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Abstract

Convex sets arising in a variety of applications are well-defined for every relevant dimension.
Examples include the simplex and the spectraplex that correspond to probability distributions
and to quantum states; combinatorial polytopes and their relaxations such as the cut poly-
tope and the elliptope in integer programming; and unit balls of regularizers such as the ℓp and
Schatten norms in inverse problems. Moreover, these sets are often specified using conic descrip-
tions that can be obviously instantiated in any dimension. We develop a systematic framework
to study such free descriptions of convex sets. We show that free descriptions arise from a
recently-identified phenomenon in algebraic topology called representation stability, which re-
lates invariants across dimensions in a sequence of group representations. Our framework yields
structural results for free descriptions pertaining to the relations between the sets they de-
scribe across dimensions, extendability of a single set in a given dimension to a freely-described
sequence, and continuous limits of such sequences. We also develop a procedure to obtain para-
metric families of freely-described convex sets whose structure is adapted to a given application;
illustrations are provided via examples that arise in the literature as well as new families that
are derived using our procedure. We demonstrate the utility of our framework in two contexts.
First, we develop an algorithm for a free analog of the convex regression problem, where a con-
vex function is fit to input-output data; by searching over our parametric families, we can fit
a function to low-dimensional inputs and extend it to any other dimension. Second, we prove
that many sequences of symmetric conic programs can be solved in constant time, which unifies
and strengthens several results in the literature.
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1 Introduction

Convex sets play a central role in numerous areas of the mathematical sciences such as optimization, sta-
tistical inference, control, inverse problems, and information theory. The convex sets arising in all these
domains are often well-defined in every relevant dimension. Indeed, unit balls of standard regularizers used
in inverse problems (e.g., ℓp or Schatten norms) are defined for vectors and matrices of any size. Polytopes
associated to graph problems and their relaxations (e.g., the cut polytope and the elliptope approximating
it) are defined for graphs of any size. Information-theoretic quantities (e.g., relative entropy) as well as their
quantum analogues, are defined for distributions and states on any number of (qu)bits. Consequently, all
these convex sets and many others should be viewed not as single sets but as sequences indexed by dimension.
Furthermore, there is often a single “free” description of all the sets in such a sequence, as the following
example illustrates.
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Example 1.1. Here are a few examples of sequences of convex sets and their descriptions.

(a) The simplex in n dimensions is ∆n−1 = {x ∈ Rn : x ≥ 0, 1⊤
n x = 1}, which is the set of probability

distributions over n items. Here x ≥ 0 denotes an entrywise nonnegative vector x, and 1n ∈ Rn is the
vector of all-1’s.

(b) The spectraplex, or the set of density matrices, of size n is Dn−1 = {X ∈ Sn : X ⪰ 0, Tr(X) = 1}.
It is the set of density matrices describing mixed states in quantum mechanics [1, §2.4]. Here X ⪰ 0
denotes a symmetric positive-semidefinite (PSD) matrix X.

(c) The ℓ2 ball in Rn is given by Bn
ℓ2

=

{
x ∈ Rn :

[
1 x⊤

x In

]
⪰ 0

}
where In denotes the n× n identity.

(d) The elliptope of size n is {X ∈ Sn : X ⪰ 0,diag(X) = 1n}. It arises in a standard relaxation of the
max-cut problem [2].

Note that all of the above descriptions are clearly defined for any relevant dimension. Indeed, these de-
scriptions are composed of elements such as 1n and In, linear maps such as diag(·) and Tr(·), and inequalities
such as ≥ and ⪰, all of which are “free” in the sense that they are well-defined in every relevant dimension.
In this paper, we develop a systematic framework to study such freely-described convex sets.

One motivation for this effort is to facilitate structural understanding of convex sets that can be instan-
tiated in any dimension and of sequences of optimization problems over such sets. Such sequences arise in
several applications. For example, in extremal combinatorics [3, 4] it is of interest to certify inequalities
between graph homomorphism densities involving graphs of every size. In quantum information and con-
trol theory [5, 6], many problems reduce to optimizing (traces of) polynomials in matrix variables of every
size. Despite the ubiquity of sequences of convex sets in these problem domains, the existence and interplay
between the sets in different dimensions is typically not explicitly discussed or exploited in the literature.
In the present paper, we explicitly consider sequences of convex sets that are related in a concrete fashion
across dimensions, and we present a framework to derive several structural results about such sets as well
as optimization programs over them; as one notable illustration, we show that sequences of invariant conic
programs (including some arising in the above applications) can be solved in time independent of dimension.

A second motivation for our effort stems from the growing interest in learning solution methods for
various problem families from data. Here one is typically given input-output data, and the goal is to fit a
mapping that approximately fits the data. This framework has been fruitfully applied to domains including
integer programming, inverse problems, and numerical solvers for PDEs [7, 8, 9, 10, 11, 12]. However, a
fundamental limitation in much of this literature is that the mappings learned from data are typically only
defined for inputs of the same dimension as the ones in the training data, and extension to inputs of different
dimensions is handled on a case-by-case basis. In contrast, we wish to learn algorithms that should be defined
for inputs of any relevant size, i.e., we aim to identify a sequence of solution maps, one for each input size.
Identifying a freely-described convex set offers a convenient approach to learning an algorithm specified as
linear optimization over convex sets (convex programs). Further, to facilitate numerical search over a family
of freely-described convex sets—for example, to fit an element of this family to training data—it is natural
to seek finitely-parametrized families of such sets, such as the following examples.

Example 1.2. The following are examples of finitely-parametrized families of freely-described convex sets.

(a) The sequence of subsets {α1diag(X) + α2X1n : X ⪰ 0, α3Tr(X)1n + α4diag(X) + α5X1n = α61n}
of Rn is parametrized by α ∈ R6.

(b) Free spectrahedra are sequences of the form
{
(X1, . . . , Xd) ∈ (Sn)d : L0 ⊗ In +

∑d
i=1 Li ⊗Xi ⪰ 0

}
that

are parametrized by L0, . . . , Ld ∈ Sk for k ∈ N. They arise in the theory of matrix convexity and free
convex algebraic geometry [13, 14].

(c) The sequence Cn =

{
X ∈ Sn :

1
⊤
n X1n

n2 L1 ⊗ 1n1
⊤
n + Tr(X)

n L2 ⊗ 1n1
⊤
n + L3 ⊗ 1

n

(
X1n1

⊤
n + 1n1

⊤
nX
)
+

L4 ⊗
(
diag(X)1⊤

n + 1ndiag(X)⊤
)
+ L5 ⊗ X + L6 ⊗ 1n1

⊤
n + L7 ⊗ (nIn) ⪰ 0

}
is parametrized by
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L1, . . . , L7 ∈ Sk. We obtain this sequence from our framework in Section 4.7 by viewing a matrix
X ∈ Sn representing a weighted graph as a step graphon [15], and deriving a parametric family of free
descriptions extending continuously to more general spaces of graphons.

Each example here is a parametric family, and constitutes a freely-described sequence of convex sets for each
value of its associated parameters.

Note that the parametric free descriptions in Example 1.2 are composed of linear combinations of the
free elements and linear maps that appear in the descriptions of Example 1.1. In fact, the parameters above
are simply the coefficients in these linear combinations. Thus, we can obtain finitely-parametrized families
of freely-described convex sets by deriving finite-dimensional spaces of free elements.

The central thesis of this paper is that the free elements which constitute free descriptions arise from a
recently-identified phenomenon in algebraic topology called representation stability, which relates invariants
across dimensions in a sequence of group representations [16]. We use these relations to formally define
the free elements that constitute our free descriptions, and investigate various structural properties of such
descriptions as well as the associated sequences of optimization problems. Our definitions together with
results from representation stability also yield finite-dimensional spaces of free elements, which we use to
derive parametric families of freely-described convex sets adapted to specific applications and to fit elements
of these families to data. We outline the contributions of this paper in the remainder of the introduction.
We do not assume prior familiarity with representation stability, and the relevant background is presented
in Section 2.

1.1 Our Framework and Contributions

This paper consists of four main contributions. First, we formally define free descriptions of convex sets by
generalizing the insights derived from Examples 1.1 and 1.2 using representation stability. Second, we prove
structural results pertaining to freely-described sequences of convex sets, the relationship between sets in such
a sequence in different dimensions, and limits of such sequences. Our proofs combine concepts from convex
analysis and representation theory. Third, we derive consequences of our framework for invariant conic
programs, showing that sequences of such programs of growing dimension can often be solved in constant
time. Our results unify and generalize existing work in the literature. Finally, we apply our framework and
its structural results to derive an algorithm for fitting a freely-described convex function to given data in
different dimensions, a problem we call free convex regression. The latter two contributions are aimed at
addressing our mathematical and algorithmic motivations above.

1.1.1 Freely-described Convex Sets

To formalize free descriptions of convex sets, we begin by briefly reviewing conic descriptions, which express
a convex set as an affine section of a convex cone. Conic descriptions are the most popular approach to
specifying convex sets in the optimization literature, and they have played a central role in the development
of modern convex optimization [17]. Indeed, we often classify convex sets based on their conic descriptions—
polyhedra are affine sections of nonnegative orthants and spectrahedra are affine sections of PSD cones.
Formally, if V,W,U are (finite-dimensional) vector spaces and K ⊆ U is a convex cone, then a convex subset
C ⊆ V can be described using linear maps A : V → U, B : W → U and a vector u ∈ U as follows:

C = {x ∈ V : ∃y ∈ W s.t. Ax+By + u ∈ K}. (Conic)

We will refer to the spaces W and U as the description spaces associated to the conic description. If
the cone K is a nonnegative orthant (resp., PSD cone), then linear optimization over C is a linear (resp.,
semidefinite) program. The type of the cone as well as its dimension determine the computational complexity
of optimization over C.

Each sequence of convex sets Cn ⊆ Vn in Examples 1.1 and 1.2 is given by (Conic) for suitable sequences
of description spacesWn,Un, of vectors un ∈ Un, of linear maps An : Vn → Un, Bn : Wn → Un, and of convex
cones Kn ⊆ Un. In particular, all the sequences of cones Kn in those examples are standard sequences such
as the nonnegative orthants and PSD cones. Expressing convex sets in terms of such standard sequences has
the benefit that optimization over these sets can be performed using standard off-the-shelf software. Thus,
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all the sequences of cones, as well as the vector spaces containing them, appearing in this paper come from
such standard sequences.

Having fixed standard sequences of vector spaces and cones, we seek to formalize the free vectors un and
linear maps An, Bn that are defined for any dimension, such as those appearing in Examples 1.1 and 1.2. Fur-
thermore, we wish to obtain finite-dimensional spaces of these free elements, which yield finitely-parametrized
families of free descriptions. To that end, we observe that these free elements are sequences of invariants
under sequences of groups related in a particular way across dimensions. For example, the all-1’s vector
1n of length n is invariant under the group of permutations on n letters acting by permuting coordinates.
Further, the all-1’s vectors of different lengths are related to each other: extracting the first n entries of 1n+1

yields 1n. Similarly, the n×n identity matrix In is invariant under the orthogonal group of size n acting by
conjugation, and extracting the top left n× n submatrix of In+1 yields In. Thus, to give a formal definition
for free vectors and linear maps, we consider sequences of groups acting on sequences of vector spaces, and
we require the spaces in the sequence to be related to each other – specifically, we embed lower-dimensional
spaces into higher-dimensional ones and project higher-dimensional spaces onto lower-dimensional ones. Such
sequences of group representations are called consistent sequences and they were first defined in the seminal
paper [16] introducing representation stability.

Definition 1.3 (Consistent sequences [16]). Fix a family of compact1 groups G = {Gn}n∈N such that
Gn ⊆ Gn+1. A consistent sequence of G -representations is a sequence V = {(Vn, φn)}n∈N satisfying the
following properties:

(a) Vn is an orthogonal Gn-representation;

(b) φn : Vn ↪→ Vn+1 is a linear Gn-equivariant isometry.

Unless we want to emphasize the embeddings φn, we shall identify Vn with its image inside Vn+1. We then
write V = {Vn} and take φn to be inclusions Vn ⊆ Vn+1.

2

As φn is an isometry, its adjoint φ∗
n defines the orthogonal projection PVn

of higher-dimensional spaces
onto lower-dimensional ones. We now formally define free vectors or linear maps as sequences of invariants
projecting onto each other.

Definition 1.4 (Freely-described elements). A freely-described element in a consistent sequence {(Vn, φn)}
of {Gn}-representations is a sequence {vn ∈ VGn

n } of invariants satisfying φ∗
n(vn+1) = vn for all n.

Importantly, the set of freely-described elements in a given consistent sequence V is naturally a linear
space,3 because if {vn} and {v′n} are freely-described elements then so is {αvn + βv′n} for any α, β ∈ R.
Furthermore, fundamental results in representation stability imply that these spaces of freely-described
elements are often finite-dimensional. More precisely, when the consistent sequence V is finitely-generated,

the restricted projections PVn |VGn+1
n+1

: VGn+1

n+1 → VGn
n become isomorphisms for all n exceeding the presentation

degree of the sequence, see Section 2 for precise definitions.
Definition 1.4 also defines freely-described linear maps. Indeed, if V = {(Vn, φn)} and U = {(Un, ψn)}

are consistent sequences of {Gn}-representations, then the sequence of spaces of linear maps between them
can be naturally identified with {(Vn⊗Un, φn⊗ψn)} where ⊗ is the tensor (or Kronecker) product, and this
is also a consistent sequence. A freely-described element of V ⊗U is a sequence of equivariant maps {An ∈
L(Vn,Un)

Gn} satisfying ψ∗
nAn+1φn = An. When φn, ψn are inclusions, this simplifies to PUnAn+1|Vn = An

where PUn is orthogonal projection onto Un. From results in representation stability, it follows that for
a large class of consistent sequences, the sequence V ⊗ U is finitely-generated when V ,U are, and the
presentation degree of the former can be bounded in terms of those of the latter; see Theorem 2.11. Thus,
the space of freely-described linear maps is often finite-dimensional as well.

Example 1.5 (Vectors with zero-padding). Let Vn = Rn with the standard inner product, and let φn(x) =
[x⊤, 0]⊤ correspond to padding a vector with a zero. This is a consistent sequence for many standard sequences

1Our theory can be extended to reductive groups.
2Formally, we obtain such inclusions inside the direct limit of the sequence.
3Formally, the space of freely-described elements is the inverse limit lim←−n

VGn
n .
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{Gn} of groups, including the groups of n×n orthogonal matrices, and (signed) permutation matrices. Here
Gn is embedded in Gn+1 by sending g ∈ Gn represented as an n × n matrix to blkdiag(g, 1). For each of
these sequences of groups, we get a consistent sequence V = {(Vn, φn)}. When Gn = Sn is the group of
permutations on n letters, the space of freely-described elements in V is one-dimensional and consists of
sequences {α1n} for α ∈ R. The space of freely-described linear maps from Vn to itself is two-dimensional,
and consists of sequences {α11n1

⊤
n + α2In} for α ∈ R2.

Having formalized freely-described vectors and linear maps, we are ready to define free descriptions of
convex sets. These are just sequences of conic descriptions specified using freely-described elements.

Definition 1.6 (Free conic descriptions). Let V = {Vn}, W = {Wn}, U = {Un} be consistent sequences
of {Gn}-representations, and {Kn ⊆ Un} be a sequence of convex cones. A sequence of conic descriptions

Cn = {x ∈ Vn : ∃y ∈ Wn s.t. Anx+Bny + un ∈ Kn} , (ConicSeq)

is called free if {An}, {Bn}, and {un} are freely-described elements of the consistent sequences V ⊗ U ,
W ⊗ U , and U , respectively.

All the descriptions in Examples 1.1 and 1.2 become free when the relevant sequences of vector spaces
are endowed with natural consistent sequence structure. Moreover, when V ⊗U ,W ⊗U ,U are all finitely-
generated, Definition 1.6 yields a finitely-parametrized family of free descriptions, obtained by choosing
bases for the spaces of freely-described {An}, {Bn}, {un} and viewing the coefficients in these bases as the
parameters. These parametric families generalize Example 1.2. More broadly, they can be adapted to
specific applications via the choice of embeddings and group actions involved in the consistent sequences,
which formally relate instances of different sizes and their symmetries.

We can use free descriptions to describe convex functions as well as sets, using the many correspondences
between convex sets and functions from convex analysis. For example, given a freely-described sequence of
convex sets we can consider the sequence of their support and gauge functions, and given a sequence of convex
functions we can consider free descriptions for the sequence of their epigraphs [18, §4]. Thus, Definition 1.6
yields finitely-parametrized infinite sequences of convex functions as well.

Example 1.7 (Parametric convex graph invariants). A convex graph invariant is a convex function over
symmetric matrices (viewed as adjacency matrices of weighted graphs) that is invariant under conjugation
of its argument by permutation matrices (viewed as relabelling the vertices of the graphs); for example, the
max-cut value of a (weighted) graph is a convex graph invariant [19]. These examples and others are defined
for graphs of any size, and therefore they correspond to a sequence of convex functions {fn : Sn → R} such
that fn is invariant under conjugation of its argument by permutation matrices for each n.

Our framework yields parametric families of convex graph invariants as support or gauge functions of
parametric freely-described convex sets. Set Vn = Sn with the action of Gn = Sn by conjugation, since
we seek convex subsets of symmetric matrices invariant under this group action. We choose embeddings
φn : Sn ↪→ Sn+1 by padding with a zero row and column, which corresponds to appending isolated vertices to
a graph. This yields the consistent sequence V = {(Vn, φn)}.

To obtain convex sets, we also need to choose description spaces and cones. For simplicity, we choose
description spaces Wn = 0 and Un = Vn with the same embeddings and group actions as for V , and the
positive semidefinite cones Kn = Sn+. Once the relevant consistent sequences and cones have been chosen, the
parametric family of freely-described sets, parametrized in this case by α ∈ R11, are obtained transparently
from our framework:

Cn =

{
X ∈ Sn : α1(1

⊤
nX1n)1n1

⊤
n + α2(1

⊤
nX1n)In + α3Tr(X)1n1

⊤
n + α4Tr(X)In + α5

(
X1n1

⊤
n + 1n1

⊤
nX
)

+ α6

(
diag(X)1⊤

n + 1ndiag(X)⊤
)
+ α7X + α8diag(X1n) + α9I ⊙X + α101n1

⊤
n + α11In ⪰ 0

}
.

(1)
We can obtain a larger parametric family by enlarging the description space. For example, taking k copies
of the description spaces and cones above yields convex sets described by k linear matrix inequalities of the
form (1), depending on 11k parameters.
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1.1.2 Structural Aspects of Free Descriptions

We have defined freely-described convex sets in Definition 1.6 by relating the descriptions of the convex sets
in a sequence {Cn} across dimensions. However, in many applications it is further desirable to directly relate
the sets Cn themselves or the functions that arise from them across dimensions. We study the following two
relations (which are dual to each other by [18, Cor. 16.3.2]).

Definition 1.8 (Compatibility conditions). Let {Vn} be a nested sequence of vector spaces and let {Cn ⊆ Vn}
be a sequence of convex sets (respectively, let {fn : Vn → R ∪ {∞}} be a sequence of convex functions). We
say that {Cn} (resp., {fn}) satisfies

Intersection compatibility if Cn+1 ∩ Vn = Cn (resp., fn+1|Vn
= fn);

Projection compatibility if PVn
Cn+1 = Cn (resp., PVn

fn+1 = fn).

