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Abstract

In optimization-based approaches to inverse problems and to statistical estimation, it is
common to augment criteria that enforce data fidelity with a regularizer that promotes desired
structural properties in the solution. The choice of a suitable regularizer is typically driven by
a combination of prior domain information and computational considerations. Convex regu-
larizers are attractive computationally but they are limited in the types of structure they can
promote. On the other hand, nonconvex regularizers are more flexible in the forms of structure
they can promote and they have showcased strong empirical performance in some applications,
but they come with the computational challenge of solving the associated optimization problems.
In this paper, we seek a systematic understanding of the power and the limitations of convex
regularization by investigating the following questions: Given a distribution, what is the opti-
mal regularizer for data drawn from the distribution? What properties of a data source govern
whether the optimal regularizer is convex? We address these questions for the class of regulariz-
ers specified by functionals that are continuous, positively homogeneous, and positive away from
the origin. We say that a regularizer is optimal for a data distribution if the Gibbs density with
energy given by the regularizer maximizes the population likelihood (or equivalently, minimizes
cross-entropy loss) over all regularizer-induced Gibbs densities. As the regularizers we consider
are in one-to-one correspondence with star bodies, we leverage dual Brunn-Minkowski theory
to show that a radial function derived from a data distribution is akin to a “computational
sufficient statistic” as it is the key quantity for identifying optimal regularizers and for assessing
the amenability of a data source to convex regularization. Using tools such as Γ-convergence
from variational analysis, we show that our results are robust in the sense that the optimal
regularizers for a sample drawn from a distribution converge to their population counterparts
as the sample size grows large. Finally, we give generalization guarantees for various families
of star bodies that recover previous results for polyhedral regularizers (i.e., dictionary learning)
and lead to new ones for a variety of classes of star bodies.
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1 Introduction
Balancing computational considerations and accurate modeling of various phenomena of interest is a fun-
damental and long-standing challenge in data science. In the fields of statistical estimation and inverse
problems, this challenge manifests itself most prominently in the choice of an appropriate regularization
functional for a data source. Regularizers are commonly employed to augment data fidelity criteria in
optimization-based methods for inverse problems, and they are used to promote desired structural prop-
erties in the solution. Popular forms of structure for which regularization is routinely employed include
smoothness, sparsity, matrices or tensors with small rank, and many others. As inverse problems are often
ill-posed due to the available data being noisy or incomplete, the selection of a suitable regularizer is crucial
to obtaining high-quality solutions. In deriving a regularizer that promotes a desired structure, a central
goal is that of obtaining a computationally tractable optimization formulation.

The core property of an optimization problem that governs its computational tractability is whether
the problem is convex or not. Indeed, as articulated by Rockafellar [66] some decades ago “... the great
watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity.” Convex
optimization problems can be solved reliably to global optimality, and they come with the rich toolkit of
convex analysis that provide convergence guarantees and bounds on sensitivity to perturbations of the
underlying problem data. These attributes have significant consequences in the context of inverse problems;
for example, in medical imaging applications solution reliability and robustness are of critical importance.
As such, the design of convex regularizers1 that promote a desired structure is a question that has been
studied for many decades [40]. However, convex regularizers are limited in the types of structure they
can promote. As a result, there has been a lot of interest in recent years in the incorporation of nonconvex
regularizers in solution methods for inverse problems, and the resulting nonconvex optimization formulations
have showcased strong empirical performance in some applications [7]. Nonetheless, these approaches come
with few guarantees about solution quality, robustness to data perturbations, and convergence of numerical
solution schemes.

Despite substantial literature devoted to the topic of regularizer selection, we still do not have a systematic
understanding of the power and the limitations of convex regularization for general data sources. For example,
it is unclear whether there exist data sources for which a convex regularizer is optimal and one need not
sacrifice computational efficiency. In this paper, we take first steps towards addressing these larger objectives
by formulating and answering the following specific questions: Given a data source specified as a probability
distribution, what is the optimal regularizer that promotes the structure contained in that data? Are there
data sources for which this optimal regularizer is convex? What are the “sufficient statistics” associated with
a data source that govern the choice of the optimal regularizer?

1.1 A Maximum-Likelihood Criterion for Optimal Regularizer Selection
To make the preceding conceptual questions precise, we begin by fixing a family of functionals over which
we identify optimal regularizers. Whether convex or not, a regularizer ought to satisfy basic regularity
properties that lead to well-behaved optimization formulations for inverse problems. To this end, we consider
the collection of functionals on Rd that are (i) positive except at the origin; (ii) positively homogeneous;
and (iii) continuous. These assumptions are commonplace in the context of inverse problems; in particular,
positivity is natural as a regularizer serves as a penalty function to promote a desired structure, positive
homogeneity aligns with the idea that we often wish to solve inverse problems at varying levels of signal-
to-noise ratio using the same regularizer, and finally, continuity is appealing computationally as it yields
well-behaved optimization formulations. Most regularizers employed in the literature in inverse problems
satisfy these three conditions.

A simple but important consequence of these three assumptions is that the collection of functionals
satisfying these conditions is in one-to-one correspondence with the collection of star bodies in Rd; we call a
set K ⊆ Rd a star body if it is compact with non-empty interior and for each x ∈ Rd\{0} the ray {λx : λ > 0}
intersects the boundary of K exactly once. Given a star body K ⊆ Rd, the regularizer associated with this

1Nonlinear inverse problems can potentially give rise to nonconvex data fidelity terms. We assume for simplicity
that such data fidelity terms are convex, and that they yield convex optimization problems when augmented with
convex regularizers.
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star body is given by its gauge function (also called the Minkowski functional of K):

∥x∥K = inf{t > 0 : x ∈ t ·K}. (1)

This regularizer is nonconvex for general star bodies K and is convex if and only if K is convex. The
1-sublevel set of the regularizer is K. See Section 2 for background on star bodies.

With this formalization, we describe next what we mean by a regularizer being optimal for a given data
source. As data sources in this paper are characterized by probability distributions, a natural approach
to obtaining an optimal regularizer is to map our collection of regularizers to a family of densities and to
identify the regularizer for which the associated density maximizes the population likelihood. Specifically,
we associate a regularizer ∥ · ∥K given by the gauge of a star body K ⊆ Rd to the Gibbs density pK(x) ∝
exp (−∥x∥K), which yields the following family of densities:

D :=

{
pK : Rd → R | pK(x) := e−∥x∥K/ZK , ZK :=

∫
Rd

e−∥x∥Kdx <∞, K is a star body
}
.

Note that this class is quite expressive, as it includes log-concave densities with convex gauges as energy
functions as well as a wide class of nonconvex energies. For a data distribution P on Rd, the negative
population log-likelihood for any pK ∈ D is given by

EP [− log pK(x)] = EP [∥x∥K ] + logZK .

The first term is the average value that the star body gauge assigns to points drawn according to the
distribution P , and the second term corresponds to the normalizing constant. This normalization is typi-
cally intractable to evaluate for general Gibbs densities [34], but in our case it has an appealing geometric
characterization in terms of the volume of the star body K as described in the following result.

Proposition 1. For any star body K ⊂ Rd, we have∫
Rd

e−∥x∥Kdx = vold(K) · Γ(d+ 1)

where Γ(z) :=
∫∞
0
tz−1e−tdt is the Gamma function.

Proof. The result follows from elementary integration. Let 1E denote the indicator function on the event
E. Recall that for any star body K ⊆ Rd, we have

∫
Rd 1{x∈K}dx = vold(K) and vold(tK) = tdvold(K) for

t ⩾ 0. Then observe that∫
Rd

e−∥x∥Kdx =

∫
Rd

(∫ ∞

∥x∥K

e−tdt

)
dx =

∫
Rd

(∫ ∞

0

1{∥x∥K⩽t}e
−tdt

)
dx

=

∫ ∞

0

e−t
(∫

Rd

1{∥x∥K⩽t}dx

)
dt =

∫ ∞

0

e−tvold(tK)dt = vold(K)

∫ ∞

0

tde−tdt.

This result shows that minimizing the negative population log-likelihood objective EP [− log pK(x)] over
pK ∈ D is equivalent to minimizing the following functional over all star bodies K ⊆ Rd

K 7→ EP [∥x∥K ] + log vold(K). (2)

There are additional observations one can make regarding this functional to arrive at a simpler, yet equivalent,
formulation to maximum likelihood. For any fixed star body K, we consider the optimal positive dilate
λ that minimizes EP [∥x∥K ] + log vold(K), i.e., we wish to solve minλ>0 EP [∥x∥λK ] + log vold(λK). By
noting that EP [∥x∥λK ] = λ−1EP [∥x∥K ] and that vold(λK) = λdvold(K), we conclude from single-variable
calculus that the expression λ−1EP [∥x∥K ] + log

(
λdvold(K)

)
is minimized when λK := EP [∥x∥K ]/d. One

can check that EP [∥x∥λKK ] + log vold(λKK) is equal to log
(
EP
[
∥x∥K/vold(K)1/d

])
up to additive constants

and multiplicative factors that do not depend on K. As K/vold(K)1/d has unit volume, we conclude that
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in the minimization of the functional (2) over all star bodies K, it suffices to only consider unit-volume star
bodies. Consequently, we arrive at the following natural optimization problem:

argmin
K⊆Rd, vold(K)=1,
K is a star body

EP [∥x∥K ]. (3)

which is the main problem of interest in the paper.
Solving the optimization problem (3) entails many challenges as the space of star bodies is infinite-

dimensional with its own intricate topology. In particular, characterizing basic properties about the problem,
such as existence and uniqueness of minimizers, requires an analysis of the map K 7→ EP [∥x∥K ] on the space
of star bodies. To make progress on these challenges, we leverage concepts and ideas from the field of star
geometry, with dual Brunn-Minkowski theory playing a prominent role [47]. In particular, as we show in
Section 3.2, the expected gauge EP [∥x∥K ] can be written as a dual mixed volume between the star body K
and a special star body induced by the data distribution P , which we call LP . The star body LP serves as a
“computational sufficient statistic” that summarizes all the relevant information about P for the selection of
a regularizer. A virtue of this geometric characterization of EP [∥x∥K ] is that the dual mixed volume between
K and LP can be bounded below by the product of the volumes of K and LP , with equality holding if and
only if K is a (positive) dilate of LP , i.e., K = λLP for some λ > 0 [47].

This problem (3) constitutes the central mathematical object of interest in our paper. We show in
Section 3.2 that under appropriate conditions the volume-normalized LP is the unique solution to the above
optimization problem. In Sections 4–7, we further analyze variational, statistical, and learning-theoretic
aspects of this problem; see Section 1.2 for a summary of our contributions.

From an information-geometric perspective, our maximum likelihood criterion for regularizer selection
is equivalent to computing a moment projection (or m-projection) [4] of the data distribution P onto the
family of distributions D := {pK ∈ D : ZK = Γ(d + 1)}. Assuming P is absolutely continuous with respect
to any pK ∈ D (i.e., P ≪ pK for any pK ∈ D), we have the following interpretation of the problem (3):

min
pK∈D

DKL(P ||pK) ⇔ min
pK∈D

∫
Rd

log

(
dP

dPK
(x)

)
dP (x) ⇔ max

pK∈D

∫
Rd

log pK(x)dP (x) ⇔ min
pK∈D

EP [∥x∥K ]

where PK is the measure with density pK . The minimizer p∗K := argminpK∈DDKL(P ||pK) is known as the
m-projection of P onto the family D, and it is given by the Gibbs density induced by the star body that
solves the optimization problem (3).

1.2 Our Contributions
In Section 3, we identify the solution of (3) using techniques from dual Brunn-Minkowski theory [47]. This
branch of geometric functional analysis extends classical results in Brunn-Minkowski theory concerning
mixed volumes of convex bodies [72] to the class of star bodies; we show that the objective in (3) may be
viewed as a dual intrinsic volume, and this interpretation yields a precise characterization of the optimal
regularizer. Given a data distribution that has a density with respect to the Lebesgue measure, we show
that a radial function induced by the distribution’s density provides a kind of “summary statistic” for the
data that provides all the information required to obtain the optimal regularizer for that data; in particular,
this radial function allows us to characterize when the optimal regularizer is convex. Next, we establish
the existence of minimizers of (3) in Section 4 for a broader class of distributions than those considered
in Section 3. Along the way, we describe a compactness result akin to Blaschke’s Selection Theorem for
“well-conditioned” star bodies.

In Section 5, we show that our results are robust in the sense that the optimal regularizers for a sample
drawn from a distribution converge to their population counterparts as the sample size grows large. Our
approach to establishing this result is based on tools from variational analysis, such as Γ-convergence [13],
which we use to establish uniform convergence of the objective in (3) as the sample size grows large. These
tools also allow us to show that star bodies learned on noisy data converge to star bodies learned on
uncorrupted data as the noise level goes to zero (see Section 5.4).

Finally, in Sections 6 and 7, we describe additional results on the statistical learning of star body
regularizers and how our optimal regularizer characterization has consequences for inverse problems. Section

4



O. Leong, E. O’Reilly, Y.S. Soh, V. Chandrasekaran

6 builds upon results in Sections 3 – 5 for learning regularizers from certain parametrized families of star
bodies. We prove a general uniform convergence result that gives a bound on generalization error as a
function of the metric entropy of the family of bodies being considered. We then apply this result to several
classes of interest, including star bodies given as unions of convex bodies, ellipsoids, polytopes, and linear
images of Schatten-p norm balls. Several of these generalization bounds are novel, while others recover
known results in the literature for problems such as dictionary learning. Section 7 discusses how our results
have consequences for posterior sampling, a crucial ingredient for Bayesian inference in inverse problems.

1.3 Related Work

1.3.1 Regularizers Derived from Domain Expertise

The traditional paradigm in solving inverse problems incorporates the use of hand-crafted regularization
functionals to promote structure, a practice dating as far back as Tikhonov regularization [86] and the
Nyquist sampling theorem [52]. For instance, natural images have been observed to be compressible, or
approximately sparse, under the wavelet or the discrete cosine transform. Subsequently, regularization func-
tionals such as the ℓ1-norm in the transformed basis, have shown to be effective at inducing sparse structure
and is computationally tractable to optimize over owing to its convexity [23, 17, 24, 85]. A prominent convex
regularizer promoting smoothness is total variation regularization [69], which also includes generalizations
incorporating higher-order derivatives [18, 14]. Other examples of hand-crafted convex regularization tech-
niques include the nuclear norm for low-rankness [30, 16, 62] as well as entropic regularization [27]. Several
of these regularizers also fall under the wider class of atomic norm regularizers [20, 11, 84, 74, 55]. We
also highlight the rich use of Gaussian priors [79, 42, 22, 35, 51], which have been used extensively in
infinite-dimensional inverse problems for regularization and uncertainty quantification.

While utilizing convex regularizers has computational benefits for optimization, there has been a recent
surge of interest in the incorporation of nonconvex regularization functionals. For example, returning to
sparsity as a model for structure, several approaches have proposed the use of ℓp regularizers for p ∈ [0, 1)
[31, 82, 50] or other nonconvex approximations to the ℓ1-norm [95, 73, 29, 93, 96, 58]. Please see [10]
for a comprehensive overview of hand-crafted regularizers for inverse problems. A significant challenge in
this paradigm, however, is that choosing an appropriate regularizer for an inverse problem requires precise
domain knowledge or expertise. Moreover, for general data sources, it is difficult to make claims regarding
the optimality of such regularizers.

