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Abstract
Certifying function nonnegativity is a ubiquitous problem in computational mathe-
matics, with especially notable applications in optimization. We study the question
of certifying nonnegativity of signomials based on the recently proposed approach of
Sums-of-AM/GM-Exponentials (SAGE) decomposition due to the second author and
Shah. The existence of a SAGE decomposition is a sufficient condition for nonnegativ-
ity of a signomial, and it can be verified by solving a tractable convex relative entropy
program. We present new structural properties of SAGE certificates such as a charac-
terization of the extreme rays of the cones associated to these decompositions as well
as an appealing form of sparsity preservation. These lead to a number of important
consequences such as conditions under which signomial nonnegativity is equivalent
to the existence of a SAGE decomposition; our results represent the broadest-known
class of nonconvex signomial optimization problems that can be solved efficiently via
convex relaxation. The analysis in this paper proceeds by leveraging the interaction
between the convex duality underlying SAGE certificates and the face structure of
Newton polytopes. After proving our main signomial results, we direct our machinery
toward the topic of globally nonnegative polynomials. This leads to (among other
things) efficient methods for certifying polynomial nonnegativity, with complexity
independent of the degree of a polynomial.
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1 Introduction

The problem of certifying function nonnegativity is broadly applicable in the math-
ematical sciences. Optimization provides an especially notable example: since f � =
inf x∈Rn f (x) can be expressed as f � = sup{γ : f (x)−γ ≥ 0 ∀x ∈ R

n}, any certifi-
cate that f − γ is nonnegative on R

n is a proof that γ is a lower bound on f �. Other
tasks that can framed as nonnegativity certification problems include deciding stability
of a dynamical system, bounding Lipschitz constants, or determining the consistency
of nonlinear equations. It is computationally intractable to decide function nonnega-
tivity in general, but we may yet seek sufficient conditions for nonnegativity which are
tractable to certify. This article is concerned with the Sums-of-AM/GM-Exponentials
or “SAGE” certificates of signomial nonnegativity [7].

Signomials are functions of the form x �→ ∑m
i=1 ci exp(a

ᵀ
i x), where c ∈ R

m is
the coefficient vector and the ai are called exponent vectors. Signomial nonnegativity
is NP-Hard to decide by reduction to matrix copositivity [32]. Global signomial opti-
mization is tractable in the special case of convex geometric programming [6], however
high-fidelity signomial models often do not fit into this framework [5,8,15,19,23,26].
Our study of SAGE certificates is motivated by a desire to better understand signo-
mials as a fundamental class of functions, which evidently stands to improve our
understanding of nonconvex signomial programming. What is perhaps less evident,
but just as important, is that studying signomials forces us to completely set aside the
notion of degree that is often taken for granted in the study of polynomials. This leads
us to develop computational tools that apply to polynomials when {ai }mi=1 ⊂ N

n , but
in a way that is agnostic to polynomial degree.

There are two perspectives with which one can look at SAGE certificates. On the
one hand, there is an interpretation where the summands are certified as nonnegative
by a weighted AM/GM inequality. Equivalently, the summands may be certified as
nonnegative by the principle of strong duality as applied to a suitable convex program.
The connection to convex duality is essential, as it provides away to tractably represent
the SAGE cone via the relative entropy function

D (ν,λ) = ∑m
i=1 νi ln(νi/λi ), ν,λ ∈ R

m+.

Over the course of this article, we employ convex analysis and convex geometry in
an effort to better understand fundamental aspects of SAGE certificates. The convex-
analytic arguments are used to establish structural results concerning the SAGE cone
itself—for example, the nature of its extreme rays, and sparsity-preservation properties
of SAGE decompositions. The convex-geometric considerations come into play when
we ask precisely how the SAGE cone relates to the nonnegativity cone. Here we use
Newton polytopes, which are convex hulls of the exponents {ai }mi=1, often jointly with
consideration to the sign pattern of a signomial’s coefficient vector.

Analysis by Newton polytopes has a longer history in study of polynomials, and in
particular in the study of sparse polynomials. Prominent examples in this area include
Khovanskii’s fewnomials [21,22], Reznick’s agiforms [41,42], and Bajbar and Stein’s
work on polynomial coercivity [4]. Many such works “signomialize” polynomials
via a substitution x j ← exp y j in certain intermediate proofs. We adopt a different
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perspective, where signomials are the first-class object. This perspective allows us to
properly study signomials as a class of functions distinct from polynomials, while also
providing a transparent mechanism to obtain polynomial results down the line.

1.1 Our Contributions

Section 2 briefly reviews relevant background on SAGE certificates for signomial
nonnegativity.

In Sect. 3, we prove a number of new structural properties of SAGE certificates.
Theorem 3 proves an important sparsity-preserving property of SAGE functions. If
a signomial f is SAGE, then there exists a decomposition f = ∑

k fk that certifies
this property (i.e., each fk is an “AGE function”; certifiably nonnegative by a relative
entropy inequality, as described in Sect. 2), such that each fk consists only of those
terms that appear in f . Furthermore, the process of summing the fk to obtain f results
in no cancelation of coefficients on basis functions x �→ exp(aᵀ

i x). Theorem 5 goes
on to provide a characterization of the extreme rays of the cone of SAGE functions; in
particular, all nontrivial extreme rays are given by AGE functions that are supported
on simplicial Newton polytopes.

Section 4 leverages the understanding from Sect. 3 to derive a collection of struc-
tural results which describe when nonnegative signomials are SAGE, with the Newton
polytope being the primary subject of these theorems’ hypotheses. Theorem 9 is con-
cerned with cases where the Newton polytope is simplicial, while Theorems 10 and 11
concernwhen it “decomposes” in an appropriate sense. Each of these theorems exhibits
invariance under nonsingular affine transformations of the exponent vectors. Corol-
laries 13 and 14 show how Theorem 9 applies to signomial optimization problems.
We conclude the section with a result on conditions under which SAGE can recognize
signomials that are bounded below (Theorem 15).

In Sect. 5, we specialize our results on signomials to polynomials, by defining a
suitable “signomial repesentative” of a polynomial and requiring that the signomial
admit a SAGE decomposition. The resulting class of “SAGE polynomials” inherits
a tractable representation from the cone of SAGE signomials (Theorem 16) as well
as other structural properties on sparsity preservation and extreme rays (Corollaries
20 and 21). Moving from a polynomial to a signomial representative is simple but
somewhat delicate, yielding both stronger (Corollary 17) and weaker (Corollary 18)
results than in the signomial case. We then situate our results on polynomial SAGE
certificates in the broader literature, with specific emphasis on “Sums-of-Nonnegative-
Circuits” (SONC, see Sects. 5.3 and 5.4) and “Sums-of-Squares” (SOS, see Sect. 5.5).
The section is concluded with discussion on how our results provide the basis for
a sparsity-preserving hierarchy of convex relaxations for polynomial optimization
problems.

Section 6 demonstrates that there are meaningful senses in which our results from
Sect. 4 cannot be improved upon. Through Theorem 31, we provide a novel dual
characterization of conditions underwhich the SAGEcone and the cone of nonnegative
signomials coincide.
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1.2 RelatedWork

1.2.1 Signomials and Signomial Optimization

The literature on signomials is quite fragmented, owing to a wide range of conventions
used for this class of functions across fields and over time. A recurring theme is to con-
sider signomials as functions y �→ ∑m

i=1 ci y
ai , where monomials yai

.= ∏n
j=1 y

ai j
j

remain well-defined for real ai j so long as y is restricted to the positive orthant.
In analysis of biochemical reaction networks, signomials are often called general-
ized polynomials [30,31], or simply “polynomials over the positive orthant” [37].
In amoeba theory, one usually calls signomials exponential sums [12,51]. Much of
the earlier optimization literature referred to signomial programming as “generalized
geometric programming,” but this term now means something quite different [6].

In the taxonomy of optimization problems, geometric programming is to signomial
optimization what convex quadratic programming is to polynomial optimization. Cur-
rent approaches to global signomial optimization use successive linear or geometric
programming approximations together with branch-and-bound [28,48,49]. Equality
constrained signomial programs are often treated by penalty or augmented Lagrangian
methods [43], and are notoriously difficult to solve [35,57]. The SAGE approach to
signomial optimization does not involve branch-and-bound and does not entail added
complexity when considering signomial equations instead of inequalities.

1.2.2 Sums-of-Squares Certificates and Polynomial Optimization

There is a large body ofwork on SOS certificates for polynomial nonnegativity, and the
resulting convex relaxations for polynomial optimization problems [27,39,50]. Over
the course of this article, we make two contributions which have direct parallels in the
SOS literature.

Our results in Sect. 3 are along the lines of David Hilbert’s 1888 classification of the
number of variables “n” and the degrees “2d” for which SOS-representability coin-
cides with polynomial nonnegativity [16]. The granularity with which we seek such a
classification is distinct from that in the SOS literature, as there is no canonical method
to take finite-dimensional subspaces of the infinite-dimensional space of signomials.

A principal drawback of the SOSmethod is that its canonical formulation requires a
semidefinite matrix variable of order

(n+d
d

)
—and the size of this matrix is exponential

in the degreed. In Sect. 5,weuseSAGEsignomials to certify polynomial nonnegativity
in a way which is unaffected by the polynomial’s degree. Section 5.5 compares our
proposed method to SOS, as well as refinements and variations of SOS which have
appeared in the literature: [2,24,34,54].

1.2.3 Certifying Function Nonnegativity via the AM/GM Inequality

The “AGE functions” in a SAGE decomposition may be proven nonnegative in either
of twoways. The first approach is to certify a particular relative entropy inequality over
a signomial’s coefficients, which is described in Sect. 2. This approach is known to
be computationally tractable, and it provides a convenient tool for proving structural
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results for the set of SAGE certificates. The second method is to find weights for
an appropriate AM/GM inequality over a signomial’s coefficients; this latter method
directly connects SAGE to a larger literature on certifying function nonnegativity via
the AM/GM inequality, which we summarize in the sequel.

The earliest systematic theoretical studies in this area were undertaken by Reznick
[41,42] in the late 1970s and 1980s. The first developments of any computational flavor
came from Pébay, Rojas and Thompson in 2009 [40], via their study of polynomial
maximization. Pébay et al. used tropical geometry andA-discriminants to develop an
AM/GM type certificate for boundedness of functions supported on matroid-theoretic
circuits. In this context, a function is supported on a circuit if the monomial expo-
nents {ai : ci 	= 0} form a minimal affinely dependent set. In 2011, Ghasemi et
al. pioneered the use of geometric programming to recognize functions which were
certifiably nonnegative by the AM/GM-inequality and a sums-of-binomial-squares
representation [13,14]. In 2012, Pantea, Koeppl, and Craciun derived an AM/GM
condition to certify R

n+-nonnegativity of polynomials supported on circuits [37, The-
orem 3.6]. Follow-up work by August, Craciun, and Koeppl used [37, Theorem 3.6]
to determine invariant sets for biological dynamical systems [3]. A short while later,
Iliman and de Wolff suggested taking sums of globally nonnegative circuit polynomi-
als [17]; the resulting SONC polynomials have since become an established topic in
the literature [11,18,45,55,56].

