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Abstract
We describe a generalization of the Sums-of-AM/GM-Exponential (SAGE) method-
ology for relative entropy relaxations of constrained signomial and polynomial
optimization problems. Our approach leverages the fact that SAGE certificates con-
veniently and transparently blend with convex duality, in a way which enables partial
dualization of certain structured constraints. This more general approach retains key
properties of ordinary SAGE relaxations (e.g. sparsity preservation), and inspires a
projectivemethod of solution recoverywhich respects partial dualization.We illustrate
the utility of our methodology with a range of examples from the global optimization
literature, along with a publicly available software package.

Keywords Global optimization · Exponential cone programs · SAGE certificates ·
SOS certificates · Signomial programming

1 Introduction

A signomial is a function x �→ ∑m
i=1 ci exp(αi · x) for real scalars ci and row vec-

tors αi in R
1×n . Signomial optimization and signomial programming are challenging

problems with applications in chemical engineering [1], aeronautics [2], circuit design
[3], and communications network optimization [4]. Signomials are sometimes thought
of as generalized polynomials over the positive orthant Rn++; by a change of variables
yi = exp xi one arrives at “geometric form” signomials y �→ ∑m

i=1 ci
∏n

j=1 y
αi j
j .

Despite this aesthetic similarity, signomials and polynomials have many significant
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differences.Where polynomials are generated by a countably infinite basis, signomials
require an uncountably infinite basis. Where polynomials are closed under composi-
tion, signomials are not. Where polynomials and exponential-form signomials are
defined on all of R

n , geometric-form signomials are only defined on R
n++.

For many years these abstract differences between signomials and polynomials
have coincided with algorithmic disparities. Contemporary methods for signomial
programming use some combination of local linearization, penalty functions, sequen-
tial geometric programming, and branch-and-bound [5–11]—ideas which precede the
advent of modern convex optimization. By contrast, the study of polynomial opti-
mization has been substantially influenced by semidefinite programming, specifically
through Sums-of-Squares (SOS) certificates of polynomial nonnegativity [12–14]. In
recent work, Chandrasekaran and Shah proposed Sums-of-AM/GM-Exponentials or
“SAGE” decompositions, which use relative entropy programming to certify signo-
mial nonnegativity [15]. The authors of the present article have further demonstrated
that a certain extension of signomial SAGE certificates provides a tractable sufficient
condition for polynomial nonnegativity [16]. This modification connects SAGE to
Sums-of-Nonnegative-Circuit-Polynomials (SONC) [17], as we discuss in Sect. 2.2.

Here, we are concerned with how certain certificates of nonnegativity can be used
for constrained optimization. The basic idea is simple: for a function f , a set X , and a
scalar γ , we have f �

X
.= inf{ f (x) : x ∈ X} ≥ γ if and only if f − γ is nonnegative

over X . The trouble is that to leverage this fact, we require ways to extend certificates
for global nonnegativity (such as SOS or SAGE certificates) to prove nonnegativity
over X � R

n . In the polynomial case, one usually performs this extension by appealing
to representation theorems from real algebraic geometry. Absent such representation
theorems, one typically relies on a dual problem obtained from theminimax inequality.

Our main contribution is to extend SAGE certificates to accommodate certain fea-
sible sets “X” in a way which uses neither algebraic geometry nor the minimax
inequality.When X is convex, this manifests in cones of “X -SAGE signomials” which
are completely characterized by a relative entropy program involving the support func-
tion of X . Constraints which are not compatible with our new type of SAGE certificate
are moved into a suitable Lagrangian, in a process known as partial dualization. We
develop the core principles behind this approach for both signomials and polynomials.
An abundance of examples are provided to illustrate the range of possibilities with
this new framework.

1.1 Article outline and our contributions

Section 2 provides background material on the following points, all of which are
central to the current article. (1) The sources of error in nonnegativity relaxations of
constrained optimization problems, and how are these sources of error are usually mit-
igated. (2) The formulations for ordinary SAGE cones, and the relationships between
SAGE and other nonnegativity certificates in the literature. (3) The definition of partial
dualization, and how it can be understood in the context of existing nonnegativity and
moment relaxations.
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Once those topics are covered, we introduce conditional SAGE certificates for
signomial nonnegativity over sets X ⊂ R

n (Sect. 3). We show that when X is a
convex set, cones of “X -SAGE signomials” are completely characterized by a relative
entropy program involving the support function of X (Theorem 1). This result is
leveraged to obtain a representation for dual X -SAGE cones, which have a structure
enabling a projective solution recovery method for convex relaxations to signomial
programs (Algorithm 1). We go on to describe two SAGE-based “hierarchies” of
convex relaxations for signomial optimization: onewhich uses theminimax inequality,
and one which is minimax-free. The authors know of no analog to the minimax-free
hierarchy in the polynomial optimization literature, and believe the underlying idea
of the minimax-free hierarchy is of independent theoretical interest.

Section 4 extends conditional SAGE certificates to polynomials; the structure of
this section is entirely analogous to that of Sect. 3. In this polynomial setting, it is
not convexity of X which determines when an X -SAGE polynomial cone is tractable,
but rather convexity of a certain logarithmic transform of X (Theorems 2 and 3).
Solution recovery from SAGE relaxations of polynomial optimization problems is
more complicated than in the signomial case; see Algorithm 2 and subroutines given
by Algorithms 3 and 4. Our minimax-free hierarchy for polynomial optimization
reflects a link between SAGE signomials and polynomials by way of the “signomial
representatives” from [16].

Section 5 reports the effectiveness of our methodology on 51 problems from the
literature, as well as randomly generated problems. A central goal of our experiments
is to facilitate research into the theory underlying conditional SAGE relaxations, and
the practice of using these relaxations in engineering design optimization. Towards
this end, we provide the “sageopt” python package: a documented, tested, and
convenient platform for constructing and solvingSAGE relaxations.Weusesageopt
for all experiments in this article.

Concluding remarks and lines for future work are given in Sect. 6.

1.2 Notation and preliminary definitions

Vectors and matrices appear in boldface. The i th entry of a vector v is vi , and the
vector formed by deleting the i th entry of v is v\i . A matrix A is built by stacking
rows ai ∈ R

1×n , and A\i is the submatrix formed by deleting the i th row of A. All
logarithms are base-e. We use ei to denote the i th standard basis vector in R

� where
� should be clear from context, and set 1 = ∑�

i=1 ei . Elementary functions from R

to R are extended first to vectors in an elementwise fashion, and subsequently to sets
in a pointwise fashion. For a convex cone K ⊂ R

�, the dual cone is K † .= { y :
yᵀx ≥ 0 for all x in K }. For A, B ⊂ R

n , A ⊂ B and A � B denote non-strict and
strict inclusion respectively. The operator “cl” computes set-closure with respect to
the standard topology.

For anm×n matrix α and a vector c in R
m , we write f = Sig(α, c) to mean that f

takes values f (x) = ∑m
i=1 ci exp(αi · x). When α is a matrix of nonnegative integers,

we write f = Pol(α, c) to mean that c is the coefficient vector of f with respect to
the monomial basis x �→ xαi

.= ∏n
j=1 x

αi j
j . Given a matrix α and a set X ⊂ R

n , one
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has the nonnegativity cones

CNNS(α, X)
.= {c : Sig(α, c)(x) ≥ 0 for all x in X}

and

CNNP(α, X)
.= {c : Pol(α, c)(x) ≥ 0 for all x in X}.

Wewrite CNNS(α) and CNNP(α) in reference to the above cones when X = R
n . Except

in special cases on α, it is computationally intractable to check membership in either
CNNS(α) or CNNP(α) [18]. Nonnegativity certificates developed in this article use the
relative entropy function; this is the convex function “D” which continuously extends
D(u, v) = ∑m

i=1 ui log(ui/vi ) to R
m+ × R

m+. We use the standard convention that
D(u, v) = +∞ for (u, v) /∈ R

m+ × R
m+.

Our computational experiments use the MOSEK solver [19], with two different
machines. Machine W is an HP Z820 workstation, with two 8-core 2.6 GHz Intel
Xeon E5-2670 processors and 256 GB 1600 MHz DDR3 RAM. Machine L is a 2013
MacBook Pro, with a dual-core 2.4GHz Intel Core i5 processor and 8 GB 1600 MHz
DDR3 RAM.

2 Problem statement and backgroundmaterial

We study constrained nonconvex optimization problems of the form

( f , g, φ)�X = inf{ f (x) : x in X ⊂ R
n, g(x) ≥ 0, φ(x) = 0} (1)

where f is a function from R
n to R, g maps R

n to R
k1 , and φ maps R

n to R
k2 . Our

primary goal is to produce lower bounds ( f , g, φ)lbX ≤ ( f , g, φ)�X . In the event that
( f , g, φ)lbX = ( f , g, φ)�X , we are also interested in recovering optimal solutions to
(1). For ease of exposition, this section focuses on problems of the form (1) with only
inequality constraints– i.e. the problem of bounding

( f , g)�X = inf{ f (x) : x in X ⊂ R
n, g(x) ≥ 0}. (1.1)

In Sect. 2.1 we review the Lagrange dual relaxation of the above problem, both in
minimax form and as a nonnegativity problem. Section 2.2 provides background on
SAGEand related nonnegativity certificates,which is neededdevelopour contributions
and frame them in the larger literature. In Sect. 2.3 we review standard techniques for
strengthening nonnegativity-based relaxations of problems such as (1.1); this includes
the use of redundant constraints, nonconstant Lagrange multipliers, and strengthening
nonnegativity certificates via modulation. Section 2.4 reviews partial dualization, a
concept which is central to this article. Until Sect. 2.4, the set X appearing in Prob-
lem 1.1 shall be the whole of R

n .
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2.1 Dual problems in nonconvex optimization

The simplestway to lower bound ( f , g)�
Rn is via theLagrangedual. For each coordinate

function gi of g, we introduce a dual variable λi ≥ 0 and consider the Lagrangian
L(x,λ) = f (x) − λᵀg(x). The Lagrange dual problem is to compute

( f , g)L
Rn = sup

λ≥0
inf
x∈Rn

L(x,λ).

By the minimax inequality, we can be certain that ( f , g)L
Rn ≤ ( f , g)�

Rn .
There are many situations when the Lagrange dual problem is intractable. For

signomial and polynomial optimization, one usually needs to compute yet another
lower bound ( f , g)d

Rn ≤ ( f , g)L
Rn . Contemporary approaches for computing such

bounds begin by introducing a parameterized function ψ(γ,λ) which takes values
ψ(γ,λ)(x) = L(x,λ) − γ . One reformulates the dual as

( f , g)L
Rn = sup{γ : λ ≥ 0, γ in R, ψ(γ,λ)(x) ≥ 0 for all x in R

n},

and the constraint that “ψ(γ,λ) defines a nonnegative function” is then tightened to
“ψ(γ,λ) satisfies a particular sufficient condition for nonnegativity.” The expectation
is that the sufficient condition can be expressed by tractable convex constraints on
variables γ and λ. For example, SOS certificates for polynomial nonnegativity can
be expressed via linear matrix inequalities, and SAGE certificates for signomial and
polynomial nonnegativity can be expressed with the relative entropy function.

2.2 Global nonnegativity certificates

A signomial f = Sig(α, c) is called an AM/GM-Exponential or an AGE function if
the coefficient vector c has at most one negative component, and f is nonnegative on
R
n [15]. For an index k ∈ [m], we define the kth AGE cone

CAGE(α, k) = {c : c\k ≥ 0 and c belongs to CNNS(α)}.

By applying duality to a suitable convex program, it may be shown that a vector c
belongs to CAGE(α, k) if and only if

some ν in R
m−1 has [α\k − 1αk]ᵀν = 0 and D(ν, ec\k) ≤ ck (2)

where we have used the convention that D(u, v) = +∞ for (u, v) /∈ R
m+ × R

m+. The
system of constraints given by (2) is jointly convex in c and the auxiliary variable ν;
therefore the set defined by the sum of all AGE cones

CSAGE(α)
.=

{

c : there exist c(k) in CAGE(α, k) where c =
m∑

k=1

c(k)
}

(3)

is tractable.
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SAGE signomials can be used to certify global polynomial nonnegativity (see [16]).
For a matrix α ∈ N

m×n and a vector c in R
m , we define the set of signomial represen-

tative coefficient vectors as

SR(α, c) = {ĉ : ĉi = ci whenever αi is in 2N
1×n, and

ĉi ≤ −|ci | whenever αi is not in 2N
1×n}.

