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We consider change-point estimation in a sequence of high-dimensional signals 
given noisy observations. Classical approaches to this problem such as the filtered 
derivative method are useful for sequences of scalar-valued signals, but they 
have undesirable scaling behavior in the high-dimensional setting. However, many 
high-dimensional signals encountered in practice frequently possess latent low-
dimensional structure. Motivated by this observation, we propose a technique 
for high-dimensional change-point estimation that combines the filtered derivative 
approach from previous work with convex optimization methods based on atomic 
norm regularization, which are useful for exploiting structure in high-dimensional 
data. Our algorithm is applicable in online settings as it operates on small portions 
of the sequence of observations at a time, and it is well-suited to the high-
dimensional setting both in terms of computational scalability and of statistical 
efficiency. The main result of this paper shows that our method performs change-
point estimation reliably as long as the product of the smallest-sized change (the 
Euclidean-norm-squared of the difference between signals at a change-point) and the 
smallest distance between change-points (number of time instances) is larger than 
a Gaussian width parameter that characterizes the low-dimensional complexity of 
the underlying signal sequence.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Change-point estimation is the identification of abrupt changes or anomalies in a sequence of observations. 
Such problems arise in numerous applications such as product quality control, data segmentation, network 
analysis, and financial modeling; an overview of the change-point estimation literature can be found in 
[1–4]. As in other inferential tasks encountered in contemporary settings, a key challenge underlying many 
modern change-point estimation problems is the increasingly large dimensionality of the underlying sequence 
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of signals – that is, the signal at each location in the sequence is not scalar-valued but rather lies in a 
high-dimensional space. This challenge leads both to computational difficulties as well as to complications 
with obtaining statistical consistency in settings in which one has access to a small number of observations 
(relative to the dimensionality of the space in which these observations live).

A prominent family of methods for estimating the locations of change-points in a sequence of noisy 
scalar-valued observations is based on the filtered derivative approach [1,5–8]. Broadly speaking, these pro-
cedures begin with an application of a low-pass filter to the sequence, followed by a computation of pairwise 
differences between successive elements, and finally the implementation of a thresholding step to estimate 
change-points. A large body of prior literature has analyzed the performance of this family of algorithms 
and its variants [5,7,8]. Unfortunately, as we describe in Section 3, the natural extension of this procedure 
to the high-dimensional setting leads to performance guarantees for reliable change-point estimation that 
require the underlying signal to remain unchanged for long portions of the sequence. Such requirements tend 
to be unrealistic in applications such as financial modeling and network analysis in which rapid transitions 
in the underlying phenomena trigger frequent changes in the associated signal sequences.

1.1. Our contributions

To alleviate these difficulties, modern signal processing methods for high-dimensional data – in a range 
of statistical inference tasks such as denoising [9–11], model selection [12–14], the estimation of large co-
variance matrices [15,16], and others [17–21] – recognize and exploit the observation that signals lying in 
high-dimensional spaces typically possess low-dimensional structure. For example, images frequently admit 
sparse representations in an appropriately transformed domain [17,22] (e.g., the wavelet domain), while 
covariance matrices are well-approximated as low-rank matrices in many settings (e.g., correlations between 
financial assets). The exploitation of low-dimensional structure in solving problems such as denoising leads 
to consistency guarantees that depend on the intrinsic low-dimensional “complexity” of the data rather 
than on the ambient (large) dimension of the space in which they live. A notable feature of several of these 
structure-exploiting procedures is that they are based on convex optimization methods, which can lead to 
tractable numerical algorithms for large-scale problems as well as to insightful statistical performance analy-
ses. Motivated by these ideas, we propose a new approach for change-point estimation in high dimensions by 
integrating a convex optimization step into the filtered derivative framework (see Section 3). We prove that 
the resulting method provides reliable change-point estimation performance in high-dimensional settings, 
with guarantees that depend on the underlying low-dimensional structure in the sequence of observations 
rather than on their ambient dimension.

To illustrate our ideas and arguments concretely, we consider a setup in which we are given a sequence 
Y[t] ∈ R

p for t = 1, . . . , n of observations of the form:

Y[t] = X�[t] + ε[t]. (1)

Here X�[t] ∈ R
p is the underlying signal and the noise is independent and identically distributed across 

time as ε[t] ∼ N (0, σ2Ip×p). The signal sequence X := {X�[t]}nt=1 is assumed to be piecewise constant with 
respect to t. The set of change-points is denoted by τ� ⊂ {1, . . . , n}, i.e., t ∈ τ� ⇔ X�[t] �= X�[t + 1], and 
the objective is to estimate the set τ�. A central aspect of our setup is that each X�[t] is modeled as having 
an efficient representation as a linear combination of a small number of elements from a known set A of 
building blocks or atoms [9,10,17–19,21,23–26]. This notion of signal structure includes widely studied models 
in which signals are specified by sparse vectors and low-rank matrices. It also encompasses several others 
such as low-rank tensors, orthogonal matrices, and permutation matrices. The convex optimization step in 
our approach exploits knowledge of the atomic set A; specifically, the algorithm described in Section 3.2
consists of a denoising operation in which the underlying signal is estimated from local averages of the 



124 Y.S. Soh, V. Chandrasekaran / Appl. Comput. Harmon. Anal. 43 (2017) 122–147
sequence Y[t] using a proximal operator based on the atomic norm associated to A [9,10,18]. The main 
technical result of this paper is that the method we propose in Section 3 provides accurate estimates of the 
change-points τ� with high probability under the condition:

Δ2
minTmin � σ2{η2(X ) + log n}, (2)

where Δmin denotes the size (in �2-norm) of the smallest change among all change-points, Tmin denotes 
the smallest interval between successive change-points, and n is the number of observations. The quan-
tity η(X ) captures the low-dimensional complexity in the signal sequence X := {X�[t]}nt=1 via a Gaussian 
distance/width characterization, and it appears in our result due to the incorporation of the convex op-
timization step. In the high-dimensional setting, the parameter η2 plays a crucial role as it reflects the 
underlying low-dimensional structure in the signal sequence of interest; as such it is usually much smaller 
than the ambient dimension p (we quantify the comparisons in Section 2). Indeed, directly applying the fil-
tered derivative method without incorporating a convex optimization step that exploits the signal structure 
would lead to weaker performance guarantees, with the quantity η2 in the performance guarantee (2) being 
replaced by the ambient dimension p.

The performance guarantee (2) highlights a number of tradeoffs in high-dimensional change-point esti-
mation that result from using our approach. For example, the appearance of the term Δ2

minTmin on the 
left hand side of (2) implies that it is possible to compensate for one of these quantities being small if the 
other one is suitably large. Further, our algorithm also operates in a causal manner on small portions of the 
sequence at any given time rather than on the entire sequence simultaneously, and it is therefore useful in 
“online” settings. This feature of our method combined with the result (2) leads to a more subtle tradeoff 
between the computational efficiency of the approach and the number of observations n; specifically, our 
algorithm can be adapted to process larger datasets (e.g., settings in which observations are obtained via 
high-frequency sampling, leading to larger n) more efficiently without loss in statistical performance by 
employing a suitable form of convex relaxation based on the ideas discussed in [24]. We discuss these points 
in greater detail in Section 4.

1.2. Related work

A recent paper by Harchaoui and Lévy-Leduc [27] is closest in spirit to ours; they describe a convex 
programming method based on total-variation minimization to detect changes in sequences of scalar-valued 
signals, and they provide a change-point estimation guarantee of the form (2). Specifically, by combining 
assumptions (A2) and (A3) in Proposition 3 of [27], the authors show that their algorithm provides accurate 
estimates of the change-points in the regime Δ2

minTmin/ logn → ∞ as n → ∞, which is similar to our result 
(2) when specialized to scalar-valued signals. In addition to the restriction to scalar-valued signals, the 
technique in [27] requires knowledge of the full sequence of observations in advance. As a result it is not 
directly applicable in high-dimensional and online settings unlike our proposed approach.

High-dimensional change-point estimation has received much attention in recent years based on different 
types of extensions of the scalar case. The diversity of these generalizations of the scalar setting is due 
to the wide range of applications in which change-point estimation problems arise, each with a unique set 
of considerations. For example, several papers [28,29] investigate high-dimensional change-point estima-
tion in settings in which the changes only occur in a small subset of components. Therefore, assumptions 
about low-dimensional structure are made with regards to the pattern of changes rather than in the sig-
nal itself at each time instance (as in our setup). Xie et al. [30] consider a high-dimensional change-point 
estimation problem in which the underlying signals are modeled as lying on a low-dimensional manifold; 
although this setup is similar to ours, their algorithmic approach is based on projections onto manifolds 
rather than on convex optimization, and the types of guarantees obtained in [30] are qualitatively quite 
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different in comparison to (2). We also note recent work by Aston and Kirch on high-dimensional change-
point problems in which they study the impact of projections on the performance of classical algorithms 
such as the cumulative-sum method [31]. In the setting where the direction of change is known, the au-
thors demonstrate that a projection along the direction of change yields an algorithm with a recovery 
guarantee that is independent of the ambient dimension, and is robust to misspecification of the noise 
covariance.

1.3. Paper outline

Section 2 gives the relevant background on structured signals that are concisely represented with respect 
to sets of elementary atoms as well as the analytical tools that are used in the remainder of the paper. 
In Section 3 we describe our algorithm for high-dimensional change-point estimation, and we state the 
main recovery guarantee of the procedure. In Section 4 we discuss the tradeoffs that result from using our 
approach, and their utility in adapting our algorithm to address challenges beyond high-dimensionality that 
arise in applications involving change-point estimation. We verify our theoretical results with numerical 
experiments on synthetic data in Section 5, and we conclude with brief remarks and further directions in 
Section 6. The proofs are given in the Appendix.

2. Background on structured signal models

2.1. Efficient representations with respect to atomic sets

We outline a framework with roots in nonlinear approximation [32–35] that generalizes several types 
of low-dimensional models considered in the literature such as sparse vectors and low-rank matrices [9,13,
15–19,21,36].