Here (PVnfn+1)(x) = infx′∈P−1
Vn (x) fn+1(x

′) defines a convex function on Vn [18, Thm. 5.7]. One can

check that a sequence of convex functions is intersection or projection compatible if and only if its sequence
of epigraphs is correspondingly compatible, and a similar correspondence holds for gauge and support func-
tions of compatible sequences of sets; see Section 1.3. In what follows, the nested sequence of spaces in
Definition 1.8 will always be a consistent sequence.

The conditions in Definition 1.8 are natural in a variety of applications. For example, many graph
parameters remain unchanged when an isolated vertex is appended to the graph, such as the max cut value;
hence these are intersection-compatible with respect to the embeddings in Example 1.7. Other parameters,
such as the stability number, are nonincreasing when taking induced subgraphs, and any small graph occurs
as an induced subgraph of a larger one that has the same parameter value. Hence such parameters are
projection-compatible with respect to the same embeddings. In inverse problems, it is desirable to use
regularizers that are both intersection and projection compatible. Indeed, if {Vn} is a consistent sequence
and we are given data about a signal x ∈ VN that only depends on its projection PVnx onto Vn for
n < N , then compatibility of the regularizer ensures that the recovered signal also lies in Vn, see Section 4.8.
Compatibility plays a central role in the analysis of approximations for the copositive cones, and the failure of
a variant of intersection compatibility for the natural sums-of-squares relaxation of copositive cones underlies
several results in this area [20, 21]. Compatibility conditions also arise in noncommutative geometry, where
matrix-convex sets are defined as sequences of sets of matrices of each size related across dimensions by
conditions stronger, in general, than Definition 1.8 (see Proposition 4.5); in particular, the free spectrahedra
in Example 1.2 satisfy both intersection and projection compatibility.

A freely-described sequence of convex sets need not satisfy either intersection or projection compatibility;
see Example 3.1 below. Therefore, we investigate freely-described convex sets that additionally satisfy
compatibility conditions, and we obtain three structural results pertaining to such sequences of sets. Each of
these results is obtained by combining the relevant concepts from representation stability along with notions
from convex analysis. We now describe these three results in more detail.

Our first structural result gives conditions under which free descriptions certify compatibility, i.e., under
which the sequence of sets derived from these descriptions is evidently compatible. Consider a freely-
described sequence {Cn} of convex sets (ConicSeq). Assuming that the sequence of cones {Kn} underlying
the description of {Cn} is both intersection and projection compatible, we prove in Proposition 3.2 that the
sequence of convex sets {Cn} satisfies compatibility conditions if the underlying freely-described elements
in (ConicSeq) lie in a convex cone. This result serves as the foundation for our subsequent developments—we
use it to show in Section 4 that many sets arising in applications naturally admit free descriptions certifying
their compatibility. We also use this result in Section 6 to design an algorithm fitting a freely-described and
compatible sequence of sets to data.

Our second structural result is central to the development of our computational framework in Section 6
and it addresses the following question. Given a convex set with a conic description (Conic) in a fixed dimen-
sion n0, when does this description extend to a free description of a sequence of sets satisfying compatibility
conditions? As a concrete example, suppose we are given a convex relaxation for a combinatorial optimiza-
tion problem, or a convex regularizer for an inverse problem, in a particular problem dimension; under what
conditions can these be extended to problems in any desired dimension? Leveraging our preceding result
along with properties of presentation degrees of consistent sequences, we give conditions in Theorem 3.5 on
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the dimension n0 and the conic description in that dimension ensuring the desired extendability. We use
this result in Section 6 to computationally extend a set fitted to data in a fixed dimension to any other
dimension.

Finally, our third structural result develops a notion of a limiting object for a freely-described convex
set. Given a consistent sequence {Vn} of Gn-representations, consider the vector space V∞ = ∪nVn viewed
as a representation of4 G∞ = ∪nGn and let V∞ denote the completion of V∞ with respect to some norm.
Consider now a freely-described sequence of convex sets {Cn} that is intersection- and projection-compatible.
The set C∞ = ∪nCn is a convex subset of V∞, and we would like to describe its continuous limit C∞ inside
V∞. This is natural in many applications where problems of different sizes can be naturally viewed as suitable
finite-dimensional discretizations of infinite-dimensional problems. Examples include finite graphs obtained
via discretization of continuous graphons, vectors obtained via discretizations of continuous-time signals,
and matrices obtained via discretizations of operators between infinite dimensional spaces. We show in
Theorem 3.6 that if the free description underlying the sequence {Cn} certifies our compatibility conditions
(in the sense of Proposition 3.2) and if the freely-described elements constituting the description extend
continuously to their respective limits, then the free description extends to a description of a dense subset of
C∞. In particular, this result yields an infinite-dimensional conic program for optimizing a continuous linear
functional over C∞.

Example 1.9 (Convex graphon parameters). Consider the freely-described sequence in Example 1.2(c),
which is intersection- and projection-compatible with respect to the graphon consistent sequence (see Sec-
tion 4.7). The elements of V∞ are step functions on [0, 1]2 known as step graphons, and we endow them with
the L∞ norm as is common in the literature [22]. The completion V∞ then consists of certain piecewise-
continuous graphons, and Theorem 3.6 shows that the limit of the sequence {Cn} in Example 1.2(c) with
L7 = 0 is

C∞ =

{
W ∈ V∞ : 0 ⪯

[
(L1)i,j

∫
[0,1]2

W (s, t) ds dt+ (L2)i,j

∫
[0,1]

W (t, t) dt

+ (L3)i,j

∫
[0,1]

[W (x, t) +W (t, y)] dt+ (L4)i,j [W (x, x) +W (y, y)] + (L5)i,jW (x, y)
]k
i,j=1

+ L6

}
.

Here positive-semidefiniteness of a matrix-valued function on [0, 1]2 is meant in the sense of matrix-valued
kernels [23], see (21) for a definition. We require L7 = 0 because the corresponding term does not extend
continuously with respect to the L∞ norm. We derive this limiting description in Proposition 4.7.

We also apply Theorem 3.6 to permutahedra and Schur-Horn orbitopes in Section 4.3 to obtain descrip-
tions of limits in analogy to Example 1.9. The resulting infinite-dimensional conic descriptions yield an
infinite-dimensional generalization of the Schur-Horn theorem, which we give in Proposition 4.3. In fact, we
obtain limiting descriptions and a Schur-Horn theorem more generally in approximately finite-dimensional
(AF) algebras in Appendix C.

1.1.3 Invariant Conic Programs

Our framework yields structural results not only for descriptions of convex sets but also for sequences of
optimization problems over them. Specifically, there is a literature showing that many sequences of invariant
conic programs indexed by dimension can be solved in constant time. We use representation stability to
unify and generalize these results. Such sequences of programs arise in several applications including extremal
combinatorics [3, 4] and quantum information [5, 6], as we alluded to previously. Concretely, the programs
that arise in certifying homomorphism density inequalities over graphs are invariant under symmetric groups
of increasing sizes that relabel the vertices of the graphs involved. Similarly, optimizing traces of matrix
polynomials yields programs that are invariant under the unitary or orthogonal groups of increasing sizes
that conjugate the matrices involved. We now recall symmetry reductions of invariant programs and explain
how constant-sized reductions arise from representation stability.

4Formally, these are the direct limits lim−→Vn and lim−→Gn.
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Consider optimizing a linear functional over a convex subset C ⊆ V specified as an affine section of a
convex cone K as in (Conic). If the linear functional, the affine section, and the cone are invariant under the
action of a group G, then we can further restrict the constraint set to the invariant subspace VG, thereby
reducing the size of the program [24, §3]. Consider now a freely-described sequence of convex subsets {Cn}
of a consistent sequence {Vn} of {Gn}-representations given by (ConicSeq). The vectors and linear maps
in (ConicSeq) are Gn-invariant as they are given by freely-described elements; if in addition the cones Kn

are Gn-invariant, then the convex sets Cn are also Gn-invariant. When {Vn} is finitely-generated, so that the
spaces of invariants in the sequence are all eventually isomorphic, optimizing a Gn-invariant linear functional
over Cn for sufficiently large n reduces as above to optimization over these constant-dimensional spaces of
invariants. However, even though the dimensionality of the variables in the symmetry-reduced programs
stabilize, the complexity of the constraints might still grow with n.

To establish that the complexity of the constraints also stabilizes with n, we show that the invariant
sections {KGn

n } of the cones have a constant-sized description in the following precise sense.

Definition 1.10 (Constant-sized descriptions). Let {Un} be a sequence of {Gn} representations and {Kn ⊆
Un} a sequence of convex cones. For t ∈ N, we say that the sequence {KGn

n ⊆ UGn
n } admits a constant-sized

description for n ≥ t if there exists a single vector space U containing a cone K, linear maps Tn : U → UGn
n ,

and subspaces Ln ⊆ U such that KGn
n = Tn(K ∩ Ln) for all n ≥ t.

Note that Definition 1.10 does not require {Un} to be a consistent sequence, nor in particular that
Un is embedded into Un+1. Proofs of constant-sized symmetry reductions in the literature have implicitly
proceeded in a case-by-case manner by showing that the relevant cones, including symmetric PSD and relative
entropy cones, have a constant-sized description in the sense of our Definition 1.10, see [25, 3, 26, 27]. In
Section 5, we explain how these constant-sized descriptions can be generalized and derived systematically
from an interplay between representation stability and the structure of the cones in question. To that end,
we use a stronger form of representation stability known as uniform representation stability, which shows
that the whole decomposition into irreducibles of the sequences of representations involved stabilize, rather
than only their spaces of invariants; see Section 2.5. Our approach allows us to prove the following results.

Theorem 1.11 (Informal). Consider the consistent sequence V0 = {Rn} with embeddings by zero-padding
and the standard actions of one of the sequences of classical Weyl groups as in Example 1.5. For any consis-
tent sequence V = {Vn} obtained from V0 by taking finitely-many direct sums, tensor products, symmetric
algebras, or skew-symmetric algebras, the invariant sections of the cones {Sym2

+(Vn)} admit constant-sized
descriptions for n ≥ d + k, where d and k are the generation and presentation degrees of V , respectively.
These degrees can be bounded using the calculus in Theorem 2.11.

We refer the reader to Theorem 5.1 for the formal statement and its proof. The sequences of classical Weyl
groups are the groups of permutations {Sn}, signed permutations {Bn}, or even signed permutations {Dn}.
Here Sym2

+(V) denotes the collection of nonnegative quadratic forms on V. For example, Theorem 1.11 shows
that the sections of the PSD cones {Sn+} invariant under the usual action of the classical Weyl groups by
conjugation admit constant-sized descriptions. Theorem 1.11 is used to derive constant-sized descriptions for
cones of invariant sums-of-squares in Theorem 1.12 below. In the following result, we consider polynomials
in
(
n
k

)
variables identified with k-subsets of n letters, and show that the cones of sums of squares of such

polynomials modulo any sequence of ideals admit constant-sized descriptions. The proof of the following
result is given in Section 5.1.

Theorem 1.12. Let {Gn} be one of the sequences of classical Weyl groups acting as usual on Rn. Let

In ⊆
⊕
d≥0

Symd

(∧k
Rn

)
∼= R[xi1,...,ik ]1≤i1<···<ik≤n =: Vn

be Gn-invariant ideals, and let Un = Sym≤2d(
∧k Rn)/In. Consider the sums-of-squares cones SOSUn

=
{f ∈ Un : f is a sum of squares mod In}. Then the sequence {SOSGn

Un
} admits a constant-sized description

for n ≥ 2kd if Gn = Sn or Bn, and for n ≥ 2kd+ 1 if Gn = Dn.
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If k = 1, In = (0), and Gn = Sn then we recover [25, Thms. 4.7, 4.10], and when Gn = Bn or Dn we
recover [26, Cor. 3.23]. If k ≥ 2, if In = (xI −x2I)I⊆([n]

k )
is the ideal generated by x2I −xI where I ranges over

all k-subsets of [n], and if Gn = Sn, we recover [3, Thm. 2.4]. Theorem 1.12 generalizes all of these results
to include any of the classical Weyl groups and any sequence of invariant ideals.

An application of Theorem 1.12 is obtaining constant-sized SDPs to certify graph homomorphism density
inequalities [3, 4]. Many problems in extremal combinatorics can be recast as proving polynomial inequalities
between homomorphism densities of graphs, which is the fraction of maps between the vertex sets of two
graphs that define graph homomorphisms. A simple example is Mantel’s theorem, which states that the
maximum number of edges in a triangle-free graph is ⌊n2/4⌋. Razborov proposed a method of certifying
such inequalities using flag algebras [28], which were shown in [3, 4] to be sums-of-squares certificates of
certain symmetric polynomial inequalities. Razborov’s flags are interpreted in [3, §3] as “free” spanning
sets for spaces of symmetric polynomials. Formally, they are freely-described elements in the sense of
Definition 1.4. Our framework shows that both the existence of such freely-described spanning sets and the
resulting constant-sized SDPs are consequences of representation stability.

We obtain similar results for invariant sections of cones derived from relative entropy inequalities that
have recently played a role in polynomial optimization [29, 30]. Our main result for these cones is stated in
Theorem 5.6, which generalizes [27, Thm. 5.3] from permutation groups to the other classical Weyl groups.

1.1.4 Free Convex Regression

As our final contribution, we apply our framework to develop an algorithm for a free analog of the convex
regression problem. In the classic setting of this problem, the objective is to fit a convex function f : V → R
to a dataset {(xi, yi)}Di=1 of inputs xi ∈ V and outputs yi ∈ R such that f(xi) ≈ yi. In our free extension of
this problem, we have a sequence {Vn} of vector spaces, usually of growing dimension, and data {(xi, yi) ∈
Vni

⊕R} in finitely-many dimensions ni. We then seek an infinite sequence of convex functions {fn : Vn → R}
that can be instantiated in any dimension, satisfying fni

(xi) ≈ yi in the dimensions in which data is available.
We address this problem by leveraging the framework described above to fit a freely-described convex

function to the given data. Concretely, we begin by endowing the vector spaces {Vn} containing the training
data with the structure of a consistent sequence based on the symmetries of the problem at hand and the
relations between problem instances in different dimensions. We then select description spaces {Wn}, {Un}
and cones {Kn ⊆ Un} with respect to which our convex functions are to be described as in (ConicSeq),
with freely-described vectors and linear maps parametrizing the desired family of freely-described functions;
richer description spaces generally yield more expressive families of convex functions, but fitting a function
from such a family is more expensive and requires data in higher dimensions by Theorem 3.5.

Having chosen description spaces and cones as above, we have completely specified our family of freely-
described functions and turn to the problem of fitting an element of this family to data. We do so in a
fully algorithmic fashion, without needing to write down an explicit formula for members of our parametric
family, using the following three steps. First, we compute a basis for invariant vectors and linear maps in the
dimensions in which we have data using the algorithm of [31]. Second, we numerically identify coefficients
in this basis that fit the data using an alternating minimization procedure based on convex duality. Third,
we extend the invariant vectors and linear maps we identified in the data dimensions to other dimensions by
solving linear systems arising from Definition 1.4. Our procedure is summarized in Algorithm 1 and detailed
in Section 6, and our implementation is publicly available at https://github.com/eitangl/anyDimCvxSets.
To summarize, once the choice of consistent sequence structure and description spaces is made based on the
structure underlying an application, the dimensions of the available data, and the desired richness of the
family of functions, the remainder of the procedure is fully computational.

We demonstrate our approach by obtaining semidefinite approximations of two non-semidefinite rep-

resentable functions: the ℓπ norm ∥x∥π = (
∑

i |xi|π)
1/π

, and the following (nonnegative and positively
homogeneous) variant of the quantum entropy function:

f(X) = Tr[(X +Tr(X)I) log(X/Tr(X) + I)]. (2)

The ℓπ norm of a vector is defined for vectors of any length, is invariant under signed permutations, remains
unchanged under zero-padding of its input, and can only increase if we append any other entry to a given
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Figure 1: Errors for learning the ℓπ norm and the quantum entropy variant (2). The dashed vertical
lines denote the max n for which data is available.

input. It is therefore both intersection and projection compatible with respect to the embeddings and
projections of Example 1.5. The function (2) is well-defined for (positive-semidefinite) inputs of all sizes,
is invariant under conjugation by orthogonal matrices, and its value is unchanged if we zero-pad its input.
Thus, it is intersection-compatible on {Sn} with embeddings given by by zero-padding. Given evaluations of
these two functions on low-dimensional inputs, we use our procedure to fit semidefinite approximations to
them by choosing sequences of PSD cones for our descriptions, and fitting a freely-described and compatible
sequence of convex functions. Thus, we ensure that our approximations are also group-invariant and satisfy
the same compatibility properties as the underlying ground-truth functions (we detail our description spaces
in Section 6.3)). Figure 1 shows the error in our semidefinite approximations for different dimensions when
we search over all freely-described sets in our family when fitting to data, and when we search only over the
smaller family of compatible sequences. We see that imposing compatibility ensures that the error increases
gracefully when extending to higher dimensions.

Obtaining semidefinite approximations for quantum information theoretic quantities such as (2) fa-
cilitates the use of semidefinite programming solvers in convex optimization problems involving quantum
entropy [32, 33, 34, 35]. We mention that the authors of [36] derived semidefinite approximations of the
quantum entropy and related functions from an analytic perspective. We show in Section 4.5 that their
description is free but does not certify compatibility, in contrast to the description we obtain from data
using the preceding procedure.

1.2 Related Work

We briefly survey several related areas.

Extended formulations of convex sets: There is a large literature as well as a systematic framework
on extended formulations in which conic descriptions of a convex set in a fixed dimension are investigated;
see [37] for a review. The goal in this body of work is to express ‘complicated’ convex sets in Rd (e.g.,
polyhedra with many facets) as linear images of affine sections of ‘simple’ convex cones in a space that is not
much larger than d. This framework is also applied to study equivariant lifts of group-invariant convex sets,
which are descriptions of the form (Conic) consisting of group-invariant cones, vectors, and linear maps, i.e.,
conic descriptions that make evident the group invariance of the convex set; see [38] and [37, §4.3]. These
are precisely the type of descriptions we consider for each of the convex sets in our sequences. Moreover,
while the literature on extended formulations is typically articulated in the setting of a convex set in a fixed
dimension, many results in the area implicitly concern descriptions of a sequence {Cn} of convex sets and
the complexity of these descriptions as a function of n [39, 38, 40, 41]. Thus, there are several points of
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contact with the present paper. In fact, many (though not all) descriptions proposed in the literature on
extended formulations can in fact be instantiated in any dimension, and are moreover free in our sense as we
show in Section 4. More broadly, to the best of our knowledge, descriptions of convex sets that arise from
a systematic consideration of relations between dimensions have not been studied previously. By bringing
such considerations to the fore, the present effort elucidates the representation-theoretic phenomena and
their interaction with the convex-geometric aspects underpinning convex sets that can be instantiated in any
dimension.