Using a termwise argument, if ĉ belongs to SR(α, c) and Sig(α, ĉ) is nonnegative
on R

n , then Pol(α, c) must likewise be nonnegative on R
n . We define the cone of

coefficients for SAGE polynomials as

CPOLYSAGE(α)
.= {c : SR(α, c) ∩ CSAGE(α) is nonempty }. (4)

Alternatively, one may define an AGE polynomial as a nonnegative polynomial
Pol(α, c) where at most one term ci xαi attains a negative value as x varies over
R
n . Taking sums of such functions will also recover the cone in (4).
The theory of ordinary SAGE certificates has connections to a long-running his-

tory of similar nonnegativity certificates. The earliest developments here are the
agiforms introduced by Reznick [20]. More recently, Pébay, Rojas, and Thompson
studied maximization of circuit functions [21], Pantea, Koeppl, and Craciun intro-
duced monomial dominating posynomials [22],1 and Iliman and de Wolff proposed
Sums-of-Nonnegative-Circuit-Polynomials (SONC) [17]. When polynomial SAGE
certificates were introduced, it was shown that polynomial admits a SAGE decompo-
sition if and only if it admits a SONC decomposition [16, Corollary 21]; this led to
the first polynomial-time algorithm for optimizing over cones of SONC polynomials
[16, Theorem 16].2 Most recently, Katthän, Naumann, and Theobald proposed a class
of SAGE-like functions which mix polynomials and geometric-form signomials [25];
the techniques presented in this article apply to such functions with straightforward
changes. Some unconstrained optimization features of sageopt have counterparts
in the POEM python package [26,27].

Lastly we mention Sums-of-Squares (SOS) polynomials. A polynomial f is said to
be SOS if it can be written in the form f = ∑m

i=1 f 2i for appropriate polynomials fi .
In the context of polynomial optimization, one usually parameterizes the SOS cone
by a number of variables n and a maximum degree 2d; this cone can be represented
as

SOS(n, 2d) = {p : p(x) = Ln
d(x)ᵀMLn

d(x), M 
 0}

where Ln
d : R

n → R(n+d
d ) is the map from a vector x to the vector of all monomials of

degree at-most-d evaluated at x. The connection between SOS-representability and
semidefinite programming was first observed by Shor [12], and was subsequently
developed by Parrilo [13] and Lasserre [14]. GloptiPoly3 [28] and SOSTOOLS [29]
are the SOS counterparts to sageopt.

1 See also August, Koeppl, and Craciun [23].
2 See [16, Section 5] for discussion on this topic and related results by Wang [24].
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Although the bulk of the preceding discussion has been on polynomials, we must
emphasize that SAGE is first and foremost about signomials.

2.3 Strengthening dual bounds in nonnegativity relaxations

A common method for strengthening dual problems is to introduce redundant con-
straints to the primal problem, particularly by taking products of existing constraint
functions. As an example of this principle in action, consider the toy polynomial
optimization problem

inf{ −x2 : −1 ≤ x ≤ 1 } = −1.

One may verify that ( f , g)L
R

= −∞, but by adding the single redundant constraint
(1 − x)(1 + x) ≥ 0, we can certify a dual bound −1 ≤ ( f , g)�

R
.

A more subtle method is to reconsider what is meant by “dual variables.” For the
Lagrange dual problem we use scalars λi ≥ 0, however it is just as valid to have λi
be a function, provided it is nonnegative over R

n . Such a method is well-suited to
our nonnegativity-based relaxations of the dual problem. The following toy signomial
program illustrates the utility of this approach

inf{− exp(2x) : 1 ≤ exp(x) ≤ 2} = −4.

Again the Lagrange dual problem returns a bound of−∞, but by considering λi (x) =
ηi exp(x) with ηi ≥ 0, the resulting dual bound is − 4 ≤ ( f , g)�

R
.

A thirdmethod for strengthening dual bounds only becomes relevant whenworking
with strict inner-approximations of nonnegativity cones. For two functions w, f with
w positive definite, it is clear that f is nonnegative if and only if the product w · f
is nonnegative. The method of modulation is to choose a generic positive-definite
functionw so that if f fails a particular test for nonnegativity (say, being SOS, or being
SAGE), there is still a chance that the product w · f passes a test for nonnegativity.
Indeed,modulation is a crucial tool for computing successive bounds for unconstrained
problems

f �
Rn

.= inf{ f (x) : x in R
n} = sup{γ : f (x) − γ ≥ 0 for all x in R

n}.

Suppose for example that f is a signomial over exponents α; then for w = Sig(α, 1)
we can compute a non-decreasing sequence of lower bounds

f (�)
Rn = sup{γ : γ in R, w�( f − γ ) is SAGE} ≤ f �

Rn .

For suitable conditions onα (c.f. [15, Theorem 4.1]), we have f (�)
Rn → f �

Rn as � tends to
infinity. From an implementation perspective, the constraint that “ψ(γ )

.= w�( f −γ )

is SAGE” is tractable because the coefficient vector of ψ(γ ) is an affine function of
γ .
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Modulation can similarly be applied to constrained optimization. Suppose that
L(x,λ) is the Lagrangian for Problem 1.1, and refer to the function x �→ L(x,λ)

as L(λ). Then rather than requiring that “L(λ) − γ is SAGE”, one can require that
“ψ(γ,λ)

.= w�(L(λ) − γ ) is SAGE.” This increases the size of the feasible set for
variables γ and λ, and remains tractable due to the affine dependence of ψ(γ,λ) on γ

and λ. Such modulation leads to a non-decreasing sequence of bounds which converge
to ( f , g)L

Rn under suitable conditions.

2.4 Partial dualization and conditional moment relaxations

Partial dualization is a technique for strengthening dual bounds, which is at least as
strong as any choice of redundant constraints or nonconstant Lagrange multipliers.
Considering (1.1) now with X � R

n , the natural generalization of the Lagrange dual
is

( f , g)dX
.= sup{ γ : λ ≥ 0, γ in R, L(x,λ) − γ ≥ 0 for all x in X}. (5)

In the important case when X is compact, we are guaranteed to have ( f , g)dX > −∞,
a property which is in stark contrast to the Lagrange dual. We call (5) a partial dual
if X = {x : gi (x) ≥ 0 for all i in I } was constructed from some subset I ⊂ [k] of
the constraint functions. Note that in the extreme case with X = {x : g(x) ≥ 0}, we
have ( f , 0)dX = ( f , g)�

Rn – in this way, partial dualization provides a mechanism to
completely eliminate duality gaps.

We now provide a simple example which combines partial dualization and non-
negativity certificates. Suppose we want to minimize a univariate polynomial f over
an interval [a, b], subject to a polynomial inequality constraint g(x) ≥ 0. In this
case we may form a Lagrangian L(x, μ) = f (x) − λg(x) with λ ≥ 0, and find the
largest constant γ so that x �→ L(x, λ) − γ is nonnegative over x ∈ [a, b]. A result
by Powers and Reznick states that a degree-d polynomial “p” is nonnegative over
an interval [a, b] if and only if it can be written as p(x) = s(x)2 + h[a,b](x)t(x)2,
where h[a,b](x) = (b − x)(x − a), and s, t are polynomials of degree at most d and
d −1 respectively [30]. Therefore the partial dual ( f , g)d[a,b] can be framed as an SOS
relaxation

( f , g)d[a,b] = sup{γ : f − λg − γ = s + t · h[a,b], λ ≥ 0,

s ∈ SOS(1, 2d), t ∈ SOS(1, 2(d − 1))}.

Our last concept is how partial dualization manifests in the dual of the dual, also
known as themoment relaxation. Consider f = Pol(α, c)with α1 = 0, a set X ⊂ R

n ,
and constraint functions gi = Pol(α, gi ) with coefficient vectors forming the rows of
a matrix G. The partial dual ( f , g)dX can be written as the convex cone program

( f , g)dX = sup{γ : λ ≥ 0, γ ∈ R, c− γ e1 − Gᵀλ ∈ CNNP(α, X)},

and we can apply conic duality to obtain
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( f , g)dX = inf{cᵀv : vᵀe1 = 1, Gv ≥ 0, v ∈ CNNP(α, X)†}.
The set CNNP(α, X)† is the closed cone generated by all vector-valued expectations
Ex∼F [(xα1 , . . . , xαm )], where F is a probability measure conditioned on x ∈ X .
Moment relaxations can be used in solution recovery schemes to certify ( f , g)dX =
( f , g)�X ; see [14,31] for SOS-based moment relaxations and solution recovery meth-
ods.

3 Conditional SAGE certificates for signomials

In this section we show how SAGE certificates for signomial nonnegativity can fully
leverage partial dualization, in the sense that any tractable convex set X gives rise to
a parameterized and similarly tractable “X -SAGE” nonnegativity cone. The efficient
representation of the X -SAGE cones (which we often call “conditional SAGE cones”)
leads to a practical, principled approach for solving and approximating a range of
nonconvex signomial optimization problems. In this regard the most common sets X
are of the form {x : g(x) ≤ 1} for signomials gi with all nonnegative coefficients. An
algorithm for solution recovery, and two worked examples are provided.

3.1 The conditional SAGE signomial cones

A signomial Sig(α, c) is called X -AGE if it is nonnegative on X , and at most one
component of c is negative. The kth X -AGE cone for signomials over exponents
α ∈ R

m×n is

CAGE(α, k, X) = {c : c\k ≥ 0 and c belongs to CNNS(α, X)}.
Note that X -AGE cones are defined for arbitrary X ⊂ R

n , including nonconvex sets,
and convex sets which admit no efficient description. A signomial Sig(α, c) is called
X -SAGE if the coefficient vector c belongs to

CSAGE(α, X)
.=

m∑

k=1

CAGE(α, k, X).

It is possible to prove a range of results for X -SAGE signomials without knowing
how to check membership in CSAGE(α, X). Here is one such result.

Corollary 1 Let X ⊂ R
n be arbitrary. If c is a vector in CSAGE(α, X) with nonempty

N = {i : ci < 0}, then there exist vectors {c(i)}i∈N satisfying

c(i) ∈ CAGE(α, i, X) c =
∑

i∈N
c(i) and c(i)

j = 0 for all j �= i in N .

Proof The cones CAGE(α, i, X) are of the form Ci = {c ∈ K : c\i ≥ 0} for a convex
cone K = CNNS(α, X) which contains R

m+, and so they satisfy the hypothesis of [16,
Lemma 6]. Therefore the proof of the known case with X = R

n ( [16, Theorem 3])
generalizes immediately. 
�
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Corollary 1 is important for theoretical and practical reasons. At a theoretical level,
it says there is no loss of generality in restricting X -SAGE decompositions of a sig-
nomial Sig(α, c) to those with X -AGE functions also supported on α. Therefore it
is equivalent to say “an X -SAGE function is a sum of X -AGE functions,” without
making reference to a fixed set of exponent vectors. At a practical level, Corollary 1
enables fast and substantial presolve procedures when using SAGE relaxations for
signomial optimization.

To further illustrate that representations of CSAGE(α, X) are not required to prove
results for X -SAGE signomials, we provide two elementary propositions concerning
optimization with conditional SAGE certificates. For f = Sig(α, c) with α1 = 0,
define

f SAGEX
.= sup{ γ : γ in R, c− γ e1 in CSAGE(α, X)}

so that f SAGEX ≤ f �
X

.= inf{ f (x) : x in X}.
Proposition 1 If c ≥ 0, then f = Sig(α, c) has f SAGEX = f �

X for all X ⊂ R
n.

Proof The signomial f̃ = Sig(α, c− f �
X e1) is nonnegative over X , and its coefficient

vector c − f �
X e1 contains at most one negative entry. This implies that f̃ is X -AGE,

and hence X -SAGE. 
�
Proposition 2 If X is bounded, then f SAGEX > −∞ for every signomial f .

Proof If X is empty then the result follows by verifying that CSAGE(α, X) = R
m .

Consider the casewhen X is nonempty. In this situation it suffices to prove the result for
all f of the form f (x) = c exp(a · x)where c �= 0 and a belongs toR

1×n . Fixing such
c, a, the boundedness of X implies the existence of L �= 0with f̃ (x) = c exp(a·x)+L
nonnegative over x in X and cL < 0. Since f̃ is nonnegative over X and contains
exactly one negative coefficient, we have that f SAGEX ≥ −L . 
�
Proposition 2 shows how convex relaxations based on conditional SAGE certificates
respect compactness, as with the partial-duals from Sect. 2.4.