We continue to make connections to the AM/GM-certificate literature throughout
this article; [11,17,37,45] are revisited in Sect. 5.3, and [17,55,56] are addressed in
Sect. 5.4.

1.3 Notation and Conventions

Special sets include [�] .= {1, . . . , �} ⊂ N, the probability simplex �� ⊂ R
�, the

nonnegative realsR+, and the positive realsR++. Vectors and matrices always appear
in boldface. For indexing reasons, we find it useful to define certain vectors by writing
v = (vi )i∈[�]\k ; such a vector is said to belong to “R[�]\k .” If we wish to drop a the
kth component from a vector v ∈ R

�, we write v\k
.= (vi )i∈[�]\k . The support of a

vector v ∈ R
� is supp v

.= {i ∈ [�] : vi 	= 0}. We use ei to denote the i th standard
basis vector in R

� with � inferred from context, and set 1 = ∑�
i=1 ei . The operator ⊕

is used for vector concatenation. We often call finite a point-set {ui }�i=1 simplicial if
it is affinely independent.

The operators “cl” and “conv” return a set’s closure and convex hull, respectively;
“ext” returns the extreme points of a compact convex set. We useU +V to denote the
Minkowski sum of sets U and V within R

�. For any convex cone K contained in R
�

there is an associated dual cone K † .= { y : yᵀx ≥ 0 for all x in K }.
We reserve A for a real n×mmatrixwith distinct columns {ai }mi=1, and c for a vector

in R
m . Writing f = Sig(A, c) means that f takes values f (x) = ∑m

i=1 ci exp(a
ᵀ
i x).

For a fixed signomial Sig(A, c), we often refer to ai ∈ R
n as an exponent vector, and

use P(A) to denote its Newton polytope. The cone of coefficients for nonnegative
signomials over exponents A is
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CNNS(A) = { c : Sig(A, c)(x) ≥ 0 for all x in R
n}.

We sometimes overload terminology and refer to CNNS(A) as a cone of signomials,
rather than a cone of coefficients. We routinely work with matrices “A\k” formed by
deleting some kth column from A. The matrix A\k is applied to a vector ν ∈ R

[m]\k
by A\kν = ∑

i∈[m]\{k} aiνi .

2 Background Theory on SAGE Functions

In their debut, SAGE functions were used as a building block for a hierarchy of
convex relaxations to challenging nonconvex signomial optimization problems [7].
Underlying this entire hierarchywere the simple facts that SAGE functions are globally
nonnegative and efficiently recognizable. The purpose of this section is to review the
theory of SAGE functions to the extent that it is needed for subsequent development.

Section 2.1 introduces the idea of an AGE function, which serve as the building
blocks of SAGE functions. Theway inwhichAGE functions extend to SAGE functions
is given in Sect. 2.2. Section 2.3 describes the connection between nonnegativity and
optimization in the context of SAGE relaxations. These three sections are essential for
understanding the present article.

2.1 AM/GM Exponentials

We need some additional structure to make it easier to verify membership in the
nonnegativity cone CNNS(A). The structure used by Chandrasekaran and Shah [7] was
that the coefficient vector c contained at most one negative entry ck ; if such a function
was globally nonnegative, they called it an AM/GM Exponential, or an AGE function.
To facilitate the study of such functions, [7] defines the kthAGE cone

CAGE(A, k) = {c : c\k ≥ 0 and c belongs to CNNS(A)}. (1)

Elements of CAGE(A, k) are sometimes called AGE vectors.
It is evident that CAGE(A, i) is a proper convex cone which contains the nonnegative

orthant. By using a convex duality argument, onemay show that a vector cwith c\k ≥ 0
belongs to CAGE(A, k) if and only if

some ν ∈ R
[m]\k
+ satisfies [A\k − ak1ᵀ]ν = 0 and D

(
ν, ec\k

) ≤ ck . (2)

It is crucial that the representation in (2) is jointly convex in c and the auxiliary variable
ν, and moreover that no assumption is made on the sign of ck . Using the representation
(2), one may derive the following expression for the dual of the kth AGE cone

CAGE(A, k)† = cl{v : v > 0, and for some μk in R
n we have

vk ln(vk/vi ) ≤ (ak − ai )ᵀμk for i in [m]}. (3)
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The “size” of a primal or dual AGE cone refers to the number of variables plus the
number of constraints in the above representations, which is O(m) assuming n ≤ m.

2.2 From“AGE” to“SAGE”

We call a signomial SAGE if it can be written as a sum of AGE functions. SAGE
functions are globally nonnegative by construction; cones of coefficients for SAGE
signomials are denoted by

CSAGE(A)
.= ∑m

k=1 CAGE(A, k). (4)

Standard calculations in conic duality yield the following expression for a dual SAGE
cone

CSAGE(A)† = ∩m
k=1CAGE(A, k)†. (5)

Equations 4 and 5 provide natural definitions, but they also contain redundancies.

Proposition 1 [7, Section 2.4] If ak ∈ extP(A) and f = Sig(A, c) is nonnegative,
then ck ≥ 0. Consequently, if ak ∈ extP(A) then CAGE(A, k) = R

m+.

Proposition 1 is the most basic way Newton polytopes appear in the analysis of non-
negative signomials. In our context, it means that so long as extP(A) � {ai }mi=1,
we can take CSAGE(A) as the Minkowski sum of AGE cones CAGE(A, k) where ak are
nonextremal in P(A).

2.3 FromNonnegativity to Optimization

A means for certifying nonnegativity provides a natural method for computing lower
bounds for minimization problems: given a function f , find the largest constant γ

where f −γ can be certified as globally nonnegative.We now formalize this procedure
for signomials and SAGE certificates.

Given a signomial f = Sig(A, c) and a constant γ in R, we want to check if f −γ

is SAGE. To do this, we need an unambiguous representation of f − γ in terms of
Sig(·, ·) notation. Toward this end, we suppose A has a1 = 0, and we make a point of
allowing any entry of c to be zero. Under these assumptions, the function f − γ can
be written as Sig(A, c− γ e1). Thus the optimization problem

fSAGE
.= sup{ γ : c− γ e1 in CSAGE(A)} (6)

is well defined, and its optimal value satisfies fSAGE ≤ f �. We also analyze the dual
problem to (6), and for reference, we obtain via conic duality that

fSAGE = inf{ cᵀv : eᵀ
1 v = 1, v in CSAGE(A)†}. (7)

Although not done in [7], it can be shown that strong duality holds in the primal-
dual pair (6)-(7). This fact is important for our later theorems, and so we make a point
to state it clearly in the following proposition:
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Proposition 2 Strong duality always holds in the computation of fSAGE.

The proposition is proven in Appendix 7.2 using convex analysis.

3 Structural Results for SAGE Certificates

This section presents two new geometric results and analytical characterizations on the
SAGE cone. These results have applications to polynomial nonnegativity, as discussed
later in Sect. 5. Statements of the theorems are provided below along with remarks on
the theorems’ significance. Proofs are deferred to later subsections.

3.1 Summary of Structural Results

Our first theorem shows thatwhen checking if cbelongs toCSAGE(A)we can restrict the
search space of SAGE decompositions to those exhibiting a very particular structure.
It highlights the sparsity-preserving property of SAGE, and in so doing has signifi-
cant implications for both the practicality of solving SAGE relaxations, and Sect. 5’s
development of SAGE polynomials.

Theorem 3 If c is a vector in CSAGE(A) with nonempty index set N
.= {i : ci < 0},

then there exist vectors {c(i) ∈ CAGE(A, i)}i∈N satisfying c = ∑
i∈N c(i) and c(i)

j = 0
for all distinct i, j ∈ N.

We can use Theorem 3 to define some parameterized AGE cones that will be of use
to us in Section 4. Specifically, for an index set J contained within [m], and an index
i in [m], define

CAGE(A, i, J ) = {c : c in CAGE(A, i), c j = 0 for all j in J \ {i}}.

In terms of such sets we have the following corollary of Theorem 3.

Corollary 4 A signomial f = Sig(A, c) with a1 = 0 has

fSAGE = sup{γ : c− γ e1 in
∑

i∈N∪{1} CAGE(A, i, N )}

for both N = {i : ci < 0} and N = {i : ci ≤ 0}.
This corollary has two implications concerning practical algorithms for signomial
optimization. First, it shows that for k = |{i : ci < 0}|, computing fSAGE can
easily be accomplished with a relative entropy program of size O(km); this is a
dramatic improvement over the naïve implementation for computing fSAGE, which
involves a relative entropy program of size O(m2). Second—the improved condition-
ing resulting from restricting the search space in this way often makes the difference
in whether existing solvers can handle SAGE relaxations of moderate size. This point
is highlighted in recent experimental demonstrations of relative entropy relaxations;
the authors of [20] discuss various preprocessing strategies to more quickly solve such
optimization problems.
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Our next theorem characterizes the extreme rays of the SAGE cone. To describe
these extreme rays, we use a notion from matroid theory [36]: a set of points X =
{xi }�i=1 is called a circuit if it is affinely dependent, but any proper subset {xi }i 	=k is
affinely independent. If the convex hull of a circuit with � elements contains � − 1
extreme points, then we say the circuit is simplicial.

Theorem 5 If c ∈ R
m generates an extreme ray of CSAGE(A), then {ai : i ∈ [m], ci 	=

0} is either a singleton or a simplicial circuit.

Theorem 5 can be viewed as a signomial generalization of a result by Reznick
concerning agiforms [42, Theorem 7.1]. The theorem admits a partial converse: if
X = {a j } j∈J∪{i} is a simplicial circuit with nonextremal term ai , then there is an
extreme ray of CAGE(A, i) supported on J ∪ {i}. When specialized to the context of
polynomials, this result gives us an equivalence between SAGE polynomials (suitably
defined in Sect. 5) and the previously defined SONC polynomials [17], thus providing
an efficient description of the latter set which was not known to be tractable.

3.2 Proof of the Restriction Theorem for SAGE Decompositions (Theorem 3)

Our proof requires two lemmas. Thefirst such lemma indicates the claimof the theorem
applies far more broadly than for SAGE functions alone.

Lemma 6 Let K ⊂ R
m be a convex cone containing the nonnegative orthant. For an

index i ∈ [m], define Ci = {c ∈ K : c\i ≥ 0}, and sum these to C = ∑m
i=1 Ci . We

claim that a vector c with at least one negative entry belongs to C if and only if

c ∈ ∑
i :ci<0 Ci .

Proof Suppose c ∈ C has a decomposition c = ∑
i∈N c(i) where each c(i) belongs to

Ci . If N = {i : ci < 0}, then there is nothing to prove, so suppose there is some k in
N with ck ≥ 0. We construct an alternative decomposition of c using only cones Ci

with i in N \ {k}.
The construction depends on the sign of c(k)

k . If c(k)
k is nonnegative then the problem

of removing dependence on Ck simple: for i in N \ {k}, the vectors

c̃(i) = c(i) + c(k)/(|N | − 1)

belong to Ci (since Ci ⊃ R
m+), and sum to c. If instead c(k)

k < 0, then there exists

some index i 	= k in N with c(i)
k positive. This allows us to define the distribution λ

with λi = c(i)
k /

∑
j∈N\{k} c

( j)
k for i 	= k in N . With λwe construct the |N |−1 vectors

c̃(i) = c(i) + λi c(k).