1.3.2 Regularizers Learned from Data

A dominant paradigm in recent years in designing regularizers has been to take a data-driven approach by
directly learning a regularization functional from example data. This framework has the advantage that
the learned regularizer is particular to the data distribution of interest, and can help ameliorate a lack of
domain knowledge or expertise. One prominent instantiation of this is given by learned convex regularizers
from dictionary learning or sparse coding (see [53, 54, 77, 3, 6, 1, 2, 70, 71, 8] and the surveys [49, 28] for
more). Given a training set of signals of interest, this class of methods computes a basis such that each
example can be sparsely represented in this new basis. Once learned, such a basis can be incorporated
in a regularization functional for subsequent tasks by enforcing that reconstructed data should also be
sparsely represented in this basis. Geometrically, this regularizer constructs a polytope (whose extreme
points are given by the basis elements) such that datapoints of interest should lie on its low-dimensional
faces. Extensions of such an approach have also been investigated for particular types of bases, such as
convolutional dictionaries [57, 94, 32], and those representable by semidefinite programming using an infinite
collection of basis elements [76]. Such regularizers are convex, but there have also been many approaches
incorporating more complicated nonconvex structures for data, such as learned regularizers parametrized
by deep neural networks. Such approaches have showcased strong empirical performance and have been
empirically observed to out-perform handcrafted regularizers in a range of tasks [46, 90, 67, 12, 43, 38, 63].
For a comprehensive survey on data-driven regularizers for inverse problems, please see the survey [7].

Despite this empirical success of data-driven regularizers, there is a lack of an overarching understanding
as to why such approaches better capture underlying data geometry than handcrafted approaches. For
example, when and why is it the case that certain data distributions can be captured or modeled by sparsity in
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a learned basis? On the other hand, which data sources should instead be modeled by nonconvex regularizers
and how much information is lost by restricting oneself to a family of convex regularizers? These are the
types of questions that we investigate in the present paper.

1.3.3 Characterizing Optimal Regularizers

To our knowledge, there are few works that consider the optimality of a regularizer for a given dataset. For
example, in the area of dictionary learning, most prior work and performance guarantees analyze convergence
guarantees of learning a synthetically generated, planted basis [1, 80, 81, 21], but these works do not consider
the question of studying why a polyhedral regularizer is the “best choice” as a regularizer for a given dataset.
A recent work that has tackled the question of identifying an optimal regularizer is [87]. Here, the authors
consider signal recovery problems where the underlying signal has intrinsic low-dimensional structure. Given
linear measurements of the signal, the goal is to characterize the optimal convex regularizer for the inverse
problem. The authors introduce several notions of optimality for convex regularizers (dubbed compliance
measures) and establish that canonical low-dimensional models, such as the ℓ1-norm for sparsity, are optimal
for sparse recovery under such compliance measures. The results in this work, however, focus exclusively
on optimality of convex regularizers for a given low-dimensional model of the underlying data source. In
contrast, our results can prove optimality of both convex and nonconvex regularizers for general data sources
modeled as distributions.

2 Preliminaries
In this section, we provide relevant background concerning convex bodies and star bodies. For a more
detailed treatment of each subject, we recommend [72] for convex geometry and [33, 39] for star geometry.

First, we review some basic functions. Let K be a closed subset of Rd. The radial function of K is
defined by

ρK(x) := sup{t > 0 : t · x ∈ K}. (4)

It follows that the gauge function of K satisfies ∥x∥K = 1/ρK(x) for all x ∈ Rd such that x ̸= 0. The support
function of K at x ∈ Rd is given by

hK(x) := sup{⟨x, y⟩ : y ∈ K}.

Finally, we note that the gauge function and the support function are homogeneous with degree 1, while
the radial function is homogeneous with degree −1. As such, in what follows, we generally speak of these
functions restricted to the unit sphere Sd−1 := {u ∈ Rd : ∥u∥ℓ2 = 1}. We also use vold(K) to denote the
usual d-dimensional volume of K ⊆ Rd.

Recall that a closed set K ⊆ Rd is convex if x, y ∈ K implies that θx+ (1− θ)y ∈ K for all 0 ⩽ θ ⩽ 1.
We call a convex set K a convex body if it is also compact and contains the origin in its interior. We say
that a closed set K ⊆ Rd is star-shaped (with respect to the origin) if for all x ∈ K, the line segment
[0, x] := {tx : t ∈ [0, 1]} is also contained in K. An equivalent definition of a star body as described in the
introduction is a compact set K ⊆ Rd that is star-shaped and has a positive and continuous radial function
ρK . We will denote the class of convex bodies and star bodies in Rd by Cd and Sd, respectively. Note that
Cd is a strict subclass of Sd for d > 1. Convex bodies are determined uniquely by their support function,
and star bodies are determined uniquely by their radial function.

For K,L ∈ Sd, it is easy to see that K ⊆ L if and only if ρK ⩽ ρL. We say that L is a dilate of K if there
exists λ > 0 such that L = λK; that is, ρL = λρK . In addition, given a linear transformation ϕ ∈ GL(Rd),
one has ρϕK(x) = ρK(ϕ−1x) for all x ∈ Rd\{0}.

An additional important aspect of star bodies are their kernels. Specifically, we define the kernel of a
star body K as the set of all points for which K is star-shaped with respect to, i.e., ker(K) := {x ∈ K :
[x, y] ⊆ K, ∀y ∈ K}. Note that ker(K) is a convex subset of K and ker(K) = K if and only if K is convex.
For a parameter r > 0, we define the following subset of Sd consisting of well-conditioned star bodies with
nondegenerate kernels:

Sd(r) := {K ∈ Sd : rBd ⊆ ker(K)}.
Here Bd is the unit (Euclidean) ball in Rd.
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2.1 Metric Spaces
Let K,L ∈ Sd be star bodies. The Minkowski sum between K,L is given by K+L := {x+y : x ∈ K, y ∈ L}.
Following the definition of the support function, we have that hK+L = hK + hL. The Hausdorff distance is
defined by

dH(K,L) := inf{ε ⩾ 0 : K ⊆ L+ εBd, L ⊆ K + εBd}.

If K and L are also convex, then the Hausdorff distance can be defined in terms of the infinity norm of
their support functions dH(K,L) = ∥hK − hL∥∞ – here, both support functions are defined over the unit-
sphere Sd−1. The Hausdorff distance also defines a metric over the space of nonempty compact sets. The
metric space (Cd, dH) enjoys favorable compactness properties that will aid in establishing several results in
our analysis. In particular, it is known that the metric space (Cd, dH) is locally compact, a seminal result
known as Blaschke’s Selection Theorem [72]. Prior to stating this result, we recall that a collection C of sets
is bounded if there exists a sufficiently large ball RBd of radius R <∞ such that K ⊆ RBd for all K ∈ C.

Theorem 1 (Blaschke’s Selection Theorem). The metric space of convex bodies is locally compact. That is,
given any bounded collection C ⊂ Cd in the space of convex bodies and a sequence (Kn) ⊂ C, there exists a
subsequence (Knm) and a convex body K ∈ Cd such that Knm → K in the Hausdorff metric.

While this result plays an important role in the context of our results on convex bodies, we also require
an analogous result for star bodies. A generalization is known for star bodies equipped with the Hausdorff
metric [41], however this is not the metric for which relevant continuity properties over the space of star
bodies hold. We present here an alternative metric – the radial metric – over star bodies for which it is
possible to derive a Blaschke Selection Theorem. In the convex geometry literature, the radial metric is
often more natural over the space of star bodies than the Hausdorff metric. Concretely, let K,L ⊂ Rd be
star bodies. We define the radial sum +̃ between K and L as K+̃L := {x + y : x ∈ K, y ∈ L, x = λy};
that is, unlike the Minkowski sum, we restrict the pair of vectors to be parallel. The radial sum obeys the
relationship ρK+̃L(u) := ρK(u) + ρL(u). We denote the radial metric between two star bodies K,L as

δ(K,L) := inf{ε ⩾ 0 : K ⊆ L +̃ εBd, L ⊆ K +̃ εBd}.

In a similar fashion, the radial metric satisfies δ(K,L) := ∥ρK − ρL∥∞.

2.2 Brunn-Minkowski Theory
The Brunn-Minkowski theory for convex bodies [72] combines Minkowski addition and notions of volume to
understand the structure of the space of convex bodies and prove important geometric inequalities. Starting
with Lutwak [47], a dual Brunn-Minkowski theory for star bodies equipped with radial addition was also
developed. This theory studies functionals that measure the size of a star body K relative to another L
in a particular way, and studies the extremals of such functionals. The importance of such results in the
context our work is that we show our objective of interest has an equivalent interpretation as this functional
of interest, and such results analyzing the extremals can aid in characterizing minimizers of our optimization
problem. More concretely, the dual mixed volume between two star bodies K,L ∈ Sd for any i ∈ R is defined
as:

Ṽi(K,L) :=
1

d

∫
Sd−1

ρK(u)iρL(u)
d−idu.

Note that for all i, Ṽi(K,K) = 1
d

∫
Sd−1 ρK(u)ddu = vold(K) is the usual d-dimensional volume of K. Lutwak

[47] analyzed upper and lower bounds of Ṽi(K,L) depending on the volumes of K and L, and characterized
for which sets K and L would these bounds be attained. An important case for our purposes is the following
result when i = −1:

Theorem 2 (Theorem 2 in [47]). For star bodies K,L ∈ Sd, we have

Ṽ−1(K,L)
d ⩾ vold(K)−1vold(L)

d+1,

and equality holds if and only if K and L are dilates.
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3 Minimizers of the Population Risk
In this section, we will describe a setting where the unique optimal regularizer for a data distribution P can
be derived and provide a characterization for when this optimal regularizer is convex. As described in the
introduction, we aim to find the unique star body that solves the following optimization problem:

argmin
K∈Sd:vold(K)=1

EP [∥x∥K ]. (5)

The optimal regularizer is convex when the solution of (5) is a convex body. We will see in the following
that a unique solution can be obtained by interpreting the objective as a dual mixed volume.

In Section 3.1 we define the fundamental quantity determined by P that is needed to characterize the
optimal star body. In Section 3.2 we will state the main result characterizing the solution to (5) and in
Section 3.3 we give a condition on P that implies the optimal star body regularizer will be convex. Finally
in Section 3.4 we provide examples of different data distributions P for which we apply this theory to obtain
a description of the optimal regularizer.

3.1 Radial Function Associated to a Data Distribution
Given a data distribution P , we would like to find a way to summarize the relevant structure that determines
an optimal regularizer. Since we have restricted to positively homogeneous functions, the regularizer is
characterized by a function on the unit sphere. Thus, given a data distribution, we need a statistic related
to the distribution in each unit direction. Recall that star bodies are uniquely determined by the distance
from the origin to the boundary in each direction given by the radial function of the star body. Thus, we
can hope to characterize an optimal regularizer through a function on the unit sphere obtained from P that
determines the radial function of the optimal star body that solves (5).

To be precise, we first restrict to data distributions P that have a density with respect to Lebesgue
measure on Rd. We then define the following function on the unit sphere for a given P with density p:

ρP (u) :=

(∫ ∞

0

rdp(ru)dr

)1/(d+1)

, u ∈ Sd−1. (6)

Under certain conditions, the function ρP is precisely the radial function of a star body LP in Rd. Using
this interpretation, we will see that ρP captures all the relevant information from the data distribution in
order to determine a unique optimal regularizer.

Note that many probability distributions may correspond to the same radial function and associated
star body. The following is thus a natural question: What aspects of the distribution P characterize the star
body LP ? Intuitively, ρP (u) captures how much and how far away on average the mass of the distribution
is in a given direction u. Thus the corresponding star body LP will have larger radius in directions where
there is more mass of the distribution and where the mass is farther away from the origin. More precisely,
ρd+1
P is the density of the measure µP (·) = EP

[
∥x∥ℓ21{x/∥x∥ℓ2

∈·}

]
on the unit sphere. Additionally, ρP

captures linear transformations of the data. For a random vector with distribution P and its transformation
under a linear map ϕ, the radial function corresponding to the distribution of the transformed vector will
define a dilate of the linear image ϕ(LP ). For example, rotations of the data distribution will be captured
by a rotation of LP . To illustrate what the radial function statistic does not capture, the following example
describes a class of probability distributions that all correspond to a constant radial function.

Example 1. Let f : Sd−1 → [0,∞) be a bounded function on the unit sphere, and define another function

gf (u) :=
(
1 + f(u)d+1

) 1
d+1 , u ∈ Sd−1.

Note that gf > f . Consider the compact set

Af = {x ∈ Rd : f(x/∥x∥ℓ2) ⩽ ∥x∥ℓ2 ⩽ gf (x/∥x∥ℓ2)},

8
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Figure 1: Plots of the support of four different compact sets Af for different functions f . The uniform
distribution over each of these supports will correspond to the same constant radial function, and
thus have the same optimal star body regularizer given by a scaled ℓ2-norm.

and let Pf be the uniform distribution over Af . For any f , the radial function associated with Pf satisfies

ρPf
(u)d+1 =

1

vold(Af )

∫ gf (u)

f(u)

rddr =
1

(d+ 1)vold(Af )

(
gf (u)

d+1 − f(u)d+1
)
=

1

(d+ 1)vold(Af )
,

and the corresponding star body LPf
is a dilate of Bd. Thus, the entire class of distributions {Pf : f :

Sd−1 → [0,∞) is bounded} correspond to constant radial functions and under the volume normalization will
all correspond to the same optimal star body given by a unit volume ℓ2 ball. See Figure 1 for examples of
the support of Pf for different functions f . Intuitively, each distribution Pf induces the same star body (up
to scaling) because in each direction, the average mass of the distribution (weighted by its distance from the
origin) is the same, regardless of the behavior of f .

3.2 Optimal Star Body Regularizers
We now state and prove our main result characterizing the optimal star body regularizer for (3). Given a
data distribution P of interest, our result establishes that there is a unique star body K∗ that achieves the
minimum value of the objective over the space of star bodies of constant volume. The conditions on our
distribution are fairly mild, and are satisfied for any distribution with a continuous density and finite second
moments. They are also satisfied for more general cases, and we will explore examples of such distributions
in the sequel. Our main result is stated as follows:

Theorem 3. Let P be a distribution on Rd with density p with respect to Lebesgue measure, and assume
EP [∥x∥ℓ2 ] < ∞. Suppose the function ρP as defined in (6) is positive and continuous over the unit sphere.
Then there exists a unique star body LP ∈ Sd whose radial function is ρP , and the set K∗ := vold(LP )

−1/dLP
is the unique solution to the minimization problem (5).

Proof of Theorem 3. The main idea of our proof is that the population objective can be written as a dual
mixed volume with respect to the star body K we are optimizing and the distribution-dependent star body
LP . Once this is established, we can utilize the extremal inequality in Theorem 2 to characterize the
minimizers of our objective subject to a fixed volume constraint.

We first construct the star body LP . Define the function

f(x) :=

(∫ ∞

0

rdp(rx)dr

)−1/(d+1)

, x ∈ Rd.

Note that f is positively homogeneous and non-negative. Define the subset LP of Rd by

LP := {x ∈ Rd : f(x) ⩽ 1}.

The set LP is star-shaped, because for x ∈ LP we have for all t ∈ [0, 1], f(tx) = tf(x) ⩽ t ⩽ 1, and thus,
[0, x] ⊆ LP . The gauge of LP is then

∥x∥LP
= inf{t : x ∈ tLP } = inf{t : x/t ∈ LP }
= inf{t : f(x/t) ⩽ 1} = inf{t : f(x) ⩽ t} = f(x).