Let A ⊆ R
p be a compact set that specifies a collection of atoms. We say that a signal X ∈ R

p has a 
concise representation with respect to A if it admits a decomposition as a sum of a small number of atoms 
in A, that is, we are able to write

X =
s∑

i=1
ciai,ai ∈ A, ci ≥ 0, (3)

for some s � p. Sparse vectors and low-rank matrices are examples of low-dimensional representations 
that are expressible in this framework. Specifically, an atomic set for sparse vectors is the set of signed 
standard basis vectors A = {±ei|1 ≤ i ≤ p}, while a natural atomic set for low-rank matrices is set of 
all rank-one matrices with unit Euclidean norm. Other examples include binary vectors (e.g., in knapsack 
problems [37]), permutation matrices (in ranking problems [38]), low-rank tensors [39], and orthogonal 
matrices. Such classes of signals that have concise representations with respect to general atomic sets were 
studied in the context of linear inverse problems [18], and subsequently in the setting of statistical denoising 
[9,24].

In comparison with alternative notions of low-dimensional structure, e.g., manifold models [30], which 
have been considered previously in the context of high-dimensional change-point estimation (and more gen-
erally in signal processing), the setup described here has the virtue that one can employ efficient algorithms 
for convex optimization methods and one can appeal to insights from convex geometry in developing and 
analyzing algorithms for high-dimensional change-point estimation. We discuss the relevant concepts in the 
next two subsections.
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2.2. Minkowski functional and proximal operators

A key feature of our change-point estimation algorithm is the incorporation of a signal denoising step 
that exploits knowledge of the atomic set A. To formally define the denoising operation, we consider the 
Minkowski functional ‖ · ‖C : Rp �→ [0, ∞]

‖X‖C := inf{t : X ∈ tC, t > 0}, (4)

defined with respect to a convex set C ⊂ R
p such that A ⊆ C, as discussed in [18]. As C is convex, the 

Minkowski functional ‖ · ‖C is also convex. This function is also called the gauge function in the convex 
analysis literature [40]. For a given Y ∈ R

p and a convex set C, we consider denoisers specified in terms of 
the following proximal operator :

X̂ = argmin
X∈Rp

1
2‖Y − X‖2

2 + λ‖X‖C . (5)

As ‖ · ‖C is a convex function, this optimization problem is a convex program for λ ≥ 0. To obtain a 
proximal operator that enforces signal structure in the denoising operation, the set C is usually taken to be 
the tightest convex set containing the atomic set A, i.e., C = conv(A). With C = conv(A), the resulting 
Minkowski functional is called the atomic norm1 with respect to A, and the associated proximal operator 
(5) is called atomic norm thresholding [9]. The atomic norm has been studied in the approximation theory 
literature for characterizing approximation rates associated with best k-term approximants [32–35], and its 
convex-geometric properties were investigated in [18] in the context of ill-posed linear inverse problems. 
When A = {±ei|1 ≤ i ≤ p} is the collection of signed standard basis vectors, the atomic norm with 
respect to A is simply the �1-norm in Rp. Similarly, the atomic norm corresponding to unit-Euclidean-norm 
rank-one matrices is the matrix nuclear norm. More generally, one can define atomic norms associated to 
other types of structured objects such as permutation matrices, low-rank tensors, orthogonal matrices, and 
signed vectors; see [18] for a detailed list. Atomic norm thresholding naturally generalizes soft-thresholding 
based on the �1-norm for sparse signals to a more general denoising operation for the types of structured 
signals described here.

One exception to the rule of thumb of choosing C = conv(A) arises if the atomic norm is intractable to 
represent, e.g., the tensor nuclear norm [41]. That is, although these norms are convex functions, computing 
them may in general be computationally intractable. To overcome such difficulties, a natural approach 
described in [18,24] is to consider Minkowski functionals of convex sets C that contain A and that are 
efficient to represent, i.e., further tractable convex relaxations of conv(A).

Finally, to avoid dealing with technicalities in degenerate cases, we assume throughout the remainder of 
the paper that the set conv(A) ⊂ R

p is a solid convex set containing the origin in its interior. Consequently, 
we have that ‖X‖C < ∞ for all X ∈ R

p.

2.3. Summary parameters in signal denoising

Next we describe the relevant convex-geometric concepts for analyzing the performance of proximal 
denoising operators. For X ∈ R

p, the Gaussian distance ηC(X) [20,36] with respect to a norm ‖ · ‖C is 
defined as

ηC(X) := inf
λ≥0

{
E

g∼N (0,Ip×p)
[dist(g, λ · ∂‖X‖C)]

}
. (6)

1 For (4) to formally define a norm, we would also need the set A to be centrally symmetric. Nevertheless, the results in the 
remainder of the paper hold without this condition, so we use “norm” with an abuse of terminology.
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Here dist(g, ∂‖X‖C) := infw∈∂‖X‖C ‖w−g‖2 denotes the distance of g from the set ∂‖X‖C, where ∂‖X‖C is 
the subdifferential of the function ‖ ·‖C at the point X [40]. We relate the Gaussian distance to the Gaussian 
width [42] in Appendix A.1 by extending a result in [20].

The Gaussian distance ηC(X) is useful for characterizing the performance of the proximal denoising 
operator (5) [9,24,36]. Specifically, suppose X̂ = argminX∈Rp

1
2‖X� + ε − X‖2

2 + λ‖X‖C , then the error 
between X̂ and X� is bounded as [36]:

‖X� − X̂‖2 ≤ dist(ε, λ · ∂‖X�‖C).

Taking expectations with respect to ε and subsequently optimizing the resulting bound with respect to λ
yields the Gaussian distance (6). We prove a generalization of this result in Appendix A.2, which is relevant 
to the analysis of the change-point estimation algorithm proposed in Section 3.2.

As we discuss in Section 3, the combination of the proximal denoising operator with a suitable filtering 
step leads to a change-point estimation procedure with performance guarantees in terms of ηC(X) rather 
than 

√
p. This point is significant because for many examples of structured signals that are encountered 

in practice, it is typically the case that ηC(X) � √
p. For example, if X is an s-sparse vector in Rp then 

proximal denoising via the �1-norm gives η�1(X) ≤
√

2s log(p/s) + 3s/2 + 7 [18,20,43,44]. Similarly, if X is 
a rank-r matrix in Rd×d then proximal denoising via the matrix nuclear norm gives ηnuc(X) ≤

√
6rd + 7

[18,20,45,46].
In order to state performance guarantees for a sequence of observations, we extend the definition of ηC

to collections of vectors X = {X�[1], . . . , X�[n]}, X�(i) ∈ R
p as follows:

ηC(X ) := inf
λ≥0

max
X�[t]∈X

{
E

g∼N (0,Ip×p)
[dist(g, λ · ∂‖X�[t]‖C)]

}
. (7)

3. Convex programming for change-point estimation

In this section, we describe our algorithm for high-dimensional change-point estimation by combining 
the filtered derivative method with proximal denoising. We state the main theorem that characterizes the 
accuracy of the estimated set of change-points, and we outline the proof, with the full details given in the 
Appendix.

3.1. Motivation

We begin by highlighting some of the difficulties that arise in change-point estimation as a result of 
the high-dimensionality of the observations. In order to frame our discussion concretely, we consider the 
prominent and widely-employed class of change-point estimation techniques based on the filtered derivative 
algorithm [5–8], although similar difficulties arise with other approaches as well. The filtered derivative 
method detects changes based on an application of a pairwise difference operator to the output of a suitable 
low-pass filter applied to the sequence of observations. For simplicity, we describe a particular low-pass 
filter that is given by the sample mean of the observations over a small window (again, elaborations on 
this scheme are possible, with qualitatively similar conclusions). Formally, consider the following sequence 
defined at time t by computing differences of sample means over windows of size θ:

FDθ[t] = −1
θ

t∑
i=t−θ+1

Y [i] + 1
θ

t+θ∑
i=t+1

Y [i]. (8)

Locations at which FDθ[t] has large magnitude (i.e., above a suitably chosen threshold) are declared as 
change-points.
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This approach is well-suited for settings with sequences of scalar-valued signals, i.e., each X�[t] is scalar; 
see [5,7,8] for detailed analyses. However, if applied directly to the high-dimensional setting, the underlying 
sequence of signals X�[t] ∈ R

p is required to remain stationary over time scales on the order of p so that 
changes can be reliably estimated. This requirement is unfortunately not realistic for practical purposes, 
e.g., in image processing applications one typically encounters p ≈ 106. As such, it is desirable to develop 
an algorithm that detects changes in sequences of high-dimensional observations reliably even if the signal 
does not remain stationary over long time scales.

3.2. Our approach to high-dimensional change-point estimation

We base our method on the principle that more effective signal denoising by exploiting the low-dimensional 
structure underlying the sequence X�[t] enables improved change-point estimation. The formal steps of our 
algorithm for obtaining an estimate τ̂ of τ� are as follows:

1. [Input]: {Y[t]}nt=1 the sequence of signal observations, a choice of parameters θ, γ, λ to be employed in 
the algorithm, and a specification of a convex set C.

2. [Filtering]: Compute the moving averages Ȳ[i] = 1
θ

∑i+θ−1
t=i Y[t], 1 ≤ i ≤ n − θ + 1.

3. [Denoising]: Let X̂[t], 1 ≤ t ≤ n − θ + 1 be the solutions to the following convex optimization problems:

X̂[t] = argmin
X∈Rp

1
2‖Ȳ[t] − X‖2

2 + λ‖X‖C . (9)

4. [Differencing]: Compute S[t] := ‖X̂[t + 1] − X̂[t − θ + 1]‖2 for θ ≤ t ≤ n − θ.
5. [Thresholding]: For all t such that S[t] < γ, set S[t] = 0.
6. [Output]: Let {i1, i2, . . .} ⊆ {θ, θ + 1, . . . , n − θ} be the indices of the nonzero entries of S[t]. Divide the 

set {i1, i2, . . .} into disjoint subsets G1, G2, . . . , Gr, r ∈ Z, so that ij+1 − ij ≤ θ ⇔ ij , ij+1 ∈ Gk and 
ij+1 − ij > θ ⇔ ij ∈ Gk, ij+1 ∈ Gk+1. The estimates t̂i are given by t̂i := argmaxt∈Gi

S[t], 1 ≤ i ≤ r, 
and the output is τ̂ = {t̂i}.

