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Abstract—While loopy belief propagation (LBP) performs
reasonably well for inference in some Gaussian graphical models
with cycles, its performance is unsatisfactory for many others. In
particular for some models LBP does not converge, and in general
when it does converge, the computed variances are incorrect
(except for cycle-free graphs for which belief propagation (BP)
is non-iterative and exact). In this paper we propose feedback
message passing (FMP), a message-passing algorithm that makes
use of a special set of vertices (called a feedback vertex set or FVS)
whose removal results in a cycle-free graph. In FMP, standard BP
is employed several times on the cycle-free subgraph excluding the
FVS while a special message-passing scheme is used for the nodes
in the FVS. The computational complexity of exact inference is
O(k?n), where k is the number of feedback nodes, and 7. is the
total number of nodes. When the size of the FVS is very large,
FMP is computationally costly. Hence we propose approximate
FMP, where a pseudo-FVS is used instead of an FVS, and where
inference in the non-cycle-free graph obtained by removing the
pseudo-FVS is carried out approximately using LBP. We show
that, when approximate FMP converges, it yields exact means
and variances on the pseudo-FVS and exact means throughout
the remainder of the graph. We also provide theoretical results
on the convergence and accuracy of approximate FMP. In partic-
ular, we prove error bounds on variance computation. Based on
these theoretical results, we design efficient algorithms to select
a pseudo-FVS of bounded size. The choice of the pseudo-FVS
allows us to explicitly trade off between efficiency and accuracy.
Experimental results show that using a pseudo-FVS of size no
larger than log(n), this procedure converges much more often,
more quickly, and provides more accurate results than LBP on
the entire graph.

Index Terms—Belief propagation, feedback vertex set, Gaussian
graphical models, graphs with cycles, Markov random field.
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I. INTRODUCTION

AUSSIAN graphical models are used to represent the

conditional independence relationships among a collec-
tion of normally distributed random variables. They are widely
used in many fields such as computer vision and image pro-
cessing [2], gene regulatory networks [3], medical diagnostics
[4], oceanography [5], and communication systems [6]. Infer-
ence in Gaussian graphical models refers to the problem of es-
timating the means and variances of all random variables given
the model parameters in information form (see Section II-A
for more details). Exact inference results in Gaussian graphical
models of moderate size can be obtained by algorithms such as
direct matrix inversion, nested dissection, Cholesky factoriza-
tion, and Gauss—Seidel iteration [7]. However, these algorithms
can be computationally prohibitive for very large problems in-
volving millions of random variables, especially if variances
are sought [5], [8], [9]. The development of efficient algorithms
for solving such large-scale inference problems is thus of great
practical importance.

Belief propagation (BP) is an efficient message-passing
algorithm that gives exact inference results in linear time
for tree-structured graphs [10]. The Kalman filter for linear
Gaussian estimation and the forward-backward algorithm for
hidden Markov models can be viewed as special instances of
BP. Though widely used, tree-structured models (also known
as cycle-free graphical models) possess limited modeling
capabilities, and many stochastic processes and random fields
arising in real-world applications cannot be well-modeled using
cycle-free graphs.

Loopy belief propagation (LBP) is an application of BP on
loopy graphs using the same local message update rules. Empir-
ically, it has been observed that LBP performs reasonably well
for certain graphs with cycles [11], [12]. Indeed, the decoding
method employed for turbo codes has also been shown to be a
successful instance of LBP [13]. A desirable property of LBP is
its distributed nature—as in BP, message updates in LBP only
involve local model parameters or local messages, so all nodes
can update their messages in parallel.

However, the convergence and correctness of LBP are not
guaranteed in general, and many researchers have attempted to
study the performance of LBP [14]-[17]. For Gaussian graph-
ical models, even if LBP converges, it is known that only the
means converge to the correct values while the variances ob-
tained are incorrect in general [15]. In [17], a walk-sum anal-
ysis framework is proposed to analyze the performance of LBP
in Gaussian graphical models. Based on such a walk-sum anal-
ysis, other algorithms have been proposed to obtain better infer-
ence results [18].
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LBP has fundamental limitations when applied to graphs with
cycles: Local information cannot capture the global structure of
cycles, and thus can lead to convergence problems and infer-
ence errors. There are several questions that arise naturally: Can
we use more memory to track the paths of messages? Are there
some nodes that are more important than other nodes in terms
of reducing inference errors? Can we design an algorithm ac-
cordingly without losing too much decentralization?

Motivated by these questions, we consider a particular set of
“important” nodes called a feedback vertex set (FVS). A feed-
back vertex set is a subset of vertices whose removal breaks all
the cycles in a graph. In our feedback message passing (FMP)
algorithm, nodes in the FVS use a different message passing
scheme than other nodes. More specifically, the algorithm we
develop consists of several stages. In the first stage on the cycle-
free graph (i.e., that excluding the FVS), we employ standard in-
ference algorithms such as BP but in a non-standard manner: In-
correct estimates for the nodes in the cycle-free portion are com-
puted while other quantities are calculated and then fed back to
the FVS. In the second stage, nodes in FVS use these quanti-
ties to perform exact mean and variance computations in the
FVS and to produce quantities used to initiate the third stage
of BP processing on the cycle-free portion in order to correct
the means and variances. Though communication among the
“important” nodes is needed, the messages within the cycle-free
portion are completely local and distributed.! If the number of
feedback nodes is bounded, the means and variances can be ob-
tained exactly in linear time by using FMP. In general, the com-
plexity is O(k2n), where k is the number of the feedback nodes
and 7 is the total number of nodes.

For graphs with large feedback vertex sets (e.g., for large
two-dimensional grids), FMP becomes computationally costly.
We develop approximate FMP using a pseudo-FVS (i.e., a set
of nodes of moderate size that break some but not all of the cy-
cles). The resulting algorithm has the same structure as the exact
algorithm except that the inference algorithm on the remainder
of the graph, (excluding the pseudo-FVS), which contains cy-
cles, needs to be specified. In this paper we simply use LBP,
although any other inference algorithm could also be used. As
we will show, assuming convergence of LBP on the remaining
graph, the resulting algorithm always yields the correct means
and variances on the pseudo-FVS, and the correct means else-
where. Using these results and ideas motivated by the work on
walk-summability (WS) [17], we develop simple rules for se-
lecting nodes for the pseudo-FVS in order to ensure and enhance
convergence of LBP in the remaining graph (by ensuring WS in
the remaining graph) and high accuracy (by ensuring that our al-
gorithm “collects the most significant walks”; see Section II-C
for more details). This pseudo-FVS selection algorithm allows
us to trade off efficiency and accuracy in a simple and nat-
ural manner. Experimental results suggest that this algorithm
performs exceedingly well—including for non-WS models for
which LBP on the entire graph fails catastrophically—using a
pseudo-FVS of size no larger than log(n).

Inference algorithms based on dividing the nodes of a graph-
ical model into subsets have been explored previously [19],
[20]. The approach presented in this paper is distinguished by

ISee Section VI for a brief discussion of a recursive extension to the methods
developed here that suggests how one can construct fully distributed algorithms.
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the fact that our methods can be naturally modified to provide ef-
ficient approximate algorithms with theoretical analysis on con-
vergence and error bounds.