Now we turn to the computationally essential question of how to represent cones
of X -SAGE signomials. The following theorem demonstrates that if X is a tractable
convex set, then so is CSAGE(α, X).

Theorem 1 For a matrix α in R
m×n, an index k in [m], and a convex set X ⊂ R

n with
support function σX (λ)

.= supx∈X λᵀx, we have

CAGE(α, k, X) = {c ∈ R
m : there exist ν in R

m−1 and λ in R
n

satisfying [α\k − 1αk]ᵀν + λ = 0

and σX (λ) + D(ν, ec\k) ≤ ck}.

Proof Let δX denote the indicator function of X , taking values δX (x) = 0when x ∈ X ,
and δX (x) = +∞ otherwise. A vector cwith c\k ≥ 0 belongs to CAGE(α, k, X) if and
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only if

p� = inf

{

δX (x) +
�∑

i=1
c̃i exp ti : x ∈ R

n, t ∈ R
�, t = Wx

}

≥ −L (6)

for � = m − 1, W = [α\k − 1αk] ∈ R
�×n , c̃ = c\k ∈ R

�, and L = ck .
The dual to the above optimization problem is easily calculated by applying Fenchel

duality (c.f. [32]); the result of this process is

d� = sup{−σX (λ) − D(ν, ec̃) : λ ∈ R
n, ν ∈ R

m−1, Wᵀν + λ = 0}. (7)

When X is nonempty, one may verify that the hypothesis of [32, Corollary 3.3.11]
(concerning strong duality) hold for the primal-dual pair (6)–(7). In particular, p� ≥
−L holds if and only if −d� ≤ L , and the dual problem attains an optimal solution
whenever finite. When X is empty, it is clear that p� = +∞, and by taking both λ

and ν as zero vectors, we have d� = +∞. The result follows. 
�
Theorem 1 is stated in terms of support functions for maximum generality. From an

implementation perspective, it is useful to assume a representation of X . For example,
if X = {x : Ax + b ∈ K } for a matrix A, a vector b, and a convex cone K , then
weak duality ensures

σX (λ)
.= sup{λᵀx : Ax + b ∈ K } ≤ inf{bᵀη : Aᵀη + λ = 0, η ∈ K †}.

The above is all we need to construct an inner-approximation of a given AGE cone.
For all X = {x : Ax + b ∈ K }, we have

{c ∈ R
m : there exist ν in R

m−1 and η in K †

satisfying [α\k − 1αk]ᵀν = Aᵀη

and D(ν, ec\k) + ηᵀb ≤ ck, } ⊂ CAGE(α, k, X).

If there exists an x0 where Ax0 + b is in the relative interior of K , then by Slater’s
condition the reverse inclusion in the preceding expression also holds.

The present article only considers X -SAGE signomials when X is a convex set,
however there remains the possibility of using X -SAGE decompositions to certify
nonnegativity when X is nonconvex. To give an example of when this is possible,
suppose X = X1 ∪ X2 where X1 and X2 are convex sets. In this case we trivially
have that CAGE(α, k, X) is the intersection of CAGE(α, k, X1) and CAGE(α, k, X2), and
so CSAGE(α, X) inherits a representation from Theorem 1.

3.2 Dual perspectives and solution recovery

Dual SAGE relaxations can be used to recover optimal and near-optimal solutions
to signomial programs of the form (1). For concreteness, we state the simplest such
relaxation here. Let f , {gi }k1i=1 and {φi }k2i=1 be signomials over exponents α, with
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α1 = 0. If c is the coefficient vector of f , and the rows of G ∈ R
k1×m , Φ ∈ R

k2×m

specify coefficient vectors of gi , φi respectively, then

inf{cᵀv : v ∈ CSAGE(α, X)†, v1 = 1, Gv ≥ 0, Φv = 0} (8)

is a convex relaxation of Problem 1. By standard rules in convex analysis, the dual
SAGE cone is given by the intersection of the constituent dual AGE cones. An expres-
sion for the dual AGE cones can be recovered from Theorem 1 in the case when X is
a convex set. Using co X = {(x, t) : t > 0, x/t ∈ X} to denote the cone over X , the
usual conic-duality calculations yield

CAGE(α, i, X)† = cl{v : vi log(v/vi ) ≥ [α − 1αi ]zi
(zi , vi ) ∈ co X , v in R

m++, and zi in R
n}. (9)

The auxiliary variables “z” appearing in (9) are a powerful tool for solution recovery:
if zi , v satisfy the constraints in (9), then x

.= zi/vi belongs to X . Beyond taking
individual ratios, we note that for any index set I ⊂ [m] of AGE cones, we have(∑

i∈I zi
)
/
(∑

i∈I vi
) ∈ X . The ability to unconditionally recover X -feasible points

by perspective transforms of a dual solution is an important aspect of conditional
SAGE certificates.

In general there remain issues of recoveringoptimal points, and recovering solutions
when some constraints cannot be pushed into X . Both of these issues can be resolved if
some x� ∈ X satisfies exp(αx�) = v (as happens when all relative entropy constraints
in (9) are binding and we meet one additional normalization condition). However it
is possible that a SAGE relaxation produces a tight bound, and yet we cannot find a
point x� ∈ X with exp(αx�) = v. Therefore it is beneficial to include heuristics in
the solution recovery process. Our basic solution recovery algorithm is given below.

Algorithm 1 signomial solution recovery from dual SAGE relaxations.

Input: Signomials f , {gi }k1i=1, and {φi }k2i=1 over exponents α in R
m×n . A vector v in CSAGE(α, X)†.

Infeasibility tolerances εineq, εeq ≥ 0.
1: procedure SigSolutionRecovery( f , g, φ, α, v, εineq, εeq)
2: solutions ← []
3: for j = 1, . . . , length(v) do
4: Recover zi in R

n s.t. vi log(v/vi ) ≥ [α − 1αi ]zi and (zi , vi ) ∈ co X .
5: solutions.append(zi /vi ).
6: if αx �= log v for all x in solutions then
7: Compute xls in argmin{‖ log v − αx‖ : x in X}.
8: solutions.append(xls).
9: solutions ← [ x in solutions if g(x) ≥ −εineq and |φ(x)| ≤ εeq ].
10: solutions.sort( f , increasing).
11: return solutions.

Assuming (9) is used to represent CSAGE(α, X)†, Algorithm 1’s runtime is dom-
inated by the constrained least-squares problem in Line 7. Note the only projective
transformations used in Algorithm 1 are those with index sets I = {i}; this is due to
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a present lack of theory for identifying which of the exponentially-many index sets
I ⊂ [m] might be useful for solution recovery. It is highly desirable to develop a sys-
tematic theory of solution recovery for dual X -SAGE relaxations, such as that found
in the SOS-based Lasserre relaxations for polynomial optimization. In Lasserre relax-
ations, there are necessary and sufficient conditions for success of solution recovery
based on a rank condition for dual variables to SOS multipliers (see [31] for a thor-
ough treatment of this topic, and [33, Theorem 2.47] for a concise statement of such
a result).

It is often useful to apply a local solver to the output of Algorithm 1. The term
“Algorithm 1L” henceforth refers to the use of Algorithm 1, followed by solution
refinement with Powell’s COBYLA solver [34].3 Our later experiments indicate that
equality constraint functions φi can prevent finding a solution even when SAGE pro-
duces a tight bound on ( f , g, φ)�X . We therefore suggest that one eliminate equality
constraints through substitution of monomials exp(xi ), when possible. Alternatively,
one can allow large violations of equality constraints in Algorithm 1, and pass the
returned values as near-feasible points to a local solver as part of Algorithm 1L.

3.3 A first worked example

The following problem has appeared in many articles concerning algorithms for sig-
nomial programming [5,7–10].

inf
x∈R3

f (x)
.= 0.5 exp(x1 − x2) − exp x1 − 5 exp(−x2) (Ex1)

s.t. g1(x)
.= 100 − exp(x2 − x3) − exp x2 − 0.05 exp(x1 + x3) ≥ 0

g2:4(x)
.= exp x − (70, 1, 0.5) ≥ 0

g5:7(x)
.= (150, 30, 21) − exp x ≥ 0

This problem (“Example 1”) is a good candidate for conditional SAGE relaxations,
because each of the seven constraints defines a tractable convex set. The constraint
functions g2:7 can be represented with six linear inequalities, and the constraint func-
tion g1 can be accommodated by three exponential cones and one linear inequality.
Separately, Example 1 is interesting because the Lagrange dual problem performs
poorly: regardless of how many products we take of existing constraint functions gi ,
the “−5 exp(−x2)” term in the objective will cause Lagrangians f − ∑

I λI
∏

j∈I g j

to be unbounded below for all values of dual variables λI ≥ 0.
Now we see how SAGE relaxations fare for Example 1. We begin by setting X =

{x : g1:7(x) ≥ 0}; since X is bounded, Proposition 2 tells us f SAGEX is finite. The dual
SAGE relaxation can be solved with MOSEK on Machine L in 0.01 s, and provides
us with a lower bound f SAGEX = −147.86 ≤ f �

X . By running Algorithm 1 on the dual
solution, we recover

x� = (5.0106353, 3.4011966,−0.4845071) where f (x�) = −147.66666.

3 A FORTRAN implementation is accessible through SciPy’s optimize submodule. The arguments we
pass to that implementation are RHOBEG=1, RHOEND = 10−7, and MAXFUN= 105.
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Table 1 SAGE bounds for
Example 1, with solver runtime
for Machines W and L. A level-3
bound certifies the level-0
solution as optimal, within
relative error 10−8

Level SAGE bound W time (s) L time (s)

0 −147.85713 0.03 0.01

1 −147.67225 0.05 0.02

2 −147.66680 0.08 0.08

3 −147.66666 0.19 0.26

From this solution, we know that the bound obtained from the SAGE relaxation is
within 0.13% relative error of the true optimal value. The ability to recover near-
optimal solutions even in the presence of a gap f SAGEX < f �

X can be attributed to how
conditional SAGE certificates seamlessly integrate with convex duality and partial
dualization. As it happens, the point x� returned by Algorithm 1 is actually optimal
for Example 1; to certify this fact, we need stronger SAGE relaxations. Table 1 shows
the results of such relaxations, using theminimax-free hierarchy described in Sect. 3.4.

3.4 Reference hierarchies for signomial programming

Here we give a particular set of choices regarding SAGE-based hierarchies for sig-
nomial programming. When we say “ f and gi are signomials over exponents α,” we
mean that {x �→ exp(α j · x)}mj=1 is the smallest monomial basis spanning all linear
combinations of f , gi , and the function x �→ 1.

First we describe a SAGE-based hierarchy that does not make use of the minimax
inequality, i.e. a hierarchy applicable when all constraints can be moved into X . If
we cannot certify nonnegativity of f − γ with γ = f �

X , we can use modulators as
described in Sect. 2.3 to improve the largest SAGE-certifiable bound on f . Formally,
for a signomial f over exponents α, a set X ⊂ R

n , and an integer � ≥ 0, the level-�
SAGE relaxation for f �

X is

f (�)
X

.= sup{ γ : Sig(α, 1)�( f − γ ) is X -SAGE}. (10)

The special case with � = 0 was introduced earlier in this section as “ f SAGEX .”
Now we consider functional constraints; let f , gi , and φi be signomials over expo-

nents α. SAGE relaxations for the problem of computing ( f , g, φ)�X are indexed by
three integer parameters: p, q, and �. Starting from p ≥ 0 and q ≥ 1, define α[p]
as the matrix of exponent vectors for Sig(α, 1)p, and define g[q] as the set of all
products of at-most-q elements of g (similarly define φ[q]). The SAGE relaxation for
( f , g, φ)�X at level (p, q, �) is then

( f , g, φ)
(p,q,�)
X = sup γ s.t. sh, zh are signomials over exponents α[p]

L .= f − γ − ∑
h∈g[q] sh · h − ∑

h∈φ[q] zh · h
Sig(α, 1)�L is an X -SAGE signomial

sh are X -SAGE signomials. (11)
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The decision variables in (11) are γ ∈ R, the coefficient vectors of {sh}h∈g[q], and the
coefficient vectors of {zh}h∈φ[q]. The most basic level of this hierarchy is (p, q, �) =
(0, 1, 0). This corresponds to using scalar Lagrange multipliers (sh ≥ 0 and zh ∈ R),
the original constraints (g[0] = g, φ[0] = φ), and modulating the Lagrangian by the
signomial that is identically equal to 1. Note that when p > 0, the Lagrangemultipliers
sh need only be nonnegative on X , rather than over the whole of R

n .