Observe that the proximal denoising step is applied before the differencing step. This particular integration 
of proximal denoising and the filtered derivative ensures that the differencing operator is applied to estimates 
X̄[t] that are closer to the underlying signal X�[t] than the raw averages Ȳ[t] (due to the favorable denoising 
properties of the proximal denoiser). As discussed in Theorem 3.1, this leads to improved change-point 
performance in comparison to a pure filtered derivative method. However, the analysis of our approach is 
complicated by the introduction of the proximal denoising step; we discuss this point in greater detail in 
Section 3.3.

The parameter θ determines the window over which we compute the sample mean, and it controls 
the resolution to which we estimate change-points. A larger value of θ allows the algorithm to detect small 
changes, although if θ is chosen too large, multiple change-points may be mistaken for a single change-point. 
A smaller choice of θ increases the resolution of the change-point estimates, but small changes cannot be 
reliably detected. The parameter γ specifies the threshold for declaring changes, and it governs the size of 
the change-points that can be reliably estimated. A small choice of γ allows the algorithm to detect smaller 
changes but it also increases the occurrence of false positives. Conversely, a larger value of γ reduces the 
number of false positives, but only those changes that are sufficiently large in magnitude may be detected by 
the algorithm (i.e., the number of false negatives may increase). In Theorem 3.1, we give precise guidelines 
for the choices of the parameters (θ, γ, λ) to guarantee reliable change-point estimation under suitable 
conditions via the method described above.
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Theorem 3.1. Consider a sequence of observations Y[t] = X�[t] + ε[t], t = 1, . . . , n, where each X�[t] ∈ R
p

and each ε[t] ∼ N (0, σ2Ip×p) independently. Let τ� ⊂ {1, . . . , n} be such that t ∈ τ� ⇔ X�[t] �= X�[t +1], let 
Δmin = mint∈τ� ‖X�[t] − X�[t + 1]‖2, let Tmin = minti,tj∈τ�,ti �=tj |ti − tj |, and let X = {X�[1], . . . , X�[n]}. 
Suppose Δmin and Tmin satisfy

Δ2
minTmin ≥ 64σ2{ηC(X ) + r

√
2 logn}2 (10)

for some r > 1 and some convex set C, where ηC(X ) is as defined in (7), and τ� ⊂ {Tmin/4, . . . , n −Tmin/4}. 
Suppose we apply our change-point estimation algorithm with any choice of parameters θ, γ, and λ satisfying

1. Tmin/4 ≥ θ,
2. Δmin/2 ≥ γ ≥ 2 σ√

θ
{ηC(X ) + r

√
2 logn}, and

3. λ = σ√
θ

argmin
λ̃

max
X�[t]∈X

{
E

g∼N (0,Ip×p)
[dist(g, ̃λ · ∂‖X�[t]‖C)]

}
.

Then the algorithm recovers an estimate of the change-points τ̂ satisfying

1. |τ̂ | = |τ�|
2. |t̂i − t�i | ≤ min{(4r

√
log n/ηC(X ) + 4)σηC(X )

Δmin
√
θ, θ} for all i, where t̂i and t�i are the i’th elements of τ̂

and τ� when ordered sequentially,

with probability greater than 1 − 5n1−r2 .

Remarks. (1) If condition (10) is satisfied then the choice of θ = Tmin/4 and γ = Δmin/2 satisfies the 
requirements in Theorem 3.1. Just as in the pure filtered derivative setting, a suitable choice of the parameter 
θ often relies on knowledge of the quantity Tmin, and is usually set at a constant times smaller than Tmin. 
In the setting where a desired total number of estimated change-points is available, the threshold γ may be 
set such that the output of our algorithm contains the desired number of change-points.

(2) For certain types of signal structure, one can specify suitable choices of λ that only depend on 
knowledge of the ambient dimension p. For example, in settings in which X is a collection of sparse vectors 
in Rp and we apply a proximal denoising step with the �1-norm, one may select λ = σ

√
2 log(p)/θ, and 

in settings in which X is a collection of d × d low-rank matrices and we apply a denoising step with the 
nuclear-norm, one may select λ = 2σ

√
d/θ [36].

(3) The performance of our algorithm is robust to misspecification of the convex set C. In particular, the 
quantity ηC(X ) for a misspecified C is in general larger than that for the correct C, but it is always smaller 
than 

√
p. Consequently, the recovery guarantees associated with using a misspecified set C are weaker in 

general, but no worse than applying a pure filtered derivative algorithm without a denoising step.
(4) Our results can be extended to settings in which the noise ε[t] has correlations over space or time. 

For example, if the noise is distributed as ε[t] ∼ N (0, Σ), one could apply our algorithm to the transformed 
sequence of observations {Σ−1/2Y[t]}nt=1 with the convex set C in the denoising step being replaced by the 
set Σ−1/2C. If the noise ε[t] is correlated across time, one could apply a temporal whitening filter before 
proceeding with our algorithm. The application of such a filter generally leads to a smoothening of the abrupt 
changes that occur at change-points. As long as the bandwidth of the noise correlation is much smaller than 
Tmin, applying our algorithm to the smoothened sequence leads to qualitatively similar guarantees as in the 
case in which the noise is independent across time.

As a concrete illustration of this theorem, if each element X�[t] ∈ R
p, t = 1, . . . , n of the signal sequence 

is a vector consisting of at most s nonzero entries, then our algorithm (with a proximal denoiser based on the 
�1-norm) estimates change-points reliably under the condition Δ2

minTmin � σ2(s log(p ) + log(n)). Similarly, 
s
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if each element X�[t] ∈ R
d×d, t = 1, . . . , n is a matrix with rank at most r, then our algorithm (with a 

proximal denoiser now based on the nuclear norm) provides reliable change-point estimation performance 
under the condition Δ2

minTmin � σ2(rd + log(n)).

3.3. Proof of Theorem 3.1

The proof broadly proceeds by bounding the probabilities of the following three events:

E1 : = {S[t] ≥ γ,∀t ∈ τ�} (11)

E2 : = {S[t] < γ,∀t ∈ τfar} (12)

E3 : = {‖X̂[t + 1] − X̂[t− θ + 1]‖2 > ‖X̂[t + 1 + δ] − X̂[t− θ + 1 + δ]‖2, ∀(t, δ) ∈ τbuffer}. (13)

Here τfar = {i : θ ≤ i ≤ n −θ, |i − j| > θ, j ∈ τ�} and τbuffer = {(t�i , δ) : t�i ∈ τ�, θ ≥ |δ| > (4r
√

log n/ηC(X ) +
4)σηC(X )

Δmin

√
θ}. Note that τbuffer defines a non-empty set if θ > (4r

√
log n/ηC(X ) + 4)2σ2η2

C(X )/Δ2
min. The 

event E1 corresponds to the atomic-norm-thresholded derivative exceeding the threshold γ for all change-
points, while event E2 corresponds to the atomic-norm-thresholded derivative not exceeding the threshold 
γ in regions “far away” from the change-points. Bounding the probabilities of these two events is sufficient 
for a weaker recovery guarantee than is provided by Theorem 3.1, which is that any estimated change-point 
t̂ ∈ τ̂ will be within θ of an actual change-point t� ∈ τ�. However, the selection of the maximum derivative in 
Step 6 of the algorithm often leads to far more accurate estimates of the locations of change-points. To prove 
that this is the case, we consider the event E3 corresponding to the atomic-norm-thresholded derivative at 
the change-point being larger than the atomic-norm-thresholded derivatives at other points that are still 
within a window of θ but outside a small buffer region around the change-point.

The next proposition gives bounds on the probabilities of the events E1, E2, E3:

Proposition 3.2. Under the setup and conditions of Theorem 3.1, we have the following bounds:

P(Ec
1) ≤ 2n1−r2

, P(Ec
2) ≤ 2n1−r2

, P(Ec
3) ≤ n1−r2

. (14)

The events E1, E2, E3 are defined in (11), (12), and (13).

The proof of Proposition 3.2 is given in the Appendix, and it involves overcoming two difficulties. First, 
if the filtering operator is applied over a window containing a change-point in Step 2, the average Ȳ[t] is 
in effect a superposition of two structured signals corrupted by noise. This necessitates the analysis of the 
performance of a proximal denoiser applied to a noisy superposition of structured signals rather than to a 
single structured signal corrupted by noise. The second (more challenging) complication arises due to the 
fact that the differencing operator is applied to the result of a nonlinear mapping of the observations (via 
the proximal denoiser) rather than to just a linear average of the observations as in a standard filtered 
derivative framework. We address these difficulties by exploiting certain properties of the proximal operator 
such as its non-expansiveness and its robustness to perturbations. Assuming Proposition 3.2, the proof of 
Theorem 3.1 proceeds as follows:

Proof of Theorem 3.1. From Proposition 3.2 and the union bound we have that P(E1∩E2∩E3) ≥ 1 −5n1−r2 . 
We condition on the event E1 ∩ E2 ∩ E3 to complete the proof. Specifically, conditioning on E1 ensures 
that we have S[t] ≥ γ for all t ∈ τ� after Step 5. Conditioning on E2 implies that all entries of S outside 
a window of θ from any change-point are set to 0 after Step 5. Hence, after Step 6 all non-zero entries 
of S that are within a window of at most θ around a change-point will have been grouped together (for 
all change-points), which implies that |τ̂ | = |τ�|. Finally, conditioning on the event E3 implies that S[t] is 
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larger than S[t + δ] for all δ such that (4r
√

log n/ηC(X ) + 4)σηC(X )
Δmin

√
θ < |δ| ≤ θ and for all t ∈ τ�. Thus, 

our estimate of the change-point at t ∈ τ� is at most min
{

(4r
√

log n/ηC(X ) + 4)σηC(X )
Δmin

√
θ, θ

}
away, which 

concludes the proof. �
3.4. Signal reconstruction

Based on the estimated set of change-points τ̂ , it is straightforward to obtain good reconstructions of 
the signal away from the change-points via proximal denoising (5). This result follows from the analysis in 
[9,36], but we state and prove it here for completeness:

Proposition 3.3. Suppose that the assumptions of Theorem 3.1 hold. Let t1, t2 ∈ τ̂ be two consecutive es-
timates of change-points, let λ′ = σ√

t2−t1−2θ argminλ̃ maxX�[t]∈X {Eg∼N (0,Ip×p)[dist(g, ̃λ · ∂‖X�[t]‖C)]}, and 

let Ȳ = 1
t2−t1−2θ

∑t2−θ
t=t1+θ+1 Y[t]. Denote the solution of the proximal denoiser (5) applied to Ȳ as X̄:

X̄ := argmin
X

1
2
∥∥Ȳ − X

∥∥2
2 + λ′‖X‖C .