The remainder of the paper is organized as follows. In
Section II, we first introduce some basic concepts in graph
theory and Gaussian graphical models. Then we briefly review
BP, LBP, and walk-sum analysis. We also define the notion
of an FVS and state some relevant results from the literature.
In Section III, we show that for a class of graphs with small
FVS, inference problems can be solved efficiently and exactly
by FMP. We start with the single feedback node case, and
illustrate the algorithm using a concrete example. Then we
describe the general algorithm with multiple feedback nodes.
We also prove that the algorithm converges and produces
correct estimates of the means and variances. In Section 1V,
we introduce approximate FMP, where we use a pseudo-FVS
of bounded size. We also present theoretical results on con-
vergence and accuracy of approximate FMP. Then we provide
an algorithm for selecting a good pseudo-FVS. In Section V,
we present numerical results. The experiments are performed
on two-dimensional grids, which are widely used in various
research areas including image processing. We design a series
of experiments to analyze the convergence and accuracy of
approximate FMP. We also compare the performance of the al-
gorithm with different choices of pseudo-FVS, and demonstrate
that excellent performance can be achieved with a pseudo-FVS
of modest size chosen in the manner we describe. Finally,
in Section VI, we conclude with a discussion of our main
contributions and future research directions.

II. BACKGROUND

A. Gaussian Graphical Models

The set of conditional independence relationships among a
collection of random variables can be represented by a graphical
model [21]. An undirected graph G = (V. £) consists of a set
of nodes (or vertices) V and a set of edges £. Each node s € V
corresponds to a random variable x,. We say that aset C C V
separates sets A, B C V if every path connecting A and I3
passes through C. The random vector? xy, is said to be Markov
withrespectto G = (V, £} if for any subset A, B, C' C V, where
C separates A and B, we have that x 4 and xg are independent
conditioned on X, i.e., p(X4, Xp|xXc) = p(xalxc)p(xa|xc).
Such Markov models on undirected graphs are also commonly
referred to as undirected graphical models or Markov random
fields.

In a Gaussian graphical model, the random vector
xzy 1s jointly Gaussian. The probability density function
of a jointly Gaussian distribution is given by p(x)
exp{—3xTJx + h'x}, where J is the information, con-
centration or precision matrix and h is the potential vector.
We refer to these parameters as the model parameters in infor-
mation form. The mean vector ¢ and covariance matrix P are
related to J and h by g = J~'h and P = J~!. For Gaussian
graphical models, the graph structure is sparse with respect to
the information matrix J, i.e., J; ; # 0 if and only if there is an
edge between ¢ and j. For example, Fig. 1(a) is the underlying

2We use the notation x 4, where 4 C V, to denote the collection of random
variables {z.|s € A}.
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(a) (b)

Fig. 1. The relationship between the sparsity pattern in the underlying graph
and the sparsity pattern in the information matrix of a Gaussian graphical model.
Conditional independence can be directly read from either the sparsity pattern
of the graph structure or the sparsity pattern of the information matrix. (a) The
sparsity pattern of the underlying graph. (b) The sparsity pattern of the informa-
tion matrix.

graph for the information matrix ./ with sparsity pattern shown
in Fig. 1(b). For a non-degenerate Gaussian distribution, .J is
positive definite. The conditional independences of a collection
of Gaussian random variables can be read immediately from
the graph as well as from the sparsity pattern of the information
matrix. If .J;; = 0,4 # j, then x; and x; are independent
conditioned on all other variables [22]. Inference in Gaussian
graphical models refers to the problem of estimating the means
t; and variances FP;; of every random variable z; given J and
h.

B. Belief Propagation and Loopy Belief Propagation

BP is a message passing algorithm for solving inference prob-
lems in graphical models. Messages are updated at each node
according to incoming messages from neighboring nodes and
local parameters. It is known that for tree-structured graphical
models, BP runs in linear time (in the cardinality n = |V| of the
node set) and is exact. When there are cycles in the graph, LBP is
used instead, where the same local message update rules as BP
are used neglecting the existence of cycles. However, conver-
gence and correctness are not guaranteed when there are cycles.

In Gaussian graphical models, the set of messages can be
represented by {AJ; ,; U Ah; ;}i j)ee, where AJ;_,; and
Ah,;_,; are scalar values. Consider a Gaussian graphical model:
p(x) « exp{—xTJx + hTx}. BP (or LBP) proceeds as fol-
lows [17]:

1) Message Passing:
The messages are initialized as AJ,:(E?J- and Ah,go_), ;» for
all (¢,7) € &. These initializations may be chosen in
different ways. In our experiments we initialize all mes-
sages with the value 0.
At each iteration £, the messages are updated based on
previous messages as

A = = Ty (j;,(\tjfl))il Jij M

AR = — gy, (j;\tj—n)fl e @
where

IV =div Y0 ARy 3)

keEN(I\F
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S(t—1) t—1
MY =hio+ >0 ARy (4)
REN\]

Here, N(i) = {5 € V : (i,j) € &} denotes the set

of neighbors of node ¢. The fixed-point messages are

denoted as A.J;_,; and Ah,_,; if the messages converge.
2) Computation of Means and Variances:

The variances and means are computed based on the

fixed-point messages as

Ji = Ju + Z AdJe—i, hi=hi+ Z Ahy_i. (5)
KEN(D) KEN(3)

The variances and means can then be obtained by £;; =
J; b and g = J;7 M

2

C. Walk-Sum Analysis

Computing means and variances for a Gaussian graphical
model corresponds to solving a set of linear equations and ob-
taining the diagonal elements of the inverse of .J respectively.
There are many ways in which to do this—e.g., by direct solu-
tion, or using various iterative methods. As we outline in this
section, one way to interpret the exact or approximate solu-
tion of this problem is through walk-sum analysis, which is
based on a simple power series expansion of J 1. In [17] and
[18], walk-sum analysis is used to interpret the computations of
means and variances formally as collecting all required “walks”
in a graph. The analysis in [17] identifies when LBP fails, in par-
ticular when the required walks cannot be summed in arbitrary
orders, i.e., when the model is not walk-summable.3 One of the
important benefits of walk-sum analysis is that it allows us to
understand what various algorithms compute and relate them
to the required exact computations. For example, as shown in
[17], LBP collects all of the required walks for the computa-
tion of the means (and, hence, always yields the correct means
if it converges) but only some of the walks required for variance
computations for loopy graphs (so, if it converges, its variance
calculations are not correct).

For simplicity, in the rest of the paper, we assume without loss
of generality that the information matrix J has been normalized
such that all its diagonal elements are equal to unity. Let R =
I — J, and note that R has zero diagonal. The matrix F is called
the edge-weight matrix.*

A walk of length [ > 0 is defined as a sequence of vertices
w = (wg, w1, ws,...,w;) where each step (w;,w;41) is an
edge in the graph. The weight of a walk is defined as the product
of the edge weights,

t{w)
$(w) = [ Rusrsn (6)
=1

where {{w) is the length of walk w. Also, we define the weight of
a zero-length walk, i.e., a single node, as one. By the Neumann

3Walk-summability corresponds to the absolute convergence of the series cor-
responding to the walk-sums needed for variance computation in a graphical
model [17].