3.5 A second worked example

This section’s example can be found in the 1976 PhD thesis of James Yan [35], where
it illustrates signomial programming in the service of structural engineering design.
This problem is nonconvex even when written in exponential form; such problems
have received limited attention in the engineering design optimization community,
largely due to a lack of reliable methods for solving them.We restate the problem here
(as Example 2) in geometric form.4

inf
A∈R3++
P∈R++

104(A1 + A2 + A3) (Ex2)

s.t. 104 + 0.01A−1
1 A3 − 7.0711A−1

1 ≥ 0

104 + 0.00854A−1
1 P − 0.60385(A−1

1 + A−1
2 ) ≥ 0

70.7107A−1
1 − A−1

1 P − A−1
3 P = 0

104 ≥ 104A1 ≥ 10−4 104 ≥ 104A2 ≥ 7.0711

104 ≥ 104A3 ≥ 10−4 104 ≥ 104P ≥ 10−4

Let X ⊂ R
4 be the feasible set cut out by the eight bound constraints in Example

2. With an X -SAGE relaxation where all constraints appear in the Lagrangian, we
obtain ( f , g, φ)

(0,1,0)
X = 14.1423 in 0.04 s of solver time. This bound is very close to

the optimal value claimed by Yan [35]. However, Algorithm 1 only returns candidate
solutions “x” with equality constraint violations φ(x) ≈ 70.

To improve our chances of solution recovery, we use the equality constraint to define
the value P ← 70.7107A3/(A3 + A1). After clearing the denominator (A3 + A1)

for inequality constraints involving P , we obtain a signomial program in only the
variables A1, A2, A3. We solve a level-(0, 1, 0) dual conditional SAGE relaxation for
this signomial program, and exponentiate the result of Algorithm 1 to recover

A = (7.07110 · 10−4, 7.07110 · 10−4, 10−8), P = 70.7107A3

A1 + A3
.

This solution is feasible up to machine precision, and attains objective matching the
14.142300 SAGE bound. The entire process of solving the SAGE relaxation and
recovering the optimal solution takes less than 0.05 s on Machine W.

4 The objective and constraint functions are multiplied by 104 for numerical reasons; see equation envi-
ronment (6.15) on page 106 of [35] for the original problem statement.
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3.6 Remarks on“geometric-form” signomial programming

By now we have seen signomial programs in both exponential and geometric forms.
The authors have so far preferred the exponential form, primarily because it allows
us to build upon the substantial theories of convex analysis and convex optimization.
However from an applications perspective, it is far more common to express signomial
programs in geometric form. Here we briefly present a geometric-form parameteriza-
tion of conditional SAGE certificates – both in effort to appeal to those who usually
work with geometric-form signomial programs, and as a prelude to our discussion on
polynomials.

Geometric form signomials f (x) = ∑m
i=1 ci x

αi are defined at points x in R
n++,

and so it only makes sense to discuss conditional nonnegativity cones for signomials
over sets X ⊂ R

n++. Henceforth, define

CGEONNS(α, X) =
{

c :
m∑

i=1
ci xαi ≥ 0 for all x in X

}

for matrices α in R
m×n and sets X contained in R

n++. By applying the change of
variables x �→ exp y and considering the subsequent change of domain X �→ log X ,
one may verify that CGEONNS(α, X) = CNNS(α, log X). Thus for X ⊂ R

n++, one arrives
naturally at the definition

CGEOSAGE(α, X)
.= CSAGE(α, log X).

From here onemay deduce various corollaries for CGEOSAGE(α, X), by appealing to results
fromSect. 3.1. Themost important such result is thatCGEOSAGE(α, X) is tractablewhenever
log X is a tractable convex set. Recently, Agrawal, Diamond, and Boyd have provided
a modeling framework to produce feasible sets X where log X is a tractable convex
set [36].

4 Conditional SAGE certificates for polynomials

In the previous section we saw how conditional SAGE certificates for signomial non-
negativity are inextricably linked to convex duality. Here we show how the broader
idea of conditional SAGE certificates can extend to polynomials. In this context it is
not convexity of X that determines when an X -SAGE polynomial cone is tractable,
but rather convexity of an appropriate logarithmic transform of X .

The organization of this section is similar to that of Sect. 3. Definitions, repre-
sentations, and other basic theorems for the conditional SAGE polynomial cones are
given in Sect. 4.1. Section 4.2 covers solution recovery from dual SAGE relaxations,
and Sect. 4.3 provides a worked example with special focus on solution recovery.
Section 4.4 describes reference hierarchies for optimization with conditional SAGE
polynomial cones: one based on the minimax inequality, and one that is “minimax
free”. Section 4.5 applies various manifestations of the minimax hierarchy to an exam-
ple problem.
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4.1 The conditional SAGE polynomial cones

We call f = Pol(α, c) an X -AGE polynomial if it is nonnegative over X , and f (x)

contains at most one term ckxαk which is negative for some x in X . The kth X -AGE
polynomial cone is given by

CPOLYAGE (α, k, X) = {c : Pol(α, c)(x) ≥ 0 for all x in X ,

c j ≥ 0 if j �= k and xα j > 0 for some x in X ,

c j ≤ 0 if j �= k and xα j < 0 for some x in X }.

Naturally, f = Pol(α, c) is an X -SAGE polynomial if c belongs to

CPOLYSAGE(α, X)
.=

m∑

k=1

CPOLYAGE (α, k, X).

Let us work through some consequences of the definition. For starters, if xα j takes
on positive and negative values as x varies over X , then c j = 0 whenever c ∈
CPOLYAGE (α, k, X) and k �= j . Note that xα j can only take on both positive and negative
values when α j does not belong to the even integer lattice. If X contains an open ball
around the origin, then xα j takes on both positive and negative values if and only if α j

does not belong to the even integer lattice. Thus, the definition of X -AGE polynomials
agrees with the definition of ordinary AGE polynomials, as proposed in [16]. Another
important case is when X is a subset of the nonnegative orthant. This point is addressed
in some detail later in this section; as a preliminary remark, we note that by considering
the connection between polynomials and geometric-form signomials, one can easily
see that if X ⊂ R

n++ then CPOLYAGE (α, k, X) = CAGE(α, k, log X).
Manyof our earlier theorems for signomials directly apply to X -SAGEpolynomials.

For example, it is easy to show the polynomial analog to Proposition 2: if X is bounded,
then f = Pol(α, c) with α1 = 0 has

f SAGEX = sup{ γ : γ in R, c− γ e1 in CPOLYSAGE(α, X)} > −∞.

Corollary 1 likewise extends to polynomials. Other than substituting AGE signomial
cones with AGE polynomial cones, the only difference is that N becomes N = {i :
ci xαi < 0 for some x in X}.

Now we turn to representation of SAGE polynomial cones. By applying a simple
continuity argument one can show that if X = cl X◦ ⊂ R

n+ – where X◦ is the interior
of X – then CPOLYSAGE(α, X) = CSAGE(α, log X◦). This claim is strengthened slightly and
made more explicit through the following theorem.

Theorem 2 Suppose X = cl{x : 0 < x, H(x) ≤ 1} for a continuous map H : R
n →

R
r . Then for Y = { y : H(exp y) ≤ 1}, we have CPOLYSAGE(α, X) = CSAGE(α,Y ).

The proof of Theorem 2 is straightforward, and hence omitted. A more sophisticated
result concerns when X possesses a certain sign-symmetry.
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Theorem 3 Suppose X = cl{x : 0 < |x|, H(|x|) ≤ 1} for a continuous map H :
R
n → R

r . Then for Y = { y : H(exp y) ≤ 1}, we have

CPOLYSAGE(α, X) = {c : SR(α, c) ∩ CSAGE(α,Y ) is nonempty }. (12)

By combiningTheorem1withTheorems 2 and 3,we know that there exist a range of
sets X for which optimization over X -SAGE polynomials is tractable. There remains
the potentially nontrivial task of formulating a problem so that one of these theorems
provides an efficient representation of CPOLYSAGE(α, X); important examples of when this
is possible include constraints such as

−a ≤ x j ≤ a, ‖x‖p ≤ a, |xαi | ≥ a, and x2j = a

where a > 0 is a fixed constant.

Proof of Theorem 3 Suppose that c in CPOLYSAGE(α, X) admits the decomposition c =∑m
i=1 c

(i), where c(i) belongs to the i th AGE polynomial cone with respect to α, X .
Define {c̃(i)}mi=1 as follows

c̃(i)j =
{

−|c(i)
j | if αi is not even, and j = i

c(i)
j if otherwise

.

By the invariance of X under reflection about hyperplanes {x : x j = 0}, and continuity
of polynomials, we have that

0 ≤ inf{ Pol(α, c(i))(x) : x in X} = inf{ Pol(α, c̃(i))(x) : x in X ∩ R
n+}

= inf{ Sig(α, c̃(i))( y) : y in Y }.

The signomials Sig(α, c̃(i)) are thus nonnegative over Y = { y : H(exp y) ≤ 1}, and
posses at most one negative coefficient. This implies that c̃

.= ∑m
i=1 c̃

(i) belongs to
CSAGE(α,Y ). One may verify that c̃ also satisfies c̃ ∈ SR(α, c), and so we conclude
that the right-hand-side of Eq. 12 contains CPOLYSAGE(α, X).

Now we address the reverse inclusion. Let c be such that SR(α, c)∩CSAGE(α,Y ) is
nonempty. One may verify that basic properties of CSAGE(α,Y ) and SR(α, c) ensure
that if the intersection is nonempty, it contains an element c̃ satisfying |c| = |c̃|.
Henceforth fix c̃ satisfying these conditions. Next we appeal to a relaxed form of
Corollary 1. Setting N = {i : c̃i ≤ 0}, there exist vectors c̃(i) satisfying

c̃ = ∑
i∈N c̃(i), c̃(i) ∈ CAGE(α, i,Y ), and c̃(i)

j = 0 for all i �= j in N .

Note the definition of SR(α, c) ensures that N = {i : αi /∈ 2N
n , or ci ≤ 0}. Thus we

define c(i) by

c(i)
j =

{
(sgn c j )|c̃ j | if αi is not even, and j = i

c̃(i)
j if otherwise
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so that c = ∑
i∈N c(i), and each c(i) has the necessary sign pattern for membership in

the i th AGE cone with respect to α, X . Finally, note that

inf{Pol(α, c(i))(x) : x in X} = inf{Sig(α, c̃(i))( y) : y in Y } ≥ 0.

to complete the proof. 
�

4.2 Solution recovery for sparse moment problems

Throughout this section we assume that X is of a form where one of Theorems 2 or 3
provide a representation of CPOLYSAGE(α, X); this assumption allows us to leverage the
following corollary.

Corollary 2 Fix Y = { y : H(exp y) ≤ 1} for a continuous H : R
n → R

r .

– If X = cl{x : 0 < x, H(x) ≤ 1}, then CPOLYSAGE(α, X)† = CSAGE(α,Y )†.
– If X = cl{x : 0 < |x|, H(|x|) ≤ 1}, then

CPOLYSAGE(α, X)† = {v : there exists v̂ in CSAGE(α,Y )† with

|v| ≤ v̂, and vi = v̂i when αi ∈ 2N
1×n}.

We further assume Y is convex.5

Solution recovery for polynomial optimization is more difficult than for signomial
optimization, because monomials possess both signs and magnitudes. We propose a
two-phase approach for this problem, where different techniques are used to recover
variable magnitudes and variable signs. The main ideas for each phase are described
in Sects. 4.2.1 and 4.2.2, while the formal algorithms are given in the appendix. The
recovered signs and magnitudes are then combined in an elementary way, as given by
the following algorithm.

Algorithm 2 solution recovery for dual SAGE polynomial relaxations.