9



Optimal Regularization

Thus, f(x) is the gauge of LP . In addition, note that ρP (u) = 1/f(u) for u ∈ Sd−1 where ρP is defined in
(6). Thus ρP is the radial function of LP , and LP is a star body because ρP is positive and continuous.

We now establish that the objective in (5) can be written as a dual mixed volume. Observe that by
positive homogeneity of the gauge, we have via integrating in spherical coordinates that

EP [∥x∥K ] =

∫
Rd

∥x∥Kp(x)dx =

∫
Sd−1

∫ ∞

0

rd∥u∥Kp(ru)drdu

=

∫
Sd−1

∥u∥KρP (u)d+1du

where ρP is defined in (6). Moreover, since ∥u∥K = 1/ρK(u), the definition of the dual mixed volume gives

EP [∥x∥K ] =

∫
Sd−1

∥u∥KρP (u)d+1du =

∫
Sd−1

ρK(u)−1ρP (u)
d+1du = dṼ−1(K,LP ).

Hence, we can apply Theorem 2 to show that our objective satisfies

EP [∥x∥K ] = dṼ−1(K,LP ) ⩾ dvold(K)−1/dvold(LP )
(d+1)/d

with equality if and only if K and LP are dilates. Thus, EP [∥x∥K ] is minimized over the collection {K ∈
Sd : vold(K) = 1} by K∗ := vold(LP )

−1/dLP .

3.3 When is the Optimal Regularizer Convex?
Theorem 3 explicitly characterizes the relationship between the optimal star body K∗ and the distribution
P . As previously observed, if the star body K∗ is in fact a convex body, then the optimal regularizer is a
convex function. This connection helps to justify intuition for when a data source modeled by P is amenable
to convex regularization. For example, consider the class of log-concave distributions which include many
common distributions such as Gaussian, Laplace, and uniform distributions over convex bodies. Since the
densities of such distributions have convex level sets, it is natural to guess that a convex regularizer would
be most appropriate. If the logarithm of the density is both concave and positively homogeneous of some
degree k, then the distribution P falls into the class of probability distributions considered in Example 2
below. In particular, the density is then a function, ψ(r) = exp(−rk), of the gauge of a convex body L and
in Example 2 we show that the optimal star body will be L by computing the radial function ρP . Thus,
since L is convex, a convex regularizer is optimal for these log-concave distributions.

We can also use Theorem 3 to characterize when a convex regularizer is optimal for general distributions.
In particular, the density of P defines the radial function of K∗, which determines whether or not the set
K∗ is convex. This observation leads to an important contribution of this work: a condition on the data
distribution P such that the optimal regularizer is convex.

Corollary 1. Let P be a probability measure on Rd as in Theorem 3. Define the radial function ρP as in
(6). If x 7→ 1/ρP (x) is a convex function on Rd, then the optimal K∗ as defined in Theorem 3 is a convex
body, and the optimal star body regularizer is convex.

This corollary gives a characterization of data distributions where convexity is the correct structure
that should be sought among a class of both convex and nonconvex regularizers, and provides a tool for
determining whether a given data source is amenable to convex regularization. We will illustrate in Example
3 a setting where we can use this corollary to determine a parameter range for which the optimal regularizer
for a parametric class of distributions is convex.

3.4 Examples of Optimal Regularizers for a Given Distribution
In order to provide more intuition on the above results, we discuss here several additional examples of
distributions P and their associated stay body LP with radial function ρP defined in (6). The two general
classes of distributions we consider are distributions that depend on a compact body and general mixture
distributions whose mixture components satisfy the assumptions of our Theorem. When the data distribution

10
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explicitly depends on the gauge of a star body L, then the optimal star body will be a dilate of L. For mixture
distributions, the optimal star body will be a special sum of sets, akin to radial addition for star bodies. We
now dive deeper into such examples here:

Example 2 (Densities induced by star bodies). Suppose P has density p(x) = ψ(∥x∥L), i.e., the density
only depends on the gauge function induced by a star body L. If ψ is such that the integral

∫∞
0
tdψ(t)dt <∞,

then we have that the corresponding radial function of P satisfies

ρP (u) :=

(∫ ∞

0

rdψ(r∥u∥L)dr
)1/(d+1)

= ρL(u)

[∫ ∞

0

tdψ(t)dt

]1/(d+1)

= ρc(ψ)L(u),

where c(ψ) :=
[∫∞

0
tdψ(t)dt

]1/(d+1). Hence the optimal star body K∗ is the unit volume dilate of L:

K∗ = vold(L)
−1/dL.

There are several examples of distributions of interest that fall under this category, which we outline here.

• Suppose L = Bℓq := {x ∈ Rd : ∥x∥ℓq ⩽ 1} is the ℓq-function unit ball for 0 < q ⩽ ∞ and the density of
P is given by p(x) = ψ(∥x∥ℓq ). Then our optimal set is a dilate of the ℓq-ball: K∗ = vold(Bℓq )−1/dBℓq .
Note that this includes both convex norm balls q ⩾ 1 and nonconvex unit balls q ∈ (0, 1).

• Another class of distributions P that satisfy our assumptions are uniform distributions over a star
body L. Let 1E denote the indicator function on the event E. In this case, the density is given by

p(x) =
1{x∈L}

vold(L)
=

1{∥x∥L⩽1}

vold(L)
,

and the radial function ρP is

ρP (u) =
1

vold(L)1/(d+1)

(∫ ∞

0

td1{t⩽1}dt

)1/(d+1)

∥u∥−1
L =: cd,LρL(u)

where cd,L := ((d+ 1)vold(L))
−1/(d+1)

. Hence LP := cd,LL, and thus K∗ is given by

K∗ = vold(L)
−1/dL.

• Suppose P = N (0,Σ) is a multivariate Gaussian distribution with mean zero and covariance matrix
Σ in Rd. Then, a direct calculation shows that the radial function ρP is given by

ρP (u) = det(2πΣ)−
1

2(d+1)

(∫ ∞

0

tde−t
2/2dt

) 1
d+1

∥Σ−1/2u∥−1
ℓ2
.

Note that the norm ∥Σ−1/2u∥ℓ2 defines the gauge of an ellipsoid EΣ induced by Σ. Hence the minimizer
K∗ is the ellipsoid

K∗ = κ
1/d
d det(Σ)−1/2dEΣ,

where ∥u∥EΣ = ∥Σ−1/2u∥ℓ2 and κd = vold(B
d).

Example 3 (Gaussian mixture model). Consider the following Gaussian mixture model Pε = 1
2N (0,Σε,1)+

1
2N (0,Σε,2) where Σε,1 := [1, 0; 0, ε] ∈ R2×2 and Σε,2 := [ε, 0; 0, 1] ∈ R2×2 for 0 < ε < 1 with density pε(x)
in R2. Then, we have that the radial function of LPε

is given by

ρPε
(u)3 =

∫ ∞

0

r2pε(ru)du = cε,1∥Σ−1/2
ε,1 u∥−3

ℓ2
+ cε,2∥Σ−1/2

ε,2 u∥−3
ℓ2

where cε,i = 1
2 det(2πΣε,i)

−1/2
(∫∞

0
t2e−t

2/2dt
)

for i = 1, 2. The set LPε with radial function ρPε is similar
to a radial sum of two ellipsoids induced by Σε,1 and Σε,2, which is discussed in the next example. In Figure
2, we plot the solutions LPε

for different values of ε. We see in the plots that for small ε, LPε
will be a

nonconvex star body, but as ε approaches 1, LPε approaches a convex ℓ2 ball. One can observe that 1/ρPε(x)
will be convex for all ε such that ε ∈ (ε∗c , 1] for some ε∗c ∈ (0, 1). By Corollary 8, the optimal regularizer will
be convex for this range of the parameter ε.
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Figure 2: We compute the (unnormalized) optimal star body LPε based on the Gaussian mixture
model in Example 3 for ε ∈ {0.01, 0.1, 0.25, 0.75}. We note that as ε decreases, the individual
components of the Gaussian mixture model concentrate more heavily on a lower-dimensional sub-
space of R2. Similarly, the resulting star body also concentrates closer to the relevant subspaces.
Finally, we see that as ε increases, there is a critical value between at which LPε becomes convex.
Numerically, this value is between 0.3 and 0.45.

Example 4 (General mixture distributions). More generally, suppose that our distribution P is a mixture,
i.e., let P =

∑m
i=1 wiPi for weights wi > 0 and distributions Pi in Rd. Then the associated convex body K∗

is a harmonic Blaschke linear combination, as defined in [48], of star bodies LPi . Each LPi is the associated
star body with radial function ρPi in (6). The harmonic Blaschke linear combination +̂ between star bodies
defines a new star body K +̂L by adding the radial functions of K and L together in the following way:

ρK+̂L(u)
d+1

vold(K+̂L)
=
ρK(u)d+1

vold(K)
+
ρL(u)

d+1

vold(L)
.

4 Existence of Optimal Regularizers for General Data Distributions
In the preceding section, we characterized a unique optimal regularizer under certain conditions on the
distribution P . For general P , it remains an open problem to characterize a unique star body that minimizes
(5). However, we can prove existence of a solution to this variational problem for general P by restricting
the hypothesis class to contain only well-conditioned star bodies, defined for any r > 0 by:

Sd(r) := {K ∈ Sd : rBd ⊆ ker(K)}.

Our results on the existence of minimizers of (5) rely on continuity properties of the objective and compact-
ness of the constraint set contained in Sd(r). First, in Section 4.1 we will show that the objective is Lipschitz
continuous with respect to the radial metric δ(·, ·). Then, in Section 4.2 we show that our constraint sets of
interest are compact by establishing Blaschke’s Selection Theorem for bounded subsets of Sd(r) with respect
to the radial metric. We will then state and prove the existence results in Section 4.3.

4.1 Continuity Properties of the Objective Functional
We begin by establishing continuity properties of our objective with respect to the radial metric over the
collection Sd(r). When our sets are convex and bounded, we can also establish a Lipschitz bound with
respect to the Hausdorff metric.

Proposition 2. Suppose K,L ∈ Sd(r). Then for any x, y ∈ Sd−1, we have

|∥x∥K − ∥y∥L| ⩽
1

r2
δ(K,L) +

1

r
∥x− y∥ℓ2 .

If, additionally, K and L are convex and K,L ⊆ RBd, we have the following bound:

|∥x∥K − ∥y∥L| ⩽
R

r3
dH(K,L) +

1

r
∥x− y∥ℓ2

12
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Proof. We first note by the triangle inequality that

|∥x∥K − ∥y∥L| ⩽ |∥x∥K − ∥x∥L|+ |∥x∥L − ∥y∥L|.

For the second term, note that since rBd ⊆ ker(L), we have that by Proposition 6.2 in [68] that L =
⋃
u∈L Lu

where each Lu is closed, convex and contains rBd. Moreover, following the first part of the proof of Theorem
5.1 in [68], since rBd ⊆ Lu and each Lu is convex, ∥ · ∥Lu

is sublinear and Lipschitz with Lipschitz constant
bounded by 1/r. Finally, ∥ · ∥L coincides with infu∈L ∥ · ∥Lu

and since the infimum of a family 1/r-Lipschitz
functions is 1/r-Lipschitz, it follows that ∥ · ∥L is 1/r-Lipschitz.

We now focus on establishing a bound on |∥x∥K − ∥x∥L|. First, note that since rBd ⊆ K, we have that
for any ∥x∥ℓ2 = 1, ρK(x) ⩾ ρrBd(x) = rρBd(x) = r/∥x∥ℓ2 = r. The same holds for L. Moreover, since
∥x∥K = ρK(x)−1, we get

|∥x∥K − ∥x∥L| ⩽
1

ρK(x)ρL(x)
|ρK(x)− ρL(x)| ⩽

1

r2
|ρK(x)− ρL(x)|.

Taking the supremum over x ∈ Sd−1 yields the desired result.
For the convex case, we use the shorthand notation γ := dH(K,L). By the definition of the Hausdorff

metric, we have K ⊆ L + γBd and L ⊆ K + γBd. Consider the ray generated by x. We let x̃ := x/∥x∥K
and x̄ := x/∥x∥L denote the intersection of the ray with the boundaries ∂K and ∂L. Our immediate goal is
to show that ∥x̄− x̃∥ℓ2 ⩽ γR/r. This will complete the proof.

First, we show that 1/∥x∥L ⩽ 1/∥x∥K + γR/r. Suppose that x̄ /∈ K. If x̄ ∈ K then 1/∥x∥L ⩽ 1/∥x∥K ,
in which case the statement we wish to prove immediately holds. Let u be the projection of x̄ onto K. Let
D be the cone generated by all lines through x̃ and all points in rBd. We claim that u /∈ int(D). Suppose
on the contrary that u ∈ int(D). Consider the line from u to x extended. Using the fact that u ∈ int(D),
the line intersects int(rBd). Pick such a point inside int(rBd) and consider an open ball inside int(rBd),
which is also inside K. By convexity of K, we conclude that there is an open ball containing x̃ also in K.
However, this contradicts the original assumption that x̃ ∈ ∂K. Therefore we conclude that u /∈ int(D).

By combining a simple trigonometric argument (such as by similarity) and using the fact that u /∈ int(D),
we have

∥x̄− x̃∥ℓ2 ⩽ ∥x̃∥ℓ2
∥x̄− u∥ℓ2

r
⩽ γR/r.

By repeating the same argument but with K and L switched, we have |1/∥x∥K − 1/∥x∥L| ⩽ γR/r. Since
|1/∥x∥K − 1/∥x∥L| = |ρK(x)− ρL(x)|, this completes the proof.

As a corollary, an application of Jensen’s inequality and Proposition 2 shows that the population objective
functional is Lipschitz continuous over star bodies with sufficiently large inner width and convex bodies with
large inner and outer widths.

Corollary 2. Let P be a distribution over Rd such that EP ∥x∥ℓ2 <∞. Then for any K,L ∈ Sd(r), we have

|EP [∥x∥K ]− EP [∥x∥L]| ⩽
EP ∥x∥ℓ2

r2
δ(K,L).

If, additionally, K and L are convex and K,L ⊆ RBd, then

|EP [∥x∥K ]− EP [∥x∥L]| ⩽
R · EP ∥x∥ℓ2

r3
dH(K,L).

4.2 Compactness and Blaschke’s Selection Theorem for Star Bodies
In this section we will establish that a constraint set C that is a closed and bounded subset of Sd(r) is
compact. We will then prove that the set of volume normalized well-conditioned star bodies

Sd(r, 1) := {K ∈ Sd(r) : vold(K) = 1}

is compact by establishing that this constraint set is a closed and bounded subset of Sd(r).
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To establish compactness of these constraint sets, we must show that sequences in C exhibit convergent
subsequences with limit inside C. In order to showcase such a result, we establish a version of Blaschke’s
Selection Theorem for a subclass of star bodies equipped with the radial metric. It has been shown that
Blaschke’s Selection Theorem holds for any bounded, infinite collection of star bodies with respect to the
Hausdorff metric dH [41]. However, since our Lipschitz condition only holds with respect to the radial
metric, we need to establish a local compactness result that holds for this metric instead.

To prove such a result, we require the following result from [83], which establishes that on the space
Sd(r), the radial and Hausdorff metrics are topologically equivalent to one another.

Theorem 4 (Theorem 3.6 in [83]). For any r > 0, the radial metric δ and the Hausdorff metric dH are
topologically equivalent to one another on Sd(r). That is, convergent sequences in (Sd(r), δ) are the same as
convergent sequences in (Sd(r), dH).