The vectors c̃(i) belong to K because they are a conic combination of vectors in K
(c(i) and c(k)). We claim that for every i 	= k in N , the coordinate c̃(i)

k is nonnegative.
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This is certainly true when λi = 0, but more importantly, λi > 0 implies

1

λi
c̃(i)
k = 1

λi

(
c(i)
k + λi c

(k)
k

)
= [∑ j∈N\{k} c

( j)
k ] + c(k)

k = ck ≥ 0.

Hence c can be expressed as the sum of vectors {c̃(i)}i∈N\{k} where each vector c̃(i)

belongs to Ci .
From here, update N ← N \ {k}. If N contains another index k′ with ck′ ≥ 0,

then repeat the above procedure to remove the unnecessary cone Ck′ . Naturally, this
process continues until N = {i : ci < 0}. ��
Lemma 7 Let w, v be vectors in R

m with distinguished indices i 	= j so that

w\i , v\ j ≥ 0 and wk + vk < 0 for k in {i, j}.

Then there exist vectors ŵ, v̂ in the conic hull of {w, v} which satisfy

ŵ + v̂ = w + v and ŵ j = v̂i = 0.

Proof By reindexing, take i = 1 and j = 2. Such ŵ, v̂ exist if and only if some λ in
R
4+ solves ⎡

⎢
⎢
⎣

w1 0 v1 0
0 w2 0 v2
1 1 0 0
0 0 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

λ1
λ2
λ3
λ4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦ . (8)

The determinant of the matrix above is d = w1v2 − v1w2. If w2 or v1 = 0, then
d > 0. If w2, v1 	= 0, then d > 0 ⇔ |v2/w2| · |w1/v1| > 1. In this case, we use the
assumptions on w, v to establish the slightly stronger condition that |v2/w2| > 1 and
|w1/v1| > 1. In both cases we have a nonzero determinant, so there exists a unique λ

in R
4 satisfying system (8). Now we need only prove that this λ is nonnegative.

One may verify that the symbolic solution to (8) is

λ1 = −(w2 + v2)v1/d, λ2 = (w1 + v1)v2/d,

λ3 = w1(w2 + v2)/d, λ4 = −(w1 + v1)w2/d,

and furthermore that all numerators and denominators are nonnegative. ��
Proof (Theorem 3) Let c� be a vector in CSAGE(A) with k negative entries c�

1, . . . , c
�
k .

It is clear that the AGE cones CAGE(A, i) satisfy the hypothesis of Lemma 6, with
K = CNNS(A). Therefore there exists a k-by-m matrix C with i th row ci ∈ CAGE(A, i),
and c� = ∑k

i=1 ci . We prove the result by transforming C into a matrix with rows ci
satisfying the required properties, using only row-sum preserving conic combinations
from Lemma 7.

It is clear that for any pair of distinct i, j , the vectors ci , c j satisfy the hypothesis
of Lemma 7, thus there exist ĉi , ĉ j in the conic hull of ci , c j where ĉi j = ĉ j i = 0
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and ĉi + ĉ j = ci + c j . Furthermore, this remains true if we modify C by replacing
(ci , c j ) ← (ĉi , ĉ j ).

We proceed algorithmically: apply Lemma 7 to rows (1, 2), then (1, 3), and con-
tinuing to rows (1, k). At each step of this process, we eliminate c j1 = 0 for j > 1
and maintain c ji ≥ 0 for off-diagonal c ji . We then apply the procedure to the second
column of C, beginning with rows 2 and 3. Since c j1 = 0 for j > 1, none of the
row operations introduce an additional nonzero in the first column of C, and so the
first column remains zero below c11, and the second column becomes zero below c22.
Following this pattern, we reduce C to have zeros on the strictly lower-triangular block
in the first k columns, in particular terminating with ckk = c�

k < 0.
The next phase is akin to back-substitution. Apply Lemma 7 to rows (k, k−1), then

(k, k − 2), and continue until rows (k, 1). This process zeros out the kth column of C
above ckk . The same procedure applies with rows (k − 1, k − 2), then (k − 1, k − 3),
through (k − 1, 1), to zero the (k − 1)st column of C except for the single entry
c[k−1][k−1] = c�

k−1 < 0. The end result of this process is that the first k columns of C
comprise a diagonal matrix with entries (c�

1, . . . , c
�
k) < 0.

The resulting matrix C satisfies the claimed sparsity conditions. Since all row
operations involved conic combinations, each row of the resulting matrix C defines a
nonnegative signomial. The theorem follows since row i of the resulting matrix has a
single negative component cii = c�

i < 0. ��

3.3 Proof of Extreme Ray Characterization of the SAGE Cone (Theorem 5)

Because every ray in the SAGE cone (extreme or otherwise) can be written as a sum of
rays in AGE cones, it suffices to characterize the extreme rays of AGE cones. For the
duration of this section, we discuss theAGE coneCAGE(A, k), where ak is nonextremal
inP(A).

It can easily be shown that for any index i in [m], the ray {rei : r ≥ 0} is extremal
in CAGE(A, k). We call these rays (those supported on a single coordinate) the trivial
extreme rays of the AGE cone. The work in showing Theorem 5 is to prove that all
nontrivial extreme rays of the AGE cone are supported on simplicial circuits. Our
proof will appeal to the following basic fact concerning polyhedral geometry, which
we establish in the appendix.

Lemma 8 Fix B ∈ R
n×d , h ∈ R

n, and � = {λ ∈ �d : Bλ = h}. For any
λ ∈ �, there exist {λ(i)}�i=1 ⊂ � and θ ∈ �� for which {b j : λ

(i)
j > 0} are affinely

independent, and λ = ∑�
i=1 θiλ

(i).

Proof (Theorem 5) We seek an � ∈ N where we can decompose c ∈ CAGE(A, k) as a
sumof �+1AGEvectors {c(i)}�+1

i=1 ⊂ CAGE(A, k), where {a j : c(i)
j 	= 0} are simplicial

circuits for i ∈ [�] and c(�+1) ≥ 0. Since c is an AGE vector, there is an associated
ν ∈ R

[m]\k
+ for which [A\k − ak1ᵀ]ν = 0 and D

(
ν, ec\k

) ≤ ck . If ν is zero, then
D

(
ν, ec\k

) = 0 ≤ ck , so � = 0 and c(�+1) = c provides the required decomposition.
The interesting case, of course, is when ν is nonzero. Our proof proceeds by providing
a mechanism to decompose ν into a convex combination of certain vectors {ν(i)}�i=1,
and from there obtain suitable AGE vectors c(i) from each ν(i).
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Given ν 	= 0, the vector λ
.= ν/νᵀ1 belongs to the probability simplex �[m]\k ⊂

R
[m]\k . We introduce this λ because [A\k − ak1ᵀ]ν = 0 is equivalent to A\kλ =

ak , and the latter form is amenable to Lemma 8. Apply Lemma 8 to decompose
λ into a convex combination of vectors {λ(i)}�i=1 ⊂ �[m]\k for which {a j : j ∈
suppλ(i)} are simplicial and λ(i) satisfy A\kλ(i) = ak ; let θ ∈ �� denote the vector
of convex combination coefficients for this decomposition of λ. For each λ(i), define
ν(i) = λ(i)(νᵀ1). These values for ν(i) evidently satisfy [A\k − ak1ᵀ]ν(i) = 0 and
∑�

i=1 θiν
(i) = ν. From these ν(i) we construct c(i) ∈ R

m by

c(i)
j =

{
(c j/ν j )ν

(i)
j if ν j > 0

0 otherwise
for all j 	= k,

and for j = k we take c(i)
k = D

(
ν(i), ec(i)\k

)
.

By construction these c(i) belong to CAGE(A, k), and {a j : c(i)
j 	= 0} comprise sim-

plicial circuits. We now take a componentwise approach to showing
∑�

i=1 θi c(i) ≤ c.
For indices j 	= k with ν j > 0, the inequality actually holds with equality
∑�

i=1 θi c
(i)
j = (c j/ν j )(

∑�
i=1 θiν

(i)
j ) = c j . Nowwe turn to showing

∑�
i=1 θi c

(i)
k ≤ ck ;

we specifically claim that

�∑

i=1

θi c
(i)
k =

�∑

i=1

θi D
(
ν(i), ec(i)\k

)
= D

(
ν, ec\k

) ≤ ck . (9)

For the three relations in display (9), the first holds from the definitions of c(i)
k , and the

last holds fromour assumptions on (c, ν), so only the second equality needs explaining.
For this we use the fact that definitions of c(i)

j relative to ν
(i)
j preserve ratios with c j

relative to ν j , i.e.,

D
(
ν(i), ec(i)\k

)
=

∑

j 	=k

ν
(i)
j ln

(
ν

(i)
j

ec(i)
j

)

=
∑

j 	=k

ν
(i)
j ln

(
ν j

ec j

)

. (10)

One may then prove the middle equality in display (9) by summing θi D
(
ν(i), c\k

)

over i , applying the identity in equation (10), and then interchanging the sums over i
and j . Formally,

�∑

i=1

θi D
(
ν(i), ec(i)\k

)
=

∑

j 	=k

log

(
ν j

ec j

) (
�∑

i=1

θiν
(i)
j

)

︸ ︷︷ ︸
=ν j

=
∑

j 	=k

ν j log

(
ν j

ec j

)

= D
(
ν, ec\k

)
.

We have effectively established the claim of the theorem. To find a decomposition
of the form desired at the beginning of this proof, one rescales c(i) ← θi c(i) and sets
c(�+1) = c− ∑�

i=1 c
(i). ��
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4 The Role of Newton Polytopes in SAGE Signomials

This section begins by introducing two theorems (Theorems 9 and 10) concern-
ing SAGE-representability versus signomial nonnegativity. These theorems are then
combined to obtain a third theorem (Theorem 11), which provides the most general
yet-known conditions for when the SAGE and nonnegativity cones coincide. The
proofs of Theorems 9 and 10 are contained in Sects. 4.2 and 4.3. Applications of
Theorem 9 are given in Sect. 4.4. Section 4.5 uses a distinct proof strategy (neverthe-
less Newton-polytope based) to determine a condition on when SAGE can recognize
signomials which are bounded below.

4.1 When SAGE Recovers the Nonnegativity Cone

The following theorem is the first instance beyond AGE functions when SAGE rep-
resentability is known to be equivalent to nonnegativity.

Theorem 9 Suppose extP(A) is simplicial, and that c has ci ≤ 0 whenever ai is
nonextremal. Then c belongs to CSAGE(A) if and only if c belongs to CNNS(A).