Input: Polynomials f , {gi }k1i=1, and {φi }k2i=1 over exponents α ∈ N
m×n . Vectors v ∈ CPOLYSAGE(α, X)† and

v̂ ∈ CSAGE(α, Y )†. Tolerances εineq, εeq, ε0 > 0.
1: procedure PolySolutionRecovery( f , g, φ, α, v, v̂, εineq, εeq, ε0)
2: M ← VariableMagnitudes(α, v, v̂, ε0). # Algorithm 3
3: S ← {1}
4: if X is not a subset of R

n+ then
5: S.union( VariableSigns(α, v) ) # Algorithm 4

6: solutions ← [].
7: for xmag in M and s in S do
8: x ← xmag ∗ s # denotes elementwise multiplication
9: if g(x) ≥ −εineq and |φ(x)| ≤ εeq then
10: solutions.append(x)
11: solutions.sort( f , increasing).
12: return solutions.

5 Corollary 2 holds regardless of whether or not this is the case.
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If v is optimal for an appropriate SAGE relaxation and v = (xα1, . . . , xαm ) for
an elementwise nonzero x in X , then Algorithm 2 will return an optimal solution to
Problem 1. As with Algorithm 1 in the signomial case, it is useful to apply a simple
local solver to the output of Algorithm 2 as a sort of solution refinement. We use the
term “Algorithm 2L” in reference to such a method, with COBYLA as the local solver.

4.2.1 Recovering variable magnitudes

Given a vector v in CPOLYSAGE(α, X)†, we want to find a point x ∈ X satisfying
(xα1 , . . . , xαm ) = |v|.

Regardless of whether X is sign-symmetric or X ⊂ R
n+, the variable v ∈

CPOLYSAGE(α, X) is associated with an auxiliary variable v̂ in CSAGE(α,Y ), and the vari-
able v̂ is associated with additional auxiliary variables zi as part of the dual Y -AGE
signomial cones. As we discussed in Sect. 3.2, the vectors yi = zi/v̂i belong to Y , and
so the vectors xi = exp yi must belong to X . These vectors xi are not only feasible
with respect to X , but also satisfy (xα1

i , . . . , xαm
i ) = v̂ under the binding-constraint

and normalization conditions alluded to in Sect. 3.2. Since v̂ = |v| always holds at
least for X ⊂ R

n+, the vectors xi = exp(zi/v̂i ) are reasonable candidates for variable
magnitudes.

When X is sign-symmetric, it is possible that |v|does not equal v̂. This is particularly
likely when v is subject to additional linear constraints, such as Gv ≥ 0. Therefore
when X is sign-symmetric it is worth considering variable magnitudes which sup-
plement the ones described above. We propose that one picks a threshold ε0 > 0,
computes

y ∈ argmin
{∑

i :vi �=0(αi · y − log |vi |)2 : y in Y ,

αi · y ≤ log(ε0) for all vi = 0} (13)

and exponentiates x = exp y. The role of ε0 is to ensure x satisfies |x|αi ≤ ε0
whenever vi = 0. Values of ε0 below machine precision are reasonable here.

A formal statement of our method for magnitude recovery (Algorithm 3) can be
found in the appendix.

4.2.2 Recovering variable signs

Let α−1(v) denote the set of x ∈ R
n satisfying v = (xα1 , . . . , xαm ). Henceforth,

fix v and assume α−1(v) is nonempty. Here we describe how to find vectors s in
{+1, 0,−1}n so that at least one x ∈ α−1(v) satisfies xi > 0 when si = +1, xi = 0
when si = 0, and xi < 0 when si = −1. Once we describe this process, we relax the
problem slightly so si = +1 allows xi = 0.

First we address when si should equal zero. LetU = {i ∈ [m] : vi �= 0}. Consider
how if some x ∈ α−1(v) has x j = 0, then we must have αi j = 0 for all i in U (else
xαi = vi �= 0 would fail). Thus when αi j = 0 for all i inU , we set s j = 0 without loss
of generality. Now let W = { j ∈ [n] : αi j > 0 for some i in U }; these are indices
for which s j is not yet decided. Consider the vector (v < 0) ∈ {0, 1}n with values
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(v < 0)i = 1 if vi < 0, and zero if otherwise. Let α[U , :] be the submatrix of α

formed by rows {αi }i∈U , and similarly index (v < 0). Finally, solve

α[U , :]z ≡ (v < 0)[U ] mod 2 and z j = 0 for all j in [n] \ W (14)

for z in {0, 1}n . The remaining (s j ) j∈W are s j = −1 if z j = 1 and s j = 1 otherwise.
An individual solution to (14) can be computed efficiently by Gaussian elimination

over the finite field F2. Our formal algorithm for solution recovery provides the option
to recover all solutions to (14), using additional techniques from finite-field linear
algebra (c.f. [37]). See the appendix for details.

4.3 A first worked example

This section’s example is to minimize a function appearing in the formulation of the
cyclic n-roots problem. The general cyclic n-roots problem is a challenging benchmark
problem in computer algebra [38]. Our problem is to minimize

f (x) = −64
7∑

i=1

∏

j∈[7]\{i}
x j (Ex3)

over the box X = [−1/2, 1/2]7. To the authors’ knowledge, this problem was first
used as an optimization benchmark in the work by Ray and Nataraj, on computing
the extrema of polynomials over boxes [39]. One may verify that f �

X = −7, and
that this objective value is attained at x(1) = 1/2 and x(2) = −1/2. Despite this
problem’s simplicity, it requires nontrivial computational effort with SOS methods.
The lowest relaxation order that allows Gloptipoly3 [28] to compute f �

X = −7 results
in a semidefinite program that takes MOSEK 90 s to solve with Machine W.

SAGE relaxations automatically exploit the structure in this problem. Since the
seven functions fi (x) = 1 − 64

∏
j �=i x j are X -AGE and sum to f + 7, we have

that −7 ≤ f SAGEX ≤ f �
X . To address the dual SAGE relaxation and solution recovery,

we introduce the 8 × 7 matrix α, with final row α8 = 0, αi i = 0 for i ≤ 7, and
αi j = 1 for the remaining entries. Next we write X = {x : x2 ≤ 1/4}, and for
Y = { y : exp(2 y) ≤ 1/4} numerically solve

f SAGEX = inf{−64 · 1ᵀv1:7 : −v̂ ≤ v ≤ v̂,

v̂ in CSAGE(α,Y )†, v8 = v̂8 = 1} = −7.

MOSEK solves this problem in 0.01 s with Machine W.
We recover candidate magnitudes by using the eight Y -AGE cones associated with

the auxiliary variable v̂ ∈ CSAGE(α,Y )†. To machine precision, each of these AGE
cones yields the same candidate magnitude |x| = 1/2. The optimal moment vector
v = 1/64 is elementwise positive, and so sign-pattern recovery is a matter of finding
all solutions to the system αz ≡ 0 mod 2. There are exactly two solutions to this
system: z(1) = 0, and z(2) = 1. The first of these gives rise to signs s(1) = 1,
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and the second of these results in s(2) = −1. By combining these candidate signs
with candidate magnitudes, we obtain candidate solutions {1/2,−1/2}; since these
solutions are feasible and obtain objective values matching the SAGE bound, we
conclude that both candidate solutions are minimizers of f over X .

4.4 Reference hierarchies for POPs

If X ⊂ R
n+, then one should use the same hierarchies described in Sect. 3.4, where

“Sig” is replaced by “Pol” and constraints that a function is “an X -SAGE signomial”
are replaced by constraints that the function is “an X -SAGE polynomial.” This section
focuses on the more complicated case when X is sign-symmetric.

Our reference hierarchy for functionally constrained polynomial optimization is
similar to that used for signomial programming. Let f , {gi }k1i=1, and {φi }k2i=1 be poly-
nomials over common exponents α ∈ N

m×n , and fix sign-symmetric X ⊂ R
n . Define

α̂ as the matrix formed by stacking α on top of 2α, and then removing any duplicate
rows. The SAGE relaxation for ( f , g, φ)�X at level (p, q, �) is then

( f , g, φ)
(p,q,�)
X = sup γ s.t. sh, zh are polynomials over exponents α̂[p]

L .= f − γ − ∑
h∈g[q] sh · h − ∑

h∈φ[q] zh · h
Pol(2α, 1)�L is an X -SAGE polynomial

sh are X -SAGE polynomials. (15)

As before, the decision variables are γ ∈ R, and the coefficient vectors of {sh}h∈g[q],
{zh}h∈φ[q]. The main difference between (15) and it’s signomial equivalent (11), is
that the Lagrange multipliers are slightly more complex in (15). This change was
made to improve performance for problems where only a few rows of α belong to the
nonnegative even integer lattice.

Our minimax-free reference hierarchy for polynomial optimization is meaningfully
different from the signomial case. We begin by assuming a representation X = cl{x :
0 < |x|, H(|x|) ≤ 1}, and subsequently defining Y = { y : H(exp y) ≤ 1}. Let A
and C be operators on polynomials so that f = Pol(A( f ), C( f )) always holds, and
let s be the vector in R

m with si = 1 when αi is even, and si = 0 otherwise. The
SAGE relaxation for f �

X at level (p, q) is

f (p,q)
X = sup γ s.t. ψ

.= Pol(α, s)p( f − γ )

c ∈ SR(A(ψ), C(ψ))

[Sig(A(ψ), 1)]qSig(A(ψ), c) is Y -SAGE (16)

over optimization variables c and γ .
Formulation 16 uses two parameters out of desire to mitigate both sources of error

in the SAGE polynomial cone: that attributable to the use of signomial representatives,
and that attributable to the gap between Y -SAGE and Y -nonnegativity. As we show
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in Sect. 5.2, the signomial representative complexity parameter “q” can make the
difference in our ability to solve problems when X = R

n .

4.5 A second worked example

Our next problem appears in work on “Bounded Degree Sums-of-Squares” (BSOS)
and “Sparse Bounded Degree Sums-of-Squares” (Sparse-BSOS) methods for polyno-
mial optimization [40,41]. The latter paper reports BSOS and Sparse-BSOS compute
( f , g)�

R6 = −0.41288 in 44.5 and 82.1 s respectively, when using SDPT3-4.0 on a
machine with a 4-core 2.6 GHz Core i7 processor and 16 GB RAM.

inf
x∈R6

f (x)
.= x61 − x62 + x63 − x64 + x65 − x66 + x1 − x2 subject to (Ex4)

g1(x)
.= 2x61 + 3x22 + 2x1x2 + 2x63 + 3x24 + 2x3x4 + 2x65 + 3x26 + 2x5x6 ≥ 0

g2(x)
.= 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6 ≥ 0

g3(x)
.= 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25 + 2x26 − 4x5x6 ≥ 0

g4(x)
.= x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6 ≥ 0

g5(x)
.= x21 + 4x62 − 3x1x2 + x23 + 4x64 − 3x3x4 + x25 + 4x66 − 3x5x6 ≥ 0

g6:10(x)
.= 1 − g1:5(x) ≥ 0

g11:16(x)
.= x ≥ 0

Example 4 is very sparse: it includes only 22 of the
(12
6

) = 924 distinct monomials
that could appear in a degree 6 polynomial optimization problem in 6 variables.6 This
problem is a good example for conditional SAGE polynomial relaxations, because it
allows for several choices in partial dualization.

The simplest choice is to use no partial dualization at all—simply solve relax-
ations of the form (15) with X = R

n . Indeed, it is possible to solve Example 3 with
only these ordinary SAGE certificates, however the necessary level of the hierarchy
( f , g)(1,1,0)

R6 = −0.41288 requires 101 s of solver time on Machine W.

A preferable alternative is to use partial dualization with X = R
6+. With this choice

of X it is natural to drop now trivially-satisfied constraints from g, and work with
ĝ = g3:10. This allows us to compute ( f , ĝ)(1,1,0)X = −0.41288 in 3.04 s of solver
time on Machine W, and 4.4 s of solver time on Machine L. Significantly, the SAGE
relaxation solve time on Machine L is an order of magnitude smaller than the BSOS
solve time reported in [41].

The most aggressive choice for partial dualization is X = {x : x ≥ 0, g6:7(x) ≥
0}. With this choice of X one may use ĝ = (g3:5, g8:10), or ĝ = g3:10; in the first
case Machine W computes ( f , ĝ)(1,1,0)X = −0.47121 in 3.3 s, and in the second case

Machine W computes ( f , ĝ)(1,1,0)X = −0.41288 in 5.67 s. We emphasize that even

6 The problem is referred to as “dense” in the Sparse-BSOS article because it does not satisfy the running-
intersection property that Sparse-BSOS is built upon.