4The matrix R, which has the same off-diagonal sparsity pattern as J, is a
matrix of partial correlation coefficients: R;; is the conditional correlation co-
efficient between x; and -; conditioned on all of the other variables in the graph.
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(b

Fig. 2. Examples of FVS’s of different sizes. After removing the nodes in an FVS and their incident edges, the reminder of the graph is cycle-free. (a) A graph

with an FVS of size one (b) A graph with an FVS of size two.

power series for matrix inversion, the covariance matrix can be
expressed as

P=J'=(I-R'=> R (7)
=0

This formal series converges (although not necessarily abso-
lutely) if the spectral radius, p(R), i.e., the magnitude of the
largest eigenvalue of R, is less than 1.

Let W be a set of walks. We define the walk-sum of W as

V) £ D d(w). (®)

weWw

We use ¢(i — j) to denote the sum of all walks from node i to
node j. In particular, we call ¢p(¢ — i) the self-return walk-sum
of node i. It is easily checked that the (i, j) entry of R! equals
#'(i — 7), the sum of all walks of length [ from node 4 to node
4. Hence,

oC

Pij =i = j)=>_ ¢'(i—j). ©9)

=0

A Gaussian graphical model is walk-summable (WS) if for
all 4, § € V, the walk-sum ¢(¢ — j) converges for any order of
the summands in (9) (note that the summation in (9) is ordered
by walk-length). In walk-summable models, ¢{(i — 7) is well-
defined for all z, 5 € V. The covariances and the means can be
expressed as

Py = (i — j) (10)
wi= > hiPiy =" (i — j). (1)
jey jey

As shown in [17] for non-WS models, LBP may not converge
and can, in fact, yield oscillatory variance estimates that take on
negative values. Here we list some useful results from [17] that

will be used in this paper.
1) The following conditions

summability:
) > wew, . [¢(w)| converges for all 4, j € V,
where Wi, ; 1s the set of walks from 4 to j.

are equivalent to walk-

ii) p(R) < 1, where R is the matrix whose elements
are the absolute values of the corresponding ele-
ments in R.

2) A Gaussian graphical model is walk-summable if it is at-
tractive, i.e., every edge weight ?;; is nonnegative; a valid
Gaussian graphical model is walk-summable if the under-
lying graph is cycle-free.

3) Forawalk-summable Gaussian graphical model, LBP con-
verges and gives the correct means.

4) In walk-summable models, the estimated variance from
LBP for a node is the sum over all backtracking walks?,
which is a subset of all self-return walks needed for com-
puting the correct variance.

D. Feedback Vertex Set

A feedback vertex set (FVS), also called a loop cutset, is de-
fined as a set of vertices whose removal (with the removal of
incident edges) results in a cycle-free graph [23]. For example,
in Fig. 2(a), node 1 forms an FVS by itself since it breaks all
cycles. In Fig. 2(b), the set consisting of nodes 1 and 2 is an
FVS.The problem of finding the FVS of the minimum size is
called the minimum feedback vertex set problem, which has been
widely studied in graph theory and computer science. For a gen-
eral graph, the decision version of the minimum FVS problem,
i.e., deciding whether there exists an FVS of size at most £, has
been proven to be NP-complete [24]. Finding the minimum FVS
for general graphs is still an active research area. To the best
of the authors’ knowledge, the fastest algorithm for finding the
minimum FVS runs in time O(1.7548™ ), where n is the number
of nodes [25].

Despite the difficulty of obtaining the minimal FVS, approx-
imate algorithms have been proposed to give an FVS whose
size is bounded by a factor times the minimum possible size
[26]-[28]. In [28], the authors proposed an algorithm that gives
an FVS of size at most two times the minimum size. The com-
plexity of this algorithm is O(min{m log n, n?}), where m and
n are respectively the number of edges and vertices. In addition,
if one is given prior knowledge of the graph structure, optimal or
near optimal solutions can be found efficiently or even in linear

SA backtracking walk of a node is a self-return walk that can be reduced
consecutively to a single node. Each reduction is to replace a subwalk of the
form {1, j, ¢} by the single node {i}. For example, a self-return walk of the
form 12321 is backtracking, but a walk of the form 1231 is not.
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Fig. 3. The FMP algorithm with a single feedback node: (a) A graph with cycles; (b) message initialization; (c) first round of BP; (d) forward messages; (e) feed-

back messages; and (f) second round of BP.

time for many special graph structures [29]-[31]. Fixed-param-
eter polynomial-time algorithms are also developed to find the
minimum FVS if the minimum size is known to be bounded by
a parameter [32].

III. EXACT FEEDBACK MESSAGE PASSING

In this section, we describe the exact FMP algorithm (or
simply FMP), which gives the exact inference results for all
nodes. We initialize FMP by selecting an FVS, F, using any
one of the algorithms mentioned in Section II-D. The nodes in
the FVS are called feedback nodes.

We use a special message update scheme for the feedback
nodes while using standard BP messages (although, as we will
see, not in a standard way) for the non-feedback nodes. In FMP,
two rounds of BP message passing are performed with different
parameters. In the first round of BP, we obtain inaccurate “par-
tial variances” and “partial means” for the nodes in the cycle-
free graph as well as some “feedback gains” for the non-feed-
back nodes. Next we compute the exact inference results for the
feedback nodes. In the second round of standard BP, we make
corrections to the “partial variances” and “partial means” of the
non-feedback nodes. Exact inference results are then obtained
for all nodes.

Before describing FMP, we introduce some notation. With a
particular choice, F, of FVS and with 7 = V \ F as the re-
maining cycle-free graph, we can define submatrices and sub-
vectors respectively of J and h. In particular, let J# denote
the information matrix restricted to nodes in F—i.e., for con-
venience we assume we have ordered the nodes in the graph
so that F consists of the first £ nodes in V), so that .J~ corre-
sponds to the upper-left k£ x & block of .J, and similarly .Jr, the
information matrix restricted to nodes in 7 corresponds to the
lower right (n — &) x (n — k) block of J. We can also define
Jrr, the lower left cross-information matrix, and its transpose
(the upper-right cross-information matrix) .Jr7. Analogously
we can define the subvectors hx and h. In addition, for the

graph G and any node 7, let N'(5) denote the neighbors of 7,
i.e., the nodes connected to j by edges.

In this section we first describe FMP for the example in
Fig. 3(a), in which the FVS consists of a single node. Then
we describe the general FMP algorithm with multiple feed-
back nodes. We also prove the correctness and analyze the
complexity.