Letting X̄ be the estimate of the signal X�[t] over the interval {t1 + θ + 1, . . . , t2 − θ}, we have that

‖X̄ − X�[t]‖2
2 ≤ 2σ2

t2 − t1 − 2θ{ηC(X )2 + s2}

with probability greater than 1 − 4n1−r2 − exp(−s2/2), for all t1 + θ + 1 ≤ t ≤ t2 − θ.

The proof of Proposition 3.3 is given in the Appendix. In order to obtain an accurate reconstruction of 
the underlying signal at some point in time, Proposition 3.3 requires that the duration of stationary of the 
signal around that time instance be long (in addition to the conditions of Theorem 3.1 being satisfied).

4. Tradeoffs in high-dimensional change-point estimation

Data analysis in practice involves a range of challenges beyond the high-dimensionality of the observations 
that motivated our development in this paper. For example, in change-point estimation in financial time 
series, one is typically faced with additional difficulties arising from the extremely rapid rate at which 
the data are acquired and the requirement that the data be processed in an “online” fashion, i.e., the 
change-point estimation procedure must process the incoming data in “real time.” In some settings rapid 
variations in an underlying phenomenon trigger frequent changes in the sequence of observations, while in 
other cases small changes in a signal can be difficult to detect when severely corrupted by noise. In this 
section, we describe adaptations of the algorithm proposed in Section 3 to handle some of these challenges. 
Specifically, Theorem 3.1 suggests a number of performance tradeoffs that can be obtained in change-point 
estimation problems by employing suitable variations of our algorithm. We demonstrate the utility of these 
modifications in addressing some of the difficulties mentioned above, which highlights the versatility of our 
approach.

4.1. Change-point frequency and size tradeoffs

The appearance of the term Δ2
minTmin in (10) suggests an explicit relation between the minimum time 

span between changes, the minimum size of a change, and estimation accuracy. To illustrate the tradeoffs 
between Δmin and Tmin clearly, we fix the complexity parameter ηC(X ) and the number of observations n in 
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this discussion. As a consequence, the quantity Δ2
minTmin in (10) can be interpreted as a resolution on the 

types of changes that can be detected. Specifically, Theorem 3.1 guarantees reliable estimation of changes 
whenever Δ2

minTmin is sufficiently large even if one of Δmin or Tmin may be small. Previous works in the 
change-point estimation literature have also demonstrated performance guarantees that are suggestive of 
tradeoffs similar to ours [27,47]. In our setting, the quantities Δmin and Tmin inform us about the choices 
of key parameters in the algorithm.

In settings in which Δmin is small, i.e., there are change-points where the size of the change is small, 
Theorem 3.1 guarantees that all the changes can be detected reliably so long as the distance between 
change-points (Tmin) is sufficiently large. In order to accomplish this, one is required to choose a sufficiently 
small threshold parameter γ (for Step 5 of the procedure) and a suitably large averaging window θ (for Step 
2) with θ � Tmin, in accordance with the requirements of Theorem 3.1. By smoothing over large windows 
of size θ and subsequently applying a proximal denoiser, even small-sized changes can be detected as long 
as the averaging window does not include multiple change-points (hence the condition that θ � Tmin). 
The downside with choosing a large value for the parameter θ is that we do not resolve the locations 
of the change-points well; in particular, we estimate the locations of each of the change-points to within a 
resolution of about 

√
θ. However, detecting small-sized changes in a sequence corrupted by noise necessitates 

the computation of averages over large windows in Step 2 of our algorithm in order to distinguish genuine 
changes from spurious ones. Therefore, the low resolution to which we estimate the locations of change-points 
is the price to pay for estimating the number of change-points exactly in settings in which some of the changes 
may be small in size.

In a similar manner, if changes occur frequently in a signal sequence, i.e., the distance between change-
points Tmin is small, Theorem 3.1 guarantees that all the changes can be detected reliably if the size of each 
change Δmin is sufficiently large. In such cases, the averaging window parameter θ must be chosen to be 
sufficiently small while the threshold parameter γ must be appropriately large with γ � Δmin, as prescribed 
in Theorem 3.1. The choice of a small value for θ ensures that we do not smooth the observation sequence 
over windows that contain multiple change-points in Step 2 of our method. However, this restriction of the 
averaging window size implies that the proximal denoiser in Step 3 is applied to the average of a small 
number of observations, which negatively impacts its performance. This limitation underlies the choice of a 
large value for the threshold parameter γ in Step 5 of the algorithm, which ensures that spurious changes 
resulting from denoising over small windows do not impact the performance of our algorithm. Consequently, 
the size of each change must be sufficiently large (as required by the condition that γ � Δmin) so that the 
change-points can be reliably estimated from a few noisy observations. Analogous to the discussion in the 
previous paragraph with Δmin being small and Tmin being large, we also face resolution issues in settings 
in which Tmin is small and Δmin is large. Specifically, the quality of the estimate of the underlying signal 
at time t̃ is governed by the duration of stationarity of X[t] around t̃ (as discussed in Proposition 3.3). As 
a result of Tmin being small, the increased frequency of changes leads to poor estimates of the signal in 
between change-points.

4.2. Computational complexity and sample size tradeoffs

In change-point estimation tasks arising in many contemporary problem domains (e.g., financial time 
series), one is faced with a twin set of challenges: (a) the number of observations n may be quite large due to 
the increasingly higher frequencies at which data are acquired (this is in addition to the high dimensionality 
of each observation), and (b) the requirement that these large datasets be processed online or in real 
time. Consequently, as the number of observations per unit time grows, it is crucial that we adopt a simpler
algorithmic strategy – i.e., a method requiring a smaller number of computational steps per observation – so 
that the overall computational complexity of our algorithm does not grow with the number of observations. 
In this section we describe a convex relaxation approach to adapt the algorithm described in Section 3 to 



Y.S. Soh, V. Chandrasekaran / Appl. Comput. Harmon. Anal. 43 (2017) 122–147 133
achieve a tradeoff between the number of observations and the overall computational complexity of our 
procedure; in particular, we demonstrate that in certain change-point estimation problems one can even 
achieve an overall reduction in computational runtime as the number of observations grows. Our method is 
based on the ideas presented in [18,24] in the context of statistical denoising and of linear inverse problems; 
here we demonstrate the utility of those insights in change-point estimation. We note that other researchers 
have also explored the idea of trading off computational resources and sample size in various inferential 
problems such as binary classifier learning [48–51], in sparse principal component analysis [52–54], in model 
selection [55], and in linear regression [56].

A modified change-point estimation algorithm For ease of analysis and exposition, we consider a modi-
fication of our change-point estimation procedure from Section 3. Specifically, Step 6 of our algorithm is 
simplified so it only groups time indices corresponding to the nonzero entries of the thresholded derivative 
values, with consecutive time indices in a group at most θ apart (i.e., without further choosing the max-
imum element from each group). Thus, our algorithm only produces windows that localize change-points 
instead of returning precise estimates of change-points. The reason for restricting our attention to such a 
simplification is that the additional operation of choosing the maximum element in Step 6 of the original 
algorithm leads to unnecessary complications that are not essential to the point of the discussion in this 
section. The performance analysis of this modified algorithm follows from Theorem 3.1, and we record this 
result next:

Corollary 4.1. Under the same setup and conditions as in Theorem 3.1, suppose that we perform the modified 
change-point estimation algorithm – that is, Step 6 is simplified to only return groups of times indices, where 
consecutive time indices in a group are at most θ apart. Then we have with probability greater than 1 −4n1−r2

that (i) there are exactly |τ�| groups, and (ii) the j’th group gj ⊂ {θ, . . . , n − θ} is such that |t�j − t̃| ≤ θ for 
all t̃ ∈ gj.

In order to concretely illustrate tradeoffs between the number of observations and the overall computa-
tional runtime, we focus on the following stylized change-point estimation problem. Consider a continuous-
time piecewise constant signal X�(T ) ∈ R

p, T ∈ (0, 1] defined as:

X�(T ) = X�(i), T ∈ (Ti, Ti+1].

That is, the signal X�(T ) takes on the value X�(i) ∈ R
p identically for the entire time interval T ∈

(Ti, Ti+1] for i = 1, . . . , k. Here i = 1, . . . , k and the time indices {Ti}k+1
i=1 are such that 0 = T1 ≤ · · · ≤

Tk+1 = 1. Suppose we have two collections of noisy observations obtained by sampling the signal X�(T )
at equally-spaced points 1

n apart and 1
kn apart for some positive integers k > 1 and n (we assume that 

n � 1
Ti+1−Ti

for all i):

Y(1)[t] = X�

(
t

n

)
+ ε[t], t = 1, . . . , n

Y(2)[t] = X�

(
t

kn

)
+ ε̃[t], t = 1, . . . , kn.

Here ε[t], ̃ε[t] ∼ N (0, σ2Ip×p) are i.i.d. Gaussian noise vectors. In words, Y(2)[t] is a k-times more rapidly 
sampled version of X�(T ) than Y(1)[t]. As a result, the sequence Y(1)[t] consists of n observations and the 
sequence Y(2)[t] consists of kn observations. Consequently, it may seem that estimating the change-points 
in the sequence Y(2)[t] requires at least as many computational resources as the estimation of change-points 
in Y(1)[t]. However, when viewed from the prism of Corollary 4.1 and Theorem 3.1, the sequence Y(2)[t]
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is in some sense more favorable than Y(1)[t] for change-point estimation – specifically, if the minimum dis-
tance between successive change-points underlying the sequence Y(1)[t] is Tmin, then the minimum distance 
between successive change-points in Y(2)[t] is kTmin, i.e., larger by a factor of k. (Note that Δmin for both 
sequences remains the same.)