With this result in hand, we can then prove Blaschke’s Selection Theorem also holds with respect to the
radial metric, specifically over the set Sd(r):

Theorem 5 (Blaschke’s Selection Theorem for the Radial Metric). Fix 0 < r < ∞ and let C be a bounded
and closed subset of Sd(r). Let (Ki) be a sequence of star bodies in C. Then (Ki) has a subsequence that
converges in the radial and Hausdorff metric to a star body K ∈ C.

Proof. From [41], since (Ki) is a sequence of star bodies contained in a ball, we know that there exists a
subsequence, call it (Kin), and a star body K such that dH(Kin ,K) → 0 as in → ∞. Since C is closed,
K ∈ C. Finally, to complete the proof, we note that since dH and δ are topologically equivalent on Sd(r) via
Theorem 4, we have that convergence in dH is equivalent to convergence in δ. Hence the subsequence (Kin)
of (Ki) satisfies δ(Kin ,K) → 0 as in → ∞ where K ∈ C.

This result aids in establishing favorable compactness properties of our constraint set C. We collect such
properties as a corollary here:

Corollary 3. For 0 < r < ∞, let C be a closed and bounded subset of Sd(r). Then, the metric space (C, δ)
is compact and for every ε > 0, there exists a finite set of star bodies Sε ⊂ C such that

sup
K∈C

inf
L∈Sε

δ(K,L) ⩽ ε.

The same conclusion holds with respect to the Hausdorff metric dH .

Proof. By Theorem 5, we have that the space (C, δ) is sequentially compact, as every sequence has a conver-
gent subsequence with limit in C. On metric spaces, sequential compactness is equivalent to compactness.
Since the space is compact, it is totally bounded, thus guaranteeing the existence of a finite ε-net for every
ε > 0 as desired. Theorem 4 guarantees the extension to the Hausdorff metric holds.

We now consider the particular case when C = Sd(r, 1). In order to establish compactness using Corollary
3, we need to establish that this subset is closed and bounded. We first show that the volume constraint in
Sd(r, 1) is sufficient to establish that the set is bounded.

Lemma 1. For any r > 0, the collection Sd(r, 1) is a bounded subset of Sd(r). In particular, for Rr :=
d+1

rd−1κd−1
where κd−1 := vold−1(B

d−1),

Sd(r, 1) ⊆ {K ∈ Sd(r) : K ⊆ RrB
d}.

Proof. Let K ∈ Sd(r, 1) and define R(K) := min{R ⩾ 0 : K ⊆ RBd}. For each K, R(K) < ∞, however
we need to obtain a uniform bound Rr such that R(K) ⩽ Rr for all K ∈ Sd(r, 1). Now, let x ∈ ∂K be
such that ∥x∥ℓ2 = R(K), and consider the cone C(K) := conv({rBd−1 ∩ x⊥, x}) where conv(·) denotes the
convex hull. Since rBd−1 ⊆ ker(K), C(K) ⊆ K. By the volume constraint vold(K) = 1, we have that
vold(C(K)) ⩽ vold(K) = 1. This then implies that

vold(C(K)) = R(K) · vold−1(rB
d−1))

d+ 1
⩽ 1.
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Since this bound holds for any K ∈ Sd(r, 1), we conclude by observing the uniform bound

sup
K∈Sd(r,1)

R(K) ⩽
d+ 1

rd−1vold−1(Bd−1)
=: Rr.

Lastly we show that the constraint set Sd(r, 1) is closed under the Hausdorff topology.

Lemma 2. For any 0 < r <∞, the set Sd(r, 1) is closed under the Hausdorff topology.

Proof. Let (Li) be a sequence in Sd(r, 1) such that Li → L in the Hausdorff metric. We claim that
L ∈ Sd(r, 1). We first show rBd ⊆ ker(L). Note that rBd ⊆ ker(Li) for each i so that ker(Li) has non-empty
interior. Moreover, since each Li is closed, so is ker(Li). Lastly, the sequence (Li) is bounded uniformly by
Lemma 1, so the sequence (ker(Li)) is as well. Thus, by Blaschke’s Selection Theorem for convex bodies
(Theorem 1), there exists a subsequence, call it (ker(Lin)), that is convergent in the Hausdorff metric to
some convex body L̃. We claim that L̃ ⊆ ker(L). Fix v ∈ L̃ and let x ∈ L be arbitrary. We will show
that [v, x] ⊆ L. Since ker(Lin) → L̃ and Li → L in the Hausdorff metric, there exists sequences (vin) and
(xin) such that vin ∈ ker(Lin) and xin ∈ Lin for each in and vin → v and xin → x. Then the line segments
[vin , xin ] → [v, x] in the Hausdorff metric where [vin , xin ] ⊆ Lin since each vin ∈ ker(Lin). Hence we must
have that [v, x] ⊆ L. Since x ∈ L was arbitrary, we must have that v ∈ ker(L) as desired so L̃ ⊆ ker(L).
Thus, since rBd ⊆ ker(Lin) for all in and ker(Lin) → L̃, we obtain rBd ⊆ L̃ ⊆ ker(L) as claimed. We finally
note that since each Li satisfies vold(Li) = 1, continuity of the volume functional gives vold(L) = 1. We
conclude that L ∈ Sd(r, 1).

4.3 Existence of Minimizers
We now state and prove our main results on the existence of minimizers using the results above.

Theorem 6. Suppose P is such that EP [∥x∥ℓ2 ] <∞. If C ⊆ Sd(r) is closed and bounded, then there exists
a solution to the following optimization problem:

argmin
K∈C

EP [∥x∥K ]. (7)

In particular, for fixed 0 < r <∞, a solution to the following optimization problem exists:

argmin
K∈Sd(r):vold(K)=1

EP [∥x∥K ]. (8)

Proof. The result is a direct consequence of the fact our objective is continuous and the constraint set is
compact. Indeed, using Corollary 2, we have that the objective functional K 7→ EP [∥x∥K ] is EP [∥x∥ℓ2

]

r2 -
Lipschitz over C. Moreover, the constraint set C is compact by Corollary 3. As we are minimizing a
continuous functional over a compact domain, the existence of minimizers is immediate. Combining Lemma
1 and Lemma 2 shows that Sd(r, 1) is a closed and bounded subset of Sd(r), meaning that the existence of
a minimizer holds in this case as well.

The existence of a minimizer to (7) can be applied to the case when C is restricted to well-conditioned
convex bodies defined by

Cd(r) := {K ∈ Cd : rBd ⊆ K}.

We highlight this case because for computational and modeling considerations, one may wish to restrict to
searching over convex regularizers. For instance, enforcing convexity can help ensure that the optimization
framework to solve downstream tasks such as inverse problems will be more computationally tractable.
There may also be further domain knowledge suggesting that convexity is the correct structure for the data
distribution of interest. We will also consider in Sections 5 and 6 empirical and population risk minimizers
over natural subclasses of convex bodies, for which the following result ensures existence.
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Corollary 4. Fix 0 < r < ∞ and suppose P is such that EP [∥x∥ℓ2 ] < ∞. Suppose C ⊆ Cd(r) is closed and
bounded. Then a minimizer to the optimization problem exists:

min
K∈C

EP [∥x∥K ].

Proof. Corollary 4 follows from Proposition 6 because Cd(r) is a closed subset of Sd(r), but it can also be
proved directly by appealing to the corresponding results for convex bodies equipped with the Hausdorff
metric.

At this point, it is natural to ask how Theorem 6 relates to the results in Section 3. In particular, if P
satisfies the conditions of Theorem 3, when is the solution to (5) equal to the solution of (8) for some r > 0?
The next result answers this question using properties of the radial function ρP .

Proposition 3. Let P satisfy the conditions of Theorem 3, and define ρP as in (6). If x 7→ 1/ρP (x) is
Lipschitz, then there exists an r > 0 such that the unique minimizer of (5) is also the unique minimizer of
(8).

Proof. It suffices to prove that there exists r > 0 such that LP ∈ Sd(r). Indeed, Theorem 6.1 in [68] implies
that there exists r > 0 such that rBd ⊆ ker(LP ) if and only if the gauge ∥ · ∥LP

= 1/ρP (·) is Lipschitz.

5 Convergence of Minimizers
In this section, we study the behavior of the minimizers with increasing data. Our main result is to show
that the empirical minimizers converge to the minimizer of the population risk. To state our main result,
we introduce the following notation. For a distribution P over Rd, let Pm denote the empirical distribution
of P over m i.i.d. observations drawn from P . Let F (K;P ) := EP [∥x∥K ]. Then F (K;Pm) and F (K;P )
denote the empirical risk functional and population risk functional, respectively. As in the previous section,
we will restrict to the class of well-conditioned star bodies Sd(r) and the bounded subset Sd(r, 1) in order to
obtain the required continuity and compactness properties associated to our optimization problem for the
desired convergence to hold.

We first state the main result here:

Theorem 7. Let P be a distribution over Rd such that EP ∥x∥ℓ2 <∞ and fix 0 < r <∞. Then the sequence
of minimizers (K∗

m) ⊆ Sd(r, 1) of F (K;Pm) over Sd(r, 1) has the property that any convergent subsequence
converges in the radial and Hausdorff metric to a minimizer of the population risk almost surely:

any convergent (K∗
mℓ

) satisfies K∗
mℓ

→ K∗ ∈ argmin
K∈Sd(r,1)

F (K;P ).

Moreover, a convergent subsequence of (K∗
m) exists.

Note that our result states that any limit point of (K∗
m) is a minimizer of the population risk, which is

vacuously true if (K∗
m) does not have a convergent subsequence. However, since we have established Sd(r, 1)

is a closed and bounded subset of Sd(r) and (K∗
m) ⊆ Sd(r, 1), an application of Theorem 5 proves that a

convergent subsequence of (K∗
m) must exist.

If we restrict ourselves to searching over convex bodies Cd(r, 1) := {K ∈ Cd : rBd ⊆ K, vold(K) = 1}, we
can obtain the following result focusing on convex bodies, whose proof is a direct consequence of Theorem
7 and the fact that the radial topology and Hausdorff topology are equivalent for convex bodies:

Theorem 8. Let P be a distribution over Rd such that EP ∥x∥ℓ2 < ∞. Then the sequence of minimizers
(K∗

m) ⊆ Cd(r, 1) of F (K;Pm) over Cd(r, 1) has the property that any convergent subsequence converges in
the radial and Hausdorff metric to a minimizer of the population risk almost surely:

any convergent (K∗
mℓ

) satisfies K∗
mℓ

→ K∗ ∈ argmin
K∈Cd(r,1)

F (K;P ).

Moreover, a convergent subsequence of (K∗
m) exists.
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An outline of this section is as follows. First, in Section 5.1, we describe the core mathematical tool needed
to prove convergence of minimizers, namely the notion of Γ-convergence from variational analysis. Then,
in Section 5.2, we establish a result that will be helpful in establishing the requirements of Γ-convergence.
In particular, we prove uniform convergence of the empirical risk objective to the population objective over
Sd(r, 1). This result requires our continuity and compactness results that were used to prove existence of
minimizers in Section 4. Finally, combining results from both sections, we prove Theorem 7 in Section 5.3 by
arguing that the minimizers of the empirical risk must converge to a minimizer of the population risk. Such
tools will also be shown to establish robustness guarantees in Section 5.4 for our problem, in the sense that
if we obtain a regularizer on data convolved with Gaussian noise, the regularizer converges to the optimal
regularizer for clean data as the amount of noise decreases.

5.1 Γ-convergence
Our key technique for establishing Theorem 7 is a tool from variational analysis known as Γ-convergence [13].
In essence, Γ-convergence allows one to conclude the convergence of minimizers of a sequence of functionals to
a minimizer of a particular limiting functional. In addition, because our objects of interest are sets and they
reside in a more general metric space rather than Euclidean space, greater care is needed in understanding
the limits of minimizers.

We first state the definition of Γ-convergence here and cite some useful results that will be needed in our
proofs.

Definition 1. Let (Fi) be a sequence of functions Fi : X → R on some topological space X. Then we say
that Fi Γ-converges to a limit F and write Fi

Γ−→ F if the following conditions hold:

• For any x ∈ X and any sequence (xi) such that xi → x, we have

F (x) ⩽ lim inf
i→∞

Fi(xi).

• For any x ∈ X, we can find a sequence xi → x such that

F (x) ⩾ lim sup
i→∞

Fi(xi).

In fact, if the first condition holds, then the second condition could be taken to be the following: for any
x ∈ X, there exists a sequence xi → x such that limi→∞ Fi(xi) = F (x).

In addition to Γ-convergence, we also require the notion of equi-coercivity, which states that minimizers
of a sequence of functions are attained over a compact domain.

Definition 2. A family of functions Fi : X → R is equi-coercive if for all α, there exists a compact set
Kα ⊆ X such that {x ∈ X : Fi(x) ⩽ α} ⊆ Kα.

Finally, this notion combined with Γ-convergence guarantees convergence of minimizers, which is known
as the Fundamental Theorem of Γ-convergence [13].

Proposition 4 (Fundamental Theorem of Γ-Convergence). If Fi
Γ−→ F and the family (Fi) is equi-coercive,

then the every limit point of the sequence of minimizers (xi) where xi ∈ argminx∈X Fi(x) converges to some
x ∈ argminx∈X F (x).

The goal of the subsequent sections will be in deriving the necessary conditions to establish Γ-convergence
of the empirical risk to the population risk. Then, we will show how our compactness results in Section 4.2
in conjunction with the results in Section 5.2 can establish the requirements of Proposition 4.
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5.2 Uniform Convergence of Empirical Risk Objective
In order to show that our empirical risk functional Γ-converges to the population risk, we require a result
that shows the empirical risk uniformly converges to the population risk in the limit of increasing data. To
obtain this, we appeal to the following Uniform Strong Law of Large Numbers (ULLN) [60], which shows
that if there exists an ε-net over our hypothesis class, then we can establish uniform convergence of the
empirical risk to the population risk.

Theorem 9 (Theorem 3 in [60]). Let Q be a probability measure, and let Qm be the corresponding empirical
measure. Let G be a collection of Q-integrable functions. Suppose that for every ε > 0 there exists a finite
collection of functions Gε such that for every g ∈ G there exists g, g ∈ Gε satisfying (i) g ⩽ g ⩽ g, and (ii)
EQ[g − g] < ε. Then supg∈G |EQm [g]− EQ[g]| → 0 almost surely.

We now state and prove the uniform convergence result.

Theorem 10. Fix 0 < r < ∞ and let P be a distribution on Rd such that EP ∥x∥ℓ2 < ∞. Then, we have
strong consistency in the sense that

sup
K∈Sd(r,1)

|F (K;Pm)− F (K;P )| → 0 as m→ ∞ almost surely.

Proof of Theorem 10. By Corollary 2, we have that the map K 7→ EP [∥x∥K ] is CMP -Lipschitz over Sd(r, 1)
where C = C(r) := 1/r2 and MP := EP ∥x∥ℓ2 < ∞. Now, consider the set of functions G := {∥ · ∥K :
K ∈ Sd(r, 1)}. We will show that we can construct a finite set of functions that approximate ∥ · ∥K for any
K ∈ Sd(r, 1) via an ε-covering argument. This will allow us to apply Theorem 9. By Corollary 3, there
exists an ε-net Sε ⊆ Sd(r, 1) of finite cardinality. For fixed ε > 0, construct a η-cover Sη of Sd(r, 1) such
that supK∈Sd(r,1) minL∈Sη

δ(K,L) ⩽ η where η ⩽ ε/(2CMP ). Define the following sets of functions:

Gη,− := {(∥ · ∥K − CMP η)+ : K ∈ Sη} and Gη,+ := {∥ · ∥K + CMP η : K ∈ Sη}.