Free spectrahedra, noncommutative convex algebraic geometry: A broad research program
pursued in several areas involves the study of “matrix” or noncommutative analogues of classical “scalar”
or commutative objects. Examples include random matrix theory and free probability [42] in which matrix-
valued random variables and their limits are the object of study as opposed to scalar-valued ones; and
noncommutative algebraic geometry [13], in which polynomials in noncommuting variables and their evalua-
tions on matrices are studied as opposed to standard polynomials in commuting variables that are evaluated
on scalars [43, 44, 45, 46]. Applying this program to convex sets yields matrix-convex sets and free spectra-
hedra as in Example 1.2(b). We refer the reader to [13, 14] for surveys and [47, 48] for some applications.
In analogy to the present paper, results in this area explicitly pertain to sequences of sets which are “freely-
described”, in the sense that their description can be instantiated in any dimension. For example, free
spectrahedra are sequences of sets described by a single linear matrix inequality, and free algebraic varieties
are defined by the same noncommutative polynomials instantiated on matrices of any size. Another point
of contact with our work is the consideration of relations between the sets in the sequence across dimen-
sions, such as matrix-convex combinations which have been formalized and studied in this literature. Our
notion of free descriptions is more general than the ones in this literature however, and it allows us to derive
more flexible families of freely-described sets which are adapted to the structure underlying a broader range
of applications. Further, the relations between sets in different dimensions we consider in this paper are
less restrictive than matrix convexity, and they yield more general families of sets than free spectrahedra
(free spectrahedra may be obtained in our framework via particular instantiations of description spaces, see
Section 4.4).

Representation stability: Representation stability arose out of the observation that the decomposition
into irreducibles stabilizies for many sequences of representations. This phenomenon has been formalized
in [16] using consistent sequences, and it has been further studied in [49, 50, 51] from a categorical perspective
and in [52, 53, 54] from a limits-based perspective. We relate the categorical and limits-based formalisms to
our setting in appendix A and Section 2.7, respectively, and we refer the reader to [55, 56, 57] for introductions
to this area.

Representation stability has been used to study sequences of polyhedral cones and their infinite-dimensional
limits [58], as well as sequences of algebraic varieties, their defining equations, and their infinite-dimensional
limits [59, 60, 61]. An important distinction between these works and ours is our application of representa-
tion stability to descriptions of convex sets rather than to their extreme points or rays as in [58]. Thus, we
are able to study non-polyhedral sets such as spectrahedra and sets defined by relative entropy programs.
Similarly, our study of infinite-dimensional limits in Section 3.3 focuses on limiting descriptions and not just
on limits of the sets themselves.

1.3 Notation and Basics

We assume familiarity with the basics of representation theory and convex analysis, and we refer the reader
to [62, 63] and [18], respectively, for background. In what follows, we review a few basic notions from these
areas and introduce notation used throughout the paper. We list several standard groups and constructions
involving vector spaces in Table 1.

Basics: We denote [n] = {1, . . . , n}. For i ≤ j we denote by (i, j) the transposition permuting letters i and
j. For real numbers a < b, denote [a, b) = {x ∈ R : a ≤ x < b}. For i ∈ [n], we denote by ei ∈ Rn the ith

standard basis vector with a 1 in the ith entry and zero everywhere else, and we write e
(n)
i when we wish to

emphasize the dimension. If x ∈ Rn, we denote by diag(x) ∈ Sn the diagonal matrix with x on the diagonal.
If X ∈ Rn×n, we denote by diag(X) ∈ Rn the vector of its diagonal elements. All vector spaces in this paper
are finite-dimensional real vector spaces equipped with an inner product ⟨·, ·⟩ unless stated otherwise. We
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Symmetric group Sn = {g ∈ Rn×n : g is a permutation matrix.}

Signed symmetric group Bn = {g ∈ Rn×n : g is a signed permutation matrix}

Even-signed symmetric group Dn = {g ∈ Bn : g flips evenly-many signed}

Orthogonal group On = {g ∈ Rn×n : g⊤g = In}

Space of linear maps L(V,U) = {A : V → U linear}; L(V) = L(V,V).

Direct sum V⊕ U = V× U = {(v, u) : v ∈ V, u ∈ U}.

Direct powers Vk = V⊕k = V⊕ · · · ⊕ V︸ ︷︷ ︸
k times

.

Tensor product V⊗ U = span{v ⊗ u : v ∈ V, u ∈ U} ∼= L(V,U).

Tensor power V⊗k = V⊗ · · · ⊗ V︸ ︷︷ ︸
k times

.

Symmetric algebra

Symk(V) = span{v1 · · · vk : vi ∈ V}
= {polynomials of degree = k on V}
= {symmetric tensors of order k over V}

Sym≤k(V) =
k⊕

i=0

Symi(V).

Alternating algebra

∧k
V = span{v1 ∧ · · · ∧ vk : vi ∈ V}
= {skew-symmetric tensors of order k over V}.

Symmetric matrices Sn = {X ∈ Rn×n : X⊤ = X} = Sym2(Rn).

Skew-symmetric matrices Skew(n) = {X ∈ Rn×n : X⊤ = −X} =
∧2Rn.

Spaces of invariants
VG = {v ∈ V : g · v = v for all g ∈ G},
L(V,U)G = {A ∈ L(V,U) : gA = Ag for all g ∈ G}.

Table 1: Commonly-used groups and vector spaces. Here V,U are finite-dimensional vector spaces.

emphasize that some of the inner products we use are nonstandard, so the transpose of a matrix and the
adjoint of the linear operator it represents may differ. Given a subspace W ⊆ V, we denote by PW : V → W
the orthogonal projection onto W. We denote by Rn

+ the cone of entrywise nonnegative length-n vectors,

and by Sn+ the cone of PSD n×n matrices. If V is a vector space, we let Sym2
+(V) ∼= SdimV

+ denote the cone
of PSD linear maps in L(V).
Representation theory: A (linear) action of a group G on a finite-dimensional vector space V is given by
a group homomorphism ρ : G → GL(V). Usually ρ is clear from context and we omit it, writing g · v = ρ(g)v
for g ∈ G and v ∈ V instead. All the groups we consider are compact and all group actions are orthogonal,
meaning ⟨g · x, g · y⟩ = ⟨v, v′⟩ for all x, y ∈ V. The action of G on V induces an action on V⊗k and Symk(V)
by setting g · v1⊗ · · ·⊗ vk = (gv1)⊗ · · ·⊗ (gvk) and g · (v1 · · · vk) = (gv1) · · · (gvk) and extending by linearity.
If V and U are both representations of G, we have an action of G on V ⊗ U by g · (v ⊗ u) = (gv) ⊗ (gu)
(and extending by linearity) and on L(V,U) by g · A = gAg−1, thus making the representations V⊗ U and
L(V,U) isomorphic. Linear maps invariant under this preceding group action are also called equivariant or
intertwining, since they are precisely the linear maps commuting with the group elements. We denote the
group ring of G by R[G] = span{eg}g∈G, where eg is a basis element indexed by the group element g. Note
that a representation of G is the same as a module over the ring R[G].
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If H ⊆ G is a subgroup and V is a representation of H, the induced representation of G from V is
IndGH(V) = R[G] ⊗R[H] V. We have dim IndGH(V) = |G/H|dimV, and we apply this notion only when H has
finite index in G. If g1 = id, g2, . . . , gk are coset representatives for G/H, we have

IndGH(V) =
k⊕

i=1

giV, (Ind)

together with the following action of G: If g ∈ G is (uniquely) written as ggi = gjh for some i, j ∈ [k]
and h ∈ H, then g · giv = gj(h · v) for any v ∈ V. This construction is independent of the choice of coset
representatives.

As vector spaces, we have an isomorphism IndGH(V) ∼= V|G/H|. Hence, an H-invariant inner product
⟨·, ·⟩ on V induces a G-invariant inner product on V|G/H| by setting ⟨giv, gju⟩ = δi,j⟨v, u⟩ for v, u ∈ V and

i, j ∈ [|G/H|]. Here δi,j = 1 if i = j and zero otherwise. We have an isomorphism (IndGHV)G ∼= VH sending

v ∈ VH to
∑

i giv ∈ (IndGHV)H and ṽ ∈ (IndGHV)H to PVṽ ∈ VH.
If H ⊆ H′ and G ⊆ G′ such that H′ ∩G = H, then we have the inclusion G/H ↪→ G′/H′ sending gH 7→ gH′;

this in turn yields an inclusion IndGHV ↪→ IndG
′

H′V between induced representations by completing a set of
coset representatives for G/H to representatives for G′/H′. Here V is assumed to be an H′-representation.

If V,U are H-representations and A ∈ L(V,U)H, we can extend A to a map Ind(A) : IndGHV → IndGHU
defined by Ind(A)(giv) = gi(Av) where gi is one of the above coset representatives and v ∈ V. If V is a
G-representation and W ⊆ V is an H-subrepresentation, there is a G-equivariant linear map IndGHW → V
sending g ⊗ w 7→ g · w whose image is precisely R[G]W = span{g · w}g∈G,w∈W.

Convex sets and functions: The epigraph of a convex function f : V → R ∪ {∞} is the convex set
{(x, t) ∈ V⊕R : f(x) ≤ t}. If C ⊆ V is a convex set then its gauge function (also called Minkowski functional)
is γC(x) = inf{t : x ∈ tC} and its support function is hC(x) = sup{⟨y, x⟩ : y ∈ C}.

Our compatibility conditions for convex sets in Definition 1.8 imply compatibility for convex functions
derived from them using the above correspondences, and vice versa. Indeed, it is easy to check that a
sequence of convex functions is intersection (resp., projection) compatible if and only if the sequence of
their epigraphs is intersection (projection) compatible. Similarly, if a sequence of convex sets is intersection
(resp., projection) compatible, then the sequence of their gauge functions is intersection (resp., projection)
compatible. The correspondences between compatibility conditions between sets and their support functions
is a bit subtler. If a sequence of sets is projection-compatible, then the sequence of their support functions is
intersection-compatible. If a sequence of compact sets is intersection-compatible, then their support functions
are projection-compatible.

2 Background on Representation Stability

We review some fundamental definitions and results from the representation stability literature, which studies
consistent sequences {Vn} of {Gn}-representations as in Definition 1.3. We further require a notion of
maps between consistent sequences, which enables us to define embeddings, quotients, and isomorphisms of
consistent sequences.

Definition 2.1 (Morphisms of sequences). If V = {(Vn, φn)} and U = {(Un, ψn)} are two consistent
sequences of {Gn}-representations, then a morphism of consistent sequences A : V → U is a collection of
linear maps A = {An : Vn → Un} such that the following hold for each n:

(a) An is Gn-equivariant;

(b) An+1φn = ψnAn.

If φn and ψn are inclusions, condition (b) above becomes An+1|Vn
= An. Note that morphisms are

freely-described elements (as in Definition 1.4) of V ⊗ U , but the converse may not hold. Morphisms of
sequences have appeared in the representation stability literature as the natural notion of maps between
sequences, see [49, Def. 2.1.1] and [50, §3.2].
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2.1 Generation Degree

To relate invariants and equivariants across dimensions, we need canonical isomorphisms between spaces
of invariants in a consistent sequence. Proposition 2.3 below shows that the projections PVn

are such
isomorphisms, using the following parameter introduced in [49] to control the complexity of a consistent
sequence.

Definition 2.2 (Generation degree). A consistent sequence V = {Vn} of {Gn}-representations is generated
in degree d if R[Gn]Vd = Vn for all n ≥ d. The smallest d for which this holds is called the generation
degree of the sequence. A subset S ⊆ Vd is called a set of generators for V if R[Gn]S = Vn for all n ≥ d.
A sequence is finitely-generated if it is generated in degree d for some d <∞.

Note that R[Gn]S = span{gx}g∈Gn,x∈S , so that V is generated in degree d if the span of the Gn-orbit of
Vd, when embedded in Vn, is all of Vn for any n ≥ d. Note also that if V is generated in degree d then Vd

is a set of generators for V .

Proposition 2.3. Suppose V = {(Vn, φn)} is a consistent sequence of {Gn}-representations generated in

degree d. Then the restrictions of the projections φ∗
n|VGn+1

n+1

: VGn+1

n+1 → VGn
n to spaces of invariants are injective

for all n ≥ d, and are therefore isomorphisms for all large enough n.

Proof. First, the map φ∗
n is Gn-equivariant because Gn acts orthogonally and Gn ⊆ Gn+1, so it maps Gn+1-

invariants in Vn+1 to Gn-invariants in Vn. Second, suppose φ∗
n(v) = 0 for some v ∈ VGn+1

n+1 with n ≥ d. For
any u ∈ Vn+1, write u =

∑
i giφn(ui) where ui ∈ Vn and gi ∈ Gn+1. Because v is Gn+1-invariant, we have

⟨v, u⟩ = ⟨φ∗
n(v),

∑
i ui⟩ = 0. As u ∈ Vn+1 was arbitrary, we conclude that v = 0. Thus, φ∗

n maps VGn+1

n+1

injectively into VGn
n , so that dimVGn

n ≥ dimVGn+1

n+1 , for all n ≥ d. Therefore, the sequence of dimensions
dimVGn

n eventually stabilizes, at which point φ∗
n becomes an isomorphism.

Note that φ∗
n = PVn

is precisely the orthogonal projection onto Vn. Proposition 2.3 is stated in the repre-
sentation stability literature in terms of the adjoints of the projections, viewed as maps between coinvariants,
see [49, §3] for example.

2.2 Presentation Degree

While boundedness of the generation degree of a consistent sequence ensures that the projections eventually
become isomorphisms, providing a precise quantification of this phenomenon requires a more sophisticated
concept, namely the presentation degree. We describe this concept after giving some preliminary definitions.
Our presentation here is brief, and we refer the reader to Appendix B for a more detailed derivation of these
notions motivated by our computational considerations.

Definition 2.4 (Centralizing subgroups). Let V = {Vn} be a consistent sequence of {Gn}-representations.
For any d ≤ n, define the centralizing subgroups of Vd by

Hn,d = {g ∈ Gn : g · v = v for all v ∈ Vd}.

Note that the subgroup generated by Gd and Hn,d inside Gn is the set of products GdHn,d = {gh : g ∈
Gd, h ∈ Hn,d} since ghg−1 ∈ Hn,d for all g ∈ Gd and h ∈ Hn,d.

Definition 2.5 (V -modules). Let V = {Vn} and U = {Un} be consistent sequences of {Gn}-representations,
and let {Hn,d}d≤n be the centralizing subgroups of V as in Definition 2.4. We say that U is a V -module if

Ud ⊆ UHn,d
n for all d ≤ n.

Definition 2.6 (Induction and algebraically free5 sequences). Let V be a consistent sequence of {Gn}-
representations, and for d ≤ n let Hn,d ⊆ Gn be its centralizing subgroups.

5Freeness here is meant in the algebraic sense of being generated by generators with no nontrivial relations between
them (see Appendix B), in contrast to Definition 1.6 where it is meant in the sense of dimension-free descriptions.
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(a) Fix d ∈ N and a Gd-representation W on which Hd,d acts trivially. For each n ≥ d, we view W as a
GdHn,d-representation on which Hn,d acts trivially. The associated V -induction sequence is defiend
as:

IndGd
(W) =

{
IndGn

GdHn,d
W
}
n
,

where the induced representation is taken to be 0 when n < d. This is a V -module.

(b) A consistent sequence F is an algebraically free V -module if it is a direct sum of V -induction se-
quences. The sequence V itself is algebraically free if it is an algebraically free V -module.

Definition 2.7 (Relation and presentation degrees). Let V be a consistent sequence of {Gn}-representations.
We say that a V -module U is generated in degree d, related in degree r, and presented in degree k =
max{d, r} if there exists an algebraically free V -module F generated in degree d, and a surjective morphism
of sequences F → U whose kernel is generated in degree r. The smallest k for which this holds is called the
presentation degree of U .

Note that the presentation degree is at least as large as the generation degree (cf. Definition 2.2).

Example 2.8. Let Vn = Rn with embeddings by zero-padding as in Example 1.5. Recall that this is a
consistent sequence for each of the sequences of groups Gn = On,Bn,Dn,Sn acting by their standard n × n
matrix representations. Here Hn,d is the subgroup of n× n orthogonal or signed permutation matrices fixing
the first d coordinates.

This sequence is generated in degree 1 for all the groups listed above. Indeed, any of the canonical basis
vectors ei are obtained from the first one e1 via the action of Sn.

If Gn = Bn or Sn then this sequence is algebraically free and hence presented in degree 1 as well,
while if Gn = Dn then it is not free but presented in degree 2. Indeed, we have |Dn/D1Hn,1| = 2n
when n ≥ 2 with coset representatives (1, i)sp for p ∈ {0, 1}, i ∈ [n] where s = diag(−1,−1, 1 . . . , 1).
Hence (Ind) yields IndDn

D1Hn,1
R = Rn ⊕ Rn on which σ ∈ Sn ⊆ Dn acts by σ(x, y) = (σx, σy) and s(x, y) =

([y1, y2, x3, . . . , xn]
⊤, [x1, x2, y3, . . . , yn]

⊤). We have equivariant linear maps IndDn

D1Hn,1
R → Rn sending

(x, y) 7→ x− y giving a morphism of sequences IndD1R → {Rn} with kernel generated in degree 2.

The presentation degree enables us to strengthen Proposition 2.3 and to quantify more precisely when
the projections there become isomorphisms.

Proposition 2.9. Let V be a consistent sequence of {Gn}-representations and U be a V -module presented

in degree k. Then the maps PUn
: UGn+1

n+1 → UGn
n are isomorphisms for all n ≥ k.

Proof. As U is presented in degree k, there exists an algebraically free V -module F = {Fn} and a surjective
morphism F → U such that both its kernel K = {Kn} and F itself are generated in degree k. Because
each map Fn → Un is a Gn-equivariant surjection with kernel Kn, its restriction to invariants FGn

n → UGn
n is

surjective with kernel KGn
n .

As F is an algebraically free V -module, there exist integers dj and Gdj
-representations Wdj

satisfy-
ing F =

⊕
j IndGdj

Wdj . Such F has generation degree maxj dj ≤ k. Therefore, letting {Hn,d} be the

centralizing subgroups of V , we have for n ≥ k (see Section 1.3)

FGn
n =

⊕
j

(
IndGn

Gdj
Hn,dj

(Wdj )
)Gn ∼=

⊕
j
W

Gdj

dj
,

Thus, dimFGn
n is constant for n ≥ k. Moreover, by Proposition 2.3 and the fact that K and U are generated

in degree k, we have dimKGn
n ≥ dimKGn+1

n+1 and similarly dimUGn
n ≥ dimUGn+1

n+1 for all n ≥ k.
By the rank-nullity theorem, we have dimUGn

n = dimFGn
n − dimKGn

n . As dimFGn
n is constant while both

dimUGn
n and dimKGn

n are nonincreasing for n ≥ k, we conclude that they are all constant for n ≥ k. To

conclude, we note that PUn
is injective when restricted to UGn+1

n+1 for all n ≥ k by Proposition 2.3.