123



280 R. Murray et al.

though g6:7 were incorporated into X , the SAGE bound with Lagrange multiplier
complexity p = 1 improved by including g6:7 in the Lagrangian.

5 Computational experiments

This section presents the results of some computational experiments with SAGE relax-
ations. Experiments with signomial programs consist of twenty-nine problems drawn
from the literature, of which seventeen are solved to optimality (see Sect. 5.1). Exam-
ples for polynomial optimization include twenty-two problems from the literature
(Sect. 5.2), as well as randomly generated problems (Sect. 5.3).

All experiments described here were run with the provided sageopt python pack-
age [42]. Sageopt includes its own basic rewriting system to cast SAGE relaxations
into conic forms acceptable by ECOS [43,44] andMOSEK [19]. The rewriting system
also provides mechanisms for computing constraint violations, analyzing low-level
problem data, and constructing a set X from lists of constraint functions g and φ.
Problem data ( f , g, φ) is usually constructed in an algebraic way, with sageopt’s
provided operator-overloaded signomial and polynomial objects. Sageopt can also
automatically construct signomial data ( f , g, φ) by reading a GPKit model [45]. Once
problem data is defined, a SAGE relaxation can be constructed and solved in two lines
of code; solution recovery similarly requires no more than two lines of code.

All experiments were conducted on Machine W using the MOSEK solver with
default tolerances.We note that although Sects. 3.4 and 4.4 only stated the SAGE relax-
ations in primal form, these experiments were conducted by symbolically constructing
primal and dual problems, and solving them separately from one another. In order
to communicate the quality of these numeric solutions, we generally report “SAGE
bounds” to the farthest decimal point where the primal and dual objectives agree.

5.1 Signomial programs from the literature

The examples in this sectionwere drawn from the PhD thesis of JamesYan [35], a pop-
ular benchmarking paper by Rijckaert and Martens [46], and the more contemporary
works [10,11]. This section is organized chronologically with respect to these sources.
Many of the problems considered here can be found elsewhere in the literature; see
Shen et al. [5,7,9], Wang and Liang [6] and Qu et al. [8].

SAGE recovers best-known solutions for all but six of the twenty nine problems
considered here. For every one of these six problematic examples, numerical issues
resulted in solver failures for level-(p, q, �) relaxations whenever p > 0; the results
for these six problems should not be taken as definitive. For the twenty-three prob-
lems where SAGE recovered best-known solutions, there are two important trends we
can observe. First, our solution recovery algorithms are more likely to succeed with a
conditional SAGE relaxation than with an ordinary SAGE relaxation, even when the
ordinary SAGE relaxation is tight. Second—the local solver refinement in Algorithm
1L can help tremendously not only in the presence of suboptimal strictly-feasible
initial solutions (Example 8), but also in the presence of both large and small con-
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straint violations (Examples 9 and 6 respectively). The initial condition from a SAGE
relaxation in Algorithm 1L is important; the underlying COBYLA solver can and will
return suboptimal solutions if initialized poorly.

5.1.1 Problems from the PhD thesis of James Yan

We attempted to solve nine example problems appearing James Yan’s 1976 PhD thesis
Signomial programs with equality constraints : numerical solution and applications
[35]. This section reproduces two of the six problems which we solved to global
optimality via SAGE certificates. Yan’s “Problem B” (page 88) and “Problem C”
(page 89) serve as our Examples 5 and 6 respectively.

inf
x∈R4

f (x)
.= 2 − exp(x1 + x2 + x3) (Ex5)

s.t. g1(x)
.= 4 − exp x3 − 15 exp(x2 + x3) − 15 exp(x3 + x4) ≥ 0

g2:5(x)
.= (1, 1, 1, 2) − exp x ≥ 0

g6:9(x)
.= exp x − (1, 1, 1, 1)/10 ≥ 0

φ1(x)
.= exp x1 + 2 exp x2 + 2 exp x3 − exp x4 = 0

It is possible to quickly compute ( f , g, φ)�
R4 = 1.925 with both conditional and

ordinary SAGE certificates, although conditional SAGE certificates exhibit better per-
formance for solution recovery. Specifically, ( f , g, φ)

(1,1,0)
R4 = 1.92592592 can be

computed in 0.12 s, but no solution can be recovered from Algorithm 1 unless ε is
set to an unacceptably large value of 0.1. Instead we set X = {x : g(x) ≥ 0}, com-
pute ( f , g, φ)

(1,1,0)
X = 1.92592593 in 0.18 s, and by running Algorithm 1 recover x�

satisfying g(x�) > 1E-11, |φ(x�)| < 1E-8, and f (x�) = 1.92592593.

inf
y∈R3++

y0.61 y2 + y2y
−0.5
3 + 15.98y1 + 9.0824y22 − 60.72625y3 (Ex6)

s.t. y−2
2 y3 − y1y

−2
2 − 0.48 ≥ 0

y0.51 y23 − y0.251 y3 − y22 − 5.75 ≥ 0

(1000, 1000, 1000) ≥ y ≥ (0.1, 0.1, 0.1)

y21 + 4y22 + 2y23 − 58 = 0

y1y
−1
2 y2.53 + y2y3 − y22 − 16.55 = 0

With X = {x ∈ R
3 : g(x) ≥ 0}, we can compute ( f , g1:2, φ)

(0,1,0)
X = −320.722913

in 0.04 s. By running Algorithm 1 with εineq = 1E-8 and εeq = 1E-6, we recover x
with objective f (x) = −320.722913 and that is feasible up to tolerance 8E-7. We
then pass this solution to COBYLAwithRHOEND = 1E-10, and subsequently recover
recover x� with the same objective, but constraint violation of only 5E-13.

The remaining problems which we solved to optimality were “Problem A” on page
60, “Problem A” on page 88, “Problem D” on page 89, and the problem in equation
environment “(6.15)” on page 106. The last of these was introduced in Sect. 3.5 as

123



282 R. Murray et al.

“Example 2.” The problemswhichwe did not solve to optimalitywere “ProblemB” on
page 61, the problem in equation environment “(6.29)” on page 113, and the problem
in equation environment “(6.36)” on page 120. In each of these unsolved cases, we
encountered solver-failures for level-(p, q, �) relaxations whenever p > 0. Therefore
the bounds computed for each of these problems were essentially limited to those of
Lagrange dual problems, with modest partial dualization.

5.1.2 Problems from the benchmarking paper of Rijckaert and Martens

We consider problems 9 through 18 of the popular signomial-geometric programming
benchmark paper byRijckaert andMartens [46]. Of these ten problems, sevenmetwith
at leastmoderate success, in that SAGE relaxations producedmeaningful lower bounds
on a problem’s optimal value, and also facilitated recovery of best-known solutions
to these problems. SAGE certificates allow us to certify global optimality for four
of these seven problems. Problem statistics and a summary of SAGE performance is
given in Table 2.

We reproduce Rijckaert and Martens’ problems 10 and 15 as our Examples 7 and
8 respectively; both problems are written in exponential-form.

inf
x∈R3

f (x)
.= 0.5 exp(x1 − x2) − exp x1 − 5 exp(−x2) (Ex7)

s.t. g1(x)
.= 100 − exp(x2 − x3) − exp x1 − 0.05 exp(x1 + x3) ≥ 0

g2:4(x)
.= (100, 100, 100) − exp x ≥ 0

g5:7(x)
.= exp x − (1, 1, 1) ≥ 0

The bound constraints appearing in Example 7 are not included in [46], how-
ever f is unbounded below if we omit them. The solution proposed in [46] has
exp x = (88.310, 7.454, 1.311), and objective value f (x) = −83.06. The actual
optimal solution has value −83.25, and this can be certified by running Algorithm 1
on a dual solution for f (3)

X = −83.2510, where X = {x : g(x) ≥ 0}. Solving the
necessary SAGE relaxation takes 0.1 s on Machine W.

inf
x∈R10

f (x)
.= 0.05 exp x1 + 0.05 exp x2 + 0.05 exp x3 + exp x9 (Ex8)

s.t. g1(x)
.= 1 + 0.5 exp(x1 + x4 − x7) − exp(x10 − x7) ≥ 0

g2(x)
.= 1 + 0.5 exp(x2 + x5 − x8) − exp(x7 − x8) ≥ 0

g3(x)
.= 1 + 0.5 exp(x3 + x6 − x9) − exp(x8 − x9) ≥ 0

g4(x)
.= 1 − 0.25 exp(−x10) − 0.5 exp(x9 − x10) ≥ 0

g5(x)
.= 1 − 0.79681 exp(x4 − x7) ≥ 0

g6(x)
.= 1 − 0.79681 exp(x5 − x8) ≥ 0

g7(x)
.= 1 − 0.79681 exp(x6 − x9) ≥ 0

A level (1,1,0) ordinary SAGE relaxation for Example 8 can be solved in 2.8 s on
Machine W; this returns the bound ( f , g)(1,1,0)

R10 = 0.2056534. When Algorithm 1 is
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Table 2 Columns n and k give number of variables and number of inequality constraints for the indicated
problem. “Solution quality” is “same” (resp. “improved”) if Algorithm 1L returned a feasible solution with
objective equal to (resp. less than) that proposed in [46]. Problems 9, 12, and 14 are discussed in Table 3.
We encountered solver failures for level-(1, 1, 0) relaxations of problems 13, 17, and 18

Num. in [46] n k Solution quality Optimal?

9 2 1 Same Unknown

10 3 1 Improved Yes

11 4 2 Same Yes

12 8 4 Same Unknown

13 8 6 No solution No

14 10 7 Same Unknown

15 10 7 Same Yes

16 10 7 Same Yes

17 11 8 No solution No

18 13 9 No solution No

Table 3 Problems for which we did not certify optimality, but nevertheless recovered best-known solutions
by using SAGE relaxations. Note that Algorithm 1 returned strictly-feasible solutions in each of these
cases. In the next section we present examples where Algorithm 1 does not return feasible solutions, and
so solution refinement (i.e. Algorithm 1L) becomes more important

Num. in [46] SAGE relaxation Algorithm 1 Algorithm 1L
(p, q, �) Bound f (x) min g(x) f (x) min g(x)

9 (3,3,1) 11.7 12.500 0.00438 11.9600 2.00E-10

12 (0,2,1) − 6.4 − 5.7677 0.00034 − 6.0482 −5.00E-09

14 (0,4,0) 0.7 2.5798 0.01541 1.14396 − 8.00E-09

run on the dual solution, it returns a point x satisfying f (x) ≈ 0.38 and g(x) ≥ 0.053.
However by subsequently running Algorithm 1L, we obtain x� satisfying f (x�) =
0.20565341 and gi (x�) ≥ 1E-8 for all i in [k]. We thus conclude that the level-(1, 1, 0)
SAGE relaxation was tight.

5.1.3 Problems from contemporary sources

Here we describe our attempts at solving six problems from the 2014 article by Hou,
Shen, and Chen [10], as well as four problems from the 2014 article by Xu [11]. SAGE
relaxations are quite successful in this regard: seven of the ten problems are solved to
global optimality (verifiedSAGEbounds),while best-known (but possibly suboptimal)
solutions are obtained for the remaining three problems. Summary results can be found
in Tables 4 and 5. We explicitly reproduce problem [10]-8 as our Example 9.

inf
y∈R15++

∑4
i=1 yi+11(12.62626 − 1.231059yi ) (Ex9)

s.t. y12 − y11 ≤ 0, y11 − y12 ≤ 50, y10 − y4 ≤ 0
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Table 4 Columns n, k1, and k2 specify the number of variables, inequality constraints, and equality con-
straints in the indicated problem. The last three columns specify the objective value and constraint violation
of a solution obtained by running Algorithm 1L on the output of a dual SAGE relaxation, as well as a note on
whether the objective matched a SAGE bound. Problems with “unknown” optimality status are described
in Table 5

Source Num. n k1 k2 Objective Infeasibility Optimal?