A. The Single Feedback Node Case

Consider the loopy graph in Fig. 3(a) and a Gaussian graph-
ical model, with information matrix J and potential vector h,
defined on it. In this graph every cycle passes through node 1,
and thus node 1 forms an FVS by itself. We use 7 to denote
the subgraph excluding node 1 and its incident edges. Graph 7
is a tree, which does not have any cycles.® Using node 1 as the
feedback node, FMP consists of the following steps:

Step 1: Initialization
We construct an additional potential vector h'!
JrionT,ie., h! is the submatrix (column vector)
of J with column index 1 and row indices corre-
sponding to 7. Note that, since in this case F =
{1}, this new potential vector is precisely Jrr.
In the general case Jrr will consist of a set of
columns, one for each element of the FVS, where
each of those columns is indexed by the nodesin 7.
Note that A} = .Jy; foralli € N(1) and h! = 0
for all i ¢ N(1). We can view this step as node 1
sending messages to its neighbors to obtain h'. See
Fig. 3(b) for an illustration.

Step 2: First Round of BP on J+ [Fig. 3(c)]
We now perform BP on 7 twice, both times using
the information matrix J7, but two different poten-
tial vectors. The first of these is simply the orig-
inal potential vector restricted to 7, i.e., hr. The

®More generally, the cycle-free graph used in FMP can be a collection of
disconnected trees, i.e., a forest.
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second uses h' as constructed in Step 1.7 The result
of the former of these BP sweeps yields for each
node i in 7 its ¢ partlal Varlance” PE = (1Y)
and its “partial mean” y; = (J7 h]') by standard
BP message passing on T Note that these results
are not the true variances and means since this step
does not involve the contributions of node 1. At the
same time, BP using h! yields a “feedback gain” g},
where g} = (J;"h'); by standard BP on 7 .8 Since
7 is a tree-structured graph, BP terminates in linear
time.
Step 3: Exact Inference for the Feedback Node

Feedback node 1 collects the “feedback gains” from
its neighbors as shown in Fig. 3(d). Node 1 then
calculates its exact variance and mean as follows:

P11 :(Jll_ Z Jljgjl')il, (12)
JEN(1)
11 —P11 hy — Z Jl;ﬂ (13)
JEN(1)

In this step, all the computations involve only the pa-
rameters local to node ¢, the “feedback gains” from,
and the “partial means” of node 1’s neighbors.
Step 4: Feedback Message Passing [Fig. 3(e)]
After feedback node 1 obtains its own variance and
mean, it passes the results to all other nodes in order
to correct their “partial variances” PZ and “partial
means” ;7 computed in Step 2. The neighbors of
node 1 revise their node potentials as follows:

z_ _ h'j_-]leh Y EN(l)
3=\ by, ey

From (14) we see that only node 1’s neighbors revise
their node potentials. The revised potential vector
h7 and .J7 are then used in the second round of BP.
Step 5: Second Round of BP on J7 [Fig. 3(f)]
We perform BP on 7 with J+ and h7. The means
i = (J7'hr);, obtained from this round of BP are
the exact means. The exact variances can be com-
puted by adding correction terms to the “partial vari-
ances” as

P, = PT + gl Py1g},

(14)

vieT (15)
where the “partial variance” P and the “feedback
gain” g} are computed in Step 2. There is only one
correction term in this single feedback node case.
We will see that when the size of FVS is larger than
one, there will be multiple correction terms.

B. Feedback Message Passing for General Graphs

For a general graph, the removal of a single node may not
break all cycles. Hence, the FVS may consist of multiple nodes.
In this case, the FMP algorithm for a single feedback node can
be generalized by adding extra feedback messages, where each

TNote that since both BP passes here—and, in the general case, the set of k41
BP passes in this step—use the same information matrix, there are economies
in the actual BP message-passing as the variance computations are the same for
all.

8The superscript 1 of g} means this feedback gain corresponds to the feedback
node 1.
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extra message corresponds to one extra feedback node in the
FVS.

Assume an FVS, F, has been selected, and, as indicated pre-
viously, we order the nodes such that 7 = {1, ..., k}. The FMP
algorithm with multiple feedback nodes is essentially the same
as the FMP algorithm with a single feedback node. When there
are k feedback nodes, we compute % sets of feedback gains each
corresponding to one feedback node. More precisely, Step 1 in
the algorithm now involves performing BP on 7 £ + 1 times,
all with the same information matrix, .J7-, but with different po-
tential vectors, namely hy and ¥, p = 1,... %, where these
are the successive columns of J+ . To obtain the exact infer-
ence results for the feedback nodes, we then need to solve an
inference problem on a smaller graph, namely F, of size %, so
that Step 3 in the algorithm becomes one of solving a k-di-
mensional linear system. Step 4 then is simply modified from
the single-node case to provide a revised potential vector on 7
taking into account corrections from each of the nodes in the
FVS. Step 5 then involves a single sweep of BP on 7 using this
revised potential vector to compute the exact means on 7, and
the feedback gains, together with the variance computation on
the FVS, provide corrections to the partial variances for each
node in 7. The general FMP algorithm with a given FVS F is
summarized in Algorithm 1.

Algorithm 1: The FMP algorithm with a given FVS

Input: information matrix J, potential vector h and feedback
vertex set F of size k

Output: mean y; and variance F;; for every node @

1. Construct k extra potential vectors: Vp € F, h? = Jr ,,
each corresponding to one feedback node.
2. Perform BP on 7 with .J7, hy to obtain P = (J}l)ii

and u = (J;y'hr); for each i € 7. With the &
extra potential Vectors calculate the feedback gains
g} = (J7'hY)i g2 = (J7'h2),,....gF = (J7'h*); for
€T by BP.

3. Obtain a size-k subgraph with J; "+ and i'\l]-‘ given by
(j}')pq =T Z Jp:ﬂ?» VpqeF

JEN (p)NT

(ﬂf)p :hp - Z

JEN (p)NT

Jpj;r?, VpeF

and solve the inference problem on the small graph by

7: = J and Mnr = J h]:
4. Revise the potential Vector on7 by
hl‘ =h; — Z J,‘j(/l,]:)j, VieT.
JEN(E)NF

5. Another round of BP with the revised potential vector hT
gives the exact means for nodes on 7. Add correction
terms to obtain the exact variances for nodes in 7 :

P;; :Pii + z ng(Pf)qug‘/ VieT.

pEF q€F

C. Correctness and Complexity of FMP

It is worth noting that BP on a tree, if organized to have com-
putations that proceed from leaf nodes to a common root and
then back to leaves, can be interpreted as performing Gaussian
elimination, without fill, and back-substitution. An intuition for
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FMP is that it performs Gaussian elimination on the tree-part
of the graph (excluding the FVS) with fill only among the FVS
nodes. The message-passing structure we provide not only real-
izes this in a way that exposes ties to and non-standard uses of
BP-like computations, but also allows us to examine and exploit
walk-sum interpretations of the computations. In this subsec-
tion, we analyze the correctness and computational complexity
of FMP.

Theorem 1: The feedback message passing algorithm de-
scribed in Algorithm 1 results in the exact means and exact vari-
ances for all nodes.