Remark 2.10 (V -modules vs. centralizing subgroups). The definition of presentation degree assumes a
“base” consistent sequence V . Note however that it depends only on the centralizing subgroups {Hn,d} of
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V . In fact, any sequence of subgroups {Hn,d ⊆ Gn}d≤n satisfying Hn+1,d ⊇ Hn,d, Hn,d+1 ⊆ Hn,d, and
Hn+1,d ∩ Gn = Hn,d for d ≤ n arise as centralizing subgroups of such a consistent sequence.

The centralizing subgroups play a central role because they determine embeddings {gφn−1 · · ·φd}g∈Gn

∼= Gn/Hn,d of Vd into Vn, and the combinatorics of these embeddings yields Theorem 2.11. See the proof
of [49, Prop. 2.3.6] and Appendix A for example. We formulate our results in terms of V -modules rather
than the subgroups {Hn,d} directly because the sequences we use are often constructed from the same base
sequence as in Section 2.3 below, easing the application of our results.

2.3 Constructions of Consistent Sequences

Expressive families of freely described convex sets require complex description spaces, and in turn complex
consistent sequences. In this section, we describe common operations that yield complicated consistent
sequences from simpler ones, along with a calculus for bounding the generation and presentation degrees of
the resulting sequences.

Fix a family of group G = {Gn}n∈N such that Gn ⊆ Gn+1. Suppose V = {(Vn, φn)} and U =
{(Un, ψn)} are consistent sequences of G -representations. Then the following are also consistent sequences
of G -representations:

(Sums) The direct sum of V and U is V ⊕ U = {(Vn ⊕ Un, φn ⊕ ψn)}.
If W is a fixed vector space, viewed as a trivial Gn-representation for all n, denote V ⊕W = {(Vn ⊕
W, φn ⊕ idW)}.

(Tensors) The tensor product of V and U is V ⊗ U = {(Vn ⊗ Un, φn ⊗ ψn)}.
This is also the sequence of spaces of linear maps L(Vn,Un) ∼= Vn⊗Un, where we embed An : Vn → Un

to (φn ⊗ ψn)An = ψnAnφ
∗
n : Vn+1 → Un+1.

The order-k tensors over V is V ⊗k.

If W is a fixed vector space, viewed as a trivial Gn-representation for all n, denote V ⊗W = {(Vn ⊗
W, φn ⊗ idW)}.

(Polynomials) The degree-k polynomials over V is SymkV = {(SymkVn, φ
⊗k
n )}, which is also the sequence

of order-k symmetric tensors over V . Here we view SymkVn ⊆ V⊗k and restrict φ⊗k
n to that subspace.

The sequence of polynomials of degree at most k is denoted Sym≤kV =
⊕k

j=1 Sym
jV .

Similarly, we can form the sequence of kth exterior powers
∧k V .

(Moments) The sequence of moment matrices of order k over V is Sym2(Sym≤kV ). Its elements can be
viewed as symmetric matrices whose rows and columns are indexed by monomials of degree at most
k in basis elements for V .

(Images and Kernels) If {An ∈ L(Vn,Un)
Gn} is a morphism mapping V → U , then the images ImA =

{(An(Vn), ψn)} and kernels kerA = {(kerAn, φn)} form consistent sequences.

If V ,U are V0-modules for some common consistent sequence V0, then all the above are V0-modules as well.
The group actions above are given in Section 1.3. The following theorem gives a calculus that allows us to

bound the presentation degrees of sequences constructed from certain simpler ones with known presentation
degrees. The following theorem is a consequence of results in [49, 50, 51] concerning calculus for generation
degrees. We combine these results to obtain the following analogous calculus for presentation degrees, whose
proof is given in Appendix A.

Theorem 2.11 (Calculus for generation and presentation degrees). Let V be a consistent sequence of {Gn}-
representations and let W ,U be V -modules generated in degrees dW , dU and presented in degrees kW , kU ,
respectively. Then

(Sums) W ⊕ U is generated in degree max{dW , dU} and presented in degree max{kW , kU}.

(Images and kernels) If A : W → U and A ∗ are morphisms, then imA and kerA are generated in
degree dW and presented in degree kW .

If V = {Rn} with Gn = Bn,Dn, or Sn as in Example 1.5, we further have
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(Tensors) W ⊗ U is generated in degree dW + dU and presented in degree max{kW + dU , kU + dW }.

(Sym and
∧
) SymℓW ,

∧ℓ W are generated in degree ℓdW and presented in degree (ℓ− 1)dW + kW .

Proof. This follows from Theorem A.13 in the appendix.

Example 2.12. Suppose {Rn} as in Example 1.5 with Gn = Bn,Dn, or Sn. Then (Rn)⊗k consists of
n× · · · ×n-sized tensors with embeddings by zero padding and SymkRn consists of homogeneous polynomials
of degree k in n variables. These are generated in degree k and presented in degree k if Gn = Bn,Sn and in
degree k + 1 if Gn = Dn.

In this case, we also have Sym2Rn = Sn and
∧2 Rn = Skew(n). The space Sym2(Sym≤kRn) can be

viewed as symmetric matrices whose rows and columns are indexed by monomials of degree up to k in n
variables. These sequences arises in optimization problems involving tensors, sums-of-squares polynomials,
and moment sequences [64, 65].

Remark 2.13 (Other groups). Note that the last two conclusions in Theorem 2.11 fail without the restriction
to Gn = Bn,Dn, or Sn. For example, if we endow V = {Rn} with the standard actions of the cyclic groups
Gn = Cycn and use embeddings by zero-padding, then V is generated in degree 1 but V ⊗2 is not finitely-
generated since dimL(Rn)Cycn = n does not stabilize.

2.4 Permutation Modules

We introduce a class of particularly simple consistent sequences on which the group acts by permuting basis
elements. These consistent sequences arise in our study of relative entropy cones and their constant-sized
descriptions in Section 5.2. If a group G acts on a (finite) set A, define RA =

⊕
α∈A eα to be the vector

space with orthonormal basis elements {eα}α∈A, which is a G-representation with action g · eα = eg·α.

Definition 2.14 (Permutation modules). Let V = {Vn} be a consistent sequence of {Gn}-representations.
Let {An ⊆ Vn} be finite Gn-invariant sets satisfying An ⊆ An+1 for all n. Then the permutation V -module
generated by the sets {An} is the V -module {RAn}n.

Permutation modules can be analyzed in terms of the orbits in the sets An. In particular, indicators of
orbits form a basis for the space of invariants in a permutation module.

Proposition 2.15. Let V = {Vn} be a consistent sequence of {Gn}-representations, let {An ⊆ Vn} be
a nested sequence of finite group-invariant sets, and let U = {Un = RAn} be the associated permutation
V -module.

(a) U is generated in degree d if and only if An =
⋃

g∈Gn
gAd for all n ≥ d.

(b) The projections PUn
: UGn+1

n+1 → UGn
n are isomorphisms for all n ≥ d if and only if (a) holds and the

number of orbits in An, which equals dimUGn
n , is constant for all n ≥ d.

(c) Suppose V = {Rn} and Gn = Bn,Dn, or Sn as in Example 1.5 and U is generated in degree d. Then
U is free if Gn = Bn,Sn, and agrees with a free module starting from degree d+ 1 if Gn = Dn.

Here we say U agrees with a free module starting from degree d if there is a free V -module F = {Fn}
and a morphism of sequences F → U such that Fn → Un is an isomorphism for all n ≥ d.

Proof. (a) We have R[Gn]Vd =
∑

α∈Ad
g∈Gn

Regα =
⊕

α∈
⋃

g∈Gn
gAd

Reα which equals Vn =
⊕

α∈An
Reα precisely

under the stated condition.

(b) If Ân ⊆ An is a set of Gn-orbit representatives, then UGn
n

∼= RÂn has a basis consisting of 1
(n)
α =∑

g∈Gn/StabGn (α) egα for α ∈ Ân, where StabGn
(α) = {g ∈ Gn : g · α = α}. Moreover, we have

PUn1
(n+1)
α = 1

(n)
α for each α ∈ An. Thus, PUn

is an isomorphism between invariants if and only if
orbit representatives for An are also representatives for An+1.
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(c) Let d0 = 0 if Gn = Sn,Bn and d0 = 1 if Gn = Dn. Let Â ⊆ Ad be a set of minimal degree Gd+d0
-orbit

representatives in Ad+d0
. We argue that these are also the Gn-orbit representatives of An for all

n ≥ d+ d0. Indeed, since An =
⋃

g∈Gn
gAd =

⋃
g∈Gn

gÂ, it suffices to show that distinct elements in

Â lie in distinct Gn-orbits. To that end, observe that V satisfies

g · α ∈ Vd for α ∈ Vd, g ∈ Gn =⇒ ∃g̃ ∈ Gd+d0
s.t. g · α = g̃ · α, (3)

since if Gn = Sn,Bn define g̃ to act as g on the coordinates I = {i ∈ [d] : αi ̸= 0} and act trivially on
the others, and if Gn = Dn and if g flips oddly-many signs of coordinates in I then in addition have g̃
flip the sign of coordinate d+ 1. Therefore, if α, α′ ∈ Ad lie in the same Gn-orbit for n > d+ d0, then
they also lie in the same Gd+d0

-orbit. Thus, we have Un =
⊕

α∈Â R[Gn]eα for all n ≥ d+ d0.

Next, we argue that U is free or agrees with a free module starting from degree d+ d0. Observe that
V satisfies the additional property

α ∈ Vd \ Vd−1 has min. degree in its orbit =⇒ StabGn
(α) = StabGd

(α)Hn,d, (4)

Indeed, if α ∈ Vd \Vd−1 has minimal degree then all its d entries are nonzero, hence any g ∈ Gn fixing
α must fix the first d coordinates. Therefore, if α ∈ Vd \ Vd−1 has minimal degree and g1, g2, . . . , gM
are coset representatives for Gn/StabGd

(α)Hn,d, then

R[Gn]eα =

M⊕
m=1

Regm·α =

M⊕
m=1

gm · Reα = IndGn

StabGd (α)Hn,d
(Reα) = IndGn

GdHn,d

(
IndGd

StabGd (α)
Reα

)
,

where the first equality follows by (4), the second by the definition of a permutation representa-
tion (Definition 2.14), and the third equality follows by (Ind), and the last equality follows be-
cause Gd/StabGd

(α) ∼= (GdHn,d)/(StabGd
(α)Hn,d). Thus, if α ∈ Â has degree dα and we define

Wα = Ind
Gdα

StabGdα
(α)Reα, then the map

⊕
α∈Â IndGdα

(Wα)n → Un sending eα to itself is an iso-

morphism for all n ≥ d + d0. Condition 3 shows that Â ∩ Aj is a set of minimal degree Gj-orbit
representatives for each j ≤ d if Gn = Bn,Sn, hence the above map is an isomorphism for all n.

We remark that proposition 2.15(c) applies to any V satisfying (3) and (4).

2.5 Uniform Representation Stability

Proposition 2.3 shows that dimVGn
n stabilizes whenever {Vn} is a finitely-generated consistent sequence of

{Gn}-representations. In fact, the theory of [49, 50, 52] and others shows that for many standard families
{Gn} of groups, the entire decomposition of Vn into irreducibles stabilizes. This phenomenon was called
uniform representation stability in [16], and we use it to derive constant-sized descriptions for many sequences
of PSD cones in Section 5.1. The following is a concrete instance of this phenomenon that we shall use there.

Theorem 2.16 ([49, Thm. 1.13],[50, Thm. 4.27]). Let V0 = {Rn} with Gn = Bn,Dn, or Sn be the consistent
sequence from Example 1.5 and let V = {Vn} be a V0-module generated in degree d and presented in degree k.
Then there exists a finite set Λ and integers (mλ)λ∈Λ, together with an assignment λ 7→ Wλ[n] of a distinct
Gn-irreducible Wλ[n] to each λ ∈ Λ for n ≥ k + d such that Vn

∼=
⊕

λ∈Λ Wmλ

λ[n] as Gn-representations.

Proof. The irreducibles of the groups Sn,Dn,Bn are indexed as in [50, §2.1], and the consistent labelling
of irreducibles for different n is given in [50, §2.2]. Under this labelling, the V0-module V is uniformly
representation stable with stable range n ≥ k + d by [50, Thms. 4.4, 4.27], which precisely says that the
set of irreducibles appearing in the decomposition of the Vn and their multiplicities become constant for
n ≥ k + d by [16, Def. 2.6].

Example 2.17. Irreducibles of Sn are indexed by partitions of n. If λ1[n] = (n) is the trivial partition and
λ2[n] = (n − 1, 1), then Rn = Wλ1[n] ⊕Wλ2[n] for all n ≥ 1, where Wλ1[n] = span{1n} and Wλ2[n] = {x ∈
Rn : 1⊤

n x = 0} are distinct irreducible representations of Sn.
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2.6 Stabilization of Shifted Sequences

Many of the phenomena in the representation stability literature, including Theorem 2.16, can be derived
from properties of shifted consistent sequences, which are sequences with group actions restricted to cen-
tralizing subgroups, see [66] and references therein. In particular, we shall need the following result for such
shifted sequences to derive constant-sized descriptions for relative entropy cones in Section 5.2.

Proposition 2.18 ([50, Lemma 4.19]). Let V = {Rn} and Gn = Bn,Dn, or Sn as in Example 1.5 and let
U be a V -module presented in degree k. If {Hn,d} are the centralizing subgroups of V and ℓ ∈ N, then the

projections PUn
: UHn+1,ℓ

n+1 → UHn,ℓ
n are isomorphisms for all n ≥ ℓ+ k.

Corollary 2.19. Let V = {Rn} and Gn = Bn,Dn, or Sn as in Example 1.5, and let U be a V -module pre-

sented in degree k. If β ∈ Rd\Rd−1 has minimal degree in its Gd-orbit, then the projections PUn
: U

StabGn+1
(β)

n+1 →
UStabGn (β)

n are isomorphisms for all n ≥ d+ k.

Proof. As shown in (4), we have StabGn
(β) = StabGd

(β)Hn,d for all n ≥ d, hence

UStabGn (β)
n = UHn,d

n ∩ UStabGd (β)
n .

By Proposition 2.18, the projections PUn
: UHn+1,d

n+1 → UHn,d
n are isomorphisms for all n ≥ d + k. It thus

suffices to show that if u ∈ UHn+1,d

n+1 satisfies PUnu ∈ UStabGd (β)
n , then u ∈ UStabGd (β)

n+1 . For any such u and

g ∈ StabGd
(β) we have g · u ∈ UHn+1,d

n+1 because Hn+1,d and StabGd
(β) ⊆ Gd commute for our specific V . As

PUn
(u− g · u) = 0 and PUn

is injective on UHn+1,d

n+1 , we get u = g · u.

2.7 Limits of Consistent Sequences

Lastly, we consider limits of consistent sequences. We shall use the following definitions and results to
describe limits of freely-described sequences of convex sets in Section 3.3. We define limits of consistent
sequences, and interpret our definitions in terms of these limits.

Definition 2.20. For a consistent sequence V = {Vn} of {Gn}-representations, define its limiting repre-
sentation as the vector space V∞ =

⋃
n Vn, viewed as a representation of G∞ =

⋃
n Gn.

There is an approach to representation stability studying limiting representations of limiting groups as
above, instead of representations of categories as in Appendix A. For example, the authors of [52] analyze rep-
resentations of five standard infinite groups, including O∞,S∞, that occur as quotients or subrepresentations
of tensor powers of R∞ and its dual.

We remark that freely-described elements and morphisms of sequences can equivalently be defined in
terms of limits. Indeed, given two consistent sequences {Vn}, {Un} of {Gn}-representations, a sequence
of equivariant linear maps {An ∈ L(Vn,Un)

Gn} is a morphism of sequences if and only if there exists
A∞ ∈ L(V∞,U∞)G∞ satisfying A∞|Vn

= An for all n, i.e., iff {An} extends to the limit. Similarly, a sequence
of invariants {vn ∈ VGn

n } defines a sequence of invariant linear functionals ℓn(x) = ⟨vn, x⟩ : Vn → R, and these
extend to a G∞-invariant linear functional on V∞ if and only if {vn} is a freely-described element. Every
invariant functional on V∞ arises in this way, so freely-described elements are in one-to-one correspondence
with invariant linear functionals on the limit of a consistent sequence.

We also consider continuous limits of consistent sequences by taking the completion of V∞ with respect
to some norm. It is then natural to consider sequences of linear maps which extend to continuous maps
between these limits. The inner products on each Vn extend to the limit V∞, so we can always complete with
respect to the induced norm and obtain a Hilbert space. For many of the examples we consider, however,
we obtain more meaningful completions with respect to other norms. For the purpose of obtaining limiting
descriptions of convex sets in this completion, we consider the following class of norms.

Definition 2.21 (Continuous limits). Let V = {Vn} be a consistent sequence of {Gn}-representations, let
V∞ =

⋃
n Vn, and let Pn : V∞ → Vn be the orthogonal projection. Fix a norm ∥ · ∥c on V∞ (not necessarily
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induced by the inner product) that satisfies ∥Pnx∥c ≤ C∥x∥c for some C > 0 and all n and x ∈ V∞. We call
the completion V∞ of V∞ with respect to ∥ · ∥c a continuous limit of the sequence V .

Let {Vn} and {Un} be consistent sequences of {Gn}-representations with associated continuous limits V∞
and U∞. A sequence of maps {An : Vn → Un} extends continuously to the limit if there exists a bounded
linear operator A∞ : V∞ → U∞ such that A∞|Vn = An for all n. A freely-described element {un ∈ UGn

n }
extends continuously to the limit if there exists u∞ ∈ U∞ satisfying Pnu∞ = un for all n.

Note that a morphism of sequences {An : Vn → Un} extends to the continuous limit if and only if the
sequence of operator norms {∥An∥op,c} with respect to ∥ · ∥c is bounded.

Our condition on the norm ∥ · ∥c ensures that each projection Pn extends to a bounded linear map on
the continuous limit, and that the Pn converge to the identity in the strong operator topology, as we show
in the following lemma.

Lemma 2.22. In the notation of Definition 2.21, there exists C > 0 such that ∥Pnx∥c ≤ C∥x∥c for all n
and all x ∈ V∞ if and only if Pn extends to a bounded linear map V∞ → Vn for all n and ∥x− Pnx∥c → 0
as n→ ∞ for all x ∈ V∞.

Proof. Suppose ∥Pnx∥c ≤ C∥x∥c for all n and x. Then ∥Pn∥op,c ≤ C so that Pn extends to a bounded
linear map on V∞ for all n. Furthermore, for each x ∈ V∞ there exists xn ∈ Vn such that ∥x − xn∥c → 0.
Since xn = Pnxn, we have

∥x− Pnx∥c ≤ ∥x− xn∥c + ∥Pnxn − Pnx∥c ≤ (1 + C)∥x− xn∥c → 0.

Conversely, if ∥Pn∥op,c <∞ for all n and Pn converge strongly to the identity, then for any x ∈ V∞ we have
∥Pnx∥c <∞ for all n and ∥Pnx∥c → ∥x∥c as n→ ∞, hence supn ∥Pnx∥c <∞. By the uniform boundedness
principle, we have supn ∥Pn∥op,c = C <∞.

