ε)

|εi | +
∑

j∈T(η)

|η j |
)

.

Third since there is an index (i, j) such that |εi + η j | > 48
√
qε, one of the sets

S(ε),S(η) is nonempty. By noting that α exp(−α) ≥ 8
√
qε, we have

1

4

( ∑

i∈S(ε)

cα(εi )+
∑

j∈S(η)

cα(η j )

)
> ε×2q×4ε exp(α) ≥ ε

( ∑

i∈U(ε)

|εi |+
∑

j∈U(η)

|η j |
)

.

We have ε(
∑

i |εi | +
∑

j |η j |) ≥ ∑
i (εi (

∑
j εi j )) +

∑
j (η j (

∑
i εi j )) =∑

i j εi j (εi + η j ). By combining the above inequalities with Lemma 4, we have

1

2q

∑(
exp(εi + η j )− (εi + η j )− 1

)
≥ 1

2

(∑

i

cα(εi )+
∑

j

cα(η j )

)

>
∑

i j

εi j (εi + η j ). (32)

Also, since exp(εi + η j ) − (εi + η j ) − 1 ≥ 0 for all i, j , and |εi j | ≤ 1/(2q), we
have

1

2q

∑

i j

(exp(εi + η j )− (εi + η j )− 1)

≥ max
i j

|εi j | ×
∑

i j

∣∣∣∣exp(εi + η j )− (εi + η j )− 1

∣∣∣∣

≥
∑

i j

εi j (exp(εi + η j )− (εi + η j )− 1).

(33)

By combining equations (32) and (33), we have

1

q

∑

i j

(exp(εi + η j )− (εi + η j )− 1) > −
∑

i j

εi j (exp(εi + η j )− 1),

which implies F(ε, η) > F(0, 0). ��
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Proof (Proposition 11) ByLemma 5 anyminimum ε�, η� satisfies |ε�
i +η�

j | ≤ 48
√
qε.

Hence by the one-to-one correspondence between the minima of F and the diagonal
scalings D1, D2 [31], we have ‖D2⊗D1 − I‖2 ≤ exp(48

√
qε)− 1 ≤ 96

√
qε. ��

Proof (Proposition 12) Without loss of generality, we may assume that N1, N2 are
diagonalmatrices, say D1, D2, respectively.Define thematrix Ti j = 〈eie′i ,T(e je′j )〉. It
is straightforward to check that T satisfies the conditions of Proposition 11; moreover,
the condition that (N2⊗N2)◦T◦(N1⊗N1) is a doubly stochastic operator implies that
D2
2T D2

1 is a doubly stochastic matrix. By Proposition 11, we have ‖D2
1⊗D2

2 − I‖2 ≤
96
√
qε, and hence ‖N 2

1⊗N 2
2 − I‖2 ≤ 96

√
qε. Since N1, N2 are self-adjoint, we also

have ‖N1⊗N2 − I‖2 ≤ 96
√
qε. ��

Appendix D: Proof of Proposition 7

In this section, we prove that Gaussian linear maps that are subsequently normalized
satisfy the deterministic conditions in Theorem 3 concerning the linear map L� with
high probability. There are two steps to our proof. First, we state sufficient condi-
tions for linear maps such that, when normalized, satisfy the deterministic conditions.
Second we show that Gaussian maps satisfy these sufficient conditions with high
probability.

We introduce the following parameter that measures how close a linear map L is
to being normalized.

Definition 4 LetL ∈ R
q×q → R

d be a linear map. The nearly normalized parameter
of L is defined as

ε(L) := max{‖TL(I )− I‖2, ‖T′L(I )− I‖2}.

Proposition 13 Let L : Rq×q → R
d be a linear map that satisfies (i) the restricted

isometry condition δr (L) ≤ 1/2, and (ii) whose nearly normalized parameter satisfies
ε(L) ≤ 1/(650

√
q). Let L◦NL be the normalized linear map whereNL is a positive-

definite rank-preserver. Then,L◦NL satisfies the restricted isometry condition δr (L◦
N) ≤ δ̄r := (1 + δr (L))(1 + 96

√
qε(L))2 − 1 < 1. Moreover, ‖L ◦ NL‖2 ≤ (1 +

96
√
qε(L))‖L‖2.

Proof (Proposition 13) Since L satisfies the restricted isometry condition δ1(L) ≤
1/2, we have |〈vv′,TL(uu′)〉 − 1/q| ≤ 1/(2q) for all unit-norm vectors u, v ∈ R

q .
In addition, the linear map L has nearly normalized parameter ε(L) ≤ 1/(650

√
q).

Hence by applying Proposition 12 to the linear map TL, any pair of positive-definite
matrices Q2, Q1 such that Q2⊗Q2 ◦ TL ◦ Q1⊗Q1 is doubly stochastic satisfies
‖Q2⊗Q1 − I‖2 ≤ 96

√
qε(L). By noting the correspondence between such matrices

with the positive-definite rank-preserver NL such that L ◦ NL is normalized via the
relation NL = Q2⊗Q1 (see Corollary 2), we have ‖NL‖2 ≤ 1+ 96

√
qε(L).