[10] 1 4 10 0 0.7650822 0 Yes

– 2 2 5 0 11.964337 0 Yes

– 3 3 7 0 −147.66666 0 Yes

– 5 5 16 0 10,122.493 4.00E-13 Unknown

– 7 3 6 0 −10.363636 2.00E-15 Yes

– 8 15 37 6 156.21963 4.00E-14 Yes

[11] 4 2 1 1 1.3934649 2.00E-10 Yes

– 5 6 9 4 −0.3888114 5.00E-17 Unknown

– 6 2 4 2 1.1771243 4.00E-12 Yes

– 7 6 20 3 10,252.790 8.00E-14 Unknown

y9 − y10 ≤ 0, y8 − y9 ≤ 0, 2y7 − y1 ≤ 1

y3 − y4 ≤ 0, y2 − y3 ≤ 0, y1 − y2 ≤ 0

50y4 + y10y15 − 50y10 − y4y15 ≤ 0

50y10 + y4y5 + y9y14 − 50y9 − y3y14 − y8y15 ≤ 0

50y7 + y2y13 + y7y12 − 50y8 − y1y12 − y8y13 ≤ 0

50y8 + y1y12 + y8y13 − 50y7 − y2y13 − y7y12 ≤ 0

50y8 + 50y9 + y3y14 + y8y13 − y2y13 − y9y14 ≤ 500

y6y11 + y1y12 + y7y11 − y6y12 ≤ 0

100yi+5 + 0.0975y2i − 3.475yi − 9.75yi yi+5 ≤ 0 for all i in [5]
y ≥ (1.000000, 1, 9, 9, 9, 1, 1.000000, 1, 1, 1, 50, 0.0, 1.0, 50, 50)

y ≤ (8.037732, 9, 9, 9, 9, 1, 4.518866, 9, 9, 9, 100, 50, 50, 50, 50)

Six of the fifteen variables in Example 9 have matching upper and lower bounds—
these are the six equality constraints alluded to in Table 4. Our formulation differs
from [10]-8, in that a constraint “x3x2 − x3 ≤ 0” in the original problem statement
was replaced by “y2 − y3 ≤ 0” in our problem statement. This change is necessary
because the original problem is actually infeasible.

We approach Example 9 by maximizing our use of partial dualization: the set
X ⊂ R

15 includes all bound constraints, all but two of the first nine inequality con-
straints, as well as the constraint fourth from the end of the problem statement. The
equality constraints implied for variables y3, y4, y5, y6, y14, y15 are not included in
the Lagrangian. A level-(0,1,0) conditional SAGE relaxation then produces a bound
( f , g)�X ≥ 156.2196 in 0.05 s. By running Algorithm 1L with εineq = 100, we subse-
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Table 5 Signomial programs for which we did not certify optimality, but nevertheless recovered best-
known solutions by using SAGE relaxations. Columns εineq and εeq indicate the value of infeasibility
tolerances when running Algorithm 1, prior to feeding the output of Algorithm 1 to COBYLA as part of
Algorithm 1L. The last two columns list the objective function value and constraint violations for the output
of Algorithm 1L. [11]-7 reports a solution with smaller objective value, however that solution violates an
equality constraint with forward error in excess of 0.11

Source-num. (p, q, �) Bound εineq εeq Objective Infeasibility

[10]-5 (0,1,0) 9171.00 1.00E-08 0 10,122.493 4.00E-13

[11]-5 (2,2,0) −0.390 1.00E-08 1 −0.3888114 5.00E-17

[11]-7 (0,1,0) 9397.8 1.00E-08 1 10,252.790 8.00E-14

quently obtain the geometric-form solution

y�
1:8 = (8.037732, 9, 9, 9, 9, 1, 1, 1.15686275)

y�
9:15 = (1.21505203, 1.58987319, 50, 3E − 50, 1, 50, 50).

The solution y� is feasible up to forward-error 3.6E-14, and attains an objective value
of 156.219629. Because this objective matches the SAGE bound, we conclude that y�

is optimal up to relative error 2E-7.

5.2 Polynomial optimization problems from the literature

Here we review results of the reference hierarchies from Sect. 4.4, as applied to
twenty-two polynomial optimization problems from the literature. We begin with six
unconstrained and eight box-constrained problems (drawn from [47] and [39] respec-
tively). There are two important lessons which we highlight with the box-constrained
problems. First, bound constraints should still be included in the Lagrangian, even if
they can be completely absorbed into the set “X” in a conditional SAGE relaxation.
Second, even if the original problemdoes not featuremany sign-symmetric constraints,
it is often easy to infer valid sign-symmetric constraints which can improve perfor-
mance of a conditional SAGE relaxation. The remaining eight problems discussed in
this section have nonconvex objectives, nonconvex inequality constraints, and con-
straints that the optimization variables are nonnegative [40]. Our experience with such
problems is that partial dualization plays a crucial role in solving them efficiently,
primarily with the simpler constraints x ≥ 0.

Table 6 describes the unconstrained and box-constrained problems; three such prob-
lems are reproduced here, as our Examples 10 through 12.

inf{ f (x)
.= 4x21 − 2.1x41 + x61/3 + x1x2 − 4x22 + 4x42 : x in R

2} (Ex10)

The polynomial f in Example 10 is known as the six-hump camel function; its min-
imum is f �

R2 ≈ −1.0316. By using polynomial modulators, a level-(3,0) relaxation
returns a bound−1.03170 in 0.63 s of solver time onMachineW. By instead solving a
level-(0,2) relaxation (i.e. modulating the signomial representative of f −γ ) we obtain
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−1.031630 ≤ f �
R2 in 0.19 s. Example 10 shows how the two-parameter hierarchy (16)

can be of practical importance.
Our next two examples are box-constrained problems from the work of Ray and

Nataraj [39]; their problems “Capresse 4” and “Butcher 6” serve as our Examples 11
and 12. A consistent trend for these problems is that even when a feasible set X can
be incorporated entirely into an X -SAGE cone, it is still useful to take products of
constraints, and solve a relaxation such as (15) which includes those constraints in the
Lagrangian.

inf x∈R4 f (x)
.= −x1x

3
3 + 4x2x

2
3 x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3 (Ex11)

+ 4x23 − 10x2x4 − 10x24 + 2

s.t. g1:4(x)
.= x + (1, 1, 1, 1)/2 ≥ 0

g5:8(x)
.= (1, 1, 1, 1)/2 − x ≥ 0

Letting X = {x ∈ R
4 : −0.5 ≤ xi ≤ 0.5}, one can compute ( f , g)(1,2,0)X =

−3.180096, where the equality is verified by recovering a solution with Algorithm 2.
Example 11 is noteworthy because the recovered solution required no local-solver
refinement that occurs in Algorithm 2L.

inf
x∈R6

f (x)
.= x6x

2
2 + x5x

2
3 − x1x

2
4 + x34 + x24 − 1/3x1 + 4/3x4 (Ex12)

s.t. g1:6(x)
.= x + (1, 0.1, 0.1, 1, 0.1, 0.1) ≥ 0

g7:12(x)
.= (0, 0.9, 0.5,−0.1,−0.05,−0.03) − x ≥ 0

We can produce a tight bound for Example 12 with ordinary SAGE certificates: a
level-(0,3,0) relaxation returns −1.4392999 ≤ ( f , g)� in 0.67 s. Solution recovery
is not so easy. Unless we move to a computationally expensive level-(0,3,1) ordinary
SAGE relaxation, Algorithm 2 fails to return a feasible point. Instead, we infer valid
inequalities for use in a conditional SAGE relaxation:

|x1| ≤ 1, |x2| ≤ 0.9, |x3| ≤ 0.5, and

0.1 ≤ |x4| ≤ 1, 0.05 ≤ |x5| ≤ 0.1, 0.03 ≤ |x6| ≤ 0.1.

The resulting level (0,3,0) relaxation can be solved in 0.64 s.We recover a feasible solu-
tion with Algorithm 2, whichmatches the SAGE bound after refinement by COBYLA.
Example 12 reinforces a message from signomial optimization: even if an ordinary
SAGE relaxation can produce a tight bound, a conditional SAGE relaxation is likely to
fare better with solution recovery. Example 12 also shows how useful sign-symmetric
constraints can be inferred from bound constraints which are not sign-symmetric.

Now we turn to problems featuring nonconvex inequality constraints [40]. One of
these problems was introduced in Sect. 4.5 as “Example 4,” and all of these problems
have a similar structure to that of Example 4. Most importantly, problems featured
here include nonnegativity constraints x ≥ 0. The natural SAGE hierarchy solves all
of these problems; see Table 7.

123



Signomial and polynomial optimization via relative… 287

Table 6 Results for SAGE on unconstrained and box-constrained polynomial minimization problems.
Column “d” indicates the degree of the polynomial to be minimized. The Rosenbrock example allows for
different numbers of variables, though results from [16] show SAGE is tight for any number of variables.
The Beale, Colville, and Goldstein-Price polynomials proved very difficult for optimization via SAGE
certificates

Source Name n d Minimum SAGE solved

[47] Rosenbrock Variable 4 0 Yes

– 6-hump camel 2 6 −1.0316 Yes

– 3-hump camel 2 6 0 Yes

– Beale 2 8 0 No

– Colville 4 4 0 No

– Goldstein-Price 2 8 3 No

[39] L.V. 4 4 4 − 20.8 Yes

– Cap 4 4 4 −3.117690 Yes

– Hun 5 5 7 −1436.515 No

– Cyc 5 5 4 −3 Yes

– C.D. 6 6 2 −270397.4 No

– But 6 6 3 −1.4393 Yes

– Heart 8 8 4 −1.367754 Yes

– Viras 8 8 2 −29 Yes

There are a few subtle distinctions between geometric-form signomial programs
(SPs), and the nonnegative polynomial optimization problems (POPs) considered here.
While a polynomial optimization problem over x ≥ 0 may include xi = 0 in the
feasible set, geometric-form SPs cannot allow this (since there is the possibility of
dividing by zero, or encountering indeterminate forms). Thus solution recovery from
SAGE relaxations is nominally more challenging for a true nonnegative POP, relative
to a geometric-form SP. Despite this challenge, Algorithm 2L successfully recovers
optimal solutions for all of these problems. See Table 8 for details.

The other important distinction between geometric-form SPs and nonnegative
POPs, is that there exist established Sums-of-Squares based methods for dealing with
nonnegative POPs. Thus it is useful to understand the performance of SAGE-based
methods in the context of SOS-based methods for polynomial optimization. Although
SAGE relaxations took a very long time to solve problems P4_6 and P4_8, the run-
times for problems such as P6_8 are remarkable. The unspecified machine in [40]
took over 1600 and 200 s to solve P6_8 with BSOS and SOS respectively, while
SAGE can solve the same problem in under 4 s on a mid-tier laptop from 2013. It
seems to the authors that SAGE provides a compelling option for nonnegative poly-
nomial optimization problems, at least for low levels of the reference hierarchy (such
as (1, 1, 0), or (0, q, 0) with small q).
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Table 7 Generic polynomial optimization problems, over the nonnegative orthant [40,41]. Names “Pn_d”
indicate the number of variables n and degree d of the given problem. Column k gives the number of
inequality constraints, excluding constraints x ≥ 0, as well as those which trivially follow from x ≥ 0.
SAGE solved all problems listed here, at the indicated level of the hierarchy, and with the indicated solver
runtimes for the primal-form relaxations

Name k Minimum (p, q, �) W time (s) L time (s)

P4_4 8 −0.033538 (1,1,0) 0.47 0.7

P4_6 7 −0.060693 (1,1,1) 289 292

P4_8 7 −0.085813 (2,1,0) 396 460

P6_4 8 −0.576959 (1,1,0) 3.45 4.1

P6_6 8 −0.412878 (1,1,0) 3.04 4.37

P6_8 8 −0.409020 (1,1,0) 3.25 3.83

P8_4 8 −0.436026 (1,1,0) 7.18 7.25

P8_6 8 −0.412878 (1,1,0) 8.67 8.21

Table 8 Comparison of Algorithms 2 and 2L for solution recovery for eight nonconvex polynomial opti-
mization problems in the literature (Ref. [40,41]). Both algorithms were initialized with solutions to a
level-(1,1,0) conditional SAGE relaxation, and Algorithm 2L always recovers an optimal solution. It is
especially notable that Algorithm 2L recovers optimal solutions for problems P4_6 and P4_8, since level-
(1,1,0) relaxations do not produce tight bounds for these problems

Name Algorithm 2 Algorithm 2L
f (x) min g(x) f (x) min g(x)

P4_4 −0.033386 0.00E-00 −0.033538 0.00E-00

P4_6 −0.057164 4.06E-02 −0.060693 −2.44E-14

P4_8 −0.066671 1.42E-01 −0.085813 −3.46E-14

P6_4 −0.570848 4.04E-08 −0.576959 −1.03E-13

P6_6 −0.412878 5.46E-09 −0.412878 −1.68E-13

P6_8 −0.409018 1.07E-07 −0.409020 −5.82E-14

P8_4 −0.436024 3.27E-08 −0.436026 −2.58E-13

P8_6 −0.412878 2.78E-43 −0.412878 −2.55E-12

5.3 Minimizing random sparse quartics over the sphere

Here we describe how SAGE relaxations fare for minimizing sparse quartic forms
over the unit sphere. This class of test problems is inspired from similar computational
experiments by Ahmadi and Majumdar in their work on LP and SOCP-based inner-
approximations of the SOS cone [48].