We close this section by noting that, more generally, if a sequence of convex functions {fn : Vn → R∪{∞}}
is intersection-compatible, then it extends to f∞ : V∞ → R ∪ {∞}. By taking the closure of its epigraph it
can further be extended to f∞ : V∞ → R∪{∞}, in which case γC∞ = γC∞

and hC∞ = hC∞
. Thus, the conic

descriptions we obtain in Theorem 3.6 below for continuous limits of convex sets yield conic descriptions for
limits of functions as well.

3 Structural Results on Free Descriptions

With the relevant background from representation stability in hand, we now proceed to prove the structural
results discussed in Section 1.1.2 pertaining to freely-described convex sets. We leverage these results to
provide a range of examples of free descriptions arising in various applications in Section 4. We begin
with the following instructive example, which shows that freely-described sequences of convex sets need not
satisfy either of our compatibility conditions. It also shows that a fixed convex set can extend to different
freely-described sequences, depending on its conic description.

Example 3.1 ((In)compatible sequence of hypercubes). In this example, we construct two freely-described
sequences of hypercubes with respect to the same description spaces, one of which is both intersection and
projection compatible and the other is neither. Let V = {Rn} with embeddings by zero-padding and the action
of Gn = Bn as in Example 1.5. Let s = diag(−1, 1, . . . , 1) ∈ Bn, which together with Sn generates Bn.

We define two consistent sequences that will be used to construct our description spaces. Let W (1) = {Rn}
with embeddings by zero-padding but on which s acts trivially and Sn acts as usual. Let W (2) = {Rn ⊕ Rn}
with embeddings by zero-padding each of the two summands, on which Bn acts as follows. We set s · (x, y) =
([y1, x2, . . . , xn]

⊤, [x1, y2, . . . , yn]
⊤) and σ · (x, y) = (σx, σy) for σ ∈ Sn. We set our description spaces to

U = W (1) ⊕ W (2) ⊕ R = {(Rn)⊕3 ⊕ R}, K = {0⊕ (Rn
+)

⊕2 ⊕ R+}, W = W (1) ⊕ R = {Rn ⊕ R}.

Consider the following two sequences of convex sets, both freely-described with respect to these description

spaces. The first is the sequence of unit hypercubes {C(1)
n = [−1, 1]n} given by (ConicSeq) with

A(1)
n x = (0, x,−x, 0), B(1)

n (y, β) = (y, y, y, 0), u(1)n = (−1n, 0, 0, 0), (5)
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where x, y ∈ Rn and β ∈ R. The second is the sequence of scaled hypercubes {C(2)
n = 3

2n−1 [−1, 1]n} given
by (ConicSeq) with

A(2)
n = A(1)

n , B(2)
n (y, β) = (y − 1n1

⊤
n y + β1n, y, y,−1⊤

n y − β), un = (0, 0, 0, 3). (6)

It is straightforward to check that both sequences are freely-described. In particular, all the relevant spaces
of invariants stabilize starting at n = 2, so that the extension of either description of [−1, 1]2 to a freely-
described sequence is unique. However, the two sequences of sets have notably different properties. The first
sequence is both intersection and projection compatible while the second is neither. Furthermore, note that

C(1)
2 = C(2)

2 = [−1, 1]2 but C(1)
n ̸= C(2)

n for all n ̸= 2. Thus, the extension of the unit square [−1, 1]2 to a
freely-described sequence is not unique, but depends on its conic description.

Motivated by this example, we give conditions on free descriptions ensuring that the corresponding
sequence of sets satisfies compatibility conditions. In turn, these yield conditions on a description of a fixed
set ensuring that it extends to a freely-described and compatible sequence of sets as well as conditions on
the existence of limiting descriptions.

3.1 Free Descriptions Certifying Compatibility

Example 3.1 shows that a freely-described sequence of convex sets need not satisfy either compatibility
condition in Definition 1.8. In this section, we therefore give conditions on free descriptions ensuring that
our compatibility conditions are satisfied.

Proposition 3.2. Let {Vn}, {Wn}, {Un} be consistent sequences of {Gn}-representations, let {Kn ⊆ Un}
be an intersection- and projection-compatible sequence of convex cones, and let C = {Cn ⊆ Vn} be described
by linear maps {An : Vn → Un}, {Bn : Wn → Un} and elements {un ∈ UGn

n } as in (ConicSeq).

(a) If {An}, {Bn}, {B∗
n} are morphisms, {un} is freely-described, and un+1 −un ∈ Kn+1 for all n, then C

is intersection-compatible. If, in addition, {A∗
n} is a morphism, then C is also projection-compatible.

(b) If {An}, {A∗
n}{Bn}, {B∗

n} are morphisms, {un} is freely-described, and un+1−un ∈ Kn+1+An+1(V⊥
n )+

Bn+1(Wn), then C is projection-compatible.

Proof. (a) We show Cn ⊆ Cn+1. If x ∈ Cn then there is y ∈ Wn satisfying Anx+Bny + un ∈ Kn. Then

An+1x+Bn+1y + un+1 = Anx+Bny + un + (un+1 − un) ∈ Kn+1,

where we used the facts that {An}, {Bn} are morphisms, that Kn ⊆ Kn+1 by intersection-compatiblity,
and that un+1 − un ∈ Kn+1. Thus, x ∈ Cn+1. Next, we show Cn+1 ∩ Vn ⊆ Cn. If x ∈ Cn+1 ∩ Vn,
there exists y ∈ Wn+1 satisfying An+1x + Bn+1y + un+1 ∈ Kn+1. Because {An} is a morphism, we
have An+1x = Anx and hence PUnAn+1x = Anx. Because {B∗

n} is a morphism, we have PUnBn+1 =
BnPWn , hence PUnBn+1y = Bn+1(PWny). Finally, we have PUnun+1 = un because {un} is freely-
described, and PUn

Kn+1 ⊆ Kn because {Kn} is projection-compatible. Thus, applying PUn
we obtain

Anx+Bn(PWn
y)+un ∈ Kn, thus yielding that x ∈ Cn. We conclude that C is intersection-compatible.

Because C is intersection-compatible, we have PVn
Cn+1 ⊇ Cn. Conversely, if x ∈ Cn+1 then An+1x+

Bn+1y+un+1 ∈ Kn+1 for some y ∈ Wn+1. If {A∗
n} is a morphism, then PUnAn+1 = AnPVn . Applying

PUn to both sides we obtain AnPVnx+BnPWny + un ∈ Kn and hence PVnx ∈ Cn, which implies that
C is projection-compatible.

(b) First, we show PVn
Cn+1 ⊆ Cn. If x ∈ Cn+1 then there is y ∈ Wn+1 satisfying An+1x+Bn+1y+un+1 ∈

Kn+1. Applying PUn to both sides and using the facts that {A∗
n}, {B∗

n} are morphisms, that {un} is
freely-described, and that {Kn} is projection-compatible, we obtain An(PVnx)+Bn(PWny)+un ∈ Kn,
showing that PVn

x ∈ Cn. Second, we show Cn ⊆ PVn
Cn+1. Suppose Anx+Bny+un ∈ Kn for x ∈ Vn.

Let x⊥ ∈ V⊥
n and y′ ∈ Wn satisfy un+1 − un + An+1x⊥ + Bn+1y

′ ∈ Kn+1. As {An}, {Bn} are
morphisms,

An+1(x+ x⊥) +Bn+1(y + y′) + un+1 = Anx+Bny + un + (un+1 − un +An+1x⊥ +Bn+1y
′) ∈ Kn+1,

hence x+ x⊥ ∈ Cn+1 and PVn
(x+ x⊥) = x. This shows C is projection-compatible.
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We say that a sequence of conic descriptions certifies compatibility when it satisfies the hypotheses of
Proposition 3.2.

Remark 3.3. We make a number of remarks about the conditions in Proposition 3.2.

• Standard sequences of cones such as nonnegative orthants and PSD cones satisfy both intersection and
projection compatibility.

• The set of linear maps {An} and {Bn} satisfying the hypotheses of Proposition 3.2(a) form linear sub-
spaces of the corresponding spaces of freely-described elements. The set of sequences {un} satisfying
those hypotheses form a convex cone. Similarly, we can parametrize descriptions satisfying the hypothe-
ses of Proposition 3.2(b) by a convex cone, by considering {un} of the form un = An(vn)+Bn(wn)+zn
where {vn ∈ VGn

n }, {wn ∈ WGn
n }, and {zn ∈ KGn

n } are freely-described.

• Freely-described sets satisfying the hypotheses of Proposition 3.2(b) need not be intersection-compatible,
as the elliptope in (17) studied below demonstrates.

• Free descriptions certifying compatibility often extend to descriptions of infinite-dimensional limits,
see Theorem 3.6 below.

Returning to Example 3.1, we note that the description (5) satisfies all the hypotheses of Proposi-
tion 3.2(a) and hence certifies the intersection and projection compatibility of the sequence of hypercubes it
describes. On the other hand, the description (6) does not satisfy the hypotheses of either part of the above

theorem because neither {B(2)
n } nor {(B(2)

n )∗} are morphisms.

3.2 Extending a Convex Set to a Freely-Described Sequence

Let V = {Vn} be a consistent sequence of {Gn}-representations. In this section, we fix n0 and seek to
extend a convex subset Cn0 ⊆ Vn0 to a freely-described and compatible sequence. As we saw in Example 3.1,
different extensions may be obtained from different fixed-dimensional conic descriptions of Cn0 . We therefore
further fix consistent sequences U = {Un},W = {Wn} and cones {Kn ⊆ Un} satisfying both intersection
and projection compatibility, and assume Cn0

is described by (ConicSeq). We now ask when the description
of Cn0

can be extended to a free description that yields a compatible sequence of convex sets.
If n0 exceeds the presentation degrees of W ,U ,V ⊗U and W ⊗U , then Proposition 2.9 shows that we

can uniquely extend all the elements in the description of Cn0 to freely-described elements, and hence extend
Cn0

to a freely-described sequence. To ensure that this unique extension satisfies our compatibility conditions,
we give conditions on these invariants guaranteeing that their extensions to freely-described elements satisfy
the conditions of Proposition 3.2.

We begin by characterizing when a fixed equivariant map An0
∈ L(Vn0

,Un0
)Gn0 extends to a morphism

of sequences {An ∈ L(Vn,Un)
Gn}.

Theorem 3.4. Let V0 be a consistent sequence of {Gn}-representations and let V = {Vn},U = {Un} be
V0-modules. Assume V is generated in degree d and presented in degree k, and fix n0 ≥ k. Then An0

extends
to a morphism of sequences if and only if An0

∈ L(Vn0
,Un0

)Gn0 satisfies An0
(Vj) ⊆ Uj for j ≤ d.

Proof. If An0
extends to a morphism then An0

(Vj) = Aj(Vj) ⊆ Uj for all j ≤ n0. Conversely, assume
An0(Vj) ⊆ Uj for j ≤ d, and let {Hn,d} be the centralizing subgroups of V0. Suppose first that V = F =⊕

j IndGdj
Wdj is free. Note that it is generated in degree maxj dj ≤ d.

Let Adj = An0 |Wdj
and fix n ≥ dj . Because U is a V0-module, we have Udj ⊆ U

Hn,dj
n , so we can view Udj

as a representation of Gdj
Hn,dj

on which Hn,dj
acts trivially. As Adj

(Wdj
) ⊆ Udj

and is Gdj
Hn,dj

-equivariant,
the following composition defines an equivariant map

An,j : Ind
Gn

Gdj
Hn,dj

(Wdj
)

Ind(Adj
)

−−−−−−→ IndGn

Gdj
Hn,dj

Udj

g⊗u7→g·u−−−−−−→ Un,

where the induced map Ind(Adj
) was defined in Section 1.3. Note that An0,j = An0

|IndGdj
(Wdj

)n0
, since

An0,j(g ⊗ w) = g · An0w for all g ∈ Gn and w ∈ Wdj . Also, {An,j} defines a morphism IndGdj
(Wdj ) → U .

Therefore, the desired extension of An0
to a morphism {An} is given by An =

⊕
j An,j : Vn → Un.
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Now suppose F = {Fn} is an algebraically free V -module as above with a surjection F → V whose
kernel K = {Kn} is generated in degree k. Define the composition

Ãn0
: Fn0

→ Vn0

An0−−−→ Un0
,

which satisfies Ãn0
(Fj) ⊆ Uj for all j ≤ d by assumption and Ãn0

(Kn0
) = 0 by its definition. By the previous

paragraph, it extends to a morphism {Ãn : Fn → Un}. Because K is generated in degree k and n0 ≥ k, we

have Kn = R[Gn]Kn0
. Because Ãn is equivariant, we have Ãn(Kn) = 0. Therefore, Ãn can be factored as

Fn → Fn/Kn = Vn
An−−→ Un, where the maps An in this factorization give the desired extension of An0

to a
morphism V → U .

To satisfy the conditions in Proposition 3.2, we also use Theorem 3.4 to ensure {A∗
n} defines a morphism.

To that end, note that A∗
n0
(Uj) ⊆ Vj if and only if An0(V⊥

j ) ⊆ U⊥
j , where orthogonal complements are taken

inside Vn0
and Un0

. We can now give conditions guaranteeing extendability of a convex set to a freely-
described and compatible sequence.

Theorem 3.5 (Parametrizing freely-described and compatible sequences). Let V0 be a consistent sequence
of {Gn} representations and let V = {Vn}, W = {Wn}, and U = {Un} be V0-modules generated in degrees
dV , dU , dW , respectively, and presented in degree k. Let {Kn ⊆ Un} be an intersection and projection-
compatible sequence of convex cones. Fix n0 ≥ k.

Let un0 ∈ UGn0
n0 and let An0 ∈ L(Vn0 ,Un0)

Gn0 , Bn0 ∈ L(Wn0 ,Un0)
Gn0 such that

An0(Vj) ⊆ Uj for j ≤ dV , Bn0(Wj) ⊆ Uj for j ≤ dW , Bn0(W⊥
j ) ⊆ U⊥

j for j ≤ dU . (7)

Then there are unique extensions of An0 and Bn0 to morphisms {An ∈ L(Vn,Un)
Gn} and {Bn ∈ L(Wn,Un)

Gn},
where {B∗

n} is a morphism as well. Furthermore, there is a unique extension of un0
to a freely-described

element {un ∈ UGn
n }. Let C = {Cn} be the freely-described sequence of convex sets given by (ConicSeq).

(a) If un+1 − un ∈ Kn+1 for all n, then C is intersection-compatible. If, in addition, we have An0(V⊥
j ) ⊆

U⊥
j for j ≤ dU , then C is also projection-compatible.

(b) If un+1 − un ∈ Kn+1 +An+1(V⊥
n ) +Bn+1(Un+1) for all n, then C is projection-compatible.

Proof. Theorem 3.4 shows that An0 and Bn0 uniquely extend to morphisms {An}, {Bn} such that {B∗
n} is

also a morphism. Proposition 2.9 shows that un0 extends to a freely-described element {un}. Under the
stated conditions on these extensions, Proposition 3.2 yields the claimed compatibility conditions for the
sequence of convex sets {Cn} given by (ConicSeq).

In Section 6, we use Theorem 3.5 to computationally parametrize and search over free descriptions
certifying compatibility.

3.3 Limits of Freely-Described Convex Sets

Our last structural result gives conditions under which free descriptions extend to descriptions of continuous
limits of convex sets. The certificates of compatibility in Proposition 3.2 play a major role once again in the
existence of these limiting descriptions. If C = {Cn ⊆ Vn} is an intersection-compatible sequence of convex
subsets of a consistent sequence {Vn}, define C∞ =

⋃
n Cn, which is a convex subset of V∞.

Theorem 3.6 (Descriptions of limits). Suppose C = {Cn ⊆ Vn} is given by (ConicSeq). If all the hypotheses
of Proposition 3.2(a) are satisfied (so C is intersection and projection compatible) and if {An}, {Bn}, {un}
extend continuously to the limit, then{

x ∈ V∞ : ∃y ∈ W∞ s.t. A∞x+B∞y + u∞ ∈ K∞
}
, (8)

contains C∞ and is dense in its closure. If B∞ = 0, then (8) equals C∞.
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Proof. To prove that C∞ is contained in (8), observe that u∞ − un = limN→∞(uN − un) ∈ K∞ for all n by
Lemma 2.22. Therefore, if x ∈ Cn and y ∈ Wn satisfy Anx + Bny + un ∈ Kn, then A∞x + B∞y + u∞ =
Anx+Bny + un + (u∞ − un) ∈ K∞, proving that x is in (8).

To prove that (8) is contained in C∞, suppose x ∈ V∞ and y ∈ W∞ satisfy A∞x + B∞y + u∞ ∈ K∞.
Because {A∗

n}, {B∗
n} are morphisms and {Kn} is projection-compatible, applying PUn we obtain An(PVnx)+

Bn(PWny) + un ∈ Kn, hence PVnx ∈ Cn for all n and x = limn PVnx ∈ C∞ by Lemma 2.22.
If B∞ = 0 then (8) is the preimage under the continuous map x 7→ A∞x + u∞ of the closed cone K∞,

hence (8) is closed and must equal C∞.

If the set (8) is dense in C∞, then optimizing a continuous function over (8) and over C∞ are equivalent,
yielding an finitely-parametrized conic program in V∞.

4 Examples

In this section, we present examples of freely-described and compatible sequences of sets and functions arising
in a variety of applications. For several of these, we derive finitely-parametrized families of freely-described
sets, and we also give limiting descriptions and some related consequences.

4.1 Simplices and Norms

Let V = {Vn = Rn} with embedding by zero-padding and the action of Gn = Sn as in Example 1.5.

Simplex: The sequence of simplices ∆n−1 = {x ∈ Rn : x ≥ 0, 1⊤
n x = 1} is freely-described, as the

associated description is of the form (ConicSeq) with description spaces U = V ⊕ R = {Un = Rn+1},
W = {Wn = 0} and cones K = {Kn = Rn

+ ⊕ {0}}, and with An = [In,−1n]
⊤, Bn = 0, and un = [0, 1]⊤.

Moreover, the simplices {∆n−1} are intersection-compatible (but not projection-compatible); the above
description satisfies the hypotheses of Proposition 3.2(a) and hence certifies this compatibility.

Solid simplex: In contrast, consider the sequence of solid simplices ∆n
s = {x ∈ Rn : x ≥ 0,1⊤

n x ≤ 1}.
This sequence of conic descriptions is the same as above except that here Kn = Rn+1

+ , and in particular is free
and certifies intersection compatibility of {∆n

s }. However, the sequence {∆n
s } is also projection-compatible,

but the above free description of it does not certify this compatibility. That is because {A∗
n} is not a

morphism, hence the hypotheses of the second part of Proposition 3.2(a) are not satisfied. Indeed, the above
description of the solid simplex does not make its projection compatibility apparent, since 1⊤

nPVnx can be
arbitrary compared to 1⊤

n+1x for general x ∈ Rn+1, but must be smaller if x ≥ 0.
Instead, the following is a free semidefinite description of the solid simplices that certifies both intersection

and projection compatibilities:

∆n
s =

{
x ∈ Rn :

[
1 x⊤

x diag(x)

]
= Anx+ un ⪰ 0

}
, (9)

which is of the form (ConicSeq) with U = Sym2(Sym≤1V ) = {Sn+1}, K = {Sn+1
+ }, and W = 0. Here both

{An} and {A∗
n} are morphisms. It would be interesting to find a free linear programming description of the

solid simplices which certifies both compatibilities, or to show that none exists.