Proof: To make the notation less cluttered, let Ja; = J7+
and J ’M be the transpose of .Ja; so that we can write

J= Z Ijﬂ andh = [Eﬂ (16)
Similarly, we can write
P::}}j; };ﬂ andu:[zﬂ. (17
By the construction of h', h?, ... h* in FMP and (16),
Tor = [hY, 02, h*] (18)

The feedback gains g', g?,...,g" in FMP are computed by
BP withh', h?, ... h* as potential vectors. Since BP gives the
exact means on trees,

M= [J7'ht g
=J s

LI hE] (19

(20)

g'.g....8

In FMP, 17 is computed by BP with potential vector hz, so

T = J;:'hr. (21)

The diagonal of JT is also calculated exactly in the first round
of BP in FMP as P? = (]T )is. Since P = J~1, by matrix
computations, we have

Pr = J: 4 (I 00 Pe(J7 ) (22)
Substituting (20) into (22), we have
Pi=PT +3 3 gl (Pr), gl YieT (23)

peF qcF

where PZ is the “partial variance” of node i and ¥ the “feed-
back gain” in FMP. Here Pr is the exact covariance matrix of
the feedback nodes in F. This is the same equation as in Step 5
of FMP. We need to show that P is indeed calculated exactly
in FMP. By Schur’s complement,

.7}' épf—l =Jr - Jz/w']fle (24)
B}' épflﬂf =hr - 'LIMJ%lhT' 25)
By (20) and (21),
Jr=Jr— Jilgh g%, ....g" (26)
h]: —h}‘ Ju[.l, (27)
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which is exactly the same formula as in Step 3 of FMP. There-
fore, we obtain the exact covariance matrlx and exact means for
nodes in F by solving Pr = (J;:) and pr = Pfhf

Since u = J*h, from (16) and (17), we can get

pr = Jr (hy — Jypr). (28)
We define INIT = hT — JM,U']:, i.e.,
(hr)i=hi— > Jylps); 29
JEN(ONTF

where g is the exact mean of nodes in F. This step is equiv-
alent to performing BP with parameters ./7 and the revised po-
tential vector h as in Step 4 of FMP. This completes the proof.
|
We now analyze the computational complexity of FMP with
k denoting the size of the FVS and n the total number of nodes
in the graph. In Steps 1 and 2, BP is performed on 7 with & + 2
messages (one for J, one with hz, and one for each h?). The
total complexity is O(k(n—k)). In Step 3, O(k* (n— :)) compu-
tations are needed to obtain .J; r and h + and (’)( 3) operations to
solve the inference problem on a graph of size k. In Steps 4 and
5, ittakes O(k(n—k)) computations to give the exact means and
O(k?(n — k)) computations to add correction terms. Therefore,
the total computational complexity of FMP is O(k?n). This is
a significant reduction from O(n?) of direct matrix inversion
when £ is small.

IV. APPROXIMATE FEEDBACK MESSAGE PASSING

As we have seen from Theorem 1, FMP always gives correct
inference results. However, FMP is intractable if the size of the
FVS is very large. This motivates our development of approxi-
mate FMP, which uses a pseudo-FVS instead of an FVS.

A. Approximate FMP with a Pseudo-FVS

There are at least two steps in FMP which are computation-
ally intensive when k, the size of the FVS, is large: solving a
size-k inference problem in Step 3 and adding k2 correction
terms to each non-feedback node in Step 5. One natural ap-
proximation is to use a set of feedback nodes of smaller size.
We define a pseudo-FVS as a subset of an FVS that does not
break all the cycles. A useful pseudo-FVS has a small size, but
breaks the most “crucial” cycles in terms of the resulting infer-
ence errors. We will discuss how to select a good pseudo-FVS in
Section IV-D. In this subsection, we assume that a pseudo-FVS
is given.

Consider a Gaussian graphical model Markov on a graph
G = (V.€). We use F to denote the given pseudo-FVS, and
use 7 to denote the pseudo-tree (i.e., a graph with cycles) ob-
tained by eliminating nodes in 7 from G. With a slight abuse
of terminology, we still refer to the nodes in F as the feedback
nodes. A natural extension is to replace BP by LBP in Step 2
and Step 5 of FMP.?

The total complexity of approximate FMP depends on the
size of the graph, the cardinality of the pseudo-FVS, and the

90f course, one can insert other algorithms for Steps 2 and 5—e.g., iterative
algorithms such as embedded trees [18] which can yield exact answers. How-
ever, here we focus on the use of LBP for simplicity.
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number of iterations of LBP within the pseudo-tree. Let & be
the size of the pseudo-FV'S, n be the number of nodes, m be the
number of edges in the graph, and D be the maximum number
of iterations in Step 2 and Step 5. By a similar analysis as for
FMP, the total computational complexity for approximate FMP
is O(k*n + kmD). Assuming that we are dealing with rela-
tively sparse graphs, so that m. = O(n), reductions in com-
plexity as compared to a use of a full FVS rely on both &£ and
D being of moderate size. Of course the choices of those quan-
tities must also take into account the tradeoff with the accuracy
of the computations.

B. Convergence and Accuracy

In this subsection, we provide theoretical results on conver-
gence and accuracy of approximate FMP. We first provide a
result assuming convergence that makes several crucial points,
namely on the exactness of means throughout the entire graph,
the exactness of variances on the pseudo-FVS, and on the in-
terpretation of the variances on the remainder of the graph as
augmenting the LBP computation with a rich set of additional
walks, roughly speaking those that go through the pseudo-FVS:

Theorem 2: Consider a Gaussian graphical model with
parameters ./ and h. If approximate FMP converges with a
pseudo-FVS F it gives the correct means for all nodes and
the correct variances on the pseudo-FVS. The variance of node
i in 7 calculated by this algorithm equals the sum of all the
backtracking walks of node ¢ within 7" plus all the self-return
walks of node # that visit F, so that the only walks missed in the
computation of the variance at node ¢ are the non-backtracking
walks within 7.

Proof: We have

o~ l i~
I—[]] ]]ANI} andh:{lﬁf].
Mo T T

(30)
By Result 3) in Section II-C, when LBP converges, it gives the
correct means. Hence, after convergence, fori = 1,2,....k,
we have

. T _ 17,
g—J% JTJ., and p —J% hT

whereNgi is the feedback gain corresponding to feedback node ¢
and p7 is the partial mean in approximate F MP. These quanti-
ties are exact after convergence. Since g’ and 7 are computed
exactly, following the same steps as in the proof of Theorem 1,
we can obtain the exact means and variances for nodes in F.
From the proof of Theorem 1, we also have
px = ;1(11; — Jupy). (31)
We have shown that p is computed exactly in Step 3 in
approx1mate FMP, so hz — Jarp5 is computed exactly. Since

LBP on 7 gives the exact means for any potential vector, the

means of all nodes in 7 are exact. As in the proof of Theorem
1, we have that the exact covariance matrix on 7 is given by

_ 71 1 (71 /

P% = J% + (J% JA/[)P]:(J% Jur)'. (32)

As noted previously, the exact variance of node ¢ € T equals

the sum of all the self-return walks of node 7. We partition these

walks into two classes: self-return walks of node ¢ within 7,
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and self-return walks that visit at least one node in . The di-
agonal of J%l captures exactly the first class of walks. Hence,
the second term in the right-hand side of (32) corresponds to
the sum of the second class of walks. Let us compare each of
these terms to what is computed by the approximate FVS algo-
rithm. By Result 4) in Section II-C, LBP on 7 gives the sums of
all the backtracking walks after convergence. So the first term
in (32) is approximated by backtracking walks. However, note
that the terms J=!.J,; and PJ; are obtained exactly.!? Hence, the
approximate FMP algorithm computes the second term exactly
and thus provides precisely the second set of walks. As a result,
the only walks missing from the exact computation of variances
in 7 are non-backtracking walks within 7. This completes the
proof. ]

We now state several conditions under which we can guar-
antee convergence.