Our proof of the theorem (Sect. 4.2) uses convex duality in a central way, and provides
intuition for why the theorem’s assumptions are needed. Section 6 provides counter-
examples to relaxations of Theorem 9 obtained through weaker hypothesis.

This section’s next theorem (proven in Sect. 4.3) concerns conditions on A for when
the SAGE and nonnegativity cones can be expressed as a Cartesian product of simpler
sets. To aid in exposition, we introduce a definition: a matrix A can be partitioned
into k faces if by a permutation of its columns it can be written as a concatenation
A = [A(1), . . . , A(k)], where A(i) are submatrices of A and {P(A(i))}ki=1 aremutually
disjoint faces of P(A).

Theorem 10 If {A(i)}ki=1 are matrices partitioning the block matrix A = [A(1), . . . ,

A(k)], then CNNS(A) = ⊕k
i=1CNNS(A

(i)) and CSAGE(A) = ⊕k
i=1CSAGE(A

(i)).

The following figure illustrates partitioning a matrix A where extP(A) are the
vertices of the truncated icosahedron, and nonextremal terms (marked in red) lay in
the relative interiors of certain pentagonal faces.
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Note that every matrix A admits the trivial partition with k = 1. In fact, a natural
regularity condition (one that we consider in Section 6) would be that A only admits
the trivial partition. Regularity conditions aside, Theorems 9 and 10 can be combined
with known properties of AGE functions to establish new conditions for when the
SAGE and nonnegativity cones coincide.

Theorem 11 Suppose A can be partitioned into faces where (1) simplicial faces con-
tain at most two nonextremal exponents, and (2) all other faces contain at most one
nonextremal exponent. Then CSAGE(A) = CNNS(A).

Proof Let A satisfy the assumptions of Theorem 11 with associated faces {Fi }ki=1 and
column blocks A(i), and fix c in CNNS(A). For i in [k], define the vector c(i) so that
c = ⊕k

i=1c
(i). By Theorem 10, the condition CSAGE(A) = CNNS(A) holds if and only

if CSAGE(A(i)) = CNNS(A(i)) for all i in [k]. Because we assumed that c belongs to
CNNS(A) it suffices to show that each c(i) belongs to CSAGE(A(i)).

Per Proposition 1, any vector c(i) ∈ CNNS(A(i)) cannot have a negative entry c(i)
j

when a(i)
j is extremal in P(A(i)). By assumption, A(i) has at most two nonextremal

terms, and so c(i) ∈ CNNS(A(i)) can have at most two negative entries. If c(i) has at
most one negative entry, then c(i) is an AGE vector. If on the other hand c(i) has two
negative entries c(i)

j , then both of these entries must correspond to nonextremal a j ,

and Fi must be simplicial. This allows us to invoke Theorem 9 on c(i) to conclude
c(i) ∈ CSAGE(A(i)). The result follows. ��

4.2 Simplicial Sign Patterns for SAGEVersus Nonnegativity (Theorem 9)

The proof of Theorem 9 begins by exploiting two key facts about signomials and
SAGE relaxations: (1) that CSAGE(A) and CNNS(A) are invariant under translation of
the exponent set A, and (2) that strong duality always holds when computing fSAGE.
These properties allow us to reduce the problem of checking SAGEdecomposability to
the problem of exactness of a convex relaxation for a signomial optimization problem.

Proof (Theorem 9) Begin by translating A in R
n×m to A ← A− a j1ᵀ where a j is an

arbitrary extremal element ofP(A). Next, permute the columns of A so that a1 = 0.
Fix c in CNNS(A) and define f = Sig(A, c) so that f � ≥ 0. We show that fSAGE = f �,
thereby establishing c ∈ CSAGE(A).

Let N = {i : ci ≤ 0} and E = [m] \ N ; apply Corollary 4 with Proposition 2 to
obtain

fSAGE = inf cᵀv

s.t. v in R
m++ has v1 = 1, and there exist {μi }i∈N∪{1} ⊂ R

n with

vi ln(vi/v j ) ≤ (ai − a j )
ᵀμi for j in E and i in N ∪ {1}. (11)

In order to show fSAGE = f �, we reformulate (11) as the problem of computing f �

by appropriate changes of variables and constraints.
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We begin with a change of constraints. By the assumption that ci ≤ 0 for all
nonextremal ai , the set E satisfies {ai }i∈E ⊂ extP(A). Combine thiswith extremality
of 0 = a1 and the assumption that extP(A) is simplicial to conclude that {ai :
i in E \{1}} are linearly independent. The linear independence of these vectors ensures
that for fixed v we can always choose μ1 to satisfy the following constraints with
equality

v1 ln(v1/v j ) ≤ (a1 − a j )
ᵀμ1 for all j in E .

Therefore we can equivalently reformulate fSAGE as

fSAGE = inf cᵀv

s.t. v in R
m++ has v1 = 1, and there exist {μi }i∈N∪{1} ⊂ R

n

with ln(v j ) = aᵀ
j μ1 for all j in E, and

vi ln(vi/v j ) ≤ (ai − a j )
ᵀμi for j in E, i in N .

Next we rewrite the constraint vi ln(vi/v j ) ≤ (ai − a j )
ᵀμi as ln(vi ) − ln(v j ) ≤

(ai − a j )
ᵀμi by absorbing vi into μi . If we also substitute the expression for ln(v j )

given by the equality constraints, then the inequality constraints become

ln(vi ) ≤ aᵀ
i μi + aᵀ

j (μ1 − μi ) for all j in E, i in N . (12)

We now show that for every i in N , the choice μi = μ1 makes these inequality
constraints as loose as possible.

Toward this end, define ψi (x) = aᵀ
i x +min j∈E {aᵀ

j (μ1 − x)}; note that for fixed i
and μi , the number ψi (μi ) is the minimum over all |E | right hand sides in (12). It is
easy to verify that ψi is concave, and because of this we know that ψi is maximized at
x� if and only if 0 ∈ (∂ψi )(x�). Standard subgradient calculus tells us that (∂ψi )(x) is
precisely the convex hull of vectors ai − ak where k is an index at which the minimum
(over j ∈ E) is obtained. Therefore (∂ψi )(μ1) = conv{ai − a j : j in E}, and this set
must contain the zero vector (unless perhaps ci = 0, in which case the constraints on vi
are inconsequential). Hence maxx∈Rn {ψi (x)} = aᵀ

i μ1, and so inequality constraints
(12) reduce to

ln(vi ) ≤ aᵀ
i μ1 for all i in N . (13)

Since the objective cᵀv is decreasing in vi for i in N , we can actually take the
constraints in (13) to be binding. We established much earlier that vi = exp aᵀ

i μ1 for
i in E . Taking these together we see vi = exp aᵀ

i μ1 for all i , and so

fSAGE = inf{ ∑m
i=1 ci exp a

ᵀ
i μ1 : μ1 in R

n} = f � (14)

as required. ��
Let us now recap how the assumptions of Theorem 9 were used at various stages in

the proof. For one thing, all discussion up to and including the statement of Problem
(11) was fully general; the expression for fSAGE used none of the assumptions of the
theorem. The next step was to use linear independence of nonzero extreme points to
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allow us to satisfy v1 ln(v1/v j ) ≤ (a1 − a j )
ᵀμ1 with equality. The reader can verify

that if we did not have linear independence but we were told that those constraints
were binding at the optimal v�, then we would still have fSAGE = f � under the stated
sign pattern assumption on c. Note how the sign pattern assumption on c was only
really used to replace ln(vi ) ≤ aᵀ

i μ1 from (13) by ln(vi ) = aᵀ
i μi .

4.3 Proof of the Partitioning Theorem (Theorem 10)

The following lemma adapts claim (iv) from Theorem 3.6 of Reznick [42] to signo-
mials. Because the lemma is important for our subsequent theorems, the appendix
contains a more complete proof than can be found in Reznick’s [42]. As a matter of
notation: for any F ⊂ {ai }mi=1, write SigF (A, c) to mean the signomial with exponents
ai in F and corresponding coefficients ci .

Lemma 12 If F is a face of P(A) then SigF (A, c)� < 0 implies Sig(A, c)� < 0.

Proof (Theorem10)Let Ahavepartition A = [A(1), . . . , A(k)],where the submatrices
A(i) have sizes n ×mi and

∑k
i=1 mi = m. It is clear from the definition of the SAGE

cone thatCSAGE(A) = ⊕k
i=1CSAGE(A

(i)). The bulk of this proof is to show thatCNNS(A)

admits the same decomposition.
Let f = Sig(A, c) for some c inR

m . The vector c is naturally decomposed into c =
⊕k

i=1c
(i) where c(i) ∈ R

mi align with A(i). For each i in [k] define fi = Sig(A(i), c(i))
so that f = ∑k

i=1 fi . If any f �
i is negative, then Lemma 12 tells us that f � must also

be negative. Meanwhile if all f �
i are nonnegative, then the same must be true of

f � ≥ ∑k
i=1 f �

i . The result follows. ��

4.4 Corollaries for Signomial Programming

Signomial minimization is naturally related via duality to checking signomial non-
negativity. Thus we build on groundwork laid in Sects. 3 and 4 to obtain consequences
for signomial minimization.

Corollary 13 Assume P(A) is simplicial with a1 = 0, and that nonzero nonextremal
ai have ci ≤ 0. Then either fSAGE = f �, or f � ∈ ( fSAGE, c1).

Proof It suffices to show that fSAGE < f � implies f � < c1. This follows as the contra-
positive of the following statement: “If f � ≥ c1, then by Theorem 9 the nonnegative
signomial f − f � is SAGE, which in turn ensures fSAGE = f �.” ��

Now we consider constrained signomial programs. Starting with problem data
( f , g) where f = Sig(A, c), g j = Sig(A, g j ) for j in [k], a1 = 0, consider the
problem of computing

( f , g)�
.= inf{ f (x) : x in R

n satisfies g(x) ≥ 0}. (15)
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It is evident1 that we can relax the problem to that of

( f , g)SAGE
.= inf{ cᵀv : v in CSAGE(A)† satisfies v1 = 1 and Gᵀv ≥ 0} ≤ ( f , g)�

where G is the m × k matrix whose columns are the g j .

Corollary 14 Suppose P(A) is simplicial with vertex a1 = 0, and that when ai is
nonextremal we have (i) cᵀv is decreasing in vi , and (ii) each gᵀ

j v is increasing in vi .
Then ( f , g)SAGE = ( f , g)�.

Proof (sketch) The claim that ( f , g)SAGE = ( f , g)� can be established by a change-
of-variables and change-of-constraints argument of the same kind used in the proof
of Theorem 9.

Suffice it to say that rather than using Corollary 4 to justify removing constraints
from the dual without loss of generality, one can simply throw out those constraints
to obtain some ( f , g)′ with ( f , g)′ ≤ ( f , g)SAGE. One then shows ( f , g)′ = ( f , g)�

to sandwich ( f , g)� ≤ ( f , g)′ ≤ ( f , g)SAGE ≤ ( f , g)�. ��

4.5 Finite Error in SAGE Relaxations

This section’s final theorem directly considers SAGE as a relaxation scheme for signo-
mial minimization. It exploits the primal formulation for fSAGE to establish sufficient
conditions under which SAGE relaxations can only exhibit finite error.