Let X = {X�(1), . . . , X�(k)}. Applying the modified change-point estimation algorithm described above 
to the sequence Y(1)[t] with parameters θ1 = Tmin/4, γ1 = Δmin/2 and with a proximal denoising step based 
on a convex set C, we obtain reliable localizations of the change-points under the condition:

Δ2
minTmin ≥ 64σ2{ηC(X ) + r

√
2 logn}2,

That is, we localize the change-points to a window of size θ1 = Tmin/4. Now suppose we apply the modified 
change-point algorithm to the sequence Y(2)[t] (note that this sequence is of length kn) with parameters 
θ2 = kTmin/4, γ2 = Δmin/2 and with a proximal denoising step based on the same convex set C. In this 
case, we reliably localize each change-point in Y(2)[t] to a window of size θ2 = kTmin/4 under the following 
condition:

Δ2
min(kTmin) ≥ 64σ2{ηC(X ) + r

√
2 logn + 2 log k}2, (15)

The quality of the output in both cases is the same – identifying changes in Y(1)[t] to a resolution of 
θ1 = Tmin/4 is comparable to identifying changes in Y(2)[t] to a resolution of θ2 = kTmin/4, because Y(2)[t]
is a k-times more rapidly sampled version of the continuous-time signal X�(T ) in comparison to Y(1)[t]. 
On the computational side, our algorithm involves roughly n applications of the proximal denoiser based 
on the set C in the case of Y(1)[t], and about kn applications of the same proximal denoiser in the case of 
Y(2)[t]. Therefore, the overall runtime is higher in the case of Y(2)[t] than in the case of Y(1)[t].

Notice that the left-hand-side of the condition (15) goes up by a factor of k. We exploit this increased 
gap between the two sides of the inequality in (15) to obtain a smaller overall computational runtime for 
estimating changes in the sequence Y(2)[t] than for estimating changes in the sequence Y(1)[t]. The key 
insight underlying our approach, borrowing from the ideas developed in [18,24], is that we can employ a 
computationally cheaper proximal denoiser when applying our algorithm to the sequence Y(2)[t]. Specifically, 
for many interesting classes of structured signals, one can replace the proximal denoising operation with 
respect to the convex set C in Step 3 of our algorithm with a proximal operator corresponding to a relaxation
B ⊂ R

p of the set C, i.e., B is a convex set such that C ⊂ B. For suitable relaxations B of the set C, the 
proximal denoiser associated to B is more efficient to compute than the proximal denoiser with respect to C, 
and further ηC(X ) < ηB(X ). The reason for the second property is that, under appropriate conditions, the 
subdifferentials with respect to the gauge functions ‖ ·‖B, ‖ ·‖C satisfy the condition that ∂‖X�‖B ⊂ ∂‖X�‖C
at signals of interest X� ∈ X . We refer the reader to [24] for further details, and more generally, to the 
convex optimization literature [57–61] for various constructions of families of tractable convex relaxations.

Going back to the sequence Y(2)[t], we can employ a proximal denoiser based on any tractable convex 
relaxation B of the set C as long as the following condition (a modification of (15)) for reliable change-point 
estimation is satisfied:

Δ2
min(kTmin) ≥ 64σ2{ηB(X ) + r

√
2 logn + 2 log k}2.

Indeed, if this condition is satisfied, we can still localize changes to a resolution of kTmin/4, i.e., the same 
quality of performance as before with a proximal denoiser with respect to the set C. However, the compu-
tational upshot is that the number of operations required to estimate change-points in Y(2)[t] using the 
modified proximal denoising step is roughly kn applications of the proximal denoiser based on the relax-
ations B. The contrast to n applications of a proximal denoiser based on C for estimating change-points in 
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the sequence Y(1)[t] can be significant if computing the proximal denoiser with respect to B is much more 
tractable than computing the denoiser with respect to C.

We give an example in which such convex relaxations can lead to reduced computational runtime as 
the number of observations increases. We refer the reader to [24] for further illustrations in the context 
of statistical denoising, which can also be translated to provide interesting examples in a change-point 
estimation setting. Specifically, suppose that the underlying signal set X = {aaT |a ∈ {−1, +1}d}, i.e., the 
signal at each instant in time is a rank-one matrix formed as an outer product of signed vectors. In this 
case, a natural candidate for a set C is the set of d ×d correlation matrices, which is also called the elliptope
in the convex optimization literature [62]. One can show that each application of a proximal denoiser with 
respect to C requires O(d4.5) operations [63]. The d × d nuclear norm ball (scaled to contain all d × d

matrices with nuclear norm at most d), which we denote as B, is a relaxation of the set C of correlation 
matrices. Interestingly, the distance ηB(X ) is only a constant times larger (independent of the dimension 
d) than ηC(X ) [24]. However, each application of a proximal denoiser with respect to B requires only O(d3)
operations. In summary, even if the increased sampling factor k in our setup is such that k � d1.5, one can 
obtain an overall reduction in computational runtime from about O(nd4.5) operations to about O(knd3)
operations.

5. Numerical results

We illustrate the performance of our change-point estimation algorithm with two numerical experiments 
on synthetic data.

A contrast between our approach and the filtered derivative. The objective of the first experiment is to 
demonstrate the improved performance of our algorithm from Section 3.2 in comparison to the classical fil-
tered derivative approach in a stylized problem setup. Recall that the filtered derivative method is equivalent 
to omitting the proximal denoising step in our algorithm, i.e., X̂[t] = Ȳ[t] in Step 3 of our algorithm.

We consider a signal sequence X�[t] ∈ R
200×200, t = 1, . . . , 100, consisting of exactly one change-point at 

time t = 50. Let u(1), u(2), v(1), v(2) ∈ R
200 be vectors with Euclidean-norm equal to 0.9 and direction chosen 

uniformly at random and independently. The signal X�[t] is a 200 ×200 matrix equal to u(1)v(1)′ before the 
change-point and u(2)v(2)′ after the change-point, and the observations are Y[t] = X�[t] +ε[t], t = 1, . . . , 100, 
where ε[t] ∼ N (0, σ2I2002×2002) with σ = 0.04. Given this sequence of observations, we apply our algorithm 
with parameters λ = 0.4 and θ = 5 (and with proximal denoising based on the nuclear-norm), and the 
filtered derivative algorithm with θ = 5. The corresponding derivative values from our algorithm and the 
filtered derivative algorithm are given in the left sub-plot of Fig. 1. We repeat the same experiment with 
the modification that the vectors u(1), u(2), v(1), v(2) now have Euclidean-norm equal to 2, thus leading to 
a larger-sized change relative to the noise. The corresponding derivative values from our algorithm and the 
filtered derivative algorithm are given in the right sub-plot in Fig. 1.

One observation is that the derivative values are generally smaller with our approach than with the 
filtered derivative algorithm; this is primarily due to the inclusion of a denoising step, as a larger amount 
of noise leads to greater derivative values. More crucially, however, the relative difference in the derivative 
values near a change-point and away from a change-point is much larger with our algorithm than with the 
filtered derivative method. This is also a consequence of the inclusion of the proximal denoising step in our 
algorithm and the lack of a similar denoising operation in the filtered derivative approach. By suppressing 
the impact of noise via proximal denoising, our approach identifies smaller-sized changes more reliably than 
a standard filtered derivative method without a denoising step (see the sub-plot on the left in Fig. 1).

Estimating change-points in sequences of sparse vectors. In our second experiment, we investigate the 
variation in the performance of our algorithm by choosing different sets of parameters θ, λ, γ. We consider 
a signal sequence X�[t] ∈ R

1000, t = 1, . . . , 1000 consisting of sparse vectors. Specifically, we begin by 
generating 10 sparse vectors S(k) ∈ R

1000, k = 1, . . . , 10 as follows: for each k = 1, . . . , 10, the vector S(k) is 
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Fig. 1. Experiment contrasting our algorithm (in blue, below) with the filtered derivative approach (in red, above): the left sub-plot 
corresponds to a small-sized change and the right sub-plot corresponds to a large-sized change. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Table of parameters employed in our change-point estimation algorithm in synthetic experiment with sparse vectors.

Fig. 3. Plot of estimated change-points: the locations of the actual change-points are indicated in the bottom row.

a random sparse vector consisting of 30 nonzero entries (the locations of these entries are chosen uniformly at 
random and independently of k), with each nonzero entry being set to 1.2k−1. We obtain the signal sequence 
X�[t] from the S(k)’s by setting X�[t] = S(k) for t ∈ {100(k − 1) + 1, 100k}. In words, the signal sequence 
X�[t] consists of 10 equally-sized blocks of length 100, and within each block the signal is identically equal to 
a sparse vector consisting of 30 nonzero entries. The magnitudes of the nonzero entries of X�[t] in the latter 
blocks are larger than those in the earlier blocks. The observations are Y[t] = X�[t] + ε[t], t = 1, . . . , 1000, 
where each ε[t] ∼ N (0, σ2I1000×1000) with σ chosen to be 2.5. We then apply our proposed algorithm using 
the four choices of parameters listed in Fig. 2, with a proximal operator based on the �1-norm. The estimated
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Fig. 4. Experiment with sparse vectors: graphs of derivative values corresponding to different parameters choices from Fig. 2.

sets of change-points are given in Fig. 3, and the derivative values corresponding to Step 4 of our algorithm 
are given in Fig. 4.