Norm balls: Several related free descriptions are derived from the above. The sequence of ℓ1 unit balls
Bn
ℓ1

= {x ∈ Rn : ∥x∥1 ≤ 1} is intersection and projection compatible. It can be written as Bn
ℓ1

= {x ∈ Rn :
∃y ∈ ∆n

s s.t. −y ≤ x ≤ y}, which combined with (9) yields a free description certifying both compatibilities.
Similarly, the sequence of ℓ2 unit balls Bn

ℓ2
= {x ∈ Rn : ∥x∥2 ≤ 1} is intersection and projection compatible,

and its standard SDP description Bn
ℓ2

=

{
x ∈ Rn :

[
1 x⊤

x In

]
= Anx+ un ⪰ 0

}
is free and certifies these

compatibilities similarly to (9).
Notice that both sequences of norm balls are invariant under the larger group Gn = Bn. All of the above

descriptions are in fact equivariant under this larger group, when U ,W are endowed with the corresponding
group action.
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4.2 Regular Polygons

The following example illustrates a natural sequence of convex sets that is freely-described but satisfies
neither intersection nor projection compatibility. Let V = {(Vn, φn)} be the consistent sequence Vn = R2

with φn = idR2 and the standard action of the dihedral group Gn = Dih2n . Consider the sequence of regular
2n-gons C = {Cn ⊆ R2} defined by

Cn = conv

{[
cos θi
sin θi

]}
, θi =

2πi

2n
, i ∈ {0, . . . , 2n − 1}. (10)

Because Vn = Vn+1 while Cn ̸= Cn+1, the sequence C satisfies neither intersection nor projection compati-
bility. Nevertheless, it admits the free description

Cn =

x ∈ R2 : ∃y ∈ R2n s.t.

−I0
0

x+


[
· · · cos(2πi/2n) · · ·

sin(2πi/2n)

]
I2n

1
⊤
2n

 y +
 0

0
−1

 ∈ 0⊕ Rn
+ ⊕ 0

 ,

where W = {R2n}n with embeddings y 7→ y ⊗ [1, 0]⊤, and U = V ⊕ W ⊕ R. We put the standard inner
products on R2n . The group permutes the 2n vertices of Cn, defining a permutation action on [2n], and it
acts on R2n by applying these permutations to coordinates.

If θi = π(2i + 1)/2n in (10) instead, we mention that the semidefinite description of Cn given in [40] is
also free when U ,W ,K are chosen appropriately.

4.3 Permutahedra, Schur-Horn orbitopes, and Limits

Permutahedra: Consider the sequence of standard permutahedra

Permn = conv
{
g · [1, 2, . . . , n]⊤

}
=
{
M [1, 2, . . . , n]⊤ :M ∈ Rn×n

+ , M1n =M⊤
1n = 1n

}
, (11)

where the second equality follows by the Birkhoff-von Neumann theorem. The sequence {Permn}, viewed
as subsets of the consistent sequence in Example 1.5 with Gn = Sn, is neither intersection- nor projection-
compatible. Furthermore, their description (11) is not free because the map M 7→ M [1, 2, . . . , n]⊤ is not
Gn-equivariant. The smaller descriptions of these permutahedra in [67, 68] are also not free because they are
not equivariant. However, there is a sequence of permutahedra arising naturally from a limiting perspective
that is both intersection- and projection-compatible and whose description certifies this compatibility.

Fix q,m ∈ N and a vector λ ∈ Rq with distinct entries, and define λ̃ = (λ1, . . . , λ1, . . . , λq, . . . , λq) ∈ Rm

in which λi appears mi times (so
∑

imi = m). Let Gn = Sm2n embedded in Gn+1 by sending a m2n ×m2n

matrix g ∈ Gn to g ⊗ I2. Let V = {Rm2n}n with embeddings x 7→ x ⊗ 12, the normalized inner product
⟨x, y⟩ = (m2n)−1x⊤y, and the standard action of Gn. We consider convex hulls of all the vectors in V
containing λi in a fraction mi/m of its entries, which are given using the Birkhoff-von Neumann theorem by

Perm(λ)n = conv{g · (λ̃⊗ 1m2n)}g∈Sm2n

=
{
Mλ :M ∈ Rm2n×q

+ , M1q = 1m2n , M
⊤
1m2n = 2n[m1, . . . ,mq]

⊤
}
.

(12)

This is an intersection- and projection-compatible sequence of subsets of V . Moreover, the description (12)
is free and certifies intersection and projection compatibility. Indeed, let W = V ⊕q = {Rm2n×q}n and

U = W ⊕ V ⊕2 ⊕ Rq containing cones {Rm2n×q
+ ⊕ 0⊕ 0}. Then (12) is of the form (ConicSeq) with

Anx = (0,−x, 0, 0), BnM = (M, Mλ, M1q, (m2n)−1M⊤
1m2n),

and un = (0, 0,−1m2n ,−
[
m1

m , . . . ,
mq

m

]⊤
). Since {An}, {A∗

n}, {Bn}, {B∗
n} are morphisms and un = un+1

under our embedding, Proposition 3.2(a) applies (note that the inner product here is nonstandard, so A∗
n ̸=

A⊤
n and similarly for Bn).
The insight behind this construction comes from the limiting perspective of Section 3.3. Note that

V∞ can be viewed as a space of piecewise-constant functions on [0, 1). Indeed, define intervals I
(n)
i =
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[(i− 1)/m2n, i/m2n) and associate to each v ∈ Vn the piecewise-constant function fv(x) =
∑m2n

i=1 vi1I
(n)
i

(x)

where 1S(x) = 1 if x ∈ S and 0 otherwise. Note that v ∈ Vn and v⊗ 12 ∈ Vn+1 define the same function in
this way, and that ⟨v, w⟩ = ⟨fv, fw⟩L2([0,1)). Also, we have for f ∈ V∞

(Pnf)(x) = m2n
∫
I
(n)
i

f if x ∈ I
(n)
i , (13)

hence Jensen’s inequality implies ∥Pnf∥Lp ≤ ∥f∥Lp for all p ∈ [1,∞]. Thus, we can identify V∞ with the
space of such step functions, which is contained in Lp([0, 1)) for all p ∈ [1,∞], and we can consider the
completion of V∞ with respect to any of the Lp norms. If p < ∞ we get V∞ = Lp([0, 1)) while if p = ∞
then V∞ is the space of functions continuous on [0, 1) \ {m/2n : m,n ∈ N} and having left and right limits
everywhere [69, §7.6]. Then Perm(λ)∞ is the closed convex hull of functions in V∞ that take values λi on
a subset of [0, 1] of measure mi/m. Furthermore, Theorem 3.6 applies to the description in (12) and yields
the following dense subset of Perm(λ)∞.

Proposition 4.1. Endowing V∞ with the Lp([0, 1)) norm as above for any p ∈ [1,∞], we obtain

Perm(λ)∞ = conv
{
f ∈ V∞ : f([0, 1)) = {λ1, . . . , λq}, |f−1(λi)| =

mi

m

}
=

{
q∑

i=1

λifi : fi ∈ V∞, fi ≥ 0 a.e. ,

q∑
i=1

fi = 1,

∫
[0,1)

fi =
mi

m

}
.

(14)

Proof. For the first equality, the inclusion ⊆ is clear. For the reverse inclusion, if f ∈ V∞ takes values λi
on sets Ωi = f−1(λi) of measure mi/m partitioning [0, 1), we can write f =

∑q
i=1 λi1Ωi

. Then Pnf =∑q
i=1 λi(Pn1Ωi

), and under the above identification of Rm2n with piecewise-constant functions, we can view

Pn1Ωi
∈ Rm2n

+ as nonnegative vectors. The matrix M = [Pn1Ω1
, . . . ,Pn1Ωq

] ∈ Rm2n×q
+ then satisfies the

conditions in (12), hence Pnf ∈ Perm(λ)n and f = limn Pnf ∈ Perm(λ)∞ by Lemma 2.22, giving the reverse
inclusion.

The second equality follows from Theorem 3.6. Indeed, endow W∞ = Vq
∞ with the norm ∥[f1, . . . , fq]∥ =

maxi ∥fi∥p and U∞ with the norm ([f1, . . . , fq], g1, g2, µ) = max{∥fi∥p, ∥gj∥p, ∥µ∥∞}. Then W∞ = V∞
q
and

U∞ = W∞ ⊕ V∞
2 ⊕ Rq, and we have ∥An∥op = 1, ∥Bn∥op ≤ max{

∑
i |λi|, q}, and un = un+1 for all n.

Schur-Horn orbitopes: We consider the matrix analogs of the above permutahedra, which are convex
hulls of all matrices with a given spectrum. Let Gn = Om2n embed in Gn+1 by sending a m2n × m2n

matrix g to g ⊗ I2, let Vn = Sm2n embed in Vn+1 by X 7→ X ⊗ I2 with normalized inner product
⟨X,Y ⟩ = (m2n)−1Tr(XY ), and finally let Gn act by conjugation on Vn. Consider the sequence of Schur-Horn
orbitopes [70, Eq. (19)]

SH(λ)n = conv{g · diag(λ⊗ 12n)}g∈Om2n

=

{
q∑

i=1

λiYi : Y1, . . . , Yq ∈ Vn s.t.

q∑
i=1

Yi = I, Yi ⪰ 0, Tr(Yi) = mi2
n for i = 1, . . . , q

}
,

(15)

which is the matrix analog of (12). This is again a free description certifying both intersection- and projection-
compatibility. Indeed, let W = V ⊕q and U = W ⊕V ⊕2⊕Rq containing the cones {Kn = (Sm2n

+ )⊕q⊕0⊕0}.
Then (15) is of the form (ConicSeq) with

AnX = (0,−X, 0, 0), Bn[Yi]
q
i=1 =

(
[Yi]

q
i=1,

∑
i
λiYi,

∑
i
Yi, (m2n)−1[Tr(Y1), . . . ,Tr(Yq)]

)
,

and un = (0, 0,−Im2n ,−[m1

m , . . . ,
mq

m ]⊤). Here {An}, {A∗
n}, {Bn}, {B∗

n} are all morphisms and un = un+1

under the above embedding, hence Proposition 3.2(a) applies.
Again, we can use Theorem 3.6 to describe an infinite-dimensional limit SH(λ)∞ of these Schur-Horn

orbitopes. We would like to interpret the elements of SH(λ)∞ as operators with spectral measure
∑q

i=1
mi

m δλi ,

then describe the convex hull of all such operators in V∞. To that end, we complete V∞ with respect to
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the operator norm and consider spectral measures with respect to the normalized trace τ on V∞, which also
extends to the limit. Such spectral measures and associated orbitopes exist in more general algebras. In
fact, our framework yields descriptions for Schur-Horn orbitopes, as well as a generalization of the Schur-
Horn theorem, to self-adjoint elements in so-called approximately finite-dimensional (AF) algebras. These
orbitopes generalize both the permutahedra and Schur-Horn orbitopes in this section. We construct these
algebras and apply our framework to the resulting orbitopes in Appendix C. In particular, we obtain the
following description for the limit in our present setting, proved in Proposition C.2 of that appendix.

Proposition 4.2. Endow V∞ with the operator norm and let τ : V∞ → R be the normalized trace given by
τ(X) = (m2n)−1Tr(X) for X ∈ Vn. Then τ extends to V∞, and each X ∈ V∞ has a spectral measure µτ

X

with respect to τ . Furthermore,

SH(λ)∞ = conv
{
X ∈ V∞ : µτ

X =
∑q

i=1

mi

m
δλi

}
=
{∑q

i=1
λYi : Yi ⪰ 0,

∑
i
Yi = I, τ(Yi) =

mi

m

}
.

Furthermore, the diagonal map diagn : Sm2n → Rm2n satisfies diagn(SH(λ)n) = Perm(λ)n by the Schur-
Horn theorem. Our limiting descriptions yield the following limiting version of this theorem, proved in
greater generality in Proposition C.3 of the above appendix.

Proposition 4.3. In the setting of Proposition 4.2, we have diag(SH(λ)∞) = Perm(λ)∞ where we complete
the permutahedra as in Proposition 4.1 with respect to the L∞ norm.

Schur-Horn orbitopes are special cases of so-called spectral polyhedra studied in [71]. It would be inter-
esting to identify further examples of freely-described sequences of spectral polyhedra arising in applications
and to consider their limits.

Remark 4.4. We remark that the above constructions can be extended to handle vectors and matrices of all
sizes, not just of sizes (m2n)n∈N. This can be done by indexing our consistent sequences by posets. In partic-
ular, our results generalize to the following, more complicated, sequences of group representations. If N is a
strict poset, an N -indexed consistent sequence of {Gn}n∈N -representations is a sequence {(Vn, φN,n)}n<N∈N
of Gn-representations and embeddings φN,n : Vn ↪→ VN for each n < N such that φN,n is Gn-equivariant,
and φM,N ◦ φN,n = φM,n whenever n < N < M . All our results apply in this setting after replacing all
occurrences of n + 1 by N > n. To handle permutahedra and Schur-Horn orbitopes of any sizes we let
N = N with the divisibility partial order, whereby n ≤ m iff m = nk for some k ∈ N, with embeddings
φkn,n : Rn ↪→ Rnk sending x 7→ x⊗ 1k or φkn,n : Sn ↪→ Snk sending X 7→ X ⊗ Ik.

4.4 Free Spectrahedra

The family of free spectrahedra in Example 1.2(b) may be obtained as a special case of our framework with
appropriate selection of description spaces and by imposing compatibility.

Let V0 = {Sn} with embeddings by zero-padding and the action of Gn = On by conjugation. Fix d, k ∈ N,
and let V = V ⊕d

0 , U = Sk ⊗ V0, and W = {Wn = 0}.
As the only morphisms V0 → V0 are multiples of the identity, and elements of Sk ⊗ Sn can be viewed as

k× k symmetric block matrices with symmetric n×n blocks of n×n symmetric matrices, we conclude that
the morphisms V → U are precisely maps of the form (X1, . . . , Xd) 7→

∑
i Li⊗Xi for some L1, . . . , Ld ∈ Sk.

Note that sequences of adjoints of such maps are also morphisms in this case. As the only Gn-invariants in
Sn are multiples of In, the space of freely-described elements in U is {{L0 ⊗ In}n : L0 ∈ Sk}, which satisfy
the condition L0 ⊗ (In+1 − In) ⪰ 0 from Proposition 3.2(a) if and only if L0 ⪰ 0. Thus, the parametric
family of free descriptions certifying compatibility as in Proposition 3.2(a) is

(DL)n =

{
(X1, . . . , Xd) ∈ (Sn)d : L0 ⊗ In +

d∑
i=1

Li ⊗Xi ⪰ 0

}
, L0 ⪰ 0.

which are free spectrahedra parametrized by L = (L0, . . . , Ld). It is common to take either L0 = Ik (the
monic case) or L0 = 0 (the homogeneous case) [14]. As discussed in Section 1.2, free spectrahedra are
fundamental objects in noncommutative free convex and algebraic geometry, see [13, 14] for an introduction.
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In particular, they satisfy both intersection and projection compatibility, and more generally closure under
so-called matrix-convex combinations.

We remark that orthogonal invariance and compatibility alone do not yield closure under matrix-convex
combinations. For example, the nuclear norm balls {X ∈ Sn : ∥X∥∗ ≤ 1} are On-invariant and form a
compatible sequence which is not matrix-convex. However, a compatible sequence of orthogonally-invariant
convex cones is indeed matrix convex, as the following result shows.

Proposition 4.5. Let {Vn = (Sn)d} be the consistent sequence of {On}-representations above, and suppose
{Cn ⊆ Vn} is an intersection- and projection-compatible sequence of convex cones such that Cn is On-invariant
for all n. Then {Cn} is matrix-convex.

Proof. By [72, §2.3], it suffices to show that if (X1, . . . , Xd) ∈ Cn and (Y1, . . . , Yd) ∈ Cm then (X1 ⊕
Y1, . . . , Xd ⊕ Yd) ∈ Cn+m, and that (V ⊤X1V, . . . , V

⊤XdV ) ∈ Ck for any isometry V ∈ Rn×k. For the first,
intersection compatibility shows that (X1⊕0m, . . . , Xd⊕0m) ∈ Cn+m and (Y1⊕0n, . . . , Yd⊕0n) ∈ Cn+m. Con-
jugating the latter tuple by appropriate permutation matrices, we conclude that (0n⊕Y1, . . . , 0n⊕Yd) ∈ Cn+m.
Finally, since Cn+m is a convex cone we get (X1 ⊕ Y1, . . . , Xd ⊕ Yd) ∈ Cn+m, so {Cn} is closed under di-
rect sums. For the second, any isometry V ∈ Rn×k can be written as V = Uιn,k where U ∈ On and
ιn,k : Rk → Rn is the zero-padding embedding. Observe that (ι⊤n,kX1ιn,k, . . . , ι

⊤
n,kXdιn,k) = Pk(X1, . . . , Xd)

is the orthogonal projection of (X1, . . . , Xd) onto Vk when embedded in Vn. Thus, (V
⊤X1V, . . . , V

⊤XdV ) =
Pk(U

⊤X1U, . . . , U
⊤XdU) ∈ Ck since Cn is On-invariant and since {Cn} is projection-compatible.

To recap, orthogonal invariance and compatibility of a sequence of convex sets do not yield matrix
convexity in general, but they do so for convex cones. With additional choices of description spaces, our
framework yields a particular parametric family of matrix-convex sets, namely free spectrahedra.

4.5 Spectral Functions, (Quantum) Entropy, and Variants

Let V = {Sn} with embeddings by zero-padding and with the action of On by conjugation, and let V ′ =
{Rn} with embeddings by zero-padding and the standard action of Sn. Recall (e.g., [73]) that a convex
function Fn : Sn → R is On-invariant if and only if there exists an Sn-invariant convex function fn : Rn → R
satisfying Fn(X) = fn(λ(X)) where λ(X) ∈ Rn is the vector of eigenvalues of X ∈ Sn. Also, the sequence
{Fn : Sn → R} is intersection-compatible if and only if the sequence {fn : Rn → R} is.

Examples of such sequences of functions F = {Fn} and f = {fn} arise in (quantum) information theory,
where F is the quantum analog of classical information-theoretic parameters f. These are often intersection-
compatible as distributions on n states can be viewed as distributions on n+ 1 states with zero probability
on the last state. For example, the negative entropy and relative entropy and their quantum variants are
given by

hn(x) =
∑
i

xi log xi, Hn(X) = hn(λ(X)) = Tr(X logX),

Dn(x, y) =
∑
i

xi log
xi
yi
, Sn(X,Y ) = Dn(λ(X), λ(Y )) = Tr(X(logX − log Y )).

(16)

Here dom(hn) = ∆n−1 and dom(Dn) = (Rn
+)

2, while dom(Hn) = Dn−1 is the spectraplex from Exam-
ple 1.1(b) and dom(Sn) = (Sn+)2. We use the standard convention that 0 log 0

y = 0 even if y = 0, and

x log x
0 = ∞ when x ̸= 0 [74, §2.3]. These sequences of functions are intersection-compatible but not

projection-compatible (e.g., their domains are not projection-compatible).