Theorem 15 Suppose 0 ∈ P(A) and there exists an ε > 0 so that (1+ ε)a j belongs
toP(A) for all nonextremal a j . Then f = Sig(A, c) is bounded below if and only if
fSAGE is finite.

The requirements Theorem 15 imposes on the Newton polytope are significantly
weaker than those found elsewhere in this work. Theorem 15 is especially notable
as we do not know of analogous theorems in the literature on SOS relaxations for
polynomial optimization.

Proof (Theorem 15) Let f = Sig(A, c) have a1 = 0 and f � > −∞. We may assume
without loss of generality that c1 = 0. Use E = {i : ai nonzero, extremal} to denote
indices of extremal exponents of f , excluding the possibly extremal exponent a1 = 0.
The desired claim holds if there exists a positive constant γ so that the translate
fγ = f + γ is SAGE.
Define ĉ = c + γ e1 as the coefficient vector of fγ . Because f � > −∞ we have

ci = ĉi ≥ 0 for every i in E (Proposition 1). Let N denote the set of indices i for
which ĉi < 0. For each such index i ∈ N we define the vector ĉ(i) in R

m by

ĉ(i)
j =

⎧
⎪⎨

⎪⎩

ĉi if j = i

ĉ j/|N | if j ∈ [m] \ N

0 if j ∈ N \ {i}
.

1 See Section 3.4 of [7].
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Certainly,
∑

i∈N ĉ(i) = ĉ and ĉ(i)\i is nonnegative (in particular ĉ(i)
1 = γ /|N | is posi-

tive).
Now we build the vectors ν(i) for i in N . Because N is contained within [m] \ E ,

we have that each i in N satisfies (1 + ε)ai in P(A) for some positive ε. Therefore
for i in N , the vector ai is expressible as a convex combination of extremal exponents
and the zero vector. Let (λ

(i)
j ) j∈E∪{1} be positive convex combination coefficients so

that ai = ∑
j∈E∪{1} λ

(i)
j a j .

Now define the vector ν(i) in R
[m]\i by ν

(i)
j = λ

(i)
j for j in E ∪ {1}, and ν

(i)
j = 0

for all remaining indices. Each ν(i) is nonnegative, satisfies ν
(i)
1 > 0, and belongs to

the kernel of [A\i − ai1ᵀ]. Because ν
(i)
1 is positive, the quantity D(ν(i), ĉ(i)\i ) can be

made to diverge to −∞ by sending γ to ∞. It follows that there exists a sufficiently
large M so that γ ≥ M implies

D
(
ν(i), eĉ(i)\i

)
− ĉi ≤ 0 for all i in N . (16)

Hence for sufficiently large γ , we have ĉ(i) in CAGE(A, i) for all i in N– and the result
follows. ��

5 Certifying Global Nonnegativity of Polynomials

Throughout this section we write p = Pol(A, c) to mean that p takes values p(x) =∑m
i=1 ci x

ai . We refer to polynomials in this way to reflect our interest in sparse
polynomials. Vectors ai are sometimes called terms, where a term is even if ai belongs
to (2N)n . To an n-by-m matrix of nonnegative integers A, we associate the sparse
nonnegativity cone

CNNP(A)
.= {c : Pol(A, c)(x) ≥ 0 for all x in R

n}.

Beginning with Sect. 5.1 we introduce polynomial SAGE certificates. We shall see that
polynomial SAGE certificates offer a tractable avenue for optimizing over a subset of
CNNP(A), where the complexity depends on A exclusively through the dimensions n
and m.

Section 5.2 demonstrates how our study of SAGE signomials yields several corol-
laries in this new polynomial setting. Perhaps most prominently, Sect. 5.2 implies that
a polynomial admits a SAGE certificate if and only if it admits a SONC certificate.
The qualitative relationship between SAGE and SONC as proof systems is explained
in Sects. 5.3, and 5.4 addresses how some of our corollaries compare to earlier results
in the SONC literature.

In Sect. 5.5, we compare polynomial SAGE certificates to the widely studied Sums-
of-Squares certificates. We conclude with Sect. 5.6, which outlines how to use SAGE
polynomials to obtain a hierarchy for constrained polynomial optimization.
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5.1 Signomial Representatives and Polynomial SAGE Certificates

To a polynomial p = Pol(A, c) we associate the signomial representative q =
Sig(A, ĉ) with

ĉi =
{

ci if ai is even

−|ci | otherwise
. (17)

By a termwise argument, we have that if the signomial q is nonnegative on R
n , then

the polynomial p must also be nonnegative on R
n . Moving from a polynomial to

its signomial representative often entails some loss of generality. For example, the
univariate polynomial p(x) = 1 + x − x3 + x4 never has both “+x < 0” and
“−x3 < 0,” and yet the inner terms appearing in the signomial representative q(y) =
1 − exp(y) − exp(3y) + exp(4y) are both negative.

There is a natural condition A and the sign pattern of c where passing to the
signomial representative is at no loss of generality. Specifically, if there exists a point
x0 ∈ (R \ {0})n where ci x

ai
0 ≤ 0 for all ai /∈ (2N)n , then Pol(A, c) is nonnegative

if and only if its signomial representative is nonnegative. We call such polynomials
orthant-dominated. Checking if a polynomial is orthant-dominated is a simple task.
Given A and c, define b by bi = 0 if ci ≤ 0 or ai is even, and bi = 1 if otherwise.
Then assuming every ci 	= 0, the polynomial Pol(A, c) is orthant-dominated if and
only if the system Aᵀs = b (mod 2) has a solution over s ∈ F

n
2.

In what should feel natural, we call p = Pol(A, c) a SAGE polynomial if its sig-
nomial representative q = Sig(A, ĉ) is a SAGE signomial. Subsequently, we define
a polynomial SAGE certificate for p = Pol(A, c) as a set of signomial AGE certifi-
cates {(ĉ(i), ν(i))}mi=1 where ĉ

.= ∑m
i=1 ĉ

(i) defines the signomial representative for
p. Because the signomial SAGE cone contains the nonnegative orthant, the cone of
coefficients for SAGE polynomials admits the representation

CPOLYSAGE(A) = {c : there exists ĉ in CSAGE(A) where ĉ ≤ c

and ĉi ≤ −ci for all i with ai not in (2N)n}. (18)

We use this representation to obtain the following theorem.

Theorem 16 Let L : R
� → R

m be an injective affine map, A ∈ N
n×m be a matrix of

exponents (n ≤ m), and h be a vector in R
�. An ε-approximate solution to

inf
z∈R�

{hᵀz : L(z) ∈ CPOLYSAGE(A)} (19)

can be computed in time O(p(m) log(1/ε)) for a polynomial p.

Proof We appeal to standard results on interior point methods (IPMs) for conic pro-
gramming. The task is to show that CPOLYSAGE(A) can be expressed as a projection of a
convex cone “K ,” which possesses a tractable self-concordant barrier with a com-
plexity parameter ϑ bounded by a polynomial in m. From there, the meaning of
“ε-approximate” and its relationship to the polynomial “p” depends highly on the
details of a given IPM; relevant sources for general conic IPMs include [33, §4] and
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[53, §5]. In particular we rely on algorithms for optimizing over the exponential cone
Kexp = cl{(u, v, w) : v exp(u/v) ≤ w, v > 0}, and defer to [38,47,52] for formal
meanings of “ε-approximate” in our context.

For each i ∈ [m], let Mi denote a matrix with “mi” columns spanning ker(A\i −
ai1ᵀ) ⊂ R

[m]\i and define the cone Ki = {(u, v, t) : u, v ∈ R
[m]\i
+ , D (u, ev) ≤ t}.

In terms of Mi and Ki we can reformulate the i th signomial AGE cone as

{
c(i) : some w(i) ∈ R

mi satisfies
(
Miw

(i), ĉ(i)\i , ĉ(i)
i

)
∈ Ki

}
.

Since Ki can be represented with m − 1 copies of Kexp and one linear inequality over
m − 1 additional scalar variables, the preceding display tells us that CSAGE(A) can be
represented with m(m − 1) copies of Kexp, m linear inequalities, and O(m2) scalar
auxiliary variables. Combine this with the representation (18) to find that the feasible
set for (19) can be described with O(m2) exponential cone constraints, O(m) linear
inequalities, and O(� +m2) ∈ O(m2) scalar variables. As the exponential cone has a
tractable self-concordant barrier with complexity parameter ϑexp = 3, CPOLYSAGE(A) has
a tractable self-concordant barrier with complexity parameter O(m2). ��

5.2 Simple Consequences of Our Signomial Results

Section 5.1 suggested that the signomial SAGE cone is more fundamental than the
polynomial SAGE cone. This section serves to emphasize that idea, by showing how
our study of the signomial SAGE cone quickly produces results in the polynomial
setting. The following corollaries are obtained by viewing Theorems 9 and 11 through
the lens of orthant-dominance.

Corollary 17 If exponent vectors A induce a simplicial Newton polytope P(A), and
nonextremal exponents are linearly independent mod 2, then CPOLYSAGE(A) = CNNP(A).

Corollary 18 Suppose A belonging to p = Pol(A, c) can be partitioned into faces
where (1) each simplicial face induces an orthant-dominated polynomial with at most
two nonextremal terms, and (2) all other faces have at most one nonextremal term.
Then p is nonnegative if and only if it is SAGE.

Unfortunately, it is not possible to reduce the dependence of Corollary 18 on the
coefficient vector c of the polynomial p. The obstruction is that taking a signomial
representative is not without loss of generality, as the case A = [0, 1, 3, 4] shows.

To more deeply understand the polynomial SAGE cone it is necessary to study its
extreme rays, as well as its sparsity preservation properties. We now show how this
can be done by leveraging Theorems 3 and 5 from Sect. 3.

Theorem 19 Defining the cone of “AGE polynomials” for exponents A and index k
as

CPOLYAGE (A, k)
.= {c : Pol(A, c) is globally nonnegative, and

c\k ≥ 0, ci = 0 for all i 	= k with ai /∈ (2N)n}, (20)
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we have
∑m

k=1 C
POLY
AGE (A, k) = CPOLYSAGE(A).

Proof The inclusion CPOLYAGE (A, k) ⊂ CPOLYSAGE(A) is obvious, since polynomials satisfy-
ing (20) have AGE signomial representatives. We must show the reverse inclusion
CPOLYSAGE(A) ⊂ ∑m

k=1 C
POLY
AGE (A, k).

Given a polynomial p = Pol(A, c), testing if c belongs to CPOLYSAGE(A) will reduce
to testing if ĉ (given by Equation (17)) belongs to CSAGE(A). Henceforth let ĉ ∈
CSAGE(A) be fixed and set N = {i : ĉi < 0}. By Theorem 3, there exist vectors
{ĉ(i) ∈ CAGE(A, i)}i∈N where ĉ(i)

i = ĉi < 0 for each i and ĉ(i)
j = 0 for all j ∈ N \ {i}.