Proposition 1: Consider a Gaussian graphical model with
graph G = (V,€) and model parameters J and h. If the
model is walk-summable, approximate FMP converges for any
pseudo-FVS F C V.

Proof: Let R =1 — J and (R);; = |R;;|. In approximate
FMP, LBP is performed on the pseudo-tree induced by 7 =
VA\F. The information matrix on the pseudo-tree is .J=, which

is a submatrix of J. By [33, Corollary 8.1.20], for any T

p(Rz) < p(R) < 1. (33)
By Result 3) in Section II-C, LBP on 7 is guaranteed to con-
verge. All other computations in approximate FMP terminate in
a finite number of steps. Hence, approximate FMP converges
for any pseudo-FVS F C V. [ |
For the remainder of the paper we will refer to the quantities
as in (33) as the spectral radii of the corresponding graphs (in
this case 7 and the original graph G). Walk-summability on the
entire graphical model is actually far stronger than is needed for
approximate FMP to converge. As the proof of Proposition 1
suggests, all we really need is for the graphical model on the
graph excluding the pseudo-FVS to be walk-summable. As we
will discuss in Section IV-D, this objective provides one of the
drivers for a very simple algorithm for choosing a pseudo-FVS
in order to enhance the walk-summability of the remaining
graph and as well as accuracy of the resulting LBP variance
computations.
Remarks: The following two results follow directly from
Proposition 1.
1) Consider a walk-summable Gaussian graphical model. Let
]-" bea pseudo FVS consisting of § nodes and ) # ]-"1 C
.7-'2 C...C ]-'k C F, where F is an FVS, then W}B¥ C

VVf1 CW; o -CW; Fi C W/ for any node i in the
graph Here WLBP is the set of walks captured by LBP for

calculating the variance of node ¢; W’,,; 7 is the set of walks
captured by approximate FMP with pseudo-FVS F;; and
W7 is the set of walks captured by FMP with FVS F.

2) Consider an attractive Gaussian graphical model (i.e., one
in which all elements of R are non-negative). Let F; C

10Note that the columns of the former are just the feedback gains computed by
LBP for each of the additional potential vectors on T corresponding to columns
of Jz=, which we have already seen are computed exactly, as we have for the
covariance on the pseudo-FVS.
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7?2 c - C ]-"k C F denote the pseudo-FVS (FVS),
and PLBI Pf L, P]: * P denote the corresponding
variances calculated for node ¢ by LBP, approximate FMP
and FMP respectively. P;; represents the exact variance of
node i. We have PLBF < Pfl < PfZ <o < Pf" <
P? = Py for any node i in V.
The above results show that with approximate FMP, we
can effectively trade off complexity and accuracy by selecting
pseudo-FVS of different sizes.

C. Error Bounds for Variance Computation

We define the measure of the error of an inference algorithm
for Gaussian graphical models as the average absolute error of
variances for all nodes:

:_Z‘Pu_ u

1%

(34

where n is the number of nodes, ]3,, is the computed variance of
node ¢ by the algorithm and P;; is the exact variance of node .
Proposition 2: Consider a walk-summable Gaussian graph-
ical model with 7 nodes. Assume the information matrix .J is
normalized to have unit dlagonal Let egppe denote the error of
approximate FMP and PEMP denote the estimated variance of
node ¢. Then
1 A n—*k p9
EZ |PEMP _ p| < - 1/_ F
ey

EFMP =

where £ is the number of feedback nodes, g is the spectral radius
corresponding to the subgraph 7, and g denotes the girth of 7,
i.e., the length of the shortest cycle in 7. In particular, when
k =0, i.e., LBP is used on the entire graph, we have

g
€LBp = — Z |PLBP P

P < —
761/

=12,

where the notation is similarly defined.

Some of the following proof techniques are motivated by the
proof of the error bound on determinant estimation with the
so-called orbit-product representation in [34].

Proof: By Theorem 2,
Z (s 225 0)

zEV

(35)

€LBP =

where ¢(i —~2- i) denotes the sum of all non-backtracking self-
return walks of node .
We have

Z|(/)L—>I

LEV

Z(/)(L—HZ

LGV

€LBD = (36)

where ¢(-) denotes the sum of absolute weight of walks, or
walk-sums defined on R.

Non-backtracking self-return walks must contain at least one
cycle. So the minimum length of a non-backtracking walk is g,
which is the minimum length of cycles. Thus

Ly,

tEV m=g

€LBp < — Z(/) (i ~Bs )
LGV

(37
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o0

1 ’Vl
= gTr( Z (R

m=g

LS miam),

m=g

(3%

Let A;(-) denotes the ith largest eigenvalue of a matrix. Since
Ai(R™) = A (R)™ and M\, (R) < p, we have

Rm Z )\ m <n pm

(39

Therefore,

(40)

When approximate FMP is used with a size-£ pseudo-FVS,
the variances of nodes in the pseudo-FVS are computed ex-
actly, while the variance errors for other nodes are the same as
performing LBP on the subgraph excluding the pseudo-FVS.
Therefore,

EFMP — Z |PI’I - 'i,i, Z |PI’I - P71 (41)
LEV
1 ) — k p9
= (n—k)erpp < r_ (42)
0 n 1—p
| ]

An immediate conclusion of Proposition 2 is that if a graph
is cycle-free (i.e., g = 00), the error ergp is zero.

We can also analyze the performance of FMP on a Gaussian
graphical model that is Markov on a Erdos—Rényi random graph
® (n, £). Each edge in such a random graph with n nodes ap-
pears with probability ~, independent of every other edge in the
graph [35].

Proposition 3: Consider a sequence of graphs {G,}>2
drawn from Erdos—Rényi model & (71 ) with fixed c.
Suppose we have a sequence of Gaus51an graphical models
parameterized by {(J,, h,,)}2% ; that are Markov on { ®,,}>° ;
and are strictly walk-summable (i.e., the spectral radii p(R,,)
are uniformly upper bounded away from unity). Then asymp-
totically almost surely there exists a sequence of pseudo-FVS
{Fn}22, with F, of size O(logn), with which the error of
approximate FMP as in (34) approaches zero.