Let ∥ · ∥K ∈ G be arbitrary. Let K0 ∈ Sη be such that δ(K,K0) ⩽ η. Define f = ∥ · ∥K0 +CMP η ∈ Gη,+ and
f = (∥ · ∥K0 − CMP η)+ ∈ Gη,−. It follows that f ⩽ f ⩽ f . Moreover, by our choice of η, we have that

EP [f − f ] ⩽ 2CMP η ⩽ ε.

Thus, the conditions of Theorem 9 are met and we get

sup
K∈Sd(r,1)

|F (K;Pm)− F (K;P )| = sup
K∈Sd(r,1)

|EPm [∥x∥K ]− EP [∥x∥K | → 0 as m→ ∞ a.s.

5.3 Proof of Theorem 7
We first establish the two requirements of Γ-convergence. For the first, fix K ∈ Sd(r, 1) and consider a
sequence Km → K. Then we have that

F (K;P ) = F (K;P )− F (K;Pm) + F (K;Pm)− F (Km;Pm) + F (Km;Pm)

⩽ |F (K;P )− F (K;Pm)|+ |F (K;Pm)− F (Km;Pm)|+ F (Km;Pm)

⩽ sup
K∈Sd(r,1)

|F (K;P )− F (K;Pm)|+ |F (K;Pm)− F (Km;Pm)|+ F (Km;Pm). (9)

By Theorem 10, we have that the first term goes to 0 as m goes to ∞ almost surely. We now show that
|F (K;Pm)− F (Km;Pm)| → 0 as m→ ∞ almost surely. To see this, observe that by Corollary 2 we have

|F (K;Pm)− F (Km;Pm)| ⩽ EPm
[∥x∥ℓ2 ]
r2

δ(K,Km).
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Since EPm
[∥x∥ℓ2 ] → EP [∥x∥ℓ2 ] < ∞ and δ(K,Km) → 0 as m → ∞ almost surely, we attain |F (K;Pm) −

F (Km;Pm)| → 0. Thus, taking the limit inferior of both sides in equation (9) yields

F (K;P ) ⩽ lim inf
m→∞

F (Km;Pm).

For the second requirement, we exhibit a realizing sequence so let K ∈ Sd(r, 1) be arbitrary. By Corollary
3, for any m ⩾ 1, there exists a finite 1

m -net S1/m of Sd(r, 1) in the radial metric δ. Construct a sequence
(Km) ⊂ Sd(r, 1) such that for each m, Km ∈ S1/m and satisfies δ(Km,K) ⩽ 1/m. Hence this sequence
satisfies Km → K in the radial metric and Km ∈ Sd(r, 1) for all m ⩾ 1. Hence we can apply Theorem 10 to
get

|F (Km;Pm)− F (K;P )| ⩽ |F (Km;Pm)− F (K;Pm)|+ |F (K;Pm)− F (K;P )| → 0 as m→ ∞ a.s.

so limm→∞ F (Km;Pm) = F (K;P ).
Now, we show that (F (·;Pm)) is equi-coercive on Sd(r, 1). In fact, this follows directly from Theorem

5, the variant of Blaschke’s Selection Theorem we proved for the radial metric. Thus equi-coerciveness
of the family (F (·;Pm)) trivially holds over Sd(r, 1). As a result, applying Proposition 4 to the family
F (·;Pm) : Sd(r, 1) → R, if we define the sequence of minimizers

K∗
m ∈ argmin

K∈Sd(r,1)

F (K;Pm)

we have that any limit point of K∗
m converges to some

K∗ ∈ argmin
K∈Sd(r,1)

F (K;P )

almost surely, as desired. The existence of a convergent subsequence of (K∗
m) follows from Sd(r, 1) being a

closed and bounded subset of Sd(r) and Theorem 5.

5.4 Robustness Guarantees
Our results utilizing Γ-convergence can also be used to establish robustness guarantees on optimal regularizers
for uncorrupted and noisy data. In particular, we are interested in deviations between regularizers K that
are optimal over uncorrupted data y = x for x ∼ P versus regularizers Kσ that are optimal over noisy data
y = x+ z where x ∼ P and z ∼ N (0, σ2Id). A natural question to ask is whether Kσ converges to K as the
amount of noise σ → 0. To understand this question, we first consider characterizing the deviation in the
population risk under an uncorrupted distribution and a noisy distribution.

To state our results, we first require the following metric on the space of probability distributions. Let
T (P,Q) denote all joint distributions γ for (X,Y ) that have marginals P and Q. Define the p-Wasserstein
distance between two probability distributions P and Q as

Wp(P,Q) :=

(
inf

γ∈T (P,Q)
E∥X − Y ∥p

)1/p

, p ⩾ 1.

A particularly useful result for our purposes is in the case p = 1, as the 1-Wasserstein distance has the
following dual characterization [92]:

W1(P,Q) := sup
f∈Lip(1)

|EP [f(y)]− EQ[f(x)]| .

Here, Lip(R) denotes the set of all R-Lipschitz functions from Rd to R:

Lip(R) :=

{
f : Rd → R : sup

x ̸=y

|f(x)− f(y)|
∥x− y∥ℓ2

⩽ R

}
.

Suppose we have a probability distribution P and define Pσ := P ∗ N (0, σ2Id) as the convolution of P
and N (0, σ2Id):

y ∼ Pσ ⇐⇒ y = x+ z, x ∼ P, z ∼ N (0, σ2Id).
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We first characterize the deviation in population risk between P and Pσ as a function of σ and then aim
to understand properties of star bodies learned on noisy data as the noise vanishes. We first establish the
following result on the population risk, which shows that we can uniformly bound the deviation in population
risk as a function of σ if the collection of star bodies have sufficiently large inner width:

Theorem 11. Let P be a probability distribution in Rd and define Pσ := P ∗ N (0, σ2Id) for some σ > 0.
Suppose there exists an 0 < r <∞ such that C ⊆ Sd(r). Then we have that

sup
K∈C

|F (K;P )− F (K;Pσ)| ⩽ σ

√
d

r
.

To prove this, we first consider the general question of how far F (·;P ) deviates from F (·;Q) for two
distributions P and Q. We prove the following:

Proposition 5. Let P and Q be two probability distributions in Rd. Suppose there exists an 0 < r < ∞
such that C ⊆ Sd(r). Then the following bound holds:

sup
K∈C

|F (K;P )− F (K;Q)| ⩽ 1

r
W1(P,Q).

Proof. Fix K ∈ C. It was proven in Proposition 2 that if rBd ⊆ ker(K), then the mapping x 7→ ∥x∥K is
1/r-Lipschitz so that ∥ · ∥K ∈ Lip(1/r). Thus, using the dual characterization of W1(P,Q), we obtain the
bound

|F (K;P )− F (K;Q)| = |EP [∥y∥K ]− EQ[∥x∥K ]|
⩽ sup
f∈Lip(1/r)

|EP [f(y)]− EQ[f(x)]|

⩽
1

r
W1(P,Q).

Taking the supremum over all K ∈ C completes the proof.

Now we can prove the main Theorem.

Proof of Theorem 11. By our previous proposition, we simply need to compute W1(P, Pσ). But it is well-
known [97] that W1(P, Pσ) ⩽ σ

√
d. Applying the uniform bound and using W1(P, Pσ) ⩽ σ

√
d completes the

proof.

Based on our quantitative convergence bound, we can prove the following:

Theorem 12. Fix 0 < r < ∞ and let P be a distribution on Rd such that EP ∥x∥ℓ2 < ∞. Let (σt) be a
non-negative, monotone decreasing sequence converging to 0 and set Pσt

:= P ∗ N (0, σ2
t Id). Then we have

that the sequence of minimizers on noisy data

Kt ∈ argmin
K∈Sd(r,1)

F (K;Pσt
)

has the property that any convergent subsequence converges to a minimizer on uncorrupted data in the radial
metric and Hausdorff metric:

any convergent (Ktℓ) satisfies Ktℓ → K∗ ∈ argmin
K∈Sd(r,1)

F (K;P ).

Moreover, a convergent subsequence of (Kt) exists.

Proof. The proof of this result follows similarly to the proof of Theorem 7 by using Theorem 11 to help
establish Γ-convergence of the family (F (·;Pσt

))t to F (·;P ) over Sd(r, 1).
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6 Statistical Learning Guarantees
As a final application of our results, we showcase sample complexity guarantees to control the deviation from
the empirical risk to the population risk. In many data science contexts, it is imperative to understand the
tradeoff between the expressiveness of the hypothesis class and the number of samples needed to efficiently
solve the problem. Specifically, one might wish to ask, how many samples does it take to construct a
regularizer (from a structured family) that approximates the best possible choice from a hypothesis class to
some target accuracy – such questions are often phrased as sample complexity problems. In our framework,
this requires an analysis of the particular collection of star bodies C ⊆ Sd being optimized over and the
behavior of the objective K 7→ ∥ · ∥K over a finite number of samples drawn from a data distribution
P . We showcase uniform convergence guarantees over the collection C, where the difference between the
empirical risk and the population risk is controlled with overwhelming probability by a quantity η(m,C, P )
that depends on the number of samples m, the distribution P , and the complexity of the collection of bodies
C:

sup
K∈C

|F (K;Pm)− F (K;P )| ⩽ η(m,C, P ) (10)

As the number of samples increases, this approximation improves where the rate depends on the data
distribution and structure of the bodies. As a consequence, we can establish that empirical minimiz-
ers K∗

m ∈ argminK∈C F (K;Pm) obtain population risk not far from the population minimizer K∗ ∈
argminK∈C F (K;P ) in the sense that with high probability

F (K∗
m;P ) ⩽ F (K∗;P ) + 2η(m,C, P ).

At a high-level, our generalization results require the following key ingredients to specify a uniform
convergence bound:

• First, identify a family of star/convex bodies C of interest.

• Show that the functional K 7→ ∥ · ∥K is well-behaved in the sense that it is CC-Lipschitz over C with
respect to a metric D(·, ·). This will allow us to exploit some of our previous continuity results for our
objective functional over the space of well-conditioned star bodies.

• Characterize the “complexity” of C. While there are many notions of complexity that have been studied
in statistical learning theory, one notion that will be particularly useful for our purposes is the notion
of a covering number of a subset of a metric space. For a metric space (X,D), we define the ε-covering
number of a subset T ⊂ X with respect to the metric D as the smallest number of balls of radius ε
that covers T :

N(T,D, ε) := min

∣∣∣∣∣∣
T ⊂ T : T ⊂

⋃
q∈T

{x ∈ T : D(x, q) ⩽ ε}


∣∣∣∣∣∣ .

In Section 6.1, we describe a general uniform convergence bound of the form (10) that quantifies the
rate of convergence of the empirical risk to the population risk over a general class of bodies C. We will then
showcase the utility of this bound by showing how it can be applied to several classes of bodies of interest in
applications. First, we establish a bound on the class of star bodies given as unions of convex bodies with
large inner width in Section 6.2. To our knowledge, such metric entropy estimates for this class of star bodies
is new. Then, we apply this result to parametrized families of sets. The first class we consider is ellipsoids
in Section 6.3. Afterwards, in Section 6.4, we discuss polytopes and how such a bound can be applied to
dictionary learning. Finally, we showcase an application to semidefinite regularizers in Section 6.5, which
are regularizers induced by linear images of Schatten p-norm balls.

6.1 General Uniform Convergence Result
Given the ingredients described previously, we can prove a general uniform convergence result that shows
when the functional K 7→ ∥ · ∥K is Lipschitz over a collection of star bodies C, we can obtain generalization
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bounds based on the complexity of the collection C and the data distribution P . We will show that this
general theorem can then be applied to many classes of bodies of interest to showcase the utility of our
result.

Theorem 13. Let P be a distribution over Rd such that for x ∼ P , ∥x∥ℓ2 ⩽ 1 almost surely. Consider a
subset C ⊂ Sd such that rCBd ⊆ K for all K ∈ C for some 0 < rC < ∞. Suppose C has a finite ε-covering
number in a metric D. That is, there exists a range (0, ε̃] for some ε̃ > 0 such that logN(C, D, ε) < ∞ for
all 0 < ε ⩽ ε̃. Suppose the map K 7→ ∥ · ∥K is CC-Lipschitz over C in the maximum norm with respect to D,
i.e., for all K,L ∈ C

∥∥ · ∥K − ∥ · ∥L∥∞ := max
∥x∥ℓ2

=1
|∥x∥K − ∥x∥L| ⩽ CCD(K,L).

Then for any γ ∈ (0, 1), we have that with probability 1 − γ over m samples drawn from P , the following
bound holds for all K ∈ C,

F (K;P ) ⩽ F (K;Pm) + 2 inf
ε∈(0,ε̃]

{
ε+ cP,m

√
2

m
logN

(
C, D,

ε

CC

)}
+ cC

√
2 ln 4/γ

m
.

Here cP,m is a constant that depends on C, P , and m and cC := 4/rC.

Proof. Let Xm := {x1, . . . , xm} denote the m samples drawn from P and define the function class

FC := {∥ · ∥K : Rd → R : K ∈ C}.

Note that our class of functions FC is uniformly bounded. In particular, by our assumption on the class C,
there exists an inner radius 0 < rC < ∞ such that rCBd ⊆ K for all K ∈ C. Hence for any ∥x∥ℓ2 ⩽ 1, we
have ∥x∥K ⩽ 1/rC. By standard statistical learning results [75, Theorem 26.5], the deviation between the
empirical and population risk is controlled by the (empirical) Rademacher complexity R(FC;Xm) [9] of the
function class FC. That is, it holds that with probability 1− γ, we have that for all K ∈ C,

EP [∥x∥K ] ⩽ EPm
[∥x∥K ] + 2R(FC;Xm) + cC

√
2 ln 4/γ

m
.

Here, R(F ;Xm) is defined by

R(F ;Xm) := Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
where σi are Rademacher random variables for i ∈ [m] and cC := 4/rC. Moreover, one can show [61,
Proposition 5.2] that the Rademacher complexity is bounded by the covering number of the function class
FC with respect to the pseudo-norm ∥ · ∥1,Xm

:

R(FC;Xm) ⩽ inf
ε∈(0,ε̃]

{
ε+ cP,m

√
2

m
logN(FC, ∥ · ∥1,Xm

, ε)

}
where

cP,m := inf

{
c > 0 : sup

K∈C
∥∥ · ∥K∥1,Xm ⩽ c

}
⩽ 1/rC.

Here, ∥f∥1,Xm := 1
m

∑m
i=1 |f(xi)|.

Now, we can use the fact that K 7→ ∥·∥K is Lipschitz over K ∈ C to obtain a bound on N(FC, ∥·∥1,Xm , ε)
based on N(C, D, η) for some η := η(ε) to be determined. First, we note that it suffices to obtain a bound
on the covering number of FC with respect to the maximum norm ∥ · ∥∞ as opposed to ∥ · ∥1,Xm

since by
our assumption on the data, ∥xi∥ℓ2 ⩽ 1 almost surely so that

∥∥ · ∥K∥1,Xm
=

1

m

m∑
i=1

∥xi∥K ⩽
1

m

m∑
i=1

∥∥ · ∥K∥∞ = ∥∥ · ∥K∥∞.
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Hence N(FC, ∥ · ∥1,Xm
, ε) ⩽ N(FC, ∥ · ∥∞, ε).