The sign patterns here are important: ĉ(i) is supported on the index set {i}∪ ([m] \ N ),
and ĉ(i)

j ≥ 0 for all j in [m]\N . By construction of ĉ, any index j in [m]\N corresponds

to an exponent vector a j in (2N)n . Therefore the carefully chosen vectors {ĉ(i)}i∈N
define not only AGE signomials, but also AGE polynomials p̂i = Pol(A, ĉ(i)). Lastly,
for each index i ∈ N set c(i) by c(i)\i = ĉ(i)\i , and c(i)

i = −1 · sign(ci ) · ĉ(i)
i . The

resulting polynomials pi = Pol(A, c(i)) inherit the AGE property from p̂i , and sum to
p. As we have decomposed our SAGE polynomial into an appropriate sum of “AGE
polynomials,” the proof is complete. ��
Corollary 20 Any SAGE polynomial can be decomposed into a sum of AGE polyno-
mials in a manner that is cancelation-free.

Proof The cancelation-free decomposition is given constructively in the proof of The-
orem 19. ��
Corollary 21 If c ∈ R

m generates an extreme ray ofCPOLYSAGE(A), then {ai : i ∈ [m], ci 	=
0} is either a singleton or a simplicial circuit.

Proof In view of Theorem 19, it suffices to show that for fixed k the extreme rays of
CPOLYAGE (A, k) are supported on single coordinates, or simplicial circuits. This follows
from Theorem 5, since vectors in CPOLYAGE (A, k) are— up to a sign change on their

kth component—in 1-to-1 correspondence with vectors in CAGE( Â, k), where Â is
obtained by dropping suitable columns from A. ��

5.3 AM/GM Proofs of Nonnegativity, Circuits, and SAGE

In 1989, Reznick defined an agiform as any positive multiple of a homogeneous
polynomial f = Pol([A,β], [λ,−1]ᵀ), where A ∈ (2N)n×m and β = Aλ for a
weighting vector λ ∈ �m [42]. Agiforms have AGE signomial representatives, which
follows by plugging ν = λ into (2). Reznick’s investigation concerned extremality
in the cone of nonnegative polynomials and identified a specific subset of simplicial
agiforms which met the extremality criterion [42, Theorem 7.1].

Agiform-like functions were later studied by Pantea, Koeppl, and Craciun for anal-
ysis of biochemical reaction networks [37, Proposition 3]. Pantea et al. spoke in terms
of posynomials f (x) = ∑k+1

i=1 ci x
ai where all ci ≥ 0; a posynomial f was said to

dominate the monomial xβ if x �→ f (x) − xβ was nonnegative on R
n+. If we adopt
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the notation where �(c,λ) = ∏k+1
i=1 (ci/λi )λi , [37, Theorem 3.6] says that in the case

of a simplicial Newton polytope (i.e., k = n), monomial domination is equivalent to
1 ≤ �(c,λ) where λ gives the barycentric coordinates for β ∈ P(A).

A few years following Pantea et al., Iliman and de Wolff suggested taking sums
of nonnegative circuit polynomials, which are globally nonnegative polynomials f =
Pol([A,β], [c, b]ᵀ) where {ai }n+1

i=1 ∪ {β} form a simplicial circuit [17]. Iliman and
de Wolff’s Theorem 1.1 states that if all ai are even, f is a circuit polynomial, and
β ∈ P(A) has barycentric coordinates λ ∈ �n+1, then f nonnegative if and only if

either |b| ≤ �(c,λ) and β /∈ (2N)n or − b ≤ �(c,λ) and β ∈ (2N)n . (21)

It is clear that [17, Theorem1.1] extends [37, Theorem3.6], to account for sign changes
of b · xβ and to impose no scaling on |b|.

The approach of taking sums of nonnegative circuit polynomials is now broadly
known as “SONC.” Prior formulations for the SONC cone work by enumerating every
simplicial circuit which could possibly be of use in a SONC decomposition (see [11,
§5.2], and subsequently [55,56]). The circuit enumeration approach is extremely inef-
ficient, as Example 22 shows an m-term polynomial can contain as many as 2(m−1)/2

simplicial circuits.

2

2 2

10

10 10

2

22

14

1414

Example 22 Let d be divisible by 2 and n. Construct an n × 2n matrix A by setting
a2i−1 and a2i to distinct points in N

n ∩ d�n adjacent to dei . Then for large enough
d, β = d1/n will be contained in exactly 2n simplices. Above: (d, n) = (12, 3), and
a projection of (d, n) = (16, 4).

Circuit enumeration is not merely a theoretical issue. When using the heuristic circuit-
selection technique from [45], Seidler and deWolff’s POEM software package fails to
certify nonnegativity of the AGE polynomial f (x, y) = (x−y)2+x2y2 andmoreover
only returns a bound f � ≥ −1 [46].

Of course- Corollary 21 tells us that a polynomial admits a SAGE certificate if
and only if it admits a SONC certificate. This is good news, since Theorem 16 says
we can optimize over this set in time depending polynomially on m. In particular,
we may avoid SONC’s severe problems of circuit enumeration and circuit selection.
The qualitative distinction here is that while Pantea et al. and Iliman and de Wolff
consider the weights λ as fixed (given by barycentric coordinates), the analogous
quantity ν in the SAGE approach is an optimization variable. At a technical level,
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the relative entropy formulation (2) affords a joint convexity whereby SAGE can
search simultaneously over coefficients c(i) and weighting vectors ν(i). As our proof
of Theorem 16 points out, we can be certain that [A\i − ai1ᵀ]ν(i) = 0 holds in exact
arithmetic simply by defining ν(i) ← Miw

(i) for the indicated matrix Mi .

5.4 Comparison to Existing Results in the SONC Literature

Due to the equivalence of the class of nonnegative polynomials induced by the SAGE
and the SONC approaches, some of our results have parallels in the SONC literature.

Corollary 17 is not stated in the literature, though it may be deduced from [17,
Corollary 7.5]. Iliman anddeWolff prove [17,Corollary 7.5] by signomializing g(x) =
f (exp x) and introducing an additional regularity condition so that ∇g(x) = 0 at
exactly one x ∈ R

n . Our proof of Corollary 17 stems from Theorem 9, which employs
a convex duality argument applicable to constrained signomial optimization problems
in the manner of Corollary 14.

Wang showed that nonnegative polynomials in which at most one term ci xai takes
on a negative value at some x ∈ R

n (either ci < 0 or ai /∈ (2N)n) are SONC poly-
nomials [55, Theorem 3.9]. This result can be combined with the definition of AGE
polynomial given in Theorem 19 in order to prove a weaker form of Corollary 21,
where all ai belong to extP(A) or intP(A). We emphasize that Corollary 21 is not
responsible for the major efficiency gains of SAGE from Theorem 16; the SONC for-
mulation in [55, §5] uses 2(m−1)/2 circuits for the m-term polynomials from Example
22.

Finally, in a result that was announced contemporaneously to the original submis-
sion of the present paper, Wang showed that summands in a SONC decomposition
of a polynomial f = Pol(A, c) may have supports restricted to A without loss of
generality [56, Theorem 4.2]. In light of the equivalence between the class of SAGE
polynomials and of SONC polynomials, this result may be viewed as a weaker ana-
log of our Corollary 20; specifically, [56, Theorem 4.2] shows SONC certificates are
sparsity-preserving but it does not provide a cancelation-free decomposition.

The distinctions between our polynomialCorollaries 17 and18versus our signomial
Theorems 9 and 11 make clear that polynomial results should not be conflated with
signomial results. With the exception of Sect. 5, our setup and results in this paper
pertain to the class of signomials, which in general can have ai ∈ (R \ Q)n . The
developments in the SONC literature only consider polynomials and employ analysis
techniques of an algebraic naturewhich rely on integrality of exponents in fundamental
ways (c.f. [56, Theorem 4.2]). In contrast, our techniques are rooted in convex duality
and are applicable to the broader question of certifying signomial nonnegativity.

5.5 SAGE and SOS

TheSOSapproach to polynomial nonnegativity considers polynomials f in n variables
of degree 2d, and attempts to express f (x) = L(x)ᵀPL(x) where P is a PSD matrix

and L : R
n → R(n+d

d ) is a lifting which maps x to all monomials of degree at-
most d evaluated at x [27,39,50]. The identity f (x) = L(x)ᵀPL(x) can be enforced
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with linear equations on the coefficients of f and the entries of P , so deciding SOS-
representability reduces to a semidefinite program.

Because it is extremely challenging to solve semidefinite programs at scale, several
modifications to SOS have been proposed to offer reduced complexity. Kojima et. al
built on earlier work of Reznick [41] to replace the lifting “L” appearing in the original
SOS formulation with a smaller map using fewer monomials [24]. Their techniques
had meaningful use-cases, but could fail to perform any reduction in some very simple
situations [24, Proposition 5.1]. Subsequently, Waki et. al introduced the correlative
sparsity heuristic to induce structured sparsity in the matrix variable P [54]. Shortly
thereafter Nie and Demmel suggested replacing the standard lifting by a collection
of smaller {Li }i , so as to express f (x) = ∑

i Li (x)ᵀPi Li (x) with order
(k+d

d

)
PSD

matrices Pi for some k � n [34]. Very recently, Ahmadi and Majumdar suggested
one use the standard lifting together with a scaled diagonally dominant matrix P of
order

(n+d
d

)
;2 these “SDSOS polynomials” are precisely those polynomials admitting

a decomposition as a sum of binomial squares [2].
Each of these SOS-derivedworks suffers froma drawback that SOSdecompositions

may require cancelation on coefficients of summands fi = g2i as one recovers f =
∑

i fi . As a concrete example, consider f (x, y) = 1 − 2x2y2 + x8/2 + y8/2; this
polynomial is nonnegative (in fact, AGE) and admits a decomposition as a sum of
binomial squares. The trouble is that to decompose f as a sum of binomial squares,
the summands fi = g2i require additional terms+x4y4 and−x4y4. By contrast, SAGE
certificates need only involve the original monomials in f , and onemay take summand
AGE polynomials to be cancelation-free with no loss of generality (Corollary 20).
The SAGE approach also has the benefit of being formulated with a relative entropy
program of size O(m2) (Theorem 16), while SOS-derived works have complexity
scaling exponentially with a polynomial’s degree d.

We make two remarks in closing. First, it is easy to verify that every binomial
square is an AGE polynomial, and so SAGE can certify nonnegativity of all SDSOS
polynomials. Second, it is well known that proof systems leveraging the AM/GM
inequality (SAGE among them) can certify nonnegativity of some polynomials which
are not SOS. A prominent example here is the Motzkin form f (x, y, z) = x2y4 +
x4y2 + z6 − 3x2y2z2.

5.6 Extending SAGE Polynomials to a Hierarchy

We conclude this section by discussing how to obtain hierarchies for constrained
polynomial optimization problems, in a manner which is degree-independent and
sparsity preserving. Adopt the standard form (15) for minimizing a polynomial f
subject to constraint polynomials {gi }ki=1. Here, all polynomials are over a common
set of exponents A ∈ N

n×m , with a1 = 0 and n ≤ m. Our development is based on a
hierarchy for signomials that is described in [7, §3.3].