First, note that the algorithm generally detects smaller sized changes with larger values of θ and smaller 
values of γ (corresponding to Runs 3 and 4 from Fig. 2), i.e., the averaging window size is larger in Step 2 of 
our algorithm and the threshold is smaller in Step 4. Next, consider the graph of derivative values in Fig. 4. 
The estimated locations of change-points correspond to peaks in Fig. 4, so the algorithm can be interpreted 
as selecting a subset of peaks that are sufficiently separated (Step 6). We note that a smaller choice of θ
leads to sharper peaks (and hence, smaller-sized groups in Step 6), while a larger choice of θ leads to wider 
peaks (correspondingly, larger-size groups in Step 6).

Phase transition. In the third experiment, we examine the performance of our algorithm for signal 
sequences with different values of Δmin and Tmin. For each Δmin ∈ {

√
4, 
√

8, . . . , 
√

80}, Tmin ∈ {4, 8, . . . , 80}, 
we construct a sequence X�[t] ∈ R

100, t = 1, . . . , 1000 such that the size (in Euclidean norm) of each change 
equals Δmin and the interval between each consecutive pair of change-points is equal to Tmin. Specifically, 
we generate �1000/Tmin� sparse vectors P(k) ∈ R

100, 1 ≤ k ≤ �1000/Tmin�. The first 10 entries of the 
vector P(1) are set to Δmin/

√
20 and the remaining are set to zero. For each subsequent P (k) ∈ R

100, 2 ≤
k ≤ �1000/Tmin�, we proceed sequentially by choosing 10 coordinates uniformly at random from those 
90 coordinates of P (k−1) that consist of zeros; we set these 10 coordinates of P (k) to Δmin/

√
20 and the 

remaining to zero. We obtain the signal sequence X�[t] ∈ R
100, t = 1, . . . , 1000 by setting X�[t] = P(k)

for t ∈ {(k − 1)Tmin + 1, kTmin}. The observations are given by Y[t] = X�[t] + ε[t], t = 1, . . . , 1000, with 
each ε[t] ∼ N (0, σ2I1000×1000) and σ = 0.5. We apply our algorithm from Section 3.2 with a proximal 
operator based on the �1-norm and with the choice of parameters λ = σ

√
2 log p =

√
log 10 (in this example, 

p = 100), γ = Δmin/2, and θ = Tmin/4. For each Δmin ∈ {
√

4, 
√

8, . . . , 
√

80}, Tmin ∈ {4, 8, . . . , 80}, we repeat 
this experiment 100 times.

We consider a trial to be a success if the two conclusions of Theorem 3.1 are achieved. First, the number 
of estimated change-points equals the true number of change-points. Second, each change-point estimate is 
within a window of size min{(4r

√
log n/η+4) ση

Δmin
√
θ, θ} of an actual change-point, with r = 1.2, n = 1000, 

and η =
√

2s log(p/s) + 1.5s + 7 is the Gaussian distance of s-sparse vectors in Rp from the discussion in 
Section 2.3 (in this example, s = 10, p = 100). Fig. 5 shows the fraction of successful trials for different 
values of Δmin, Tmin.

Observe that the frequency of successful trials is high when Δ2
minTmin is large, and that we see a phase 

transition in the performance of our approach as Δ2
minTmin becomes small. In particular, the boundary of 

the phase transition appears to correspond to the quantity Δ2
minTmin being constant, which is the scaling 

law suggested by the recovery guarantee (10).
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Fig. 5. Experiment from Section 5 demonstrating a phase transition in the recovery of the set of change-points for different values 
of Δmin and Tmin. The black cells correspond to a probability of recovery of 0 and the white cells to a probability of recovery of 1.

6. Conclusions

We propose an algorithm for high-dimensional change-point estimation that blends the filtered derivative 
method with a convex optimization step that exploits low-dimensional structure in the underlying signal 
sequence. We prove that our algorithm reliably estimates change-points provided the product of the square 
of the size of the smallest change (measured in �2-norm) and the smallest distance between changes is larger 
than Gaussian distance/width quantity η2, which characterizes the low-dimensional complexity in the signal 
sequence. The dependence on η2 is a result of the integration of the convex optimization step (based on 
proximal denoising).

The change-point literature also consists of extensive investigations of quickest change detection problems 
[3,4,64–66], which are qualitatively somewhat different than the setup considered in our work. In those 
settings one is given access to observations sequentially, and the objective is to correctly declare when 
a change-point occurs in the shortest time possible (i.e., minimize the expected delay) subject to false 
alarm rate constraints. Building on the algorithmic ideas described in this paper, it would be of interest to 
design computationally and statistically efficient techniques for high-dimensional quickest change detection 
problems by exploiting structure in the underlying signal sequence.
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Appendix A

The Appendix is divided as follows. In Section A.1 we describe the relation between the Gaussian distance 
and the Gaussian width. Next, in Section A.2 we analyze the denoising properties of proximal operators. 
Finally, in Section A.3 we prove the main results (from Section 3) of this paper. As described at the end of 
Section 2.2, we reiterate that the assumption that the set conv(A) ⊂ R

p contains the origin in its interior 
holds throughout the Appendix.
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Fig. 6. Figure showing the �1-norm ball C1 with parameter κC1 (X1) = 1.

Fig. 7. Figure showing the skewed �1-norm ball C2 with parameter κC2 (X2) =
√

2.

A.1. Relationship between Gaussian distance and Gaussian width

The Gaussian width of a set S ⊆ R
p is defined as [42]:

ω(S) := Eg∼N (0,Ip×p)

[
sup
z∈S

gT z
]
.

The next definition that we need in order to relate the Gaussian distance and the Gaussian width is the 
skewness κC(X) of a norm ‖ · ‖C at a point X:

κC(X) :=
‖Π∂‖X‖C(0)‖2

‖Πaff.hull.(∂‖X‖C)(0)‖2
,

where Π denotes the Euclidean projection and aff.hull. denotes the affine hull. The quantity κ has a natural 
geometric interpretation: since the subdifferential ∂‖X‖C corresponds to a face of the dual norm ball C∗ =
{X : ‖X‖∗C ≤ 1}, the parameter κC(X) measures the skewness of the face ∂‖X‖C. It is clear from this 
interpretation that κC(X) = 1 for all X ∈ R

p whenever the unit ball with respect to the dual norm 
is suitably symmetric. Examples of such convex sets include the �1-norm ball, the nuclear-norm ball, the 
�∞-norm ball and the spectral-norm ball. Figs. 6 and 7 illustrate the parameter κ for two different unit-norm 
balls.

Our final definition relates to yet another convex-geometric concept. The tangent cone TC(X) at a point 
X ∈ R

p with respect to the unit ball of the ‖ · ‖C-norm (i.e., the convex set C) when ‖X‖C = 1 is:

TC(X) := cone{Z − X : Z ∈ R
p, ‖Z‖C ≤ ‖X‖C}.

For general unnormalized nonzero points X ∈ R
p, the tangent cone with respect to C is TC(X/‖X‖C).

The next proposition relates the Gaussian distance and the Gaussian width. The result relaxes a “weak 
decomposability” assumption in [20, Prop. 1]. We denote the Euclidean sphere in Rp by Sp−1.
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Proposition A.1. The Gaussian distance is bounded above by the Gaussian width as follows:

ηC(X) ≤ ω(TC(X) ∩ S
p−1) + 3κC(X) + 4.

Proposition A.1 is useful because it relates Theorem 3.1 and Proposition 3.3 with previously computed 
bounds on Gaussian widths [18,20].

The proof of Proposition A.1 requires two short lemmas.

Lemma A.2. Suppose X �= 0. Define H to be the affine hull of ∂‖X‖C and w0 := ΠH(0). Then 〈w−w0, w0〉 =
0 for all w ∈ ∂‖X‖C and ‖w0‖2 > 0.

Proof. Since X �= 0, the subdifferential ∂‖X‖C is a proper face of the dual norm ball C∗ = {Y : ‖Y‖∗C ≤ 1}. 
Also, since w0 −0 is orthogonal to H, we have 〈w0 −0, w−w0〉 = 0 for all w ∈ H. In particular, this holds 
for all w ∈ ∂‖X‖C . By the assumption that the unit-norm ball has a non-empty interior (see reminder at 
the beginning of the Appendix), we have that 0 ∈ int(C), which implies that 0 ∈ int(C∗). Consequently, H
does not contain 0 and thus w0 �= 0. This implies that ‖w0‖2 > 0.

Lemma A.3. Let X ∈ R
p be an arbitrary nonzero vector. Define λ� : Rp �→ R as the function

λ�(g) := argmin
λ≥0

dist(g, λ · ∂‖X‖C)

= argmin
λ≥0

dist2(g, λ · ∂‖X‖C).

Let H be the affine hull of λ · ∂‖X‖C. Then λ� is 1
dist(0,H) -Lipschitz.

Proof. Let g1, g2 be arbitrary vectors in Rp. Since ‖X‖C < ∞, the subdifferential ∂‖X‖C is a closed convex 
set [40]. Hence we may let wg1 be the point in ∂‖X‖C such that ‖wg1 − g1‖2 = dist(g1, λ�(g1) · ∂‖X‖C). 
Define wg2 similarly. Let w0 = ΠH(0) so that

‖λ�(g2)wg2 − λ�(g1)wg1‖2

= ‖(λ�(g2) − λ�(g1))w0 + (λ�(g2)(wg2 − w0) + λ�(g1)(w0 − wg1))‖2

≥ 〈(λ�(g2) − λ�(g1))w0 + (λ�(g2)(wg2 − w0) + λ�(g1)(w0 − wg1)),w0〉
1

‖w0‖2

= ‖w0‖2|λ�(g2) − λ�(g1)|, (A.1)

where the last equality follows from Lemma A.2. Recall that projection onto a nonempty, closed con-
vex set is nonexpansive, and thus we have ‖g2 − g1‖2 ≥ ‖Π∪λ≥0{λ·∂‖X‖C}(g2) − Π∪λ≥0{λ·∂‖X‖C}(g1)‖2 =
‖Πλ�(g2)·∂‖X‖C(g2) − Πλ�(g1)·∂‖X‖C (g1)‖2 = ‖λ�(g2)wg2 − λ�(g1)wg1‖2 ≥ ‖w0‖2|λ�(g2) − λ�(g1)|.