Let X be a matrix with rank at most r . Then,

‖L(NL(X))‖�2 ≤
√
1+ δr (L)‖NL‖2‖X‖�2 ≤

√
1+ δr (L)(1+ 96

√
qε(L))‖X‖�2 ,

123



Found Comput Math

and hence ‖L(NL(X))‖2�2 ≤ (1 + δ̄r )‖X‖2�2 . A similar set of steps show that

‖L(NL(X))‖2�2 ≥ (1−δ̄r )‖X‖2�2 . Last‖L◦NL‖2 ≤ ‖L‖2‖NL‖2 ≤ (1+96√qε)‖L‖2.
��

Proposition 14 [20, Theorem II.13] Let t > 0 be fixed. Suppose L ∼ N (0, 1/d).
Then, with probability greater than 1−exp(−t2d/2), we have ‖L‖2 ≤

√
q2/d+1+ t .

Proposition 15 [11, Theorem 2.3] Let 0 < δ < 1 be fixed. There exists constants
c1, c2 such that for d ≥ c1qr, if L ∼ N (0, 1/d), then with probability greater than
1−2 exp(−c2d) the linearmapL satisfies the restricted isometry condition δr (L) ≤ δ.

Proposition 16 (Gaussian linear maps are nearly normalized) Suppose 3/
√
d ≤ ε ≤

3. Suppose L ∼ N (0, 1/d). Then with probability greater than 1− 4 exp(−q(−1 +√
dε/3)2/2), the nearly normalized parameter of L is smaller than ε.

Bounding the nearly normalized parameter of a Gaussian linear map exactly corre-
sponds to computing the deviation of the sum of independent Wishart matrices from
its mean in spectral norm. To do so, we appeal to the following concentration bound.

Proposition 17 (Concentration of sum ofWishart matrices) Suppose 3/
√
d ≤ t ≤ 3.

Let {X ( j)}dj=1, X ( j) = G( j)G( j)′, where G( j) ∈ R
q×q ,G( j) ∼ N (0, 1/q), be a

collection of independent Wishart matrices. Then, P(‖ 1
d

∑d
j=1 X ( j) − I‖2 ≥ t) ≤

2 exp(−q(−1+√
dt/3)2/2).

Proof (Proposition 17) Consider the linear map G = [G(1)| . . . |G(d)]. Then,∑d
j=1 X ( j) = GG ′, and ‖ 1

d

∑d
j=1 X ( j) − I‖2 ≤ t if and only if σ(G) ∈

[√d(1− t),
√
d(1+ t)]. By [20, Theorem II.13], we have σ(G) ∈ [√d−1− t̃,

√
t+

1 + t̃] with probability greater than 1 − 2 exp(−qt̃2/2). The result follows with the
choice of t̃ = −1+√

dt/3. ��
Proof (Proposition 16) This is a direct application of Proposition 17 with G( j) =√
q/dL( j) and G( j)′ = √

q/dL( j), followed by a union bound. ��
Proof (Proposition 7) We choose t = 1/50 in Proposition 14, δ = δ4r/2 in Propo-
sition 15, and ε = δ/(960

√
q) in Proposition 16. Then, there are constants c1, c2, c3

such that if d ≥ c1rq, then (i) ‖L̃‖2 ≤
√
q2/d+51/50 ≤ (101/50)

√
q2/d , (ii) L̃ sat-

isfies the restricted isometry condition δ4r (L̃) ≤ δ4r/2, and (iii) L̃ is nearly normalized
with parameter ε(L̃) ≤ δ4r/960

√
q , with probability greater than 1− c2 exp(−c3d).

By applyingProposition 13,we conclude that the linearmapL satisfies the restricted
isometry condition δ4r (L) ≤ (1+δ4r/2)(1+δ4r/10)2−1 ≤ δ4r , and‖L‖2 ≤

√
5q2/d.

��

Appendix E: Proof of Proposition 2

Proof (Proposition 2) First, we check that the linear map L� ◦ (I + E) satisfies the
restricted isometry condition δ1(L�◦(I+E)) ≤ 1/2. For any rank-oneunit-normmatrix
X , we have ‖[L� ◦ (I + E)](X)‖�2 ≤ ‖L�(X)‖�2 + ‖L�(E(X))‖�2 ≤

√
1+ 1/10 +
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1/150 ≤ √
1+ 1/2. A similar set of inequalities show that ‖[L� ◦ (I+ E)](X)‖�2 ≥√

1− 1/2.
Second we check that the nearly normalized parameter of L� ◦ (I + E) satisfies

ε(L� ◦ (I+E)) ≤ 1/48
√
q . Denote E := L� ◦E. For all unit-norm rank-one matrices

E , we have ‖E(E)‖22 ≤ ‖L�‖22‖E‖2�2 . Hence for any unit-norm u ∈ R
q , we have

1

q

d∑

j=1
〈E jE ′j ,uu′〉 =

1

q

d∑

j=1

q∑

k=1
(E ′ju)2k =

1

q

q∑

k=1
‖E(ue′k)‖2�2 ≤ ‖L�‖22‖E‖2�2 .

Using the fact that L� is normalized, we have

1

q

d∑

j=1
〈L�

jL�′
j ,uu

′〉 = 1.

By combining the previous inequalities with an application of Cauchy–Schwarz, we
have

〈TL�◦(I+E)(I )− I,uu′〉
= 〈TL�+E (I )− TL� (I ),uu′〉

= 1

q

d∑

j=1
〈E jE ′j ,uu′〉 +

1

q

d∑

j=1
〈L�

jE ′j ,uu′〉 +
1

q

d∑

j=1
〈E jL�′

j ,uu
′〉

≤ 3‖L�‖2‖E‖�2 ,

Furthermore, since u is arbitrary, it follows that

‖TL�+E (I )− I‖2 ≤ 3‖L�‖2‖E‖�2 .