Fix ε ∈ (0, ε̃] and set η := ε/CC. Select an η-covering of C, denoted by Cη, of cardinality log |Cη| =
logN(C, D, ε/CC). Then define the finite set of functions FCη := {∥·∥K : K ∈ Cη}. Then log |Cη| = log |FCη |
and for any K ∈ C, there exists a Kη ∈ Cη such that D(K,Kη) ⩽ η. By the assumption that K 7→ ∥ · ∥K is
CC-Lipschitz in the D metric, we have

∥∥ · ∥K − ∥ · ∥Kη∥∞ ⩽ CCD(K,Kη) ⩽ CCη = ε.

Hence, we have obtained an ε-covering of FC with respect to ∥ · ∥∞ of cardinality N (C, D, ε/CC) .

The above result establishes a uniform generalization bound for any collection of star bodies C that
satisfies two requirements: 1) the functional K 7→ ∥ · ∥K is Lipschitz continuous over C with respect to
a metric D and 2) C enjoys finite entropy bounds. In this work, we established that our objective is
Lipschitz continuous over the space of well-conditioned star bodies Sd(r, 1) with respect to the radial metric
δ. Moreover, by Corollary 3, this space (Sd(r, 1), δ) enjoys finite covering numbers. While there are several
prior works that have analyzed entropy bounds for collections of convex bodies with respect to the Hausdorff
metric, we are unaware of prior work analyzing such entropy bounds for star bodies in either the radial or
Hausdorff metric. Our general bound can be applied to Sd(r, 1) under the radial metric, but we do not
have quantitative upper bounds on the covering number logN(Sd(r, 1), δ, ε). Nevertheless, we show that our
generalization bound can be applied to several interesting classes of bodies, including star bodies given as
unions of convex bodies along with other classes of convex bodies that satisfy the conditions of Theorem 13
with respect to the Hausdorff metric dH . This will recover some known results in the literature on matrix
factorization while generating novel statistical learning guarantees for several classes of bodies of interest,
including unions of convex bodies, ellipsoids, polytopes, and linear images of Schatten p-norm balls.

We note that in our general bound, we assume that the data distribution is supported in the unit
Euclidean ball. This assumption could be relaxed to allow for a larger radius, which would then be absorbed
into the constants cP,m and cC that appear in our upper bound. It would be interesting to derive a result
that would allow for a broader range of distributions. We focus on this class of almost surely bounded
distributions for simplicity here.

In our results, we use ≲ to denote inequality up to absolute constants. A result that we will repeatedly
use in the sequel is the following approximate monotonicity property of covering numbers:

Proposition 6 (Exercise 4.2.10 in [91]). For two subsets T1, T2 of a metric space X with metric D, T1 ⊆ T2
implies N(T1, D, ε) ⩽ N(T2, D, ε/2).

6.2 Application: Star bodies as Unions of Well-Conditioned Convex Bodies
We first consider a special class of star bodies that are given by unions of convex bodies. In particular,
consider the following class of convex bodies with unit volume and inner width at least r: Cd(r, 1) := {K ∈
Cd : rBd ⊆ K, vold(K) = 1}, which is a subset of the space of well-conditioned star bodies we considered in
Section 4. As shown in Lemma 1, we also have K ⊆ RrB

d for all K ∈ Cd(r, 1), where Rr := d+1
rd−1κd−1

and
κd−1 := vold−1(B

d−1). Now, for any L ∈ N, define the following subset of star bodies SdL(r) ⊂ Sd by

SdL(r) :=

{
K =

L⋃
i=1

Ki : Ki ∈ Cd(r, 1) ∀ i ∈ [L]

}
.

This class of star bodies contains sets that can be obtained as unions of convex bodies with sufficiently large
inner width and unit volume. By exploiting our previous continuity results and using known metric entropy
estimates for bounded convex bodies, we can apply Theorem 13 to obtain a generalization bound as follows:

Corollary 5. Let P be a distribution over Rd such that for x ∼ P , ∥x∥ℓ2 ⩽ 1 almost surely. Fix 0 < r <∞.
Then for any γ ∈ (0, 1), we have that with probability 1 − γ over m samples drawn from P , the following
bound holds for all K ∈ SdL(r),

F (K;P ) ⩽ F (K;Pm) + 2 inf
ε>0

{
ε+ cP,m

√
L

m
log

(
α(ε, r, d)

L

)}
+ cr

√
2 ln 4/γ

m
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where logα(ε, r, d) ≲ d log
(
R2
r/εr

5
)

and cr ≲ 1/r.

Proof. First, recall that by Proposition 2, we established that K 7→ ∥ ·∥K is CC := 1/r2-Lipschitz continuous
in the radial Hausdorff metric over SdL(r). Note that this part of the Proposition only requires rBd ⊆ K,
which is satisfied for K ∈ SdL(r). Now, we must establish that the metric entropy logN(SdL(r), δ, ε) is finite
under the radial metric. To prove this, we will build an ε-cover of SdL(r) using known covers of bounded
convex bodies in the Hausdorff metric and show how the radial distance between sets in SdL(r) can be upper
bounded by their distance in the Hausdorff metric.

We record some useful known results. It has been shown [37] that the space C(r) := {K ∈ Cd : K ⊆
RrB

d} has an ε2-covering number in the Hausdorff metric of size logN(C(r), dH , ε) ⩽ c · d−1
2 log

(
Rr

ε

)
< ∞

for all ε ⩽ Rrε0 for some c and ε0 depending on d. Call such a covering C̃dε2 and define the relevant subset
Cdε2 := C̃dε2 ∩Cd(r, 1). Then for any K ∈ Cd(r, 1), there exists a K̃ ∈ Cdε2 such that dH(K, K̃) ⩽ ε2. Using this
covering, we now construct a cover of SdL(r). Define the following finite class of star bodies:

SdL,ε2 :=

{
K =

L⋃
i=1

Ki : Ki ∈ Cdε2 ∀ i ∈ [L]

}
⊂ SdL(r).

We claim that this is an Rrε
2/r3-covering of SdL(r) in the radial Hausdorff metric. Fix K ∈ SdL(r). Then

K = ∪Li=1Ki where Ki ∈ Cd(r, 1) for each i ∈ [L]. By the definition of Cdε2 , for each Ki, there exists
a corresponding K̃i ∈ Cdε2 such that dH(Ki, K̃i) ⩽ ε2. We claim that δ(K, K̃) ⩽ Rrε

2/r3 where K̃ :=

∪Li=1K̃i ∈ SdL,ε2 . First, note that each Ki, K̃i satisfies rBd ⊆ Ki, K̃i ⊆ RrB
d. For a star body K that is the

union of star bodies K1, . . . ,KL, its radial function satisfies ρK(x) = mini∈[L] ρKi
(x). Moreover, we have

the relation ρK(x) = 1/∥x∥K . Thus, for any ∥x∥ℓ2 = 1, we have that

|ρK(x)− ρK̃(x)| =
∣∣∣∣min
i∈[L]

ρKi(x)− min
i∈[L]

ρK̃i
(x)

∣∣∣∣ =
∣∣∣∣∣min
i∈[L]

1

∥x∥Ki

− min
i∈[L]

1

∥x∥K̃i

∣∣∣∣∣
=

∣∣∣∣max
i∈[L]

∥x∥Ki
−max
i∈[L]

∥x∥K̃i

∣∣∣∣
⩽ max

i∈[L]

∣∣∥x∥Ki
− ∥x∥K̃i

∣∣
⩽
Rr
r3
dH(Ki∗ , K̃i∗)

⩽
Rr
r3

· ε2.

where we set i∗ ∈ argmaxi∈[L] |∥x∥Ki
− ∥x∥K̃i

|, used Proposition 2 in the second to last inequality, and the
definition of Cdε2 in the final inequality. Since this holds for any ∥x∥ℓ2 = 1, we can take the maximum over
the sphere to obtain

δ(K, K̃) = max
∥x∥ℓ2

=1
|ρK(x)− ρK̃(x)| ⩽ Rr

r3
· ε2.

Since K ∈ SdL(r) was arbitrary, this shows that SdL,ε2 is an Rrε
2/r3-covering of SdL(r) in the radial metric.

Note that this covering is of cardinality |SdL,ε2 | =
(|Cd

ε2
|

L

)
. Using the upper bound

(
n
k

)
⩽ (n · e/k)k, we can

estimate the metric entropy as

logN
(
SdL(r), δ, ε

)
⩽ log

(
|Cdε |
L

)
≲ L log

(
|Cdε |
L

)
where log |Cdε | ≲ d log(Rr/ε).

Remark on the choice of parameters. This result focuses on the class of star bodies that can be
expressed as unions of convex bodies with fixed volume and inner width at least r > 0, but a similar bound
can also be obtained when the convex bodies are restricted to lie in RBd for a user-specified outer radius
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R < ∞. Note that the outer radius Rr grows with the dimension if r is kept constant. In high-dimensions,
however, the volume of the unit ball concentrates on the boundary, so it is natural to instead choose a value
of r that also increases with the dimension, e.g., setting r = α

√
d for some constant 0 < α < 1. This would

ensure that Rr and r are on the same order.
Simplification for well-conditioned convex regularizers. Note that this above result also gives a
generalization guarantee for well-conditioned convex regularizers in the case L = 1. One could improve this
result in terms of powers of r for the convex case by directly using relevant results solely in the Hausdorff
topology. Note that this cannot be done for the case of unions of convex bodies, since the radial topology is
more natural over the space of star bodies.

6.3 Application: Ellipsoidal Regularizers
We additionally consider another class of convex bodies that are linear images of a norm ball. Specifically,
we showcase a generalization bound for learning regularizers induced by ellipsoids.

Corollary 6 (Generalization Bound for Ellipsoids). Let P be a distribution over Rd such that for x ∼ P ,
∥x∥ℓ2 ⩽ 1 almost surely. Fix 0 < r < R <∞. Then for any γ ∈ (0, 1), we have that with probability 1−γ over
m samples drawn from P , the following bound holds for all K ∈ {A(Bd) : A ∈ Rd×d, A = AT , RI ⪰ A ⪰ rI}:

F (K;P ) ⩽ F (K;Pm) + 2 inf
ε>0

{
ε+ cP,m

√
d(d+ 1)

2m
log

(
3R2

εr3

)}
+ cr

√
2 ln 4/γ

m
.

Proof of Corollary 6. Let A := {A ∈ Rd×d : A = AT , rI ⪯ A ⪯ RI}. Observe that for any A ∈ A and
x ∈ A(Bd), we have ∥x∥ℓ2 ⩽ ∥A∥∥z∥ℓ2 ⩽ R where x = Az and ∥z∥ℓ2 ⩽ 1, meaning A(Bd) ⊆ RBd. Moreover,
∥Az∥ℓ2 ⩾ r∥z∥ℓ2 for any z ∈ Rd so A(Bd) ⊇ rBd. Thus, K 7→ ∥ · ∥K is Lipschitz over C = {A(Bd) : A ∈ A}
with respect to the Hausdorff metric.

To complete the proof, we show that the covering number of C in the Hausdorff metric can be bounded
by the covering number of A with respect to the spectral norm ∥ · ∥. This follows from noting that for any
A,D ∈ A, we have by definition of the Hausdorff metric that

dH(A(Bd), D(Bd)) = max
∥x∥ℓ2

=1
|hA(Bd)(x)− hD(Bd)(x)|

= max
∥x∥ℓ2

=1
|hBd(ATx)− hBd(DTx)|

= max
∥x∥ℓ2

=1
|∥ATx∥ℓ2 − ∥DTx∥ℓ2 |

⩽ max
∥x∥ℓ2

=1
∥(A−D)Tx∥ℓ2 =: ∥A−D∥.

But note that the covering number of A with respect to the spectral norm ∥ · ∥ is bounded by

logN(A, ∥ · ∥, ε) ⩽ d(d+ 1)

2
· log

(
3R

ε

)
since the set of PSD matrices is a Riemannian manifold of dimension d(d+ 1)/2 [36]. This gives the bound

logN

(
C, dH ,

εr3

R

)
⩽ logN

(
A, ∥ · ∥, εr

3

R

)
⩽
d(d+ 1)

2
log

(
3R2

εr3

)
.

6.4 Application: Polyhedral Regularizers and Dictionary Learning
We now apply our result to another important class of convex bodies: polytopes. This bound also charac-
terizes a generalization bound for dictionary learning. Let PT ⊂ Cd denote the space of polytopes with T
vertices:

PT := {conv(S) : S ⊂ Rd has cardinality at most T}.
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For 0 < r < R <∞, let PT (r,R) := {K ∈ PT : rBd ⊆ K ⊆ RBd}. Note that by Lemma 1, {K ∈ PT : rBd ⊆
K, vold(K) = 1} ⊆ PT (r,Rr), so the following bound can be applied to this class of volume-normalized
polytopes as well.

Corollary 7. Let P be a distribution over Rd such that for x ∼ P , ∥x∥ℓ2 ⩽ 1 almost surely. Fix 0 < r <
R < ∞. Then for any γ ∈ (0, 1), we have that with probability 1 − γ over m samples drawn from P , the
following bound holds for all K ∈ PT (r,R),

F (K;P ) ⩽ F (K;Pm) + 2 inf
ε>0

{
ε+ cP,m

√
Td

m
log

(
MR2

εr3

)}
+ cr

√
2 ln 4/γ

m
.

Here, M is a positive absolute constant.

Proof. First, note that due to our assumptions on PT (r,R), we have again by Proposition 2 that K 7→ ∥x∥K
is R/r3-Lipschitz with respect to the Hausdorff metric over this class of convex bodies. It has additionally
been shown [37] (proof of Lemma C.1) that PT (R) := {K ∈ PT : K ⊆ RBd} enjoys a finite ε-covering
number with respect to the Hausdorff metric, which scales as

logN(PT (R), dH , ε) ≲ Td · log
(
MR

ε

)
for some positive absolute constant M . Using the monotonicity property (Proposition 6) to bound the
εr3/R-covering number of PT (r,R) by that of PT (R) achieves the desired result.

The class of bounded polytopes of sufficiently large inner width covers the setting of dictionary learning
under some conditions on the dictionaries of interest. In particular, recall that in dictionary learning, the
goal is to learn a basis A ∈ Rd×p such that a given dataset {xi}Ni=1 can be sparsely represented as xi ≈ Azi
where zi is sparse. In most cases, sparsity is induced by solving for latent codes zi with small ℓ1-norm.
In this case, the learned regularizer can be shown to be a gauge function induced by a linear image of the
ℓ1-ball:

∥x∥A(Bℓ1
) = inf{∥z∥ℓ1 : z = Ax}.

This follows by definition, since ∥x∥A(Bℓ1
) = inf{t > 0 : x ∈ t · A(Bℓ1)} = inf{t > 0 : x = Az, z ∈ t · Bℓ1} =

inf{∥z∥ℓ1 : x = Az}. Thus, the regularizers of interest in dictionary learning are gauges induced by linear
images of the ℓ1-ball, where the linear map A is the object to be learned. That is, for A ∈ Rd×p, the convex
body of interest is given by

A(Bℓ1) := {Az ∈ Rd : ∥z∥ℓ1 ⩽ 1} = conv({A1, . . . , Ap}).