Semidefinite approximations: The functions (16) are not semidefinite-representable (i.e., cannot be
evaluated using semidefinite programming), though semidefinite approximations of them have been proposed
in the literature [36]. We show that these approximations are freely-described, but that these descriptions do
not certify intersection compatibility. The family of approximations of [36] to the negative quantum entropy
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is parametrized by m, k ∈ N via their epigraphs

E(m,k)
n =

{
(X, t) ∈ Sn ⊕ R

∣∣∣∣∣∃T0, . . . , Tm, Z0, . . . , Zk ∈ Sn s.t. Z0 = In,

m∑
j=1

wjTj = −2−kT0,[
Zi Zi+1

Zi+1 X

]
⪰ 0, for i = 0, . . . , k − 1,

[
Zk −X − Tj −√

sjTj
−√

sjTj X − sjTj

]
⪰ 0,

for j = 1, . . . ,m, Tr(T0) ≤ t

}
,

where s, w ∈ Rm are the nodes and weights for Gauss-Legendre quadrature.
This is a free description of the form (ConicSeq) which almost, but not quite, satisfies the conditions

of Proposition 3.2. Indeed, let W = V ⊕(m+k+1) and U = V ⊕ (S2 ⊗ V )⊕(m+k) ⊕ R containing the cones

{Kn = {0} ⊕ (S2 ⊗ Sn)⊕(m+k)
+ ⊕ R+}. Define

An(X, t) =

(
0,

([
0 0
0 1

]
⊗X

)⊕k

,

([
−1 0
0 1

]
⊗X

)⊕m

, t

)
,

Bn(T0, . . . , Tm, Z1, . . . , Zk) =

(
2−kT0 +

m∑
j=1

wjTj ,

[
0 1
1 0

]
⊗ Z1,

k−1⊕
i=1

([
1 0
0 0

]
⊗ Zi +

[
0 1
1 0

]
⊗ Zi+1

)
,

m⊕
j=1

([
1 0
0 0

]
⊗ Zk −

[
1

√
sj√

sj sj

]
⊗ Tj

)
,−Tr(T0)

)
,

un =

(
0,

[
1 0
0 0

]
⊗ In, 0, . . . , 0

)
.

Note that {An} and {Bn} are morphisms, that {un} is a freely-described element of U satisfying un+1−un ∈
Kn+1, but that {B∗

n} is not a morphism because of the Tr(T0) term in Bn. By the proof of Proposition 3.2,

this description certifies that E
(m,k)
n ⊆ E

(m,k)
n+1 but not E

(m,k)
n+1 ∩ (Sn ⊕ R) ⊆ E

(m,k)
n . Analogously to the

näıve description of the solid simplex in Section 4.1, this free description does not make the intersection

compatibility of {E(m,k)
n } obvious.

Parametric families: We can use the description spaces of [36] above to derive parametric families of
freely-described sets. When compatibility is not required, the resulting family includes the approximation

{E(m,k)
n }n of [36]; when compatibility is imposed, we obtain a smaller family excluding {E(m,k)

n }n.
Note that S2 ⊗ Sn ∼= (Sn)3 as On-representations, and these isomorphisms commute with zero-padding,

so that U ∼= V 1+3(m+k)⊕R as consistent sequences. As dim(Sn)On = 1 and dimL(Sn)On = 2, the dimension
of invariants parametrizing free descriptions are

dimL(Vn,Un)
On = 3[2(m+ k) + 1], dimL(Wn,Un)

On = 3(m+ k + 1)[2(m+ k) + 1],

dimUOn
n = 2 + 3(m+ k).

When m = k = 3 (the default values in the implementation of [36]), we get

dimL(Vn,Un)
On = 39, dimL(Wn,Un)

On = 273, dimUOn
n = 20.

As the only morphisms of sequences V → V are multiples of the identity, and the only morphisms V → R
are multiples of the trace, the dimensions of {An}, {Bn} satisfying the conditions of Proposition 3.2(a) are

dim
{
{An : Vn → Un} morphism

}
= 3(m+ k) + 2 = 20,

dim
{
{Bn : Wn → Un} : both {Bn} and {B∗

n} morphisms
}
= (m+ k + 1)[3(m+ k) + 1] = 133.
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4.6 Graph Parameters

Let V = {Sn} with embeddings by zero-padding and the action of Gn = Sn by conjugation. As discussed
in Section 1.1.2 and Example 1.7, graph parameters are sequences {fn : Sn → R} of Gn-invariant functions,
and many standard graph parameters are convex (or concave) and satisfy either intersection or projection
compatibility. Furthermore, it is desirable to find relaxations for standard graph parameters satisfying the
same compatibility conditions. We consider here the examples of max-cut and inverse stability number,
and we show that their usual relaxations are freely-described with descriptions certifying their compatibility.
We then derive parametric families of free descriptions from our framework that may be used to fit graph
parameters to data.

Max-cut: Computing the max-cut value of a weighted undirected graph amounts to evaluating the support
function of the cut polytope CUTn = conv{xx⊤ : x ∈ {±1}n}. The sequence of cut polytopes {CUTn} viewed
as subsets of V is projection-compatible and compact, hence the sequence of their support functions and
the max-cut value itself are intersection-compatible (see Section 1.3). Approximation of the max-cut value
reduces to approximation of the cut polytopes. A standard outer approximation of the sequence of cut
polytopes is the sequence of elliptopes

En = {X ∈ Sn : X ⪰ 0,diag(X) = 1n}. (17)

The sequence {En} also satisfies projection compatibility, and the above is a free description certifying this
compatibility. Indeed, let W = {0} and U = V ⊕ {Rn} where the latter sequence is the usual one from
Example 1.5, with cones K = {Sn+ ⊕ {0}}. Then (17) is of the form (ConicSeq) with AnX = (X,diag(X)),
Bn = 0, and un = (0,−1n). Note that {An}, {A∗

n} are morphisms and un+1 − un = (0,−en+1) =
(en+1e

⊤
n+1, 0)−An+1en+1e

⊤
n+1, hence Proposition 3.2(b) applies. Neither the cut polytopes nor the elliptopes

is intersection-compatible, as zero-padding a matrix with all-1’s diagonal does not yield such a matrix. The
sequences {CUTn − In} and {En − In} are, however, both intersection- and projection-compatible, and the
shifted elliptopes admit free descriptions certifying their compatibility.

Inverse stability number: Computing the inverse stability number reduces to evaluating the support
functions of Dn = conv{xx⊤ : x ∈ ∆n−1}, see [75]. A natural SDP relaxation for this problem is evaluating
the support function of

D̃n = {X ∈ Sn : X ⪰ 0, X ≥ 0,1⊤
nX1n = 1},

where X ≥ 0 denotes an entrywise nonnegative matrix. Both {Dn} and {D̃n} are intersection-compatible.

Moreover, the above description of {D̃n} is free and certifies this compatibility as in Proposition 3.2(b).

Indeed, let W = {0} and U = V ⊕R with cones Kn = (Sn+∩Rn×n
+ )⊕0. Then the above description of D̃n is

of the form (ConicSeq) with AnX = (X,1⊤
nX1n), Bn = 0, and un = (0,−1). Note that {An} is a morphism

and un = un+1, hence Proposition 3.2(a) applies. Neither Dn nor D̃n is projection-compatible since their
support functions, which are the inverse stability number and its semidefinite approximation above, are
not intersection compatible (see Section 1.3). Indeed, appending isolated vertices to a graph increases its
stability number.

Parametric families: Beyond the two particular preceding examples, we derive here an expressive para-
metric family of convex graph parameters; in addition to above examples, our family also includes several

other examples from [76]. To that end, let W = U = Sym2(Sym≤2{Rn}) = {S(
n+2
2 )}. The dimensions

of invariants parametrizing free descriptions in this case is too large for us to write explicit bases for them
as functions of n. Instead, we compute these dimensions using the algorithm in Section 6.1 below, see
Example 6.2(b):

dimL(Vn,Un)
Gn = 93, dimL(Wn,Un)

Gn = 1068, dimWGn
n = 17, for all n ≥ 8.

Using the same algorithm, the dimensions of sequences {An}, {Bn} certifying intersection compatibility as
in Proposition 3.2(a) are

dim
{
{An : Vn → Un} morphism

}
= 19,

dim
{
{Bn : Wn → Un} : both {Bn} and {B∗

n} morphisms
}
= 104.

(18)
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Figure 2: Weighted undirected graph represented as a graph, an adjacency matrix X, and a sym-
metric function (graphon) WX on [0, 1]2.

The algorithm we present in Section 6 further allows us to compute bases for these invariants in a fixed
dimension and extend them to any other; in turn, these are useful for fitting graph parameters defined for
graphs of all sizes given data.

4.7 Graphon Parameters

A different embedding between graphs arises in the theory of graphons [15], where a weighted graph X ∈ S2n

is viewed as a step function WX : [0, 1]2 → R defined by WX(x, y) = Xi,j if (x, y) ∈ [(i− 1)/2n, i/2n)× [(j −
1)/2n, j/2n); see Figure 2. Note thatX andX⊗121

⊤
2 ∈ S2n+1

correspond to the same step function, and that
the inner product of two such step functions WX ,WY in L2([0, 1]2) equals the normalized Frobenius inner
product ⟨X,Y ⟩ = 2−2nTr(X⊤Y ). We therefore define the graphon consistent sequence V = {Vn = S2n}
with embeddings φn(X) = X ⊗ 12×2, the above normalized inner products, and the action of Gn = S2n
by conjugation. Here Gn is embedded into Gn+1 by sending a permutation matrix g to g ⊗ I2. We can
extend our consistent sequence to include symmetric matrices of any size by having our consistent sequence
be indexed by the poset N with the divisibility partial order, see Remark 4.4. The graphon sequence is
finitely-generated, as the following computer-assisted proof shows.

Proposition 4.6. The graphon sequence {Vn = S2n} is generated in degree 2.

Proof. Define E
(n)
1 = e

(2n)
1 (e

(2n)
1 )⊤ and E

(n)
2 = e

(2n)
1 (e

(2n)
2 )⊤ + e

(2n)
2 (e

(2n)
1 )⊤, whose Gn-orbits span Vn. We

verify computationally that dim
∑2

i=1 R[S23 ]φ2(E
(2)
i ) = dimV3, see the GitHub repository. Therefore,

E
(3)
i =

∑2

j=1
ri,jφ2(E

(2)
j ), for i ∈ [2], ri,j ∈ R[S23 ]. (19)

Let ψn(X) = X ⊕ 0 be an embedding of Vn into Vn+1 by zero-padding, and note that E
(n+1)
i = ψn(E

(n)
i )

and that ψn commutes with a different embedding of S2n into S2n+1 , namely, one that sends g 7→ g ⊕ I2n .

Applying ψn to (19), we conclude that E
(n+1)
i can be written as R[S2n+1 ]-linear combinations of φn(E

(n)
j )

for all n ≥ 2, hence that R[S2n+1 ]φn(Vn) = Vn+1 for all n ≥ 2.

Graphon parameters: A permutation-invariant and intersection-compatible sequence of functions f =
{fn : Vn → R} is called a graphon parameter, since these are precisely the functions of graphs that do
not depend on their inputs’ vertex labels, and that only depend on their input graphs via their associated
graphons. A family of graphon parameters that plays a central role in the theory of graphons and in extremal
combinatorics are graph homomorphism densities [15]. Their convexity is related to weakly-norming graphs
and Sidorenko’s conjecture, a major open problem in extremal combinatorics [77, 78].

We can obtain parametric families of graphon parameters by taking the gauge functions of parametric
families of intersection-compatible and freely-described convex sets. For example, let U = Sk⊗V with cones
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K = {Kn = (Sk ⊗ S2n)+} and W = {Wn = 0}. Using Proposition 3.2(a), we get the following parametric
family of freely-described and intersection-compatible sets, parametrized by L1, . . . , L7 ∈ Sk:

Cn =

{
X ∈ S2

n

:
1
⊤X1

22n
L1 ⊗ 11

⊤ +
Tr(X)

2n
L2 ⊗ 11

⊤ + L3 ⊗
1

2n
(
X11⊤ + 11

⊤X
)

+ L4 ⊗
(
diag(X)1⊤ + 1diag(X)⊤

)
+ L5 ⊗X + L6 ⊗ 11

⊤ + L7 ⊗ (2nI2n) ⪰ 0

}
, L7 ⪰ 0.

(20)

Note that all the functions of X appearing in the above description only depend on the associated step

graphon WX . For example, 1
⊤X1

22n =
∫
[0,1]2

WX(t, s) dtds and Tr(X)
2n =

∫ 1

0
WX(t, t) dt.

Expressing the above free description in terms of graphons yields a description of a limiting convex
set by Theorem 3.6. Its gauge function is, in turn, a convex graphon parameter extending continuously
to the corresponding limit. Endow V∞ with the L∞([0, 1]2)-norm, noting that ∥PnW∥∞ ≤ ∥W∥∞ for all
W ∈ L∞([0, 1]2) by Jensen’s inequality. We view elements [Wi,j(x, y)]

k
i,j=1 ∈ Sk ⊗ L∞([0, 1]2) as symmetric

matrices with entries in L∞([0, 1]2) (so Wj,i =Wi,j), and denote

[Wi,j(x, y)]
k
i,j=1 ⪰ 0 if

∫
[0,1]2

k∑
i,j=1

Wi,j(x, y)fi(x)fj(y) dx dy ≥ 0 for all f1, . . . , fk ∈ L2([0, 1]).

(21)
Remarkably, convex graphon parameters that extend continuously to this limit are also projection-compatible
by [79, Thm. 3.17].

Proposition 4.7. If L7 = 0 in (20) then

C∞ =

{
W ∈ V∞ : A∞(W ) + u∞ :=

[
(L1)i,j

∫
[0,1]2

W (s, t) ds dt+ (L2)i,j

∫
[0,1]

W (t, t) dt

+ (L3)i,j

∫
[0,1]

[W (x, t) +W (t, y)] dt+ (L4)i,j [W (x, x) +W (y, y)] + (L5)i,jW (x, y)
]k
i,j=1

+ L6 ⪰ 0

}
,

where V∞ ⊆ L∞([0, 1]2) is a subspace of symmetric bounded measurable functions on [0, 1]2.

Proof. Endow U∞ = Sk ⊗V∞ with the norm ∥[Wi,j ]
k
i,j=1∥ = maxi,j ∥Wi,j∥∞, so U∞ = Sk ⊗V∞. Then K∞

is the cone of PSD matrices [Wi,j(x, y)]
k
i,j=1 ⪰ 0 in U∞. Furthermore, for any W ∈ V∞ we have

∥A∞∥ ≤ max
i,j

(
|(L1)i,j |+ |(L2)i,j |+ 2|(L3)i,j |+ 2|(L4)i,j |+ |(L5)i,j |

)
∥W∥∞,

so A∞ extends continuously to the limit, and u∞ = L6 ∈ U1 ⊆ U∞ satisfies Pnu∞ = L6 for all n. Thus,
Theorem 3.6 yields the claim.

We require L7 = 0 since there is no u∞ ∈ V∞ satisfying Pnu∞ = 2nI2n for all n.

4.8 Compatibility in Inverse Problems

Our compatibility conditions naturally arise in the context of inverse problems, where we demonstrate that
it is desirable to use regularizers which are both intersection- and projection-compatible.

Consider a consistent sequence V = {Vn} of {Gn}-representations. A popular approach to recover
x ∈ Vn from m ∈ N linear observations takes as input a forward map A : Vn → Rm and data y ∈ Rm and
outputs

Fm,n(A, y) = argmin
x∈Vn

fn(x) + λ∥Ax− y∥22, (22)

where fn : Vn → R is a convex regularizer promoting desired structure in the solution. It is desirable for
the maps Fm,n defined in (22)—which can be instantiated for any (A, y) ∈ L(Vn,Rm) ⊕ Rm and for any
n,m ∈ N—to satisfy

Fm,n+1(APn, y) = Fm,n(A, y), (23)
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whenever the corresponding minimizers are unique. Indeed, condition (23) requires the recovered solution
to lie in Vn if the data only depends on the component of x ∈ Vn+1 in Vn, as this property avoids overfit-
ting. Condition (23) holds when the sequence of regularizers is both intersection and projection-compatible.
Indeed, if the sequence of regularizers f = {fn} is projection-compatible, then

min
x̃∈Vn+1

fn+1(x̃) + λ∥APnx̃− b∥22 = min
x∈Vn

min
x̃∈Vn+1

Pnx̃=x

fn+1(x̃) + λ∥Ax− y∥22 = min
x∈Vn

fn(x) + λ∥Ax− y∥22

Moreover, if x∗ = Fm,n(A, y) minimizes fn(x) + λ∥Ax− y∥22 and f is intersection-compatible, then fn(x∗) +
λ∥Ax∗ − y∥22 = fn+1(x∗) + λ∥APnx∗ − y∥22 and hence x∗ = Fm,n+1(APn, y), showing (23).

5 Constant-Sized Invariant Conic Programs

In the previous sections, we studied freely-described sequences of convex sets {Cn} contained in a consistent
sequence V . These convex sets are group-invariant whenever the cones Kn in their descriptions (ConicSeq)
are group-invariant, which is the case for all the standard sequences of cones we consider. In this section,
we further consider optimizing sequences of invariant linear functionals over such sequences of sets. Each
program in the sequence can be simplified by restricting its domain to invariant vectors [24, §3]. As we have
seen in Proposition 2.3, when V is finitely-generated the dimensions of its spaces of invariants stabilize, so
the size of the variables in such programs stabilizes as well. However, the size of the constraints may not
stabilize, because the invariant sections of the cones {KGn

n } may grow in complexity. For example, if Kn is
the cone of n-variate degree k polynomials that are nonnegative over all of Rn and Gn = Sn, the best-known
description of KGn

n has complexity which is a (nonconstant) polynomial in n [80, 81, 82]. We therefore seek
conditions for the existence of constant-sized descriptions for {KGn

n }, and bounds on the value of n after
which the size stabilizes in the sense of Definition 1.10. Constant-sized descriptions for symmetric PSD
and relative entropy cones have been obtained on a case-by-case basis in the literature [25, 3, 26, 27]. In
this section, we explain how these results can be generalized and derived systematically from an interplay
between representation stability and the structure of the cones in question.

5.1 The PSD Cone and Variants

We begin by giving constant-sized descriptions for certain sequences of PSD cones. We do so by deriving
constant-sized bases for spaces of invariants in terms of which membership in the cones is simply expressed.
The following is a precise statement of Theorem 1.11 stated informally in Section 1.

Theorem 5.1. Let V0 = {Rn} with Gn = Bn,Dn, or Sn as in Example 1.5, and let V = {Vn} be a V0-
module generated in degree d and presented in degree k. Then the cones {Sym2

+(Vn)
Gn} admit constant-sized

descriptions for n ≥ k + d.