Using a similar sequence of steps, one can show that ‖T′L�+E (I ) − I‖2 ≤
3‖L�‖2‖E‖�2 . Thus, ε(L� ◦ (I+ E)) ≤ 3‖L�‖2‖E‖�2 ≤ 1/(48

√
q).

The result follows by applying Proposition 12 to the linear map TL�◦(I+E). ��

Appendix F: Proof of Proposition 3

The proof of Proposition 3 is based on the following result concerning affine rank
minimization, which may be of independent interest.

Proposition 18 Suppose X� is a q × q rank-r matrix satisfying σr (X�) ≥ 1/2. Let
y = L(X�) + z, where the linear map L satisfies the restricted isometry condition
δ4r (L) ≤ 1/10, and ‖L′z‖2 =: ε ≤ 1/(80r3/2). Let X̂ be the optimal solution to

X̂ = argmin
X

‖y− L(X)‖2�2 s.t. rank(X) ≤ r.
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Then, (i)‖X̂−X�‖2 ≤ 4
√
rε, and (ii) X̂−X� = [(L′T (X�)

LT (X�))
−1]Rq×q (L′T (X�)

z)+
G, where ‖G‖�2 ≤ 340r3/2ε2.

The proof of Proposition 18 requires two preliminary results which we state and
prove first. Our development relies on results from matrix perturbation theory; we
refer the reader to [38,57] for detailed expositions. Several of our results are minor
modifications of analogous results in [15].

The following result and the accompanying proof is a minor modification of Propo-
sition 2.2 in supplementary material (s.m.) of [15] and its proof. The modification
allows us to provide a bound that does not scale with the ambient dimension.

Proposition 19 Let X1, X2 ∈ R
q×q be rank-r matrices. Let σ be the smallest nonzero

singular value of X1, and suppose that ‖X1−X2‖2 ≤ σ/8. Then, ‖PT (X1)⊥(X2)‖�2 ≤√
r‖X1 − X2‖22/(3σ), and ‖PT (X1)⊥(X2)‖2 ≤ ‖X1 − X2‖22/(5σ).

In the following proof, given a matrix X ∈ R
q×q , we denote X̃ :=

(
0 X ′
X 0

)
.

Proof (Proposition 19) Let Δ̃ = X̃2 − X̃1, and let κ = σ/4. By combining equation
(1.5) in the s.m. of [15] with the proofs of Propositions 1.2 and 2.2 in the s.m. of [15] it
can be shown thatPT (X̃1)⊥(X̃2) = (1/(2π i))

∮
Cκ

ζ [X̃1−ζ I ]−1Δ̃[X̃1−ζ I ]−1Δ̃[X̃2−
ζ I ]−1dζ , where the contour integral is taken along Cκ defined as the circle centered
at the origin with radius κ .

By a careful use of the inequality ‖AB‖�2 ≤ ‖A‖2‖B‖�2 , we have ‖[X̃1 −
ζ I ]−1Δ̃[X̃1−ζ I ]−1Δ̃[X̃2−ζ I ]−1‖�2 ≤ ‖[X̃1−ζ I ]−1‖2‖Δ̃‖�2‖[X̃1−ζ I ]−1‖2‖Δ̃‖2
‖[X̃2−ζ I ]−1‖2. Since Δ̃ is amatrixwith rank atmost 4r , we have ‖Δ̃‖�2 ≤

√
4r‖Δ̃‖2.

We proceed to apply the same bounds as those used in the proof of Proposi-
tion 1.2 in the s.m. of [15] to obtain ‖PT (X̃1)⊥(X̃2)‖�2 ≤ 2

√
rκ2‖Δ̃‖22/((σ −

κ)2(σ − 3κ/2)) ≤ √
2r‖X̃1 − X̃2‖22/(3σ). The first inequality follows by noting

that
√
2‖PT (X1)⊥(X2)‖�2 = ‖PT (X̃1)⊥(X̃2)‖�2 and that ‖X1 − X2‖2 = ‖X̃1 − X̃2‖2.

The proof of the second inequality follows from a similar argument. ��
We define the following distance measure between two subspaces T1 and T2 [15]

ρ(T1, T2) := sup
‖N‖2≤1

‖PT1 − PT2(N )‖2.

This definition is useful for quantifying the distance between tangent spaces with
respect to the variety of low-rank matrices for pairs of nearby matrices.

Lemma 6 Let X1, X2 ∈ R
q×q be matrices with rank at most r , and satisfy ‖X1 −

X2‖2 ≤ σ/8, where σ is the smallest nonzero singular value of X2. Let T1 := T (X1)

andT2 := T (X2) be tangent spaces on the variety ofmatriceswith rank atmost r at the
points X1 and X2, respectively. LetL be a linear map satisfying the restricted isometry
condition δ4r (L) ≤ 1/10. If Zi ∈ Ti , i ∈ {1, 2}, then ‖[(L′T1LT1)

−1]Rq×q (Z1) −
[(L′T2LT2)

−1]Rq×q (Z2)‖�2 ≤ (43/10)
√
r‖Z1 − Z2‖2 + 16r‖X1 − X2‖2‖Z2‖2/σ .
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Proof (Lemma 6) To simplify notation, we denote Yi = [(L′TiLTi )
−1]Rq×q (Zi ), i ∈

{1, 2}. From the triangle inequality, we have ‖Y1 − Y2‖�2 ≤ ‖PT ⊥
1

(Y1 − Y2)‖�2 +
‖PT1(Y1 − Y2)‖�2 . We bound both components separately.