2 A symmetric matrix P is scaled diagonally dominant if there exists diagonal D � 0 so that DPDᵀ is
diagonally dominant. Such matrices can be represented as a sum of 2 × 2 PSD matrices with appropriate
zero padding.
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Consider operatorsA andC taking valuesA (Pol(A, c)) = A andC (Pol(A, c)) = c
respectively. We shall say our SAGE polynomial hierarchy is indexed by two param-
eters: p and q. The parameter p controls the complexity of Lagrange multipliers;
when p = 0, the Lagrange multipliers are simply λi ≥ 0. For general p, the
Lagrange multipliers are SAGE polynomials over exponents A′ .= A (Pol(A, 1)p).
The parameter q controls the number of constraints in the nonconvex primal prob-
lem: H = {hi }kqi=1 are obtained by taking all q-fold products of the gi . Once the
Lagrangian L = f − γ − ∑

h∈H h · sh is formed, it will be a polynomial over expo-
nents A′′ .= A (

Pol(A, 1)p+q
)
. By the minimax inequality we have

( f , g)(p,q) .= sup
γ,{sh}h∈H

{ γ : C (L) ∈ CPOLYSAGE(A
′′) and

C (sh) ∈ CPOLYSAGE(A
′)∀ h ∈ H} ≤ ( f , g)�.

Following Theorem 16, the above can be solved in time polynomial in m, k for each
fixed p, q. As p and q increase, we obtain improved bounds at the expense of an
increase in computation. Mirroring [7], one can appeal to representation theorems
from the real algebraic geometry literature [25,29,44] to prove that this hierarchy can
provide arbitrarily accurate lower bounds for sparse polynomial optimization problems
in which the constraint set is Archimedean (for example, if all variables have explicit
finite upper and lower bounds).

Our broader message here—beyond results on convergence to the optimal value
of specific hierarchies—is that the above construction qualitatively differs from other
hierarchies in the literature, because the optimization problems encountered at every
level of our construction depend only on the nonnegative lattice generated by the
original exponent vectors A. The theoretical underpinnings of this sparsity-preserving
hierarchy trace back to the decomposition result given by Theorem 3. Thus, it is
possible to obtain entire families of relative entropy relaxations that are sparsity-
preserving, which reinforces our message about the utility of SAGE-based relative
entropy optimization for sparse polynomial problems.

6 Toward Necessary and Sufficient Conditions for SAGE versus
Nonnegativity

We conclude this paper with a discussion on the extent to which our results tightly
characterize the distinction between SAGE and nonnegativity for signomials. This
section is split into three parts. In the first part, we describe a process for identifying
cases where CSAGE(A) � CNNS(A). This process is illustrated with several examples
which suggest that our results from Sect. 4 are essentially tight. Section 6.2 presents
a formal conjecture regarding the ways in which our results might be improved, and
Sect. 6.3 provides a novel dual formulation for when CSAGE(A) = CNNS(A).
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6.1 Constructing Examples of Non-Equality

Given a matrix of exponent vectors A, we are interested in finding a coefficient vector
c so that f = Sig(A, c) satisfies fSAGE < f �. If such c exists, then it is evident that
CSAGE(A) 	= CNNS(A).

The naïve approach to this process would be to carefully construct signomials
where the infimum f � is known by inspection, to compute fSAGE, and then to test if
the measured value | fSAGE− f �| is larger than would be possible from rounding errors
alone. A serious drawback of this approach is that it can be quite difficult to construct
A and c where f � is apparent, and yet {ai : ci 	= 0} satisfy the properties for the
conjecture under test.

To address this challenge, we appeal to the idea alluded to in Sect. 2 that SAGE
provides a means of computing a sequence of lower bounds ( f (�)

SAGE)�∈N. For details
on this “unconstrained SAGE hierarchy,” we refer the reader to [7]. For our purposes,
suffice it to say that

f (�)
SAGE

.= sup{γ : Sig(A, 1)�( f − γ ) is SAGE }

defines a non-decreasing sequence bounded above by f �. Thus, while we cannot
readily check if | fSAGE − f �| � 0, we can compute a few values of f (�)

SAGE for � > 0,

and check if | f (0)
SAGE − f (�)

SAGE| � 0.
The remainder of this section goes through case studies in which we probe the

sensitivity our earlier theorems’ conclusions to their stated assumptions. All compu-
tation was performed with a late 2013 MacBook Pro with a 2.4GHz i5 processor,
using CVXPY [1,9] as an interface to the conic solver ECOS [10,47].3 Numerical pre-
cision is reported to the farthest decimal point where the primal and dual methods for
computing f (�)

SAGE agree.

Example 23 We test here whether it is possible to relax the assumption of simpli-
cial Newton polytope in Theorem 9. Since every Newton polytope in R is trivially
simplicial, the simplest signomials available to us are over R

2. With that in mind,
consider

A =
[
0 2 1 0 0 2
0 0 0 2 1 2

]

.

This choice of A is particularly nice, because were it not for the last column a6 =
[2, 2]ᵀ, we would very clearly have CSAGE(A) = CNNS(A). We test tested a few values
for c before finding

c = [0, 3,−4, 2,−2, 1]ᵀ,

which resulted in f (0)
SAGE ≈ −1.83333, and f (1)

SAGE ≈ −1.746505595 = f �. Because
the absolute deviation | fSAGE − f �| ≈ 0.08682 is much larger than the precision to

3 See github.com/rileyjmurray/sigpy or data.caltech.edu/records/1427 for
code.
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which we solved these relaxations, we conclude that CSAGE(A) 	= CNNS(A) for this
choice of A.

Example 24 Let us reinforce the conclusion from Example 23. Applying a 180 degree
rotation about the point (1,1) to the columns of A, we obtain

A =
[
0 2 0 2 1 2
0 0 2 2 2 1

]

.

We then choose the coefficients in a manner informed by the theory developed in
Sect. 6.3

c = [0, 1, 1, 1.9,−2,−2]ᵀ

which subsequently defines f = Sig(A, c). In this case the primal formulation for
fSAGE is infeasible, and so f (0)

SAGE = −∞. Meanwhile, the second level of the uncon-

strained hierarchy produces f (1)
SAGE ≈ −0.122211863 = f �. Thus in a very literal

sense, the gap | fSAGE − f �| could not be larger.

We know from Theorem 11 that any signomial with at most four terms is nonnega-
tive if and only if it is SAGE. It is natural to wonder if in some very restricted setting
(e.g., univariate signomials) the SAGE and nonnegativity cones would coincide for
signomials with five or more terms; Example 25 shows this is not true in general.

Example 25 For f = Sig(A, c)with A = [0, 1, 2, 3, 4] and c = [1,−4, 7,−4, 1]ᵀ,
we have f (0)

SAGE ≈ −0.3333333 and f (1)
SAGE ≈ 0.2857720944. Per the affine-invariance

invariance properties of the SAGE and nonnegativity cones, this examples shows
CSAGE(A) is a strict subset of CNNS(A) for every 1 × 5 matrix A with equispaced
values.

Together, Examples 23 through 25 demonstrate there are meaningful senses in
which Theorems 9 through 11 cannot be improved upon.

6.2 A Conjecture, Under Mild Regularity Conditions

Despite the conclusion in the previous subsection, there are settingswhenwe can prove
CSAGE(A) = CNNS(A) in spite of A not satisfying the assumptions of Theorem 11. For
example, one case in which SAGE equals nonnegativity is when A = [0, I, D]where
D is a diagonal matrix with diagonal entries in (0, 1). Here one proves equality as
follows: for each possible sign pattern of c ∈ CNNS(A), there exists a lower dimensional
simplicial face F of P(A) upon which we invoke Theorem 9, and for which the
remaining exponents (those outside of F) have positive coefficients. We know that
the signomial induced by the exponents outside of F is trivially SAGE, and so by
Theorem 10 we conclude c ∈ CSAGE(A). As this holds for all possible sign patterns
on c in CNNS(A), we have CSAGE(A) = CNNS(A). However, this case is somewhat
degenerate, and we wish to exclude it in our discussion via some form of regularity
on A.
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The most natural regularity condition on A would be that it admits only the trivial
partition, and indeed we focus on the case when every ai belongs to either extP(A)

or intP(A). In this setting, we have the following corollary of Theorem 11.

Corollary 26 IfP(A) is full dimensional with either

1. at most one interior exponent, or
2. n + 1 extreme points and at most two interior exponents

then CSAGE(A) = CNNS(A).

Along with this corollary, we present a conjecture for the reader’s consideration.

Conjecture 27 IfP(A) has every ai in either extP(A) or intP(A), but A does not
satisfy the hypothesis of Corollary 26, then CSAGE(A) 	= CNNS(A).

Note that when A satisfies the stated assumptions and further has some ai = 0 in
the interior, Theorem 15 ensures that f = Sig(A, c) can have fSAGE deviate from f �

only by a finite amount. To overcome a potential obstacle posed by this result in the
resolution of Conjecture 27, one can also consider modifying the hypotheses of the
conjecture to require that all ai lie in the relative interior of the Newton polytope.

To finish discussion on Conjecture 27, we provide empirical support with the fol-
lowing examples.

Example 28 Let f be a signomial in two variables with

[
A
cᵀ

]

=
⎡

⎣
0 1 0 0.30 0.21 0.16
0 0 1 0.58 0.08 0.54

33.94 67.29 1 38.28 −57.75 −40.37

⎤

⎦ .

Then fSAGE = −24.054866 < f (1)
SAGE = −21.31651. This example provides the

minimum number of interior exponents needed to be relevant to Conjecture 27 in the
simplicial case.

Example 29 Let f be a signomial in two variables with

[
A
cᵀ

]

=
⎡

⎣
0 1 0 2 0.52 1.30
0 0 1 2 0.15 1.38

0.31 0.85 2.55 0.65 −1.48 −1.73

⎤

⎦ ,

then fSAGE = 0.00354263 < f (1)
SAGE = 0.13793126. This signomial has the minimum

number of interior exponents needed to be relevant to Conjecture 27 in the nonsim-
plicial case.

6.3 A Dual Characterization of SAGEVersus Nonnegativity

In this section, we provide a general necessary and sufficient dual characterization in
terms of certain moment-type mappings for the question of CSAGE(A) = CNNS(A). To
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establish this dual characterization we use some new notation. Given two vectors u,
v the Hadamard product w = u ◦ v has entries wi = uivi ; this is extended to allow
sets in either argument in the same manner as the Minkowski sum. The operatorR(·)
returns the range of a matrix.

We begin with the following proposition (proven in the appendix).

Proposition 30 If A has a1 = 0, then the following are equivalent:

1. For every vector c, the function f = Sig(A, c) satisfies f � = fSAGE.
2. CNNS(A) = CSAGE(A).
3. {v : v1 = 1, v in CSAGE(A)†} ⊂ cl conv expR(Aᵀ).