Proof. By Theorem 2.16, there exists a finite set Λ satisfying

Vn =
⊕
λ∈Λ

Wmλ

λ[n]︸ ︷︷ ︸
=:Vλ[n]

where Wλ[n] is a Gn-irreducible and Vλ[n] is the corresponding isotypic component. Invariant elements of

Un = Sym2(Vn) are equivariant and self-adjoint endomorphisms of Vn. If X ∈ UGn
n is such an endomorphism

and λ ̸= µ ∈ Λ index distinct irreducibles, then PVµ[n]
X|Vλ[n]

= 0 by Schur’s Lemma [62, §1.2]. Because
the irreducibles of Gn = Bn,Dn, and Sn are of real type [83] (meaning they remain irreducible when com-
plexified), Schur’s Lemma also implies that PWλ[n]

X|Wλ[n]
is a multiple of the identity for each λ ∈ Λ, hence

PVλ[n]
X|Vλ[n]

= Xλ ⊗ IdimWλ[n]
for some Xλ ∈ Smλ . We conclude that there exists an orthogonal matrix Qn

depending on the irreducible decomposition of Vn satisfying

UGn
n =

{
Qn

⊕
λ∈Λ

(Xλ ⊗ IdimWλ[n]
)Q∗

n : Xλ ∈ Smλ

}
, (24)
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hence

Sym2
+(Vn)

Gn =
{
X ∈ UGn

n : X ⪰ 0
}
=

{
Qn

⊕
λ∈Λn

(Xλ ⊗ IdimWλ
)Q∗

n : Xλ ∈ Smλ
+

}
. (25)

Thus, we obtain constant-sized descriptions by defining U =
⊕

λ∈Λ Smλ and Tn : U → UGn
n sending (Xλ)λ∈Λ

to Qn

⊕
λ∈Λ(Xλ ⊗ IdimWλ

)Q∗
n, which maps K =

⊕
λ∈Λ Smλ

+ onto Sym2
+(Vn)

Gn .

We now instantiate V to obtain more concrete corollaries.

Corollary 5.2. If Gn = Sn,Dn or Bn acts on Rn as in Example 1.5, then the cones Sym2
+(Sym

≤dRn)Gn ∼=(
S(

n+k
k )

+

)Gn

admit constant-sized descriptions by (25) for n ≥ 2d if Gn = Sn,Bn and n ≥ 2d+1 if Gn = Dn.

Proof. The sequence V = Sym≤dV0 is generated in degree d and presented in degree d if Gn = Sn,Bn or in
degree d+ 1 if Gn = Dn, by Theorem 2.11 and Example 2.8.

To obtain constant-sized descriptions for cones of invariant sums-of-squares, we consider equivariant
images of the PSD cones above.

Proposition 5.3. Let U = {Un} and W = {Wn} be sequences of {Gn}-representations (not necessarily
consistent). Let {Kn ⊆ Un} be a sequence of convex cones such that Kn is Gn-invariant for each n. If
{KGn

n } admits constant-sized descriptions for n ≥ t, then so does {πn(Kn ∩ Ln)
Gn ⊆ Wn} for any sequence

{πn ∈ L(Un,Wn)
Gn} and any sequence of Gn-invariant subspaces Ln ⊆ Un.

Proof. Suppose KGn
n = Tn(K ∩ L′

n) for n ≥ t where Tn : U → UGn
n and L′

n ⊆ U are subspaces as in
Definition 1.10. Because πn is Gn-equivariant,

πn(Kn ∩ Ln)
Gn = πn(KGn

n ∩ LGn
n ) = (πn ◦ Tn)(K ∩ L′

n ∩ T−1
n (LGn

n )).

Noting that L′
n ∩ T−1

n (LGn
n ) is a subspace of U, we get the desired constant-sized descriptions.

We now prove Theorem 1.12 giving constant-sized descriptions for invariant sums-of-squares.

Proof (Theorem 1.12). If v(x) is the vector whose coordinates are all the monomials in the
(
n
k

)
variables

xi1,...,ik of degree at most d, then [64, Thm. 3.39] yields

SOSUn = πn

(
Sym2

+

(
Sym≤d

(∧k
Rn

)))
, πn(M) = v(x)⊤Mv(x) + In.

The map πn : Sym
2
(
Sym≤d

(∧k Rn
))

→ Un is equivariant by definition of the action of Gn and the invari-

ance of In. If V0 = {Rn} as in Example 1.5, then V = Sym≤d
(∧k V0

)
is a V0-module generated in degree

kd, and presented in degree kd if Gn = Sn,Bn and in degree kd+ 1 if Gn = Dn by Theorem 2.11. Thus, the
result follows from Theorem 5.1 and Proposition 5.3.

Note that Theorem 1.12 applies to any sequence of invariant ideals, not necessarily related to each other
across dimensions, so that {Un} in this result is not necessarily a consistent sequence. Nevertheless, it is a
sequence of equivariant images of a consistent sequence, a fact crucial to the proof.

5.2 The Relative Entropy Cone and Variants

For a finite set A, define the associated relative entropy cone

REA = {(ν, c, t) ∈ RA ⊕ RA ⊕ R : ν, c ≥ 0, D(ν, c) ≤ t}, (26)

where D(ν, c) =
∑

α∈A να log
(

να

cα

)
is the relative entropy.
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Proposition 5.4. Let V0 be a consistent sequence of {Gn} representations and V = {RAn} be a permutation
V0-module for finite An satisfying An ⊆ An+1 (Definition 2.14). If dimVGn

n is constant for all n ≥ d, then
the invariant section {REGn

An
} of the cones (26) admit constant-sized descriptions for n ≥ d.

Proof. Let k = dim(RAd)Gd and fix n ≥ d. Let {αj}j∈[k] ⊆ An be a set of Gn-orbit representatives, and

let 1j,n =
∑

g∈Gn/StabGn (αj)
egαj

for each j ∈ [k], so that {1j,n}j∈[k] is a basis for (RAn)Gn ∼= Rk. Let

U = V ⊕2 ⊕ R = {Un}, which contains the relevant relative entropy cones {REAn
}. Then a basis for UGn

n

consists of {(1j,n, 0, 0), (0,1j,n, 0)}j∈[k] ∪ {(0, 0, 1)}.
If (ν, c, t) ∈ UGn

n for n ≥ d is expanded as ν =
∑k

j=1 ν̂j1j,n and similarly for c, then

REGn

An
=

(ν, c, t) ∈ UGn
n : ν̂, ĉ ≥ 0,

k∑
j=1

|Gn/StabGn
(αj)|ν̂j log

(
ν̂j
ĉj

)
≤ t

 .

Let U = RL ⊕ RL ⊕ R, define

K =

(ν̂, ĉ, t) ∈ RL ⊕ RL ⊕ R : ν̂, ĉ ≥ 0,

k∑
j=1

ν̂j log

(
ν̂j
ĉj

)
≤ t

 ,

and define Tn : U → UGn
n sending (ej , 0, 0) 7→ |Gn/StabGn

(αj)|−1(1j,n, 0, 0), sending (0, ej , 0) 7→
|Gn/StabGn(αj)|−1(0,1j,n, 0), and sending (0, 0, 1) 7→ (0, 0, 1). Then REGn

An
= Tn(K) for all n ≥ d, giv-

ing the desired constant-sized descriptions.

Now suppose W = {RBn} is another permutation V0-module. Let Ũ = W ⊗ U = {Ũn = L(RBn ,Un)}
and consider the cones of maps

REMAn,Bn
=
{
M ∈ Ũn :M(RBn

+ ) ⊆ REAn

}
=
{
M ∈ Ũn :Meβ ∈ REAn

for all β ∈ Bn

}
. (27)

We obtain constant-sized descriptions for these cones for a specific V0.

Proposition 5.5. Suppose V0 = {Rn} with Gn = Bn,Dn, or Sn as in Example 1.5 and that {RAn}, {RBn}
are permutation V0-modules generated in degrees dV , dW , respectively. Then the sequence of cones {REMGn

An,Bn
}

in (27) admits constant-sized descriptions for n ≥ dV +dW if Gn = Sn,Bn and n ≥ dV +dW +1 if Gn = Dn.

Proof. Set d0 = 0 if Gn = Sn,Bn and d0 = 1 if Gn = Dn. Let B̂ ⊆ BdW
be a set of minimal-degree

GdW+d0
-orbit representatives in BdW+d0

, which are also orbit representatives for Bn for all n ≥ dW + d0 by

Proposition 2.15(c). Any M ∈ Ũn

Gn

= L(RBn ,Un)
Gn for n ≥ dW + d0 is fully determined by the images

Meβ ∈ UStabGn (β)
n of the basis elements eβ for β ∈ B̂ and conversely, for any collection

{
uβ ∈ UStabGn (β)

n

}
β∈B̂

there is a unique M ∈ Ũn

Gn

satisfying Meβ = uβ . Moreover, M ∈ K̃n if and only if Meβ ∈ KStabGn (β)
n for all

β ∈ B̂. Thus, we have

Ũn

Gn

=
⊕
β∈B̂

UStabGn (β)
n ⊇

⊕
β∈B̂

RE
StabGn (β)
An

= REMGn

An,Bn
.

Applying Corollary 2.19 to the free module with which {RAn} agrees for n ≥ dV +d0 by Proposition 2.15(c),

and which is presented in the same degree, we conclude that the projections PVn
: (RAn+1)StabGn+1(β) →

(RAn)StabGn (β) are isomorphisms for all n ≥ dV +dW +d0. Proposition 5.4 then gives constant-sized descrip-

tions for
{
RE

StabGn (β)
An

}
n
for each β ∈ B̂.

As an application of Proposition 5.5, we obtain constant-sized descriptions for SAGE cones of signomials.
Indeed, if An,Bn ⊆ Rn as in the above proposition, define the sequence F = {Fn} of functions on {Rn}

Fn =

f(x) = ∑
α∈An

cαe
⟨α,x⟩ +

∑
β∈Bn

tβe
⟨β,x⟩ : cα, tβ ∈ R

 ∼= RAn ⊕ RBn ,
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with Gn acting by g · f = f ◦ g−1. Note that F = V ⊕ W as consistent sequences, where V = {RAn} and
W = {RBn} are as above. Sums of exponentials as in Fn are called signomials, and optimization problems
involving such functions arise in a number of applications [30]. As usual, minimizing a signomial f over Rn

can be recast as maximizing γ ∈ R such that f − γ ≥ 0 on Rn, so that optimizing signomials can be reduced
to certifying their nonnegativity. This is NP-hard in general, but it can be done efficiently if only a single
coefficient of f is nonnegative or if f is a sum of such signomials [29]. Formally, define the cones of (Sums
of) nonnegative AM/GM Exponential functions, called AGE (resp., SAGE) functions, by

AGEAn,β =

{
f(x) =

∑
α∈An

cαe
⟨α,x⟩ + te⟨β,x⟩ : f ≥ 0 on Rn and cα ≥ 0 for all α ∈ An

}
,

SAGEAn,Bn
=
∑
β∈Bn

AGEAn,β .

Theorem 5.6. Suppose An,Bn ⊆ Rn where Rn is embedded in Rn+1 by zero-padding and with the standard
action of Gn = Sn,Dn or Bn. If An =

⋃
g∈Gn

gAdA
for all n ≥ dA and Bn =

⋃
g∈Gn

gAdB
for all n ≥ dB, then

the invariant SAGE cones {SAGEGn

An,Bn
}n admit constant-sized descriptions for n ≥ dA+ dB if Gn = Sn,Bn

and n ≥ dA + dB + 1 if Gn = Dn.

Proof. Identify M ∈ Ũn with tuples (Meβ)β∈Bn
= (ν(β), c(β), tβ)β∈Bn

∈ RAn ⊕ RAn ⊕ R for each β ∈ Bn.
The authors of [29] show that, in our notation,

SAGEAn,Bn
=
{
(c, t) ∈ RAn ⊕ RBn : ∃M = (ν(β), c(β), tβ)β∈Bn

∈ REMAn,Bn
s.t.

∑
β∈Bn

c(β) = c,∑
α∈An

ν(β)α (α− β) = 0 for all β ∈ Bn

}
= πn(REMAn,Bn ∩ Ln),

where

Ln =
{
M = (ν(β), c(β), tβ)β∈Bn

∈ Ũn :
∑

α∈An

ν(β)α (α− β) = 0 for all β ∈ Bn

}
,

πn(M) =
(∑

β∈Bn

c(β), (tβ)β∈Bn

)
∈ RAn ⊕ RBn .

Note that πn is equivariant, since

(g ·M)eβ = gMg−1eβ = gMeg−1β = g · (ν(g
−1β), c(g

−1β), tg−1β) = (g · ν(g
−1β), g · c(g

−1β), tg−1β),

hence

πn(g ·M) =

∑
β∈Bn

g · c(g
−1β), (tg−1β)β∈Bn

 =

g · ∑
β∈Bn

c(β), g · (tβ)β∈Bn

 = g · πn(M).

Similarly, if
∑

α∈An
ν
(β)
α (α− β) = 0 for all β ∈ Bn then∑

α∈An

(g · ν(g
−1β))α(α− β) = g

∑
α∈An

ν
(g−1β)
g−1α (g−1α− g−1β) = g

∑
α∈An

ν(g
−1β)

α (α− g−1β) = 0,

hence Ln is Gn-invariant. Thus, the result follows from Proposition 5.5 and Proposition 5.3.

Theorem 5.6 generalizes [27, Thm. 5.3] beyond Sn to the other classical Weyl groups Dn and Bn. It
would be interesting to further generalize to signomials defined on more general consistent sequences than
{Rn}, which would require generalizing the description of the AGE cone from [29].
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6 Free Convex Regression

In this section, we use our framework to describe a solution to the free convex regression problem. Recall
that in this problem we are given evaluation data in different dimensions and we seek a sequence of convex
functions that best fit the data and can be instantiated in any desired dimension (including those not
represented in the data). To that end, we use the framework we developed in Section 3 to obtain parametric
families of freely-described convex sets in a fully algorithmic manner. We then present a numerical procedure
to fit elements of these families to the given data. Our implementation of the resulting algorithms can be
found at https://github.com/eitangl/anyDimCvxSets.

6.1 Computationally Parametrizing Descriptions

Suppose we seek a parametric family of convex subsets {Cn ⊆ Vn} of a consistent sequence V = {Vn} of
G = {Gn}-representations. Both V and G are usually dictated by the application at hand and the symmetries
it exhibits, as in Example 1.7. We then select description spaces U = {Un},W = {Wn}, usually constructed
from V as described in Section 2.3. Their choice is dictated by the desired richness of the family of the freely-
described sets and, as we shall see in Remark 6.3 below, by the dimensions of the available data. Once all of
these are chosen, parametrizing the associated family of freely-described convex sets amounts to identifying
bases for the spaces of freely-described vectors and linear maps appearing in (ConicSeq). Up to this point we
have obtained such bases analytically, as the relevant spaces of invariants have been fairly low-dimensional,
but this approach becomes impractical for richer description spaces. To address this challenge, we present a
computational method for obtaining the relevant bases, which yields a fully algorithmic approach for deriving
parametrized families of freely-described convex sets.

Computing a basis for the space of freely-described elements in a finitely-generated consistent sequence
proceeds in two steps. First, we compute a basis for the space of invariants in a fixed, sufficiently large
dimension. Second, we extend the elements of this basis to any other dimension, which is done by solving a
linear system. Our procedure is summarized in Algorithm 1, which we proceed to describe in more detail.

Algorithm 1 Computationally parametrize a freely-described (and possibly compatible) sequence
of convex sets.

1: Input: Consistent sequences V ,W ,U .

2: Output: Bases {A (i) = {A(i)
n }n∈N}dAi=1, {B(j) = {B(j)

n }n∈N}dBj=1 for freely-described equivariant
maps or morphisms.

3: if compatibility not required then
4: Fix n0 ≥ presentation degrees of V ⊗ U and W ⊗ U .

5: Find bases {A(i)
n0}

dA
i=1, {B

(j)
n0 }

dB
j=1 for L(Vn0 ,Un0)

Gn0 and L(Wn0 ,Un0)
Gn0 .

6: else
7: Fix n0 ≥ presentation degrees of V ,W ,U .

8: Find bases {A(i)
n0}

dA
i=1, {B

(j)
n0 }

dB
j=1 for subspaces of L(Vn0 ,Un0)

Gn0 and L(Wn0 ,Un0)
Gn0 satis-

fying the hypotheses of Theorem 3.5.
9: end if

10: For any n > n0 and each i, j, find unique equivariant A
(i)
n , B

(j)
n projecting onto A

(i)
n0 , B

(j)
n0 . For

each n < n0, project A
(i)
n0 , B

(j)
n0 to dimension n to obtain A

(i)
n , B

(j)
n .

Fix n0 ∈ N as in Algorithm 1. We now explain how to find bases for the desired spaces of equivariant
linear maps An0

and Bn0
in a fixed dimension, and how to extend them to bases of freely-described elements

of V ⊗ U and W ⊗ U . These elaborate on steps 5, 8 and 10 in Algorithm 1.

Step 5: Computing basis for equivariant maps. We explain how to compute a basis for invariants
in a fixed vector space, which we then instantiate in the context of Algorithm 1 to perform step 5. If V
is a representation of a group G, a vector v ∈ V is G-invariant iff g · v = v for all g ∈ G, which can be
rewritten as v ∈ ker(g − I) for all g ∈ G. Thus, finding a basis for invariants in a fixed vector space reduces
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to finding a basis for the kernel of a matrix, though this matrix may be very large or even infinite. We can
dramatically reduce the size of this matrix by only considering discrete and continuous generators of G, as
proposed in [31].

Theorem 6.1 ([31, Thm. 1]). Let G be a real Lie group with finitely-many connected components acting on
a vector space V via the homomorphism ρ : G → GL(V). Let {Hi} be a basis for the Lie algebra g of G and
{hj} be a finite collection of discrete generators. Then

v ∈ VG ⇐⇒ Dρ(Hi)v = 0 and (ρ(hj)− idV) · v = 0 for all i, j.

Here Dρ : g → L(V) is the differential of ρ. Sets of Lie algebra bases and discrete generators for various
standard groups are given in [31]. For example, G = Sn is generated by two elements, namely, the transpo-
sition (1, 2) and the n-cycle (1, . . . , n), reducing the number of group elements that must be considered from
the näıve n! to two. For G = On, a basis for the Lie algebra g = Skew(n) is given by Ei,j = eie

⊤
j − eje

⊤
i for

i < j, and only one discrete generator, e.g., h1 = diag(−1, 1, . . . , 1), is needed, for a total of
(
n
2

)
+1 elements.

As equivariant linear maps are precisely the invariants in the space of linear maps, Theorem 6.1 allows
us to obtain a basis for equivariant maps between fixed vector spaces. Explicitly, if ρV : Gn0 → GL(Vn0)
and ρU : Gn0

→ GL(Un0
) are the group homomorphisms defining the actions of Gn0

on Vn0
,Un0

, then
An0

∈ L(Vn0
,Un0

)Gn0 if and only if

DρU (Hi)An0
−An0

DρV (Hi) = 0, ρU (hj)An0
−An0

ρV (hj) = 0, for all i, j. (28)

The equations (28) express the space L(Vn0
,Un0

)Gn0 as the kernel of a matrix, which is often very large and
sparse. A basis for the kernel of such a matrix can be computed using its LU decomposition as in [84, 85],
or using the algorithm of [31, §5]. A basis for the space L(Wn0 ,Un0)

Gn0 is obtained analogously.

Step 8: Computing a basis for extendable equivariant linear maps. We know from Ex-
ample 3.1 that extending arbitrary invariants