[‖PT ⊥
1

(Y1−Y2)‖�2 ]: From Proposition 2.1 of the s.m. of [15], we have ρ(T1, T2) ≤
2
σ
‖X1− X2‖2. From Lemma 1, we have ‖Y2− Z2‖�2 ≤ δ4r‖Y2‖�2 ≤ δ4r

1−δ4r
‖Z2‖�2 ≤√

2rδ4r
1−δ4r

‖Z2‖2. Hence

‖PT ⊥
1

(Y2 − Z2)‖�2 = ‖[I− PT1 ]([PT1 − PT2 ](Y2 − Z2))‖�2

≤ 2
√
r‖[PT1 − PT2 ](Y2 − Z2)‖2

≤ 2
√
rρ(T1, T2)‖Y2 − Z2‖2

≤ 4
√
2r

σ

δ4r

1− δ4r
‖X1 − X2‖2‖Z2‖2.

Here the first inequality follows by noting that [I− PT1 ]([PT1 − PT2 ](Y2 − Z2)) has
rank at most 4r . Next

‖PT ⊥
1

(Z2)‖�2 = ‖PT ⊥
1

(Z1 − Z2)‖�2 ≤ ‖Z1 − Z2‖�2 ≤ 2
√
r‖Z1 − Z2‖2.

By combining both bounds with the triangle inequality, we obtain

‖PT ⊥
1

(Y1 − Y2)‖�2 = ‖PT ⊥
1

(Y2)‖�2 ≤ ‖PT ⊥
1

(Z2)‖�2 + ‖PT ⊥
1

(Y2 − Z2)‖�2

≤ 2
√
r‖Z1 − Z2‖2 + 4

√
2r

σ

δ4r

1− δ4r
‖X1

−X2‖2‖Z2‖2.

[‖PT1(Y1 − Y2)‖�2 ]: Define the linear map G = L′T1∪T2LT1∪T2 . First ‖[PT2 ◦
G ◦ PT2 ](Y2) − [PT1 ◦ G ◦ PT2 ](Y2)‖�2 ≤ 2

√
r‖[PT2 ◦ G ◦ PT2 ](Y2) − [PT1 ◦

G ◦ PT2 ](Y2)‖2 ≤ 2
√
rρ(T1, T2)‖G(Y2)‖2, where ‖G(Y2)‖2 ≤ ‖G(Y2)‖�2 ≤ (1 +

δ4r )‖Y2‖�2 ≤ 1+δ4r
1−δ4r

‖Z2‖�2 ≤
√
2r 1+δ4r

1−δ4r
‖Z2‖2. Second ‖[PT1 ◦G◦PT2 ](Y2)−[PT1 ◦

G◦PT1 ](Y2)‖�2 = ‖[PT1 ◦G◦ (PT1 −PT2)](Y2)‖�2 ≤ ‖[G◦ (PT1 −PT2)](Y2)‖�2 ≤
(1 + δ4r )‖[PT1 − PT2 ](Y2)‖�2 ≤ 2

√
r(1 + δ4r )‖[PT1 − PT2 ](Y2)‖2 ≤ 2

√
r(1 +

δ4r )ρ(T1, T2)‖Y2‖2, where ‖Y2‖2 ≤ ‖Y2‖�2 ≤
√
2r

1−δ4r
‖Z‖2. Third by combining these

bounds with an application of Lemma 1 and the triangle inequality, we obtain

‖PT1(Y1 − Y2)‖�2

≤ 1

1− δ4r
‖[PT1 ◦G ◦ PT1 ](Y1 − Y2)‖�2

≤ 1

1− δ4r
(‖[PT1 ◦G ◦ PT1 ](Y1)− [PT2 ◦G ◦ PT2 ](Y2)‖�2

+ ‖[PT2 ◦G ◦ PT2 ](Y2)− [PT1 ◦G ◦ PT2 ](Y2)‖�2

+ ‖[PT1 ◦G ◦ PT2 ](Y2)− [PT1 ◦G ◦ PT1 ](Y2)‖�2)
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≤ 1

1− δ4r
(2
√
r‖Z1 − Z2‖2 + 4

√
2rρ(T1, T2)

1+ δ4r

1− δ4r
‖Z‖2).

��
Proof (Proposition 18) We prove (i) and (ii) in sequence.

[(i)]: Let X̂o be the optimal solution to the following

X̂o = argmin
X

‖y− L(X)‖2�2 s.t. rank(X) ≤ r, ‖X − X�‖2 ≤ 4
√
rε.

Since 4
√
rε < 1/2 ≤ σr (X�), X̂o has rank exactly r , and hence is a smooth point

with respect to the variety of matrices with rank at most r . Define the tangent space
T̂ := T (X̂o), and the matrix X̂c as the solution to the following optimization instance

X̂c = argmin
X

‖y− L(X)‖22 s.t. X ∈ T̂ , ‖X − X�‖2 ≤ 4
√
rε.