To apply our result for polytopes, we need to show that a class of suitable dictionaries A ⊂ Rd×p induces
a collection of convex bodies {A(Bℓ1) : A ∈ A} that satisfies the geometric conditions rBd ⊆ A(Bℓ1) ⊆ RBd

for all A ∈ A. For a parameter η > 0, consider the collection of dictionaries

A := {A ∈ Rd×p : ∥Ai∥ℓ2 = 1, rank(A) = d,
√
σmin(AAT ) ⩾ η > 0}

and fix A ∈ A. We first show A(Bℓ1) ⊆ RBd for some R > 0. Consider x ∈ A(Bℓ1). Then x = Az
for ∥z∥ℓ1 ⩽ 1. Since ∥A∥2 ⩽ ∥A∥2ℓ2 = p where ∥ · ∥ and ∥ · ∥ℓ2 denote the spectral and Frobenius norm,
respectively, we see that

∥x∥ℓ2 = ∥Az∥ℓ2 ⩽ ∥A∥∥z∥ℓ2 ⩽
√
p∥z∥ℓ1 ⩽

√
p.

Thus A(Bℓ1) ⊆
√
pBd. We now show A(Bℓ1) ⊇ rBd for some 0 < r < R. Note that this inclusion holds if

and only if the support functions satisfy hA(Bℓ1
) ⩾ hrBd . Note that for any ∥u∥ℓ2 = 1, we have that the

support function of A(Bℓ1) is given by

hA(Bℓ1
)(u) = hBℓ1

(ATu) = ∥ATu∥ℓ∞ .
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But since A ∈ A, note that

min
∥u∥ℓ2

=1
∥ATu∥ℓ∞ ⩾

1
√
p

min
∥u∥ℓ2

=1
∥ATu∥ℓ2 =

1
√
p
·
√
σmin(AAT ) ⩾

η
√
p
.

This guarantees η/√pBd ⊆ A(Bℓ1).
Thus each K ∈ {A(Bℓ1) : A ∈ A} satisfies η/√pBd ⊆ K ⊆ √

pBd. Hence the functional ∥x∥K is Lipschitz
over the collection C := {A(Bℓ1) : A ∈ A}. Moreover, the set

{A(Bℓ1) : A ∈ A} ⊆ Pp(
√
p)

since each A(Bℓ1) is a polytope with at most p extreme points. Thus we achieve the same bound in Corollary
7 with T = p, r = η/

√
p, and R =

√
p. These bounds match previously achieved generalization bounds for

dictionary learning [88, 36] up to logarithmic factors.

6.5 Application: Semidefinite Regularizers
Our final class of convex bodies consists of linear images of Schatten p-norm balls. Such classes have found
wide interest in data science. For example, if one wants to learn an infinite collection of dictionary elements,
a natural generalization of dictionary learning would require learning a linear image of the nuclear norm ball
[76]. The set of dictionary elements in this case corresponds to the convex hull of the set of rank-1 matrices.

For a matrix A ∈ Rq×q, let σi(A) denote the i-th singular value of A. For p ∈ [1,∞], we define the
Schatten p-norm of A as

∥A∥Sp :=

{
(
∑q
i=1 σi(A)

p)
1/p if p <∞,

σmax(A) else.

Let BSp := {A ∈ Rq×q : ∥A∥Sp ⩽ 1} denote the Schatten p-norm ball and define the space of linear maps
from Rq×q to Rd as L(Rq×q,Rd). For a linear map L ∈ L(Rq×q,Rd), define the induced operator norm
∥ · ∥Sp,2 as

∥L∥Sp,2 := max
Z∈BSp

∥L(Z)∥ℓ2 .

For a collection of linear maps Lp ⊂ L(Rq×q,Rd), let Cp denote the induced collection of convex bodies which
are linear images of Schatten p-norm balls

Cp := {L(BSp) : L ∈ Lp ⊂ L(Rq×q,Rd)}.

We will prove the following result, which prescribes a set of conditions on the collection Lp to obtain a
generalization bound.

Corollary 8. Let P be a distribution over Rd such that for x ∼ P , ∥x∥ℓ2 ⩽ 1 almost surely. For p ⩾ 1, let
p̃ denote the conjugate2 of p and consider the set of bounded linear maps

Lp(r,R) :=

{
L ∈ L(Rq×q,Rd) : r ⩽ min

∥x∥ℓ2
=1

∥LTx∥Sp̃ ⩽ ∥L∥Sp,2 ⩽ R

}
.

Then for any γ ∈ (0, 1), we have that with probability 1 − γ over m samples drawn from P , the following
bound holds for all K ∈ {L(BSp

) : L ∈ Lp(r,R)},

F (K;P ) ⩽ F (K;Pm) + 2 inf
ε>0

{
ε+ cP,m

√
q2d

2m
· log

(
R2

εr3

)}
+ cr

√
2 ln 4/γ

m
.

2Recall that the conjugate p̃ of p is p̃ = ∞ if p = 1 and 1/p+ 1/p̃ = 1 otherwise.
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Proof. We first show that the collection Cp := {L(BSp
) : L ∈ Lp(r,R)} is bounded and has a sufficiently

large inner width. Clearly for K ∈ Cp, we have K ⊆ RBd. Moreover, note that the support function
hL(BSp )

(u) = ∥LTu∥Sp̃ . Thus, for K ∈ Cp, the condition rBd ⊆ K is equivalent to

hrBd(u) ⩽ hL(BSp )
(u) ∀∥u∥ℓ2 = 1 ⇐⇒ r ⩽ min

∥u∥ℓ2
=1

∥LTu∥Sp̃
.

By assumption, this inequality holds.
Now we need to bound the covering number of Cp in the Hausdorff metric. We claim such a bound can

be obtained by covering the space Lp in the ∥ · ∥Sp,2 norm. Arguing similarly to proof of Corollary 6, we can
show that for L,A ∈ Lp, we have

dH(L(BSp
),A(BSp

)) ⩽ max
∥x∥ℓ2

=1
∥(LT −AT )x∥Sp̃

=: ∥LT −AT ∥2,Sp̃
.

But by duality, note that ∥X∥Sp
= max{|⟨X,Z⟩| : ∥Z∥Sp̃

⩽ 1} so that for any linear map L ∈ L(Rq×q,Rd),

∥LT ∥2,Sp̃
= max

∥x∥ℓ2
=1

∥LTx∥Sp̃
= max

∥x∥ℓ2
=1

max
∥Z∥Sp⩽1

|⟨Z,LTx⟩| = max
∥x∥ℓ2

=1
max

∥Z∥Sp⩽1
|⟨L(Z), x⟩|

= max
∥Z∥Sp⩽1

max
∥x∥ℓ2

=1
|⟨L(Z), x⟩|

= max
∥Z∥Sp⩽1

∥L(Z)∥ℓ2

= ∥L∥Sp,2

which gives dH(L(BSp
),A(BSp

)) ⩽ ∥L − A∥Sp,2. It suffices to then bound the covering number of Lp(R) :=
{L ∈ L(Rq×q,Rd) : ∥L∥Sp,2 ⩽ R}. But note that Lp(R) is isomorphic to the space of d × q2 matrices of
bounded ∥ · ∥Sp,2 norm. This gives the estimate

logN(Cp, dH , ε) ⩽ logN(Lp, ∥ · ∥Sp,2, ε) ⩽ logN(Lp(R), ∥ · ∥Sp,2, ε/2) ≲ q2d log

(
1 +

2R

ε

)
.

Bounding the εr3/R-covering number of Cp in the Hausdorff metric by that of Lp(R) in the metric induced
by the ∥ · ∥Sp,2-norm achieves the claimed bound.

7 Consequences Beyond Optimization
In this section, we briefly illustrate the consequences of our approach to regularizer selection for solution
methods of inverse problems that do not rely on optimization but instead on the closely related topic of
sampling. In the preceding sections of this paper, we advocate for summarizing a data distribution P via
a star body regularizer ∥ · ∥K . As discussed in Section 1.1, a regularizer ∥ · ∥K defined by the gauge of
a star body K ⊆ Rd is optimal for a data distribution P if the Gibbs density with energy ∥ · ∥K is the
projection of P onto the set of regularizer-induced Gibbs densities D. With this notion of optimality, our
results in Section 3.3 on conditions for a data distribution under which the optimal regularizer is convex
have computational implications beyond optimization.

Concretely, in the Bayesian paradigm for solving inverse problems, one aims to reconstruct an object
from corrupted measurements by sampling from a suitable posterior distribution. When the prior is log-
concave (i.e., when it is proportional to exp(−V ) for a convex function V ), the induced posterior distribution
is also log-concave for many common likelihood models for the observed data (e.g., in linear inverse problems
with likelihood functions given by exponential family models). In such situations, we are faced with the task
of sampling from a log-concave posterior. The area of log-concave sampling is rich with algorithms and
results guaranteeing convergence, for a wide range of smooth and non-smooth convex energies V [89, 64, 65,
45, 44, 15, 25, 26]. Consequently, the identification of log-concave Gibbs densities that can approximate a
given prior distribution P by obtaining convex regularizers corresponding to P can yield a computationally
tractable sampling-based approach for solving inverse problems.

We now describe this Bayesian perspective in more detail. Suppose we collect measurements y ∈ Rm of
an underlying signal x∗ ∈ Rd, which are modeled via likelihood function of y given x of the form e−Φ(x;y)

28



O. Leong, E. O’Reilly, Y.S. Soh, V. Chandrasekaran

for a known map Φ. (For example, if y and x∗ are related via y = f(x∗) + η for some known forward model
f : Rd → Rm and η ∼ N (0, σ2Im), then Φ(x; y) := (2σ2)−1∥y − f(x)∥2ℓ2 .) From the Bayesian perspective
[79], one views x∗ as being drawn from a prior distribution P and the quantity of interest for estimating x∗
is the posterior distribution of x∗ given y, which we denote by µP :

µP (dx) :=
1

ZP (y)
e−Φ(x;y)dP (x)

where ZP (y) :=
∫
Rd e

−Φ(x;y)dP (x) is the normalizing constant.
If instead of using the posterior µP we use the posterior µp∗K induced by the moment projection p∗K of P

onto D, it is natural to ask what the implications might be in terms of reconstruction. Using recent results
in the Bayesian inference literature, one can show that the distance from the posterior µP induced by the
true prior P to the induced posterior distribution µp∗K is upper bounded by the distance between P and the
moment projection p∗K . To state the result, recall that the total variation distance between two measures
P1, P2 is given by dTV (P1, P2) := supA |P1(A)− P2(A)| where the supremum is over all measurable subsets.

Proposition 7. Fix y ∈ Rm. Consider two prior measures P1, P2 on Rd with P1 ≪ P2 and log-likelihood
function Φ(·; y) : Rd → R such that ZPi

(y) :=
∫
Rd e

−Φ(x;y)dPi(x) < ∞ for each i = 1, 2. Defining the
posterior measures µPi(dx) := ZPi(y)

−1e−Φ(x;y)dPi(x), we have that the following bounds hold:

d2TV (µP1
, µP2

) ⩽
2

Z2
P1
(y)

DKL(P1||P2).

Proof. This result follows from Theorem 8 in [78] along with an application of Pinsker’s inequality [59],
which states that dTV (P1, P2) ⩽

√
DKL(P1||P2)/2 for any two measures P1, P2.

Hence, if the normalizing constants ZP (y), ZpK (y) are finite, the m-projection p∗K of P onto D satisfies:

min
pK∈D

d2TV (µP , µpK ) ⩽
2

ZP (y)2
DKL(P ||p∗K).

Thus, identifying an element p∗K of the class D to best approximate a prior P with a view to minimizing the
total variation between the corresponding posteriors µP , µp∗K may be achieved by setting p∗K equal to the
m-projection of P onto D; in turn, this m-projection can be obtained by deriving the optimal regularizer
for P . If this optimal regularizer is convex so that p∗K is log-concave, then under appropriate conditions
on the likelihood e−Φ(x;y) the posterior µp∗K is log-concave. To summarize this line of reasoning, identifying
an optimal regularizer for a data distribution P and conditions under which it is convex yield methods for
obtaining samples from a log-concave posterior whose distance to the true posterior is controlled in terms of
the quality of the approximation of P .

8 Conclusion and Discussion
In this paper, we analyzed the question of determining the optimal regularizer for a given data distribution.
We showed that when considering the class of continuous, positively homogeneous regularizers, this question
is equivalent to solving a variational optimization problem over the space of star bodies. We showed that
given a distribution of interest, there exists a unique star body of fixed volume that achieves the optimal
risk by exploiting dual Brunn-Minkowski theory. The density of the distribution helps characterize the
radial function of the optimal star body, which can have a wide array of geometries depending on the
distribution under consideration. We further analyzed the convergence of empirical risk minimizers in the
limit of infinite data and robustness of solutions to noisy perturbations. We then obtained generalization
guarantees for various classes of star bodies and convex bodies, recovering known results while developing
novel guarantees. There are many interesting directions for future work, and we describe a few here:
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Performance of regularizers in subsequent tasks. An important next step in the theory of
optimal regularizers is to understand their performance in downstream tasks such as inverse problems. These
types of questions are interesting from a generalization perspective, and would bring unique mathematical
challenges. For example, previous works [55, 56] have established worst-case bounds on denoising performance
using a convex regularizer, which depends on the statistical complexity of the regularizer’s subdifferential at
the point of interest. In our setting and the convex case, this would amount to analyzing the subdifferential
of ∥ · ∥K∗ the gauge induced by the optimal star body K∗. Additionally, this would also likely involve
quantifying the Gaussian width or statistical dimension [20, 19, 5] of the tangent cone of convex bodies at
datapoints of interest, a quantity that has been well-studied in the context of inverse problems and statistical
estimation tasks. Understanding what the analogous quantities would be in the general nonconvex star case
could lead to new geometric questions regarding the boundary structure of such bodies.

Approximation power of convex bodies. The focus of our paper mainly lied in characterizing
the optimal star body regularizer for a given distribution, but did not investigate questions related to
modeling mismatch. It is of interest to investigate situations such as those discussed in Section 4, where
the collection of sets we are searching over C does not contain the optimal regularizer K∗. For example, if
the optimal regularizer K∗ for a given distribution is nonconvex, what is the best convex approximation to
this regularizer? Along these lines, are there benefits to considering the best convex approximation to the
optimal star body regularizer from a computational or analytic perspective? The answers to such questions
will further advance our understanding of the powers and limitations of convexity.

Computing the optimal regularizer. One interesting direction that stems from our work is to pro-
vide a practical method for learning optimal regularizers that are specified as the gauge of a star body for
a given data set. The dictionary learning problem provides a roadmap for describing structured families of
convex regularizers that are extremely expressive while being amenable to training (via alternating mini-
mization methods) – these are regularizers specified as the gauge of some polytope parametrized as some
linear image of the ℓ1-ball. A natural family of nonconvex regularizers that extends the ideas of dictionary
learning are those specified as the gauge of unions of a few convex sets, each of which could be, for instance,
specified as some projection of the ℓ1-ball. It would be interesting to develop numerical algorithms for
learning regularizers with such structure.

Incorporating computational considerations. An outstanding challenge in the field of inverse
problems is to better understand how contemporary data-driven methods for learning regularizers perform,
and explain why they seem to work well in practice. An interesting direction based on our work is to view
stylized instances of these practical methods as instances of our framework, but with the additional con-
straint that the star body arises from some computational model. For instance, we may view the dictionary
learning problem as an instance of our framework with the constraint that the star body is specified as
the linear image of an ℓ1-ball. It would be interesting to investigate the relationship between the optimal
regularizers corresponding to the constrained (to being specified by some computational model) and uncon-
strained instances, and in the process, provide insight into the performance of practical methods for learning
regularizers.