Proof of Proposition A.1. Our proof is a minor modification of the proof of [20, Prop. 1]. Let H be the 
affine hull of ∂‖X‖C and w0 = ΠH(0). From Lemma A.3, we have λ� is 1

‖w0‖2
-Lipschitz function. Hence 

by [67, Theorem 5.3], we have |λ�(ε) − E[λ�(ε̄)]| ≤ c for ε̄ ∼ N (0, Ip×p) with probability greater than 
1 − 2 exp(−(c‖w0‖2)2/2). Suppressing the dependence on ε̄, consider the event Ec := {|λ�(ε) −E[λ�]| ≤ c}, 
and condition on this event. Define w1 := Π∂‖X‖C (0) so that ‖w1‖2/‖w0‖2 = κ(X). Let wε ∈ ∂‖X‖C
be such that ‖wε − ε‖2 = dist(ε, λ�(ε) · ∂‖X‖C). One has that λ�(ε)

E[λ�]+cwε + E[λ�]+c−λ�(ε)
E[λ�]+c w1 is a convex 

combination of w1 and wε (as we condition on Ec), and hence it belongs to ∂‖X‖C. Then
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dist(ε, (E[λ�] + c) · ∂‖X‖C)
(i)
≤ ‖ε− (λ�(ε)wε + (E[λ�] + c− λ�(ε))w1)‖2

(ii)
≤ dist(ε, λ�(ε) · ∂‖X‖C)) + ‖(E[λ�] + c− λ�(ε))w1‖2

(iii)
≤ dist(ε, λ�(ε) · ∂‖X‖C)) + 2cκ(X)‖w0‖2 (A.2)

where (i) is a consequence of λ�(ε)
E[λ�]+cwε + E[λ�]+c−λ�(ε)

E[λ�]+c w1 ∈ ∂‖X‖C , (ii) follows from the triangle inequality, 
and (iii) follows from the definition of κ(X) and our conditioning on the event Ec. Define the function 
m : Rp �→ R

m(ε) = dist(ε, (E[λ�] + c) · ∂‖X‖C) − dist(ε, λ�(ε) · ∂‖X‖C).

Since m(ε) is the difference of two 1-Lipschitz functions and hence 2-Lipschitz, we have the concentration 
inequality P(m < E[m] − r) ≤ exp(−r2/8). By setting r =

√
8 log(1/(1 − 2 exp(−(c‖w0‖2)2/2))) we have 

exp(−r2/8) = 1 −2 exp(−(c‖w0‖2)2/2). From (A.2) the event {m(ε) ≤ 2cκ(X)‖w0‖2} holds with probability 
greater than 1 − 2 exp(−(c‖w0‖2)2/2). Hence it must be the case that

E[m(ε)] ≤ 2κ(X)c‖w0‖2 +
√

8 log(1/(1 − 2 exp(−(c‖w0‖)2/2))). (A.3)

Define N := ∪λ≥0{λ · ∂‖X‖C}. We have

ηC(X) = inf
λ

{
E[dist(ε, λ · ∂‖X‖C)]

}
≤ E[dist(ε, (E[λ�] + c) · ∂‖X‖C)]

= E[dist(ε, λ�(ε) · ∂‖X‖C)] + E[m(ε)]
(i)= E[dist(ε, N)] + E[m(ε)]
(ii)
≤ E[dist(ε, N)] + 2κ(X)c‖w0‖2 +

√
8 log(1/(1 − 2 exp(−(c‖w0‖)2/2)))

(iii)
≤ {E[dist2(ε, N)]}1/2 + 2κ(X)c‖w0‖2 +

√
8 log(1/(1 − 2 exp(−(c‖w0‖)2/2)))

(iv)
≤ ω(TC(X) ∩ S

p−1) + 1 + 2κ(X)c‖w0‖2 +
√

8 log(1/(1 − 2 exp(−(c‖w0‖)2/2))),

where (i) follows from the definition of λ�, (ii) follows from (A.3), (iii) follows Jensen’s Inequality, and (iv) 
follows from [68, Proposition 10.1]. We obtain the desired bound by setting c = 1.5/‖w0‖2. �
A.2. Analysis of proximal denoising operators

The first result describes a useful monotonicity property of convex functions [69].

Lemma A.4 (Monotonicity, [69]). Let f be a convex function. Let X1, X2 ∈ R
p. Then for any Zi ∈ ∂f(Xi), 

i = 1, 2, we have

〈Z1 − Z2,X1 − X2〉 ≥ 0.

Our second result applies this monotonicity property to show that the error of proximal denoising op-
erators is robust to small changes in the underlying signal X�. Notice that our proposition also describes 
the performance of proximal denoisers for combinations of structured signals corrupted by noise. This is 
relevant in our subsequent analysis because the proximal denoiser is applied to averages computed near 
change-points.
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Proposition A.5 (Robustness). Suppose X̂ = argminX
1
2‖X� + ε− X‖2

2 + f(X) for some convex function f
and
Case 1 (Convex combination of two structured signals): X� = μX�

0 + (1 − μ)X�
1 for some 0 ≤ μ ≤ 1 is a 

convex combination of two signals X�
0 and X�

1. Then

E
[
‖X�

0 − X̂‖2
]
≤ (1 − μ)‖X�

0 − X�
1‖2 + E[dist(ε, ∂f(X�

0))].

In particular when μ = 1 there is no mixture. In this special case the error bound simplifies to

E
[
‖X�

0 − X̂‖2
]
≤ E[dist(ε, ∂f(X�

0))].

Case 2 (Small perturbation to a structured signal): X� = X�
0 + Δ. Then

E
[
‖X�

0 − X̂‖2
]
≤ ‖Δ‖2 + E[dist(ε, ∂f(X�

0))].

Here the expectations are with respect to ε.

Proof. We only prove Case 1 since Case 2 follows from a change of variables. We begin by fixing an ε. From 
the optimality conditions, we have μX�

0 + (1 − μ)X�
1 + ε− X̂ ∈ ∂‖X̂‖C . Let Z0 = argminZ∈∂f(X�

0) ‖Z − ε‖. 
From the monotonicity property in Lemma A.4 we have

〈μX�
0 + (1 − μ)X�

1 + ε− X̂ − Z0, X̂ − X�
0〉 ≥ 0.

Rearranging terms and applying the Cauchy–Schwarz inequality, we obtain

(1 − μ)‖X�
0 − X�

1‖2‖X�
0 − X̂‖2 + ‖Z0 − ε‖2‖X�

0 − X̂‖2 ≥ ‖X�
0 − X̂‖2

2.

Finally, we divide through by ‖X�
0 − X̂‖2 and take expectations on both sides with respect to ε to obtain 

the desired result.

The final result concerns a Lipschitz property of proximal operators. Demonstrating such a property 
allows us to subsequently appeal to concentration of measure results [67].

Lemma A.6 (Proximal operators are non-expansive, Section 5 of [70]). Suppose f is a convex function. Let 
X̂(ε) be the optimal solution of the following optimization problem

X̂(ε) = argmin
X

1
2‖X

� + ε− X‖2
2 + f(X). (A.4)

Then ‖ε1 − ε2‖2 ≥ ‖X̂(ε1) − X̂(ε2)‖2.

Corollary A.7. Fix an X� ∈ R
p. Define the function h : Rp �→ R as h(ε) = ‖X̂(ε) − X�‖2, where X̂(ε) is 

defined in (A.4). Then the function h is 1-Lipschitz.

Proof. By applying the triangle inequality twice one has ‖X̂(ε1) − X̂(ε2)‖2 ≥
∣∣‖X̂(ε1) − X�‖2 − ‖X� −

X̂(ε2)‖2
∣∣. The result follows from an application of Lemma A.6.
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A.3. Proofs of results from Section 3

In this section we prove Proposition 3.2 (our precursor to Theorem 3.1) and Proposition 3.3. To simplify 
notation, we denote ηC(X ) by η in this section. First we establish a tertiary result that is useful for obtaining 
a sharper bound on the accuracy of the locations of the estimated change-points.

Proposition A.8. Fix an X� ∈ R
p. Let X̂0 and X̂1 be the optimal solutions to X̂ = argminX

1
2‖X�+ε−X‖2

2+
f(X) for ε = ε0 and ε = ε1, respectively. Define the function j : Rp × R

p �→ R, j(ε0, ε1) := ‖X̂0 − X̂1‖2. 
Then j is 

√
2-Lipschitz.

Proof. Let {X̂1
0, X̂1

1} and {X̂2
0, X̂2

1} be the optimal solutions corresponding to the two instantiations (ε1
0, ε

1
1)

and (ε2
0, ε

2
1) of the vectors (ε0, ε1). From Lemma A.6, we have ‖X̂1

0 − X̂2
0‖2 ≤ ‖ε1

0 −ε2
0‖2 and ‖X̂1

1 − X̂2
1‖2 ≤

‖ε1
1−ε2

1‖2. By applying the triangle inequality, we have ‖X̂1
0−X̂1

1‖2 ≤ ‖X̂1
0−X̂2

0‖2+‖X̂2
0−X̂2

1‖2+‖X̂2
1−X̂1

1‖2. 
Then

|‖X̂1
0 − X̂1

1‖2 − ‖X̂2
0 − X̂2

1‖2| ≤ ‖X̂1
0 − X̂2

0‖2 + ‖X̂2
1 − X̂1

1‖2

≤ ‖ε1
0 − ε2

0‖2 + ‖ε1
1 − ε2

1‖2

≤
√

2‖(ε1
0, ε

1
1) − (ε2

0, ε
2
1)‖2.

Hence, j is 
√

2-Lipschitz.

Proof of Proposition 3.2. We divide the proof into three parts corresponding to the three events of interest.
Part one [P(Ec

1) ≤ 2n1−r2 ]: For each change-point t ∈ τ�, define the following event E1,t : {St ≥ γ}. 
Clearly, Ec

1 =
⋃

t∈τ� Ec
1,t. We will prove that P(Ec

1,t) ≤ 2n−r2 . By taking a union bound over all t ∈ τ�, we 
have

P(Ec
1) = P(

⋃
t∈τ�

Ec
1,t) ≤

∑
t∈τ�

P(Ec
1,t) ≤ 2|τ�|n−r2 ≤ 2n1−r2

.