Here X̂c is the solution to the optimization instance where the constraint X ∈ T̂ ,
which is convex, replaces the only non-convex constraint in the previous optimization
instance. Hence X̂c = X̂o. Define X̂ T̂ as the solution to the following optimization
instance

X̂ T̂ = argmin
X

‖y− L(X)‖2�2 s.t. X ∈ T̂ .

The first-order condition is given by L′L(X̂ T̂ − X�) − L′z + QT̂ ⊥ = 0, where

QT̂ ⊥ ∈ T̂ ⊥ is the Lagrange multiplier associated with the constraint X ∈ T̂ . Project

the above equation onto the subspace T̂ to obtain [PT̂ ◦ L′L ◦ PT̂ ](X̂ T̂ − X�) =
[PT̂ ◦ L′L ◦ PT̂ ⊥](X�)+ PT̂ (L′z), and hence

X̂ T̂ − X� = [(L′T̂ LT̂ )−1]Rq×q ◦ ([L′L ◦ PT̂ ⊥](X�)+ L′z
)− PT̂ ⊥(X�).

We proceed to bound ‖X̂ T̂ − X�‖2. First, we have ‖X̂c − X�‖2 ≤ 4
√
rε ≤

1/20, and hence σr (X̂c) ≥ 9/20. Second by applying Proposition 19, we have
‖PT̂ ⊥(X�)‖2 = ‖PT̂ ⊥(X̂c − X�)‖2 ≤ (4

√
rε)2/(5σr (X̂c)) ≤ (64/9)rε2, and

‖PT̂ ⊥(X�)‖�2 ≤ (320/27)r3/2ε2. Third by Lemma 1 and noting the inequality
‖·‖2 ≤ ‖·‖�2 , we have

‖[(L′T̂ LT̂ )−1]Rq×q (L′z)‖2 ≤ ‖[(L′T̂ LT̂ )−1]Rq×q‖2‖PT̂ (L′z)‖�2

≤ 2
√
2r‖L′z‖2/(1− δ4r ) ≤ (16/5)

√
rε.

Fourth by Proposition 2.7 in [30], we have

‖[[(L′T̂ LT̂ )−1]Rq×q ◦ L′L ◦ PT̂ ⊥](X�)‖2
≤ ‖[(L′T̂ LT̂ )−1]Rq×q‖2‖[PT̂ ◦ L′L ◦ PT̂ ⊥](X�

T̂ ⊥)‖�2

≤ δ4r‖PT̂ ⊥(X�)‖�2/(1− δ4r ) ≤ (320/243)r3/2ε2.
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Last, we combine the bounds to obtain ‖X̂ T̂ − X�‖2 ≤ 8rε2 + (16/5)
√
rε +

2r3/2ε2 < 4
√
rε. This implies that the constraint ‖X − X�‖2 ≤ 4

√
rε for X̂c and X̂o

are inactive, and hence X̂ = X̂o = X̂c = X̂ T̂ .
[(ii)]: We have

G = [(L′T̂ LT̂ )−1]Rq×q (L′z)− [(L′T �LT � )−1]Rq×q (L′z)

+[[(L′T̂ LT̂ )−1]Rq×q ◦ L′L ◦ PT̂ ⊥](X�)− PT̂ ⊥(X�).

We deal with the contributions of each term separately.
First ‖[PT � − PT̂ ](L′z)‖2 ≤ ρ(T̂ , T �)‖L′z‖2 ≤ (2ε/σr (X�))‖X̂ − X�‖2 ≤

16
√
rε2, where the second inequality applies Proposition 2.1 of the s.m. of [15]. Sec-

ond ‖PT � (L′z)‖2 ≤ 2‖L′z‖2 = 2ε. Hence by applying Lemma 6 with the choice
of Z1 = PT̂ (L′z) and Z2 = PT � (L′z), we obtain ‖[(L′T �LT � )−1]Rq×q (L′z) −
[(L′T̂ LT̂ )−1]Rq×q (L′z)‖�2 ≤ 70rε2+256r3/2ε2. Third, we have ‖[(L′T̂ LT̂ )−1]Rq×q ◦
L′L ◦ PT̂ ⊥](X�)‖�2 ≤ (320/243)r3/2ε2, and ‖PT̂ ⊥(X�)‖�2 ≤ (320/27)r3/2ε2.

The bound follows by summing up these bounds. ��

The proof of Proposition 3 requires two additional preliminary results; in particular,
the first establishes the restricted isometry condition for linearmaps that are near linear
maps that already satisfy the restricted isometry condition.

Proposition 20 Suppose L� is a linear map that satisfies the restricted isometry con-
dition δr (L�) ≤ 1/20. Let E be a linear operator such that ‖E‖2 ≤ 1/(50‖L�‖2).
Then, L = L� ◦ (I+ E) satisfies the restricted isometry condition δr (L) ≤ 1/10.

Proof (Proposition 20) Let X be a matrix with rank at most r . Then,

‖L(X)‖�2 ≤ ‖L�(X)‖�2 + ‖L�(E(X))‖�2 ≤ (
√
1+ δr (L�)+ 1/50)‖X‖�2

≤ √
1+ 1/10‖X‖�2 .