Proof: We can obtain a graph with girth greater than by re-
moving one node at every cycle of length up to /. The number of
cycles of length up to ! in & (n, £) is O(c!) asymptotically al-
most surely (Corollary 4.9 in [35]). So we can obtain a graph of
girth log log n by removing O(log ) nodes. By Proposition 2,
the error approaches zero when 7 approaches infinity. [ |

D. Finding a Good Pseudo-FVS of Bounded Size

One goal of choosing a good pseudo-FVS is to ensure that
LBP converges on the remaining subgraph; the other goal is to
obtain smaller inference errors. In this subsection we discuss a
local selection criterion motivated by these two goals and show
that the two goals are consistent.

Let R denote the absolute edge weight matrix. Since p(R) <
1 is a sufficient condition for LBP to converge on graph G,
obtaining convergence reduces to that of removing the min-
imum number of nodes such that p(R%) < 1 for the remaining
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Original graph: p=1.0477

1 node removed: p=1.0415
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2 nodes removed: p=0.97249

[

3 node removed: p=0.95638

4 nodes removed: p=0.95631

5 nodes removed: p=0.86673

[ |

I [

[ [ ]

Fig. 4. Size of the pseudo-FVS and the spectral radius of the corresponding remaining graph.

graph 7. However, searching and checking this condition over
all possible sets of pseudo-FVS’s up to a desired cardinality is
a prohibitively expensive, and instead we seek a local method
(i.e., using only quantities associated with individual nodes) for
choosing nodes for our pseudo-FVS, one at a time, to enhance
convergence. The principal motivation for our approach is the
following bound [33] on the spectral radius of a nonnegative
matrix, which can be evaluated efficiently:

min Z R;j < p(R) < max Z Ry;. (43)
J J

We further simplify this problem by a greedy heuristic: one feed-
back node is chosen at each iteration. This provides a basis for a
simple greedy method for choosing nodes for our pseudo-FVS.
In particular, at each stage, we examine the graph excluding the
nodes already included in the pseudo-FVS and select the node
with the largest sum of edge weights, i.e., argmax > ; Rij.

We then remove the node from the graph and put it into F. We
continue the same procedure on the remaining graph until the
maximum allowed size & of F is reached or the remaining graph
does not have any cycles.

Algorithm 2: The pseudo-FVS selection criterion

Input: information matrix J and the maximum size & of the
pseudo-FVS

Output: a pseudo-FVS F

1. Let 7 = § and normalize .J to have unit diagonal.
2. Repeat until |F| = & or the remaining graph is empty.
a) Clean up the current graph by eliminating all the tree
branches.
b) Update the scores s(i) = 3= cniy [ij -
¢)

Put the node with the largest score into F and remove
it from the current graph.

The selection algorithm is summarized in Algorithm 2. Note
that while the motivation just given for this method is to en-
hance convergence of LBP on 7, we are also enhancing the
accuracy of the resulting algorithm, as Proposition 2 suggests,

since the bound on the spectral radius p(R) is reduced with
the removal of nodes. In addition, as shown in Theorem 2, the
only approximation our algorithm makes is in the computation
of variances for nodes in 7, and those errors correspond to
non-backtracking self-return walks confined to 7 (i.e., we do
capture non-backtracking self-return walks that exit 7" and visit
nodes in the pseudo-FVS). Thus, as we proceed with our se-
lection of nodes for our pseudo-FVS, it makes sense to choose
nodes with the largest scores, which is precisely what this ap-
proach accomplishes.

The complexity of the selection algorithms is O(km), where
m. is the number of edges and £ is the size of the pseudo FVS. In
particular, the complexity is O(kn) for sparse graphs. As a re-
sult, constructing a pseudo-FVS in this manner for sparse graphs
such as two-dimensional grids is computationally inexpensive
compared with the inference algorithm that then exploits it.

Finding a suitable pseudo-FVS is important. We will see in
Section V that there is a huge performance difference between
a good selection and a bad selection of F. In addition, exper-
imental results show that with a good choice of pseudo-FVS
(using the algorithms just described), we not only can get ex-
cellent convergence and accuracy results but can do this with
pseudo-FVS of cardinality &£ and number of iterations DD that
scale well with the graph size n. Empirically, we find that we
only need O(logn) feedback nodes as well as very few itera-
tions to obtain excellent performance, and thus the complexity
is O(nlog?(n)).

V. NUMERICAL RESULTS

In this section, we apply approximate FMP to graphical
models that are Markov on two-dimensional grids and present
results detailing the convergence and correctness of our pro-
posed algorithm. Two-dimensional grids are sparse since each
node is connected to a maximum of four neighbors. There
have been many studies of inference problems on grids [36].
However, inference cannot, in general, be solved exactly in
linear time due to the existence of many cycles of various
lengths. It is known that the size of the FVS for a grid grows
linearly with the number of nodes on the grid [37]. Hence, we
use approximate FMP with a pseudo-FVS of bounded size to
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Fig. 5. Number of selected feedback nodes versus the spectral radius and its bound. (a) 10 x 10 grid. (b) 20 x 20 grid. (c) 40 x 40 grid. (d) 80 x 80 grid.

ensure that inference is tractable. Moreover, regular structures
such as grids have no graphical “pinch points,” i.e., nodes
whose removal breaks significantly more cycles than other
nodes. Hence, grids represent potentially challenging graphical
structures for our approximate FMP algorithm.

In our simulations, we consider [ x ! grids with different
values of /. The size of the graph is thus » = [?. We ran-
domly generate an information matrix .J that has the sparsity
pattern corresponding to a grid. Its nonzero off-diagonal entries
are drawn from an i.i.d. uniform distribution with support in
[—1,1]. We ensure .J is positive definite by adding A7. Without
loss of generality, we choose A just large enough to make the
sum positive definite so that we can focus on the cases where
LBP often fails and that also challenge approximate FMP, as the
choice of an effective but comparatively small pseudo-FVS (of
size O(log(n)) compared with O(n) nodes required for a full
FVS) is crucial. We also generate a potential vector h, whose
entries are drawn i.i.d. from a uniform distribution with support

n [—1,1]. We then normalize the information matrix to have
unit diagonal.

A. Convergence of Approximate FMP

In Fig. 4, we illustrate our pseudo-FVS selection procedure
to remove one node at a time for a graphical model constructed
as just-described on a 10 x 10 grid. The remaining graphs, after
removing 0, 1, 2, 3, 4, and 5 nodes, and their corresponding
spectral radii p(R) are shown in the figures. LBP does not con-
verge on the entire graph and the corresponding spectral radius
is p(R) = 1.0477. When one feedback node is chosen, the spec-
tral radius corresponding to the remaining graph is reduced to
1.0415. After removing one more node from the graph, the spec-
tral radius is further reduced to 0.97249, which ensures conver-
gence. In all experiments on 10 x 10 grids, we observe that by
choosing only a few nodes (at most three empirically) for our
pseudo-FVS, we can obtain convergence even if LBP on the

original graph diverges.
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Error of variances for 10 x 10 grid
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Fig. 6. Inference errors of a 10 x 10 grid. (a) Evolution of variance errors with iterations. (b) Evolution of mean errors with iterations.
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Fig. 7. Inference errors of a 10 x 10 grid. (a) Evolution of variance errors with iterations. (b) Evolution of mean errors with iterations.