We now prove that P(Ec
1,t) ≤ 2n−r2 . Conditioning on the event Ec

1,t, and by the triangle inequality, we have

γ >‖X̂[t− θ + 1] − X̂[t + 1]‖2

≥− ‖X�[t− θ + 1] − X̂[t− θ + 1]‖2 + ‖X�[t + 1] − X�[t− θ + 1]‖2 − ‖X̂[t + 1] − X�[t + 1]‖2.

Since ‖X�[t +1] −X�[t −θ+1]‖2 ≥ Δmin ≥ 2γ, one of the two events {‖X̂[t −θ+1] −X�[t −θ+1]‖2 ≥ γ/2} or 
{‖X̂[t +1] −X�[t +1]‖2 ≥ γ/2} must occur. Also, since t ∈ τ�, we have |t −t′| ≥ θ for all t′ ∈ τ�\{t}. Hence the 
signal is constant over the time instances {t −θ+1, . . . , t} and {t +1, . . . , t +θ}. By applying Proposition A.5, 
we have the inequalities E[‖X�[t − θ + 1] − X̂[t − θ + 1]‖2] ≤ σ√

θ
η and E[‖X̂[t + 1] − X�[t + 1]‖2] ≤ σ√

θ
η. 

Thus

P(Ec
1,t) ≤ P(‖X̂[t− θ + 1] − X�[t]‖2 ≥ γ/2) + P(‖X̂[t + 1] − X�[t + 1]‖2 ≥ γ/2)

(i)
≤ P(‖X̂[t− θ + 1] − X�[t]‖2 ≥ E[‖X̂[t− θ + 1] − X�[t]‖2] + r

√
σ2/θ

√
2 logn)

+ P(‖X̂[t + 1] − X�[t + 1]‖2 ≥ E[‖X̂[t + 1] − X�[t + 1]‖2] + r
√

σ2/θ
√

2 logn)
(ii)
≤ 2 exp(−(r

√
2 logn)2/2) = 2n−r2

where (i) follows from the assumption that γ ≥ 2 σ√
θ
{ηC(X ) +r

√
2 logn}, and (ii) follows from Corollary A.7

and from [67, Theorem 5.3].
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Part two [P(Ec
2) ≤ 2n1−r2 ]: We prove that P(Ec

2) ≤ 2n1−r2 in essentially the same manner in which we 
showed that P(Ec

1) ≤ 2n1−r2 . For all t ∈ τfar, define E2,t as the event E2,t := {‖X̂[t −θ+1] −X̂[t +1]‖2 ≤ γ}. 
Then Ec

2 =
⋃

t∈τfar
Ec

2,t. We will start by proving that P(Ec
2,t) ≤ 2n−r2 .

By applying the triangle inequality and conditioning on the event Ec
2,t holding for some t ∈ τfar, we have 

‖X̂[t − θ + 1] − X�[t + 1]‖2 + ‖X�[t + 1] − X̂[t + 1]‖2 > ‖X̂[t − θ + 1] − X̂[t + 1]‖2 > γ. Consequently, 
one of the two events {‖X̂[t − θ + 1] − X�[t + 1]‖2 ≥ γ/2} or {‖X�[t + 1] − X̂[t + 1]‖2 ≥ γ/2} must 
hold. Since t ∈ τfar, we have |t − t�| > θ for all t� ∈ τ�, and thus the signal is constant over the time 
instances {t − θ + 1, . . . , t + θ}. By Proposition A.5, we have E[‖X̂[t − θ + 1] − X�[t − θ + 1]‖2] ≤ σ√

θ
η

and E[‖X̂[t + 1] − X�[t + 1]‖2] ≤ σ√
θ
η. This implies that we have that at least one of the following two 

events {‖X̂[t − θ + 1] − X�[t − θ + 1]‖2 ≥ E[‖X̂[t − θ + 1] − X�[t − θ + 1]‖2] + r
√
σ2/θ

√
2 logn} or 

{‖X̂[t + 1] − X�[t + 1]‖2 ≥ E[‖X̂[t + 1] − X�[t + 1]‖2] + r
√

σ2/θ
√

2 logn} holds.
From Corollary A.7 and from [67, Theorem 5.3], we have that the probability of either event (correspond-

ing to these two inequalities) occurring is less than 2 exp(−(r
√

2 logn)2/2) = 2n−r2 . Thus

P(Ec
2) = P(

⋃
t∈τfar

Ec
2,t) ≤

∑
t∈τfar

P(Ec
2,t) ≤ 2|τfar|n−r2 ≤ 2n1−r2

,

as required.
Part three [P(Ec

3) ≤ n1−r2 ]: Let us now consider the event E3. To simplify notation, we define 
l := 4r

√
log n/η. To prove this part of the proposition, we show a slightly stronger result P(Ec

3) ≤
4θ|τ�| exp(−l2η2/16). Since θ|τ�| ≤ n/4, our bound would imply that P(Ec

3) ≤ n1−r2 .
For all pairs (t, δ) ∈ τbuffer, define the event E3,t,δ =

{
‖X̂[t + 1] − X̂[t − θ + 1]‖2 > ‖X̂[t + 1 + δ] − X̂[t −

θ + 1 + δ]‖2
}
. Then Ec

3 =
⋃

(t,δ)∈τbuffer
Ec

3,t,δ. We start by proving the following bound

P(Ec
3,t,δ) ≤ 2 exp(−l2η2/16)

for all pairs (t, δ) in τbuffer. Fix one such pair and let Δt denote the magnitude of the change at t ∈ τ�. 
From the triangle inequality and Proposition A.5 we have that

E[‖X̂[t + 1] − X̂[t− θ + 1]‖2]

≥− E[‖X̂[t + 1] − X�[t + 1]‖2]

+ E[‖X�[t + 1] − X�[t− θ + 1]‖2] − E[‖X�[t− θ + 1] − X̂[t− θ + 1]‖2]

≥ Δt − 2
√
σ2/θη.

Suppose that δ ≥ 0. By similarly applying the triangle inequality and Proposition A.5 we have

E[‖X̂[t + 1 + δ] − X̂[t− θ + 1 + δ]‖2]

≤ E[‖X̂[t + 1 + δ] − X�[t + 1]‖2] + E[‖X�[t + 1] − X̂[t− θ + 1 + δ]‖2]

≤ (1 − δ/θ)Δt + 2
√
σ2/θη.

A similar set of computations will show that E[‖X̂[t + 1 + δ] − X̂[t − θ+ 1 + δ]‖2] ≤ (1 + δ/θ)Δt + 2
√
σ2/θη

for δ < 0. Combining these inequalities and using the range of values of δ we have

E[‖X̂[t + 1] − X̂[t− θ + 1]‖2] − E[‖X̂[t + 1 + δ] − X̂[t− θ + 1 + δ]‖2] ≥
|δ|
θ

Δt − 4 σ√
θ
η

≥ l
σ√
θ
η. (A.5)
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Then

P(Ec
3,t,δ) = P(‖X̂[t + 1 + δ] − X̂[t− θ + 1 + δ]‖2 > ‖X̂[t + 1] − X̂[t− θ + 1]‖2

)
(i)
≤ P

(
‖X̂[t + 1 + δ] − X̂[t− θ + 1 + δ]‖2 − ‖X̂[t + 1] − X̂[t− θ + 1]‖2

+ E[‖X̂[t + 1] − X̂[t− θ + 1]‖2] − E[‖X̂[t + 1 + δ] − X̂[t− θ + 1 + δ]‖2] ≥
lσ√
θ
η

)

(ii)
≤ P

(
E[‖X̂[t + 1] − X̂[t− θ + 1]‖2] − ‖X̂[t + 1] − X̂[t− θ + 1]‖2 ≥ lσ

2
√
θ
η

)

+ P

(
‖X̂[t + 1 + δ] − X̂[t− θ + 1 + δ]‖2 − E[‖X̂[t + 1 + δ] − X̂[t− θ + 1 + δ]‖2]

≥ lσ

2
√
θ
η

)

(iii)
≤ 2 exp(−l2η2/16),

where (i) follows from (A.5), (ii) follows from the triangle inequality, and (iii) follows from Proposition A.8
and from [67, Theorem 5.3]. Since Ec

3 =
⋃

(t,δ)∈τbuffer
Ec

3,t,δ, we have via a union bound

P(Ec
3) ≤

∑
(t,δ)∈τbuffer

P(Ec
3,t,δ) ≤ 2|τbuffer| exp(−l2η2/16) ≤ 4θ|τ�| exp(−l2η2/16).

This concludes the proof of Proposition 3.2. �
Before proving Proposition 3.3 we require a short lemma.

Lemma A.9. Let ε ∼ N (0, σ2Ip×p). Then

dist2(ε, λ · ∂‖X‖C) ≤ 2
(
E
[
dist(ε, λ · ∂‖X‖C)

])2 + 2σ2t2

with probability greater than 1 − 2 exp(−t2/2).

Proof. The mapping ε �→ dist(ε, λ ·∂‖X‖C) is nonexpansive and hence 1-Lipschitz. Using Theorem 5.3 from 
[67], we have

dist(ε, λ · ∂‖X‖C) ≤ E
[
dist(ε, λ · ∂‖X‖C)

]
+ tσ (A.6)

with probability greater than 1 − exp(−t2/2). By conditioning on the event corresponding to the inequality 
(A.6), we apply the arithmetic-geometric-mean inequality and conclude that

dist2(ε, λ · ∂‖X‖C) ≤ 2(E
[
dist(ε, λ · ∂‖X‖C)

]
)2 + 2t2σ2

with probability greater than 1 − exp(−t2/2).

Proof of Proposition 3.3. It follows from the proof of Proposition 3.2 that the event E1 ∩ E2 holds with 
probability greater than 1 − 4n1−r2 . Conditioning on the event that E1 ∩E2 holds, the reconstructed signal 
is constant over the interval {t1 + θ, . . . , t2 − θ}. The result then follows from an application of Lemma A.9
and a union bound. �
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