A similar argument also proves the lower bound ‖L(X)‖�2 ≥
√
1− 1/10‖X‖�2 . ��

Lemma 7 Suppose L satisfies the restricted isometry condition δ1(L) < 1. Then,
‖L′L‖�2,2 ≤

√
2(1+ δ1(L))‖L‖2.

Proof Let Z ∈ argmaxX :‖X‖�2≤1‖L′L(X)‖2, and let T be the tangent space
of the rank-one matrix corresponding to the largest singular value of Z . Then,
supX :‖X‖�2≤1 ‖L′L(X)‖2 ≤ supX :‖X‖�2≤1 ‖[PT ◦ L′L](X)‖2 ≤ √

2 supX :‖X‖�2≤1
‖[PT ◦ L′L](X)‖�2 ≤

√
2‖PT ◦ L′L‖2. By Lemma 1, we have

√
2‖PT ◦ L′L‖2 ≤√

2(1+ δ1(L))‖L‖2. ��
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Proof (Proposition 3) To simplify notation, we denote T := T (X�). Without loss of
generality, we may assume that ‖X�‖2 = 1. By the triangle inequality, we have

‖(X� −M(X̂))− [(L�′
T L�

T )−1]Rq×q ◦ L�′L� ◦ E(X�)‖�2

≤ ‖(X� −M(X̂))− [((I+ E′) ◦ L�′L�◦
(I+ E)|T )−1]Rq×q ◦ (I+ E′) ◦ L�′L� ◦ E(X�)‖�2

+ ‖([((I+ E′) ◦ L�′L� ◦ (I+ E)|T )−1]Rq×q

− [(L�′
T L�

T )−1]Rq×q ) ◦ (I+ E′) ◦ L�′L� ◦ E(X�)‖�2

+ ‖[(L�′
T L�

T )−1]Rq×q ◦ (I+ E′) ◦ L�′L� ◦ E(X�)

− [(L�′
T L�

T )−1]Rq×q ◦ L�′L� ◦ E(X�)‖�2

We bound each term separately.
[First term]:Let z̃ := [L�◦E](X�). First byProposition20, the linearmapL�◦(I+E)

satisfies the restricted isometry condition δ4r (L� ◦ (I+E)) ≤ 1/10. Second, we have
‖I+ E‖2,2 ≤ 1+√

q‖E‖�2 ≤ 51/50. Third from Lemma 7, we have ‖L�′L�‖�2,2 ≤√
2(1+ δ4r (L�))‖L�‖2. Fourth ‖E(X�)‖�2 ≤

√
r‖E‖�2 . Hence

‖(I+ E′) ◦ L�′z̃‖2 ≤ ‖I+ E‖2,2‖L�′L�‖�2,2‖E‖�2‖X�‖�2 ≤ (3/2)
√
r‖L�‖2‖E‖�2 .

By the initial conditions, we have that the above quantity is at most 1/(80r3/2). Con-
sequently, by applying Proposition 18 to optimization instance (9) with the choice of
linear map L� ◦ (I+ E) and error term z̃ we have

‖(X� −M(X̂))− [((I+ E′) ◦ L�′L� ◦ (I+ E)|T )−1]Rq×q ◦ (I+ E′) ◦ L�′z̃‖�2

≤ 765r5/2‖L�‖22‖E‖2�2 .

[Second term]: First by Lemma 1, we have ‖[(L�′
T L�

T )−1]Rq×q‖2 ≤ 20/19. Second
by the triangle inequality, we have ‖PT ◦ (I + E′) ◦ L�′L� ◦ (I + E) ◦ PT − PT ◦
L�′L� ◦ PT ‖2 ≤ 3‖L�‖2‖E‖�2 . Third by utilizing the identity (A + B)−1 = A−1 −
A−1 ◦ B ◦ A−1 + A−1 ◦ B ◦ A−1 ◦ B ◦ A−1 − . . . with the choice of A = L�′

T L�
T and

B = PT ◦ (I+ E)′ ◦ L�′L� ◦ (I+ E) ◦ PT − A, we obtain

‖[((I+ E′) ◦ L�′L� ◦ (I+ E)|T )−1]Rq×q − [(L�′
T L�

T )−1]Rq×q‖2 ≤ 4‖L�‖2‖E‖�2 .

Fourth ‖PT ◦ (I+ E′) ◦ L�′L� ◦ E(X�)‖�2 ≤ (11/10)
√
r‖L�‖2‖E‖�2 . Hence

‖([((I+ E′) ◦ L�′L� ◦ (I+ E)|T )−1]Rq×q

−[(L�′
T L�

T )−1]Rq×q ) ◦ (I+ E′) ◦ L�′L� ◦ E(X�)‖�2

≤ 5
√
r‖L�‖22‖E‖2�2 .
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[Third Term]: We have

‖[(L�′
T L�

T )−1]Rq×q ◦ (I+ E′) ◦ L�′L� ◦ E(X�)

−[(L�′
T L�

T )−1]Rq×q ◦ L�′L� ◦ E(X�)‖�2

≤ ‖[(L�′
T L�

T )−1]Rq×q‖2‖E′‖2‖L�‖22‖E(X�)‖�2 ≤ 2
√
r‖L�‖22‖E‖2�2 .