In Fig. 5 we show that the spectral radius and its upper bound
given in (43) decrease when more nodes are included in the
pseudo-FVS. Convergence of approximate FMP is immediately
guaranteed when the spectral radius is less than one.

B. Accuracy of Approximate FMP

In this subsection, we show numerical results of the infer-
ence errors defined in (34). On each grid, LBP and the approxi-
mate FMP algorithms with two different sets of feedback nodes
are performed. One set has & = [logn] feedback nodes while
the other has £ = /m feedback nodes. The horizontal axis
shows the number of message passing iterations. The vertical
axis shows the errors for both variances and means on a loga-
rithmic scale.!!

The error of means is defined in the manner as variances—the average of
the absolute errors of means for all nodes.

In Figs. 6-10, numerical results are shown for 10 x 10,
20 x 20, 40 x 40 and 80 x 80 grids respectively.!2 Except for
the model in Fig. 6, LBP fails to converge for all models. With
k = [logn] feedback nodes, approximate FMP converges
for all the grids and gives much better accuracy than LBP.
In Fig. 6 where LBP converges on the original graph, we
obtain more accurate variances and improved convergence
rates using approximate FMP. In Fig. 7 to 10, LBP diverges
while approximate FMP gives inference results with small
errors. When & = /n feedback nodes are used, we obtain
even better approximations but with more computations in
each iteration. We performed approximate FMP on different
graphs with different parameters, and empirically observed that

12Here we use shorthand terminology, where k-FVS refers to running our
approximate FMP algorithm with a pseudo-FVS of cardinality k. Figs. 6 and 7
are different random simulation results with the same parameter setup.



LIU et al.: FEEDBACK MESSAGE PASSING FOR INFERENCE IN GAUSSIAN GRAPHICAL MODELS

Error of variances for 20 x 20 grid

4147
Error of means for 20 x 20 grid
—*— LBP
\ 6-FVS
i 20-FVS||
_10 18 .
— —15 &
S
=
O -20f .
G
S
00_25 [ A
)
= s} E
_35 L =
-40 : ' ' : . . '
0 10 20 30 40 . 50 60 70 80
Iterations
(b)

Fig. 8. Inference errors of a 20 x 20 grid. (a) Evolution of variance errors with iterations. (b) Evolution of mean errors with iterations.

—*— LBP
6-FVS ||
20-FVS

=
(] -
5
ey ~45] -
S
on -5} .
S
= 55l 1
_6_ -
. : : : . ; . :
0 10 20 30 40 . 50 60 70 80
Iterations
(a)
Error of variances for 40 x 40 grid
-1.5 T T T T T T T
—*— LBP
ol 7-FVS |]
40-FVS

Log of error

-6 . . . . . . .
0 5 10 15 20 25 30 35 40

[terations

(a)

Error of means for 40 x 40 grid

=
5 |
=
q) N
G
o J
oNn
o |
—
_30 E -
_35 L 4
. . . . . . . .
0 5 10 15 20 . 25 30 35 40
Iterations
(b)

Fig. 9. Inference errors of a 40 x 40 grid. (a) Evolution of variance errors with iterations. (b) Evolution of mean errors with iterations.

k = [logn] feedback nodes seem to be sufficient to give a
convergent algorithm and good approximations.

Remarks: The question, of course, arises as to whether it is
simply the size of the pseudo-FVS that is important. However,
numerical results show that approximate FMP does not give sat-
isfactory results if we choose a “bad” pseudo-FVS. In Fig. 11,
we present results to demonstrate that the approximate FMP
algorithm with a badly selected pseudo-FVS indeed performs
poorly. The pseudo-FVS is selected by the opposite criterion of
the algorithm in Algorithm 2, i.e., the node with the smallest
score is selected at each iteration. We can see that LBP, 7-FVS,
and 40-FVS algorithms all fail to converge. These results sug-
gest that when a suitable set of feedback nodes are selected, we
can leverage the graph structure and model parameters to dra-
matically improve the quality of inference in Gaussian graphical
models.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have developed the feedback message
passing algorithm where we first identify a set of feedback
nodes. The algorithm structure involves first employing BP
algorithms on the remaining graph (excluding the FVS), al-
though with several different sets of node potentials at nodes
that are neighbors of the FVS; then using the results of these
computations to perform exact inference on the FVS; and
then employing BP on the remaining graph again in order to
correct the answers on those nodes to yield exact answers.
The feedback message passing algorithm solves the inference
problem exactly in a Gaussian graphical model in linear time if
the graph has a FVS of bounded size. Hence, for a graph with
a large FVS, we propose an approximate feedback message
passing algorithm that chooses a smaller “pseudo-FVS” and
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Fig. 10. Inference errors of an 80 x 80 grid. (a) Evolution of variance errors with iterations. (b) Evolution of mean errors with iterations.
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Fig. 11. Inference errors with a bad selection of feedback nodes. (a) Evolution of variance errors with iterations. (b) Evolution of means errors with iterations.

replaces BP on the remaining graph with its loopy counter-
part LBP. We provide theoretical results that show that, as-
suming convergence of the LBP, we still obtain exact infer-
ence results (means and variances) on the pseudo-FVS, exact
means on the entire graph, and approximate variances on the re-
maining nodes that have precise interpretations in terms of the
additional “walks” that are collected as compared to LBP on the
entire graph. We also provide bounds on accuracy, and these,
together with an examination of the walk-summability condi-
tion, provide an algorithm for choosing nodes to include in the
pseudo-FVS. Our experimental results demonstrate that these
algorithms lead to excellent performance (including for models
in which LBP diverges) with pseudo-FVS size that grows only
logarithmically with graph size.

There are many future research directions based on the
ideas of this paper. For examples, more extensive study of
the performance of approximate FMP on random graphs is

of great interest. Our Proposition 3 shows the existence of a
pseudo-FVS of size O(log(n)) that works well asymptotically
for Erdos—Rényi graphs. However, that Proposition does not
provide construction of such an FVS. Also, an open theoretical
question is whether the method for choosing a pseudo-FVS
used in our experiments provides such a construction for the
conditions of the Proposition.

In addition, as we have pointed out, LBP is only one possi-
bility for the inference algorithm used on the remaining graph
after a pseudo-FVS is chosen. One intriguing possibility is to in-
deed use approximate FMP itself on this remaining graph—i.e.,
a recursive applications of this algorithm. At the beginning of
the recursive algorithm, only one node is selected as a feedback
node. Instead of using LBP on the remaining subgraph to com-
pute the feedback gains and correction terms (which can be re-
duced to the computation of certain means and variances), we
can recursively apply approximate FMP on the remaining sub-
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graph. Hence, more feedback nodes are selected one by one
from the current remaining subgraph until the maximum al-
lowed recursion depth is reached or we obtain a cycle-free sub-
graph. This recursive algorithm is currently under investigation,
as are the use of these algorithmic constructs for other important
problems, including the learning of graphical models with small
FVS’s and using an FVS or pseudo-FVS for efficient sampling
of Gaussian graphical models.
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