Our dual characterization consists of two new sets, both parameterized by A. The
first of these sets relates naturally to the third condition in Proposition 30. Formally,
the moment preimage of some exponent vectors A is the set

T (A)
.= log cl conv expR(Aᵀ).

Here, we extend the logarithm to include log 0 = −∞ in the natural way. The second
set appearing in our dual characterization is defined less explicitly. For a given A, we
say that S(A) is a set of SAGE-feasible slacks if f = Sig(A, c) has

fSAGE = inf{cᵀ exp y : y inR(Aᵀ) + S(A)}

for every c in R
m .

Theorem 31 Let A have a1 = 0, and let S(A) be any set of SAGE-feasible slacks over
exponents A. Then CSAGE(A) = CNNS(A) if and only if S(A) ⊂ T (A).

Proof (Theorem 31) To keep notation compact write U = R(Aᵀ) and S = S(A).
Also, introduce W = {v : v1 = 1, v in CSAGE(A)†} to describe the feasible set to the
dual formulation for fSAGE. By the supporting-hyperplane characterizations of convex
sets, the definitions of S and W ensure

W = cl conv exp(U + S).

Thus by the equivalence of 1 and 3 in Proposition 30, it follows that all SAGE relax-
ations will be exact if and only if exp(U + S) ⊂ cl conv expU . We apply a pointwise
logarithm to write the latter condition as U + S ⊂ log cl conv expU .

Now we prove that T
.= log cl conv expU is invariant under translation by vectors

in U . It suffices to show that exp(v + T ) = exp T for all vectors v in U . Fixing v in
U we have

exp(v + T ) = exp(v) ◦ exp(T )

= exp(v) ◦ cl conv exp(U )

= cl conv exp(v +U )

= cl conv exp(U ) = exp(T )
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as claimed. This translation invariance establishes that U + S ⊂ log cl conv expU is
equivalent to S ⊂ log cl conv expU , and in turn that condition 1 of Proposition 30
holds if and only if S ⊂ log cl conv expU . The claim now follows by the equivalence
of 1 and 2 in Proposition 30. ��

It is the authors’ hope that Theorem 31 may help future efforts to resolve Con-
jecture 27. A starting point in understanding the moment preimage could be to use
cumulant generating functions fromprobability theory. For constructing sets of SAGE-
feasible slacks, one might use a change-of-variables argument similar to that seen in
the proof of Theorem 9.
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7 Appendix

7.1 Proof of Lemma 8

Denote suppB(λ) = {b j : j ∈ [d], λ j 	= 0}. The proof is constructive, where
there is nothing to prove when suppB λ is simplicial. Suppose then that λ ∈ � has
nonsimplicial suppB(λ). We show that it is possible to decompose λ = zλ(1) + (1 −
z)λ(2) for some z ∈ (0, 1) and λ(i) ∈ � where suppλ(i)

� suppλ. It should be clear
that if this is possible, then the process may be continued in a recursive way if either
suppB(λ(i)) are nonsimplicial, and so the claim would follow.

The statement “λ ∈ �” means that h may be expressed as a convex combination
of vectors in suppB(λ), and so by Minkowski-Carathéodory, there exists at least one
λ(1) in�x with suppλ(1)

� suppλ and simplicial suppB(λ(1)). We will use λ and λ(1)

to construct the desired λ(2) and z.
For each real t , consider λ′

t
.= λ(1) + t(λ − λ(1)). It is easy to see that for all t the

vector λ′
t belongs to the affine subspace {w : h = Bw, 1ᵀw = 1}, and furthermore,

the support of λ′
t is contained within the support of λ. Now define T = max{t :

λ′
t in �d}; we claim that T > 1 and that the support of λ′

T is a proper subset of
the support of λ. The latter claim is more or less immediate. To establish the former
claim consider how λ′

t (as an affine combination of λ(1),λ) belongs to �d if and only
if it is elementwise nonnegative. This lets us write T = max{t : λ′

t ≥ 0}. Next,
use our knowledge about the support of λ′

t to rewrite the constraint “λ′
t ≥ 0” as

“λ(1)
i + t(λi − λ

(1)
i ) ≥ 0 for all i in supp λ.” Once written in this form, we see that

for t = 1 all constraints are satisfied strictly. It follows that T > 1 at optimality, and
furthermore that the support of λ′

T is distinct from (read: a proper subset of ) that of
λ.

We complete the proof by setting λ(2) = λ′
T and z = 1 − 1/T .
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7.2 Proof of Lemma 12

Denote f = Sig(A, c) and g = SigF (A, c). For brevity write P = P(A); we
may assume without loss of generality that P contains the origin. If F = P then
g = f and the claim is trivial. If otherwise, the affine hull of F must have some
positive codimension �, and there exist supporting hyperplanes {Si }�i=1 such that F =
[∩�

i=1Si ]∩P .Wecan express Si as {x : sᵀi x = ri } for a vector si and a scalar ri . Because
P is convex we know that it is contained in one of the half spaces {x : sᵀi x ≤ ri } or
{x : sᵀi x ≥ ri }. By possibly replacing (si , ri ) by (−si ,−ri ), we can assume that P is
contained in {x : sᵀi x ≤ ri }. In addition, the assumption that 0 belongs to P ensures

that each ri is nonnegative. Now define s = ∑�
i=1 si and r = ∑�

i=1 ri ≥ 0. The pair
(s, r) is constructed to satisfy the following properties:

– For every a j in F , we have aᵀ
j s = r .

– For every a j not in F , we have aᵀ
j s < r .

Finally, define h = SigP\F (A, c) so f = g + h. The remainder of the proof is case
analysis on r .

If r = 0 then we must have ri = 0 for all i . The condition that ri = 0 for all i
implies that F is contained in a linear subspace U which is orthogonal to s, and so
nonnegativity of g over R

n reduces to nonnegativity of g over U . Suppose then that
there exists some x̂ in U where g(x̂) is negative. For any vector y in the orthogonal
complement of U we have g(x̂ + y) = g(x̂). Meanwhile no matter the value of x̂ we
know that limt→∞ h(x̂ + t s) = 0. Using f � ≤ inf{ f (x̂ + t s) : t in R} ≤ g(x̂), we
have the desired result for r = 0: g� < 0 implies f � < 0.

Now consider the case when r is positive. Define the vector ŝ = r s/‖s‖2; we
produce an upper bound on f � by searching over all hyperplanes {x : ŝᵀx = t} for
t in R. Specifically, for any x in R

n there exists a scalar t and a vector y such that
x = t ŝ + y and ŝᵀ y = 0. In these terms we have

g(t ŝ + y) = exp(t‖ŝ‖2)
∑

ai∈F
ci exp(t[ai − ŝ]ᵀ ŝ)

︸ ︷︷ ︸
=1 for all t

exp(aᵀ
i y). (22)

Hence assuming g� < 0 means
∑

ai∈F ci exp(a
ᵀ
i ŷ) < 0 for some ŷ in Span(s)⊥.

Using this ŷ, one may verify that

lim
t→∞ f (t ŝ + ŷ) = −∞, (23)

and so when r is positive, g� < 0 implies f � < 0.

7.3 Proof of Proposition 2

In Sect. 2, we asserted strong duality held between (6) and (7). Here we prove a more
general result with two lemmas. In what follows, “co” is an operator that computes a
set’s conic hull.
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Lemma 32 Fix a closed convex cone K in R
n. If a in K † is such that

X
.= {x : aᵀx = 1, x in K }

is nonempty, then cl co X = K.

Proof Certainly the conic hull of X is contained within K , and the same is true of its
closure. The task is to show that every x in K also belongs to cl co X ; we do this by
case analysis on b

.= aᵀx.
By the assumptions a ∈ K † and x ∈ K , we must have b ≥ 0. If b is positive then

the scaling x̃
.= x/b belongs to K and satisfies aᵀ x̃ = 1. That is, b > 0 gives us x̃

in X . Simply undo this scaling to recover x and conclude x ∈ co X . Now suppose
b = 0. Here we consider the sequence of points yn

.= x0 + nx, where x0 is a fixed
but otherwise arbitrary element of X . Each point yn belongs to K and has aᵀ yn = 1,
hence the yn are contained in X . It follows that the scaled points yn/n are contained
in cl co X , and the same must be true of their limit limn→∞ yn/n = x.

Since x in K was arbitrary, we have cl co X = K . ��
Lemma 33 Let C be a closed and pointed convex cone, and fix a ∈ C \ {0}. Then the
primal dual pair

fp = sup{γ : c− γ a in C} and fd = inf{cᵀv : aᵀv = 1, v in C†}

exhibits strong duality.

Proof Because C is pointed, C† is full-dimensional, so there exists no nonzero vector
ã ∈ R

n where ãᵀv = 0 for all v ∈ C†. Consider this fact with a ∈ C \ {0} to
see that there exists a v ∈ C† with aᵀv = 1. This tells us that the dual feasible set
{v : aᵀv = 1, v in C†} is nonempty. Since the dual problem is feasible, a proof that
fd = fp can be divided into the cases fd = −∞, and fd in R. The proof in former
case is trivial; weak duality combined with fp ≥ −∞ gives fd = fp. In the latter case
we prove fp ≥ fd by showing that c�

.= c− fda belongs to C .
To prove c� ∈ C , we will appeal to Lemma 32 with K

.= C†. Clearly the set
X = {v : aᵀv = 1, v in K } is precisely the [nonempty] feasible set for computing
fd, and so from the definition of fd we have c�ᵀv ≥ 0 for all v in X . The inequality
also applies to any v in cl co X , which by Lemma 32 is equal to K †. Therefore the
definition of fd ensures c� is in K †. Using K † ≡ C , we have the desired result. ��

Strong duality in computation of fSAGE for f = Sig(A, c) readily follows from
Lemma 33. Letting N = {i : ci < 0}, simply take C = ∑

i∈N∪{1} CAGE(A, i, N ), and
use a = e1. What’s more, with appropriate bookkeeping one can use Lemma 33 to
prove strong duality in computation of f (p)

SAGE for any nonnegative integer p!

7.4 Proof of Proposition 30

The cases (2) ⇒ (1) and (3) ⇒ (1) are easy.
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¬(2) ⇒ ¬(1). Because CNNS(A) and CSAGE(A) are full-dimensional closed con-
vex sets, the condition CSAGE(A) 	= CNNS(A) implies that CNNS(A) \ CSAGE(A) has
nonempty interior. Assuming this condition, fix a vector c̃ and a radius r such that
B(c̃, r) ⊂ CNNS(A) \ CSAGE(A).4 This allows us to strictly separate c̃ from CSAGE(A),
which establishes f � ≥ fSAGE + r > fSAGE.

(1) ⇒ (3). Now suppose that f � = fSAGE for all relevant f . In this case, the
function c �→ inf{cᵀx : x ∈ �} is the same for � = cl conv expR(Aᵀ) or � =
{v : v1 = 1 and v in CSAGE(A)�}. This function completely determines the set of all
half spaces containing �. Since � is closed and convex, it is precisely equal to the
intersection of all half spaces containing it; the result follows.
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