Acknowledgements
We thank Shuhan Yang for notifying us of a sign error in a previous version of this manuscript. VC was
supported in part by AFOSR grants FA9550-23-1-0204, FA9550-23-1-0070 and NSF grant DMS 2113724.
YS acknowledges support from the Ministry of Education (Singapore) Academic Research Fund (Tier 1)
R-146-000-329-133.

30



O. Leong, E. O’Reilly, Y.S. Soh, V. Chandrasekaran

References
[1] Alekh Agarwal, Animashree Anandkumar, Prateek Jain, and Praneeth Netrapalli. Learning sparsely

used overcomplete dictionaries via alternating minimization. SIAM Journal on Optimization,
26(4):2775–2799, 2016.

[2] Alekh Agarwal, Animashree Anandkumar, and Praneeth Netrapalli. A clustering approach to learn
sparsely-used overcomplete dictionaries. IEEE Transactions on Information Theory, 63(1):575–592,
2017.

[3] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.

[4] S. Amari and H. Nagaoka. Methods of Information Geometry. Translations of mathematical mono-
graphs. American Mathematical Society, 2000.

[5] Dennis Amelunxen, Martin Lotz, Michael B. McCoy, and Joel A. Tropp. Living on the edge: Phase
transitions in convex programs with random data. Information and Inference: A Journal of the IMA,
224–294:3(3), 2014.

[6] Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms for
sparse coding. Conference on Learning Theory, 2015.

[7] Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving inverse problems
using data-driven models. Acta Numerica, 28:1–174, 2019.

[8] Boaz Barak, Jonathan A. Kelner, and David Steurer. Dictionary learning and tensor decomposition via
the sum-of-squares method. Proceedings of the Forty-seventh Annual ACM Symposium on Theory of
Computing, page 143–151, 2015.

[9] Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher complexities. Annals of
Statistics, 33:1497–1537, 2005.

[10] Martin Benning and Martin Burger. Modern regularization methods for inverse problems. Acta Nu-
merica, 27:1–111, 2018.

[11] Badri Bhaskar and Benjamin Recht. Atomic norm denoising with applications to line spectral estima-
tion. IEEE Transactions on Signal Processing, 61(23):5987–5999, 2013.

[12] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros Dimakis. Compressed sensing using generative
models. International Conference on Machine Learning, 2017.

[13] Andrea Braides. A handbook of Γ-convergence. Handbook of Differential Equations: Stationary Partial
Differential Equations, Volume 3, 2007.

[14] Kristian Bredies, Karl Kunisch, and Thomas Pock. Total generalized variation. SIAM Journal on
Imaging Sciences, 3:492 – 526, 2011.

[15] Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. Sampling from a log-concave distribution with
projected langevin monte carlo. Discrete and Computational Geometry, 59:757–783, 2018.

[16] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foun-
dations of Computational Mathematics, 9(6):717–772, 2009.

[17] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):1207–1223,
2006.

[18] Antonin Chambolle and Pierre-Louis Lions. Image recovery via total variation minimization and related
problems. Numer. Math., 76:167–188, 1997.

31



Optimal Regularization

[19] Venkat Chandrasekaran and Michael I. Jordan. Computational and statistical tradeoffs via convex
relaxation. Proceedings of the National Academy of Sciences, 110(13):E1181–E1190, 2013.

[20] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry
of linear inverse problems. Foundations of Computational Mathematics, 12:805–849, 2012.

[21] Niladri S. Chatterji and Peter L. Bartlett. Alternating minimization for dictionary learning: Local
convergence guarantees. Advances in Neural Information Processing Systems (NeurIPS), 2017.

[22] Masoumeh Dashti and Andrew M. Stuart. Uncertainty quantification and weak approximation of an
elliptic inverse problem. SIAM Journal on Numerical Analysis, 49(6):2524–2542, 2011.

[23] Ingrid Daubechies, Michel Defrise, and Christine de Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics,
57(11):1413–1457, 2004.

[24] David Donoho. For most large underdetermined systems of linear equations the minimal l1-norm solution
is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6):797–829, 2006.

[25] Alain Durmus, Szymon Majewski, and Błażej Miasojedow. Analysis of langevin monte carlo via convex
optimization. Journal of Machine Learning Research, 20:1–46, 2019.

[26] Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. Log-concave sampling: Metropolis-
hastings algorithms are fast. Journal of Machine Learning Research, 20:42, 2019.

[27] P. P. B. Eggermont. Maximum entropy regularization of fredholm integral equations of the first kind.
SIAM Journal on Mathematical Analysis, 24(6):1557–1576, 1993.

[28] Michael Elad. Sparse and redundant representations: From theory to applications in signal and image
processing. Springer, 2010.

[29] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96:1348 – 1360, 2001.

[30] Maryam Fazel. Matrix rank minimization with applications. Ph.D. Thesis, Department of Electrical
Engineering, Stanford University, 2002.

[31] Simon Foucart and Ming-Jun Lai. Sparsest solutions of underdetermined linear systems via ℓq -
minimization for 0 < q ⩽ 1. Applied and Computational Harmonic Analysis, 26:395–407, 2009.

[32] Cristina Garcia-Cardona and Brendt Wohlberg. Convolutional dictionary learning: A comparative
review and new algorithms. IEEE Transactions on Computational Imaging, 4(3):366–381, 2018.

[33] Richard J. Gardner. Geometric tomography. Cambridge: Cambridge University Press, 2006.

[34] Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: from importance sampling to
bridge sampling to path sampling. Statistical Science, 13(2):163–185, 1998.

[35] Matteo Giordano and Richard Nickl. Consistency of bayesian inference with gaussian process priors in
an elliptic inverse problem. Inverse Problems, 36(8):085001, 2020.

[36] Rémi Gribonval, Rodolphe Jenatton, Francis Bach, Martin Kleinsteuber, and Matthias Seibert. Sample
complexity of dictionary learning and other matrix factorizations. IEEE Transactions on Information
Theory, 61(6):3469–3486, 2015.

[37] Adityanand Guntuboyina. Optimal rates of convergence for convex set estimation from support func-
tions. Annals of Statistics, 40(1):385–411, 2012.

[38] Andreas Habring and Martin Holler. A generative variational model for inverse problems in imaging.
SIAM Journal on Mathematics of Data Science, 4(1):306–335, 2022.

32



O. Leong, E. O’Reilly, Y.S. Soh, V. Chandrasekaran

[39] G. Hansen, I. Herburt, H. Martini, and M. Moszynska. Starshaped sets. Aequationes Mathematicae,
94:1001–1092, 2020.

[40] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: The lasso
and generalizations. Chapman & Hall/CRC, 2015.

[41] Tunehisa Hirose. On the convergence theorem for star-shaped sets in En. Proc. Japan Acad., 41(3):209–
211, 1965.

[42] B. T. Knapik, A. W. van der Vaart, and J. H. van Zanten. Bayesian inverse problems with gaussian
priors. The Annals of Statistics, 39(5):2626–2657, 2011.

[43] Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. Total deep variation: A stable
regularizer for inverse problems. arXiv preprint arXiv:2006.08789, 2020.

[44] László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM Journal on Computing,
35(4):985–1005, 2006.

[45] László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling algorithms.
Random Structures & Algorithms, 30(3):307–358, 2007.

[46] Sebastian Lunz, Ozan Öktem, and Carola-Bibiane Schönlieb. Adversarial regularizers in inverse prob-
lems. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

[47] Erwin Lutwak. Dual mixed volumes. Pacific Journal of Mathematics, 58(2):531–538, 1975.

[48] Erwin Lutwak. Centroid bodies and dual mixed volumes. Proceedings of the London Mathematical
Society, s3-60(2):365–391, 1990.

[49] Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision processing. Foun-
dations and Trends in Computer Graphics and Vision, 8(2–3):85–283, 2014.

[50] Hosein Mohimani, Massoud Babaie-Zadeh, and Christian Jutten. A fast approach for overcomplete
sparse decomposition based on smoothed ℓ0 norm. IEEE Transactions on Signal Processing, 57(1):289
– 301, 2008.

[51] François Monard, Richard Nickl, and Gabriel P. Paternain. Consistent inversion of noisy non-abelian
x-ray transforms. Communications on Pure and Applied Mathematics, 74(5):1045–1099, 2021.

[52] Harry Nyquist. Certain topics in telegraph transmission theory. Trans. AIEE., 47(2):617–644, 1928.

[53] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607–609, 1996.

[54] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision in Research, 37(23):3311–3325, 1997.

[55] Samet Oymak and Babak Hassibi. Sharp mse bounds for proximal denoising. Foundations of Compu-
tational Mathematics, 16:965–1029, 2016.

[56] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi. The squared-error of generalized lasso:
A precise analysis. 51st Annual Allerton Conference on Communication, Control, and Computing
(Allerton), 2013.

[57] Vardan Papyan, Yaniv Romano, Jeremias Sulam, and Michael Elad. Convolutional dictionary learning
via local processing. International Conference on Computer Vision (ICCV), page 5296–5304, 2017.

[58] Konstantin Pieper and Armenak Petrosyan. Nonconvex regularization for sparse neural networks. Ap-
plied and Computational Harmonic Analysis, 61:25 – 56, 2022.

33



Optimal Regularization

[59] Mark S. Pinsker. Information and information stability of random variables and processes. Holden-Day,
Inc., San Francisco, Calif.-London, Amsterdam, 1964.

[60] David Pollard. Convergence of stochastic processes. Springer-Verlag, 1984.

[61] Patrick Rebeschini. Lecture 5: Covering numbers bounds for rademacher complexity. chaining. 2021.

[62] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

[63] Edward T. Reehorst and Philip Schniter. Regularization by denoising: clarifications and new interpre-
tations. IEEE Transactions on Computational Imaging, 5(1):52 – 67, 2019.

[64] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. Bernoulli, pages 341–363, 1996.

[65] Gareth O. Roberts and Richard L. Tweedie. Geometric convergence and central limit theorems for
multidimensional hastings and metropolis algorithms. Biometrika, 83(1):95–110, 1996.

[66] R. Tyrell Rockafellar. Lagrange multipliers and optimality. SIAM Review, 35(2):183–238, 1993.

[67] Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that could: Regularization by
denoising (red). SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

[68] A.M. Rubinov. Radiant sets and their gauges. In: Quasidifferentiability and Related Topics, 43:235–261,
2000.

[69] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[70] Karin Schnass. On the identifiability of overcomplete dictionaries via the minimisation principle under-
lying k-svd. Applied and Computational Harmonic Analysis, 37(3):464–491, 2014.

[71] Karin Schnass. Convergence radius and sample complexity of itkm algorithms for dictionary learning.
Applied and Computational Harmonic Analysis, 45(1):22–58, 2016.

[72] Rolf Schneider. Convex bodies: The brunn–minkowski theory. Cambridge: Cambridge University Press.,
2013.

[73] Ivan Selesnick. Sparse regularization via convex analysis. IEEE Transactions on Signal Processing,
65(17):4481–4494, 2017.

[74] Parikshit Shah, Badri Narayan Bhaskar, Gongguo Tang, and Benjamin Recht. Linear system identi-
fication via atomic norm regularization. Proceedings of the 51st Annual Conference on Decision and
Control, 2012.

[75] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge University Press, USA, 2014.

[76] Yong Sheng Soh and Venkat Chandrasekaran. Learning semidefinite regularizers. Foundations of Com-
putational Mathematics, 19:375–434, 2019.

[77] Daniel A. Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries.
Conference on Learning Theory, 23(37):1–18, 2012.

[78] Björn Sprungk. On the local lipschitz stability of bayesian inverse problems. Inverse Problems,
36:055015, 2020.

[79] Andrew M. Stuart. Inverse problems: a bayesian perspective. Acta Numerica, 19:451–559, 2010.

34



O. Leong, E. O’Reilly, Y.S. Soh, V. Chandrasekaran

[80] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere i: Overview and the
geometric picture. IEEE Transactions on Information Theory, 63(2):853–884, 2016.

[81] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere ii: Recovery by
riemannian trust-region method. IEEE Transactions on Information Theory, 63(2):885–914, 2016.

[82] Qiyu Sun. Recovery of sparsest signals via ℓq-minimization. Applied and Computational Harmonic
Analysis, 32(3):329–341, 2012.

[83] Grzegorz Sójka. Metrics in the family of star bodies. Advances in Geometry, 13:117–144, 2013.

[84] Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin Recht. Compressed sensing off
the grid. IEEE Transactions on Information Theory, 59(11):7465–7490, 2013.

[85] Ryan Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267–288, 1994.

[86] Andrey Nikolayevich Tikhonov. On stability of inverse problems. Dokl. Akad. Nauk SSSR, 39(5):176–
179, 1943.

[87] Yann Traonmilin, Rémi Gribonval, and Samuel Vaiter. A theory of optimal convex regularization for
low-dimensional recovery. arXiv preprint arXiv:2112.03540, 2021.

[88] Daniel Vainsencher, Shie Mannor, and Alfred M. Bruckstein. The sample complexity of dictionary
learning. Journal of Machine Learning Research (JMLR), 12:3259–3281, 2011.

[89] Santosh Vempala. Geometric random walks: A survey. Combinatorial and Computational Geometry,
52(2):573–612, 2005.

[90] Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-play priors for
model based reconstruction. In 2013 IEEE Global Conference on Signal and Information Processing,
pages 945–948. IEEE, 2013.

[91] Roman Vershynin. High-dimensional probability: An introduction with applications in data science.
Cambridge University Press, 2020.

[92] Cédric Villani. Topics in optimal transport. Providence, RI: American Mathematical Society, 2003.

[93] Zhaoran Wang, Han Liu, and Tong Zhang. Optimal computational and statistical rates of convergence
for sparse nonconvex learning problems. Annals of Statistics, 42(6):2164 – 2201, 2014.

[94] Brendt Wohlberg. Efficient algorithms for convolutional sparse representations. IEEE Transactions on
Image Processing, 25(1):301–315, 2015.

[95] Quanming Yao and James T. Kwok. Efficient learning with a family of nonconvex regularizers by
redistributing nonconvexity. Journal of Machine Learning Research (JMLR), 18:1–52, 2018.

[96] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics,
38(2):894 – 942, 2010.

[97] Yixing Zhang, Xiuyuan Cheng, and Galen Reeves. Convergence of gaussian-smoothed optimal transport
distance with sub-gamma distributions and dependent samples. Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics, 2021.

35


	Introduction
	A Maximum-Likelihood Criterion for Optimal Regularizer Selection
	Our Contributions
	Related Work
	Regularizers Derived from Domain Expertise
	Regularizers Learned from Data
	Characterizing Optimal Regularizers


	Preliminaries
	Metric Spaces
	Brunn-Minkowski Theory

	Minimizers of the Population Risk
	Radial Function Associated to a Data Distribution
	Optimal Star Body Regularizers
	When is the Optimal Regularizer Convex?
	Examples of Optimal Regularizers for a Given Distribution

	Existence of Optimal Regularizers for General Data Distributions
	Continuity Properties of the Objective Functional
	Compactness and Blaschke's Selection Theorem for Star Bodies
	Existence of Minimizers

	Convergence of Minimizers
	-convergence
	Uniform Convergence of Empirical Risk Objective
	Proof of Theorem 7
	Robustness Guarantees

	Statistical Learning Guarantees
	General Uniform Convergence Result
	Application: Star bodies as Unions of Well-Conditioned Convex Bodies
	Application: Ellipsoidal Regularizers
	Application: Polyhedral Regularizers and Dictionary Learning
	Application: Semidefinite Regularizers

	Consequences Beyond Optimization
	Conclusion and Discussion