Our method for generating these problems is as follows: initialize f = 0 as a
polynomial in n variables, and proceed to iterate over all tuples “t” in [n]4. With
probability n log n/n4, sample a coefficient ct from the standard normal distribution,
and add the term ct xαt to f , where αt ∈ [4]n has αt j = |{i : ti = j}|. The expected
number of terms in f after this procedure is roughly n log n. Once a polynomial is
generated, we solve a level-(0,2,0) conditional SAGE relaxation for ( f , g)�

Rn , where
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Fig. 1 Upper-bounds on the optimality gap |( f , g)(0,2,0)X − ( f , g)�
Rn |/|( f , g)�

Rn |. The value ( f , g)�
Rn in

these calculations was replaced by the objective value of a solution produced by Algorithm 2L. SAGE
solved 4 problems in 10 variables, 10 problems in 20 variables, 6 problems in 30 variables, and 4 problems
in 40 variables

Table 9 Solver runtimes for level-(0,2,0) conditional SAGE relaxations, on Machine W. Similar runtimes
can be expected for Machine L with n ∈ {10, 20, 30}. Solve times with Machine L can take much longer
for n ≥ 40, since only part of the problem fits in RAM

Solve time (s) n = 10 n = 20 n = 30 n = 40

Mean 7.54E-01 6.50E-00 6.46E+01 4.59E+02

SD 8.74E-02 8.54E-01 1.38E+01 7.20E+01

g(x) = 1−xᵀx.7 The set “X” in the conditional SAGE relaxation is X = {x : g(x) ≥
0}. Figure 1 and Table 9 report results for 20 problems in 10 variables, 20 problems
in 20 variables, 14 problems in 30 variables, and 10 problems in 40 variables.

5.4 Broader observations from numerical experiments

Here we provide expanded remarks on three aspects of our numerical experiments.
First, we address which SAGE relaxations appear to be numerically difficult, and
provide a reason for why this might happen. Then we report some of the sizes of
the SAGE relaxations as represented by cone programs suitable for low-level solvers.
Finally, we demonstrate that these low-level cone programs actually have an extremely
useful substructure which is not exploited by MOSEK or ECOS.

For both signomial and polynomial optimization problems, there is significant ben-
efit to solving level-(p, q, �) relaxations with Lagrange multiplier complexity p > 0.
However we encountered several problems where any choice of p > 0 resulted in a

7 Because f is homogeneous, xᵀx = 1 may be relaxed to xᵀx ≤ 1 without loss of generality
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Table 10 Dimensions of A ∈ R
N×d and sparsity s = nnz(A)/(Nd) in sageopt’s low-level repre-

sentation of feasible sets for dual relaxations of [40, Problem P4_6]. “Slacks” is the default behavior for
sageopt version 0.2, which was used for experiments in this article. “Direct” (no slacks) is the default
for sageopt version 0.5.2. See also Tables 7 and 8

Level (p, q, �) (0,1,0) (1,1,0) (1,1,1)

(N , d, s)-slacks (953, 342, 4E-3) (80,542, 21,896, 8E-5) (2,275,860, 574,775, 3E-6)

(N , d, s)-direct (840, 229, 6E-3) (62,653, 4007, 5E-4) (1,714,437, 13,352, 1E-4)

solver failure due to numerical issues. One explanation for the difficulty of such SAGE
relaxations could be how (11) and (15) set the complexity of a Lagrange multiplier
without consideration to its associated constraint function. Compare to the usual SOS-
based Lasserre hierarchy, where a degree k constraint polynomial gi (x) ≥ 0 appearing
in a degree 2d relaxation gets an SOS multiplier of degree 2�(2d − k)/2�. For SAGE
relaxations, one could set the support of a Lagrange multiplier with consideration to
how the product of the constraint function and Lagrange multiplier affect the sparsity
pattern of the final Lagrangian. Suitably chosen supports for nonconstant Lagrange
multipliers could also result in bounds which are stronger than those produced by
reference hierarchies (11) and (15).

One of the main functions of sageopt is to cast abstract SAGE relaxations into
low-level standard forms, with feasible sets {x ∈ R

d : Ax + b ∈ K } for some
A ∈ R

N×d and K ⊂ R
N which is a product of elementary convex cones. There

are several settings within sageopt which affect how this compilation process is
performed. The impact of different settings for the use of slack variables becomes very
apparent as one solves SAGE relaxations farther up a hierarchy (Table 10). Regardless
of compilation settings, the resulting cone programs end up being large and sparse
as reference hierarchy parameters increase. It is possible to construct smaller cone
programs by inferring signs on certain coefficients of a modulated Lagrangian, and
then appealing to Corollary 1. Sageopt already performs a simple version of such
dimension-reduction, which is particularly helpful for the minimax-free hierarchy
defined in Equation 10.

Solving linearized KKT equations is the largest computational expense in each
iteration of an interior-point algorithm for convex cone programming. For ease of
exposition, suppose equality constraints in a low-level cone program are represented
by two-sided inequality constraints. Under this assumption, both MOSEK and ECOS
solve linearizedKKTequations byperforming a sparseLDL factorization of a symmet-
ric indefinite matrix of order N + d. Another approach to solving the linearized KKT
equations applies a block-elimination to the indefinite system, to obtain a symmetric
positive definite system of dimension d � N [49]. In the case of cone programs
generated by sageopt for dual SAGE relaxations, the only coupling across dual
AGE cones occurs through the moment vector v, therefore reduction to positive def-
inite KKT systems would be extremely efficient (see Sect. 2). It is of interest to
see how SAGE relaxations scale with a solver which could take advantage of this
structure.
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Fig. 2 Sparsity patterns of Cholesky factors, which can be used to solve linearized KKT systems in interior-
point methods for SAGE relaxations to [40, Problem P4_6]. All Cholesky factors used a simple reversed
elimination order d, d − 1, . . . , 1 relative to the original positive definite KKT systems which follow from
sageopt 0.5.2’s low-level problem data

6 Outlook

In this article we introduced and developed notions of conditional SAGE certificates
for both signomials and polynomials. Through worked examples and computational
experiments, we have demonstrated that subsequent convex relaxations can be used
to solve many signomial and polynomial optimization problems from the literature.
The authors believe that conditional SAGE certificates are a fertile area for research
in both the theory and practice of constrained optimization; we briefly describe some
possible directions here.

Branch-and-bound. Bound constraints can be completely incorporated into con-
ditional SAGE cones for signomials (in geometric or exponential form). It would
be valuable to determine how conditional SAGE certificates can be used to aid the
“bounding” step in existing branch-and-bound algorithms for signomial programming.
Branch-and-bound also blends with SAGE polynomials. Of course, sign-symmetric
bounds can be accommodated directly. If X encodes bound constraints where each
variable has a fixed sign, we can still obtain representations for CPOLYSAGE(α, X) in a way
which is similar to when X ⊂ R

n+.
Solution recovery. Solution recovery from conditional SAGE relaxations to signo-

mial programs is a problem of great importance. This article identified a projective
structure in dual X -SAGE cones which leads to a practical method of solution recov-
ery. However, we did not explore the theoretical properties of this method, and in
fact we introduced additional heuristics (such as local-refinement) to obtain good per-
formance. It is highly desirable to develop a coherent theory around such projective
methods of solution recovery.

The minimax-free hierarchy. The minimax-free hierarchy from Sect. 3.4 adopted a
particular form for the modulating function: Sig(α, 1)�. What benefit might there be
to instead using a modulator Sig(α̂, 1)�, where α̂ was chosen with consideration to
X? Equally important, how could one efficiently identify good candidates for such α̂,
given only α and a description of X? Finally, under what conditions on α, X are the
bounds f (�)

X certain to converge to f �
X?
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SAGE versus nonnegativity. For what exponents α and what sets X do X -SAGE
cones coincide with X -nonnegativity cones? Prior work (c.f. [16], and more recently
[50]) has uncovered meaningful sufficient conditions for this problem when X = R

n .
These sufficient conditions have hitherto been stated in terms of the combinatorial
geometry of the exponent vectors {αi }mi=1. It will be very interesting to see how such
results do (or do not) generalize to X -SAGE cones for arbitrary X .
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Appendix

Algorithm 3 magnitude recovery for dual SAGE polynomial relaxations.

Input: A matrix α ∈ N
m×n . Vectors v ∈ CPOLYSAGE(α, X)† and v̂ ∈ CSAGE(α, Y ). Zero threshold parameter

ε0 > 0.
1: procedure VariableMagnitudes(α, v, v̂, ε0)
2: M ← []
3: for j = 1, . . . ,m do
4: if v̂ j = 0 then
5: Continue
6: Recover z j in R

n s.t. v̂ j log(v̂/v̂ j ) ≥ [α − 1α j ]z j and (z j , v̂ j ) ∈ co Y .
7: M .append(exp(z j /v̂ j ))

8: if (xα1 , . . . , xαm ) �= |v| for all x in M then
9: Compute ( y, t) solving Problem 13, for given ε0.
10: M .append(exp y)
11: return M .

As in the signomial case, Algorithm 3 always returns a vector x ∈ X . Assuming
that z from Line 7 are already computed as part of representing v̂, the complexity of
this algorithm is dominated by Line 12. The runtime of Line 12 is in turn negligible
relative to solving a SAGE relaxation to obtain vectors v and v̂. Infeasibility errors
encountered in Line 12 should be handled by jumping to Line 15.

Algorithm 4 sign recovery for dual SAGE polynomial relaxations.
Input: A matrix α ∈ N

m×n . A vector v in R
m . A Boolean heuristic.

1: procedure VariableSigns(α, v,heuristic)
2: U ← {i : vi �= 0 and αi is not even }
3: W ← { j : αi j ≡ 1 mod 2 for some i in U }
4: Z ← {z ∈ {0, 1}n : α[U , :]z ≡ (v < 0)[U ] mod 2, zi = 0 for i in [n] \ W }
5: S ← {}
6: for z in Z do
7: s ← 1
8: for j in { j : αi j > 0 for some i in U } do
9: s j ← −1 if z j = 1, 1 if z j = 0

10: S ← S ∪ {s}
11: If S = ∅ and heuristic, update S ← {HueristicSigns(α, v)}.
12: return S.
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Let us describe the ways in which Algorithm 4 differs from the discussion in
Sect. 4.2.2. First- there are changes to the sets U and W . The set U now drops any
rows αi from α where αi is even; it is easy to verify that this does not affect the set
of solutions to the appropriate linear system. The set W changes by only considering
j where at least one αi j ≡ 1 mod 2. This change is valid because if αi j is even for
all i , then the sign of variable x j is irrelevant to the underlying optimization problem,
and we make take x j ≥ 0 without loss of generality.

Next we speak to the “hueristic” sign recovery. We partly mean to leave this as
open-ended, however for completeness we describe the algorithm used in sageopt.
The goal is to find a vector s in {+1,−1} so that the signs of sα

.= (sα1 , . . . , sαm )

match the signs of v to the greatest extent possible. However, we consider how having
sαi match the sign of vi may not be very important if vi is very small. Therefore we
use a merit function M(s) = vᵀsα to evaluate the quality of candidate signs s. We
apply a greedy algorithm to maximize the merit function M(s) as follows: initialize
s = 1, and a set of undecided coordinates C = {1, . . . , n}. As long as the set C is
nonempty, find an index i� ∈ C so that changing si� = 1 to si� = −1 maximizes
improvement in the merit function. If the improvement is positive, then perform the
update si� ← −1. Regardless of whether or not the improvement is positive, remove
i� from C . Once C is empty, return s.
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