[Conclude]: The result follows by summing each bound and applying Lemma 7. ��

Appendix G: Proof of Proposition 4

Proof (Proposition 4) To simplify notation, we let Λ := Λ({A( j)}nj=1), Δ :=
Δ({A( j)}nj=1), andD be the linearmapdefined asD : z �→ ∑n

j=1(Q(B( j))−A( j))z j . In

addition we define τ := (1/
√
nΛ)‖D‖2. Note that by the Cauchy–Schwarz inequality,

we have τ ≤ ω/
√

Λ ≤ 1/20.
We begin by noting that since ‖(1/nΛ)X� ◦ X�′ − I‖2 ≤ Δ/Λ ≤ 1/6, we have

‖((1/nΛ)X� ◦ X�′)−1‖2, and ‖(1/nΛ)X� ◦ X�′‖2 ≤ 6/5.
Next we compute the following bounds. First ‖D◦D′ ◦(X�◦X�′)−1‖2 ≤ ‖D‖22‖(X� ◦

X�′)−1‖2 ≤ (6/5)τ 2. Second ‖D◦X�′ ◦(X�◦X�′)−1‖2 ≤ ‖D‖2‖X�′‖2‖(X�◦X�′)−1‖2 ≤
τ(6/5)3/2. Third ‖X� ◦ D′ ◦ (X� ◦ X�′)−1‖2 ≤ τ(6/5)3/2. By applying these bounds to
the following expansion, we obtain

(
(X� + D) ◦ (X� + D)′

)−1

= ((
I+ D ◦ X�′ ◦ (X� ◦ X�′)−1 + X� ◦ D′ ◦ (X� ◦ X�′)−1 + E1

) ◦ X� ◦ X�′)−1

= (X� ◦ X�′)−1
(
I− D ◦ X�′ ◦ (X� ◦ X�′)−1 − X� ◦ D′ ◦ (X� ◦ X�′)−1 + E2

)
,

where ‖E1‖2 ≤ (6/5)τ 2, and ‖E2‖2 = ‖−E1+(D◦X�′ ◦(X� ◦X�′)−1+X� ◦D′ ◦(X� ◦
X�′)−1+E1)

2−(. . .)3‖2 ≤ (‖E1‖2+‖D◦X�′◦(X�◦X�′)−1+X�◦D′◦(X�◦X�′)−1+E1‖22+
. . .) ≤ (6/5)τ 2+(τ (6/5)(τ+2

√
6/5))2+ . . . ≤ 1.2τ 2+(3τ)2+(3τ)3+ . . . ≤ 12τ 2.

We apply the above expansion to derive the following approximation of X� ◦ (X�+
D)+

X� ◦ (X� + D)+

= X� ◦ (X� + D)′ ◦ (
(X� + D) ◦ (X� + D)′

)−1

= (X� ◦ X�′ + X� ◦ D′) ◦ (X� ◦ X�′)−1
(
I− D ◦ X�′ ◦ (X� ◦ X�′)−1

−X� ◦ D′ ◦ (X� ◦ X�′)−1 + E2
)

= (I− D ◦ X�+ + E3),

where E3 satisfies ‖E3‖2 ≤ 2(τ (6/5)3/2)(2(τ (6/5)3/2)+ ‖E2‖2)+ ‖E2‖2 ≤ 20τ 2.
Next we write ((1/(nΛ))X� ◦ X�′)−1 = I+ E4, where ‖E4‖2 ≤ (6/5)Δ/Λ. Then,

X� ◦ (X� + D)+ = I− D ◦ X�′ ◦ (X� ◦ X�′)−1 + E3 = I− (1/nΛ)D ◦ X�′ + F,
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where ‖F‖2 ≤ ‖E3‖2+‖D ◦X�′ ◦E4‖2/(nΛ) ≤ ‖E3‖2+ τ(6/5)1/2‖E4‖2 ≤ 20τ 2+
2τΔ/Λ. The result follows by noting that ‖F‖�2 ≤ q‖F‖2, τ ≤ ω/

√
Λ and that

X� ◦ X̂+ = X� ◦ (X� + D)+ ◦Q. ��

Appendix H: Proof of Proposition 5

Proposition 21 Given an operator E : Rq×q → R
q×q , there exists matrices EL , ER

such that PW (E) = I⊗EL + ER⊗I , and ‖EL‖�2 , ‖ER‖�2 ≤ ‖E‖�2/
√
q.

Proof (Proposition 21) Define the subspaces WR := {S⊗I : S ∈ R
q×q} and WL :=

{I⊗S : S ∈ R
q×q}. Note thatWR∩WL = Span(I), and hencePW = PWR∩Span(I)⊥+

PWL∩Span(I)⊥ + PSpan(I).
Define EL and ER to be matrices such that ER⊗I = PWR∩Span(I)⊥(E) +

(1/2)PSpan(I)(E), and I⊗EL = PWL∩Span(I)⊥(E)+ (1/2)PSpan(I)(E). For i ∈ {L , R},
we have the following. Since PWi∩Span(I)⊥ and (1/2)PSpan(I) are projectors onto
orthogonal subspaceswith spectral norm1 and 1/2, respectively,we have ‖Ei⊗I‖�2 ≤
‖E‖�2 . Moreover, since ‖Ei⊗I‖�2 = ‖Ei‖�2‖I‖�2 , we have ‖Ei‖�2 ≤ ‖E‖�2/

√
q . ��

Proof (Proposition 5) By applying Proposition 21 to the operator D, we have
PW (D) = I⊗EL + ER⊗I for a pair of matrices EL , ER ∈ R

q×q satisfying
‖EL‖�2 , ‖ER‖�2 ≤ ‖D‖�2/

√
q . Moreover, since ‖EL‖2, ‖ER‖2 < 1, it follows that

the matrices I + ER and I + EL are invertible. Consider the following identity

I+ D =
(
I+ (

PW⊥(D)− ER⊗EL
) ◦ (I + ER)−1

⊗(I + EL)−1
)
◦ (I + ER)⊗(I + EL).

We define H = (PW⊥(D) − ER⊗EL) ◦ (I + ER)−1⊗(I + EL)−1 − PW⊥(D), and
we defineW = (I + ER)⊗(I + EL). By the triangle inequality, we have ‖W − I‖2 ≤
3‖D‖�2/

√
q .

Next we note that ‖(I + Ei )
−1‖2 ≤ 10/9, i ∈ {L , R} and that ‖(I + ER)−1⊗(I +

EL)−1‖2 ≤ 100/81. We also have ‖ER⊗EL‖�2 = ‖ER‖�2‖EL‖�2 ≤ ‖D‖2�2/q.
By noting that ‖(I + Ei )

−1 − I‖2 ≤ (10/9)‖Ei‖2, i ∈ {L , R}, we have ‖(I +
ER)−1⊗(I +EL)−1− I⊗I‖2 ≤ 3‖D‖�2/

√
q . By combining these bounds, we obtain

‖H‖�2 ≤ ‖PW⊥(D)‖�2‖(I + ER)−1⊗(I + EL)−1 − I⊗I‖2 + ‖ER⊗EL‖�2‖(I +
ER)−1⊗(I + EL)−1‖2 ≤ 5‖D‖2�2/

√
q . ��

Appendix I: Proof of Proposition 6

Proof (Proposition 6) To simplify notation in the proof, we denote α8 := α8(q,L�) =
96
√
q‖L�‖2. We show that

‖L(t) − L(t+1)‖2 ≤ α9ξL� (L(t)), (34)
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for some function α9 := α9(q, r,L�) that we specify later. In the proof of Theorem 3,
we showed that ξL� (L(t)) ≤ γ tξL� (L(0)) for some γ < 1. Hence, establishing (34)
immediately implies that the sequence {L(t)}∞t=1 is Cauchy.

Our proof builds on the proof of Theorem 3. Let

L(t) = L� ◦ (I+ E(t)) ◦M

where E(t) is a linear map that satisfies ‖E(t)‖�2 < 1/α0. In the proof of Theorem 3,
we show that

L(t+1) = L� ◦ (I+ E(t+1)) ◦W ◦M ◦ N,

where ‖E(t+1)‖�2 ≤ ‖E(t)‖�2 ,W is a rank-preserver andN is a positive-definite rank-
preserver. Moreover, as a consequence of applying Proposition 5 to establish (23) in
the proof, we obtain the bound ‖W − I‖2 ≤ 3α7‖E(t)‖�2 . We use these bounds and
relations to prove (34).

By the triangle inequality, we have

‖L(t) − L(t+1)‖2 ≤ ‖L� ◦ E(t) ◦M‖2 + ‖L� ◦ E(t+1) ◦W ◦M ◦ N‖2
+ ‖L� ◦M ◦ (N − I)‖2 + ‖L� ◦ (W − I) ◦M ◦ N‖2.(35)

By Proposition 2 applied to the pairs of linear maps L(t),L� and L(t+1),L�, we
have ‖M − Q1‖2, ‖W ◦M ◦ N − Q2‖2 ≤ α8‖E(t)‖�2 , for some pair of orthogonal
rank-preserversQ1,Q2. Since α8/α0 ≤ 1, we have ‖M‖2 ≤ 2 and ‖W ◦M ◦N‖2 ≤ 2.
Consequently, ‖L� ◦ E(t) ◦M‖2, ‖L� ◦ E(t+1) ◦W ◦M ◦ N‖2 ≤ 2‖L�‖2‖E(t)‖�2 .

Next we bound ‖N − I‖2. By utilizing ‖W ◦ M ◦ N − Q2‖2 ≤ α8/α0, ‖M −
Q1‖2 ≤ α8‖E(t)‖�2 , and ‖W − I‖2 ≤ 3α7‖E(t)‖�2 , one can show that ‖N − Q3‖2 ≤
(6α7 + 2α8 + 2)‖E(t)‖�2 , where Q3 = Q ′

1 ◦ Q2 is an orthogonal rank-preserver.
Since N is self-adjoint, we have ‖N2 − I‖2 ≤ 3(6α7 + 2α8 + 2)‖E(t)‖�2 , and hence
‖N − I‖2 ≤ 3(6α7 + 2α8 + 2)‖E(t)‖�2 . This also implies the bound ‖N‖2 ≤ 3.

We apply these bounds to obtain ‖L� ◦ M ◦ (N − I)‖2 ≤ 6(6α7 + 2α8 +
2)‖L�‖2‖E(t)‖�2 , and ‖L� ◦ (W − I) ◦M ◦ N‖2 ≤ 9α7‖L�‖2‖E(t)‖2.

We define α9 := (4+ 6(6α7+ 2α8+ 2)+ 9α7)‖L�‖2 (these are exactly the sum of
the coefficients of ‖E(t)‖�2 in the above bounds). The result follows by adding these
bounds and subsequently taking the infimum over E(t) in (35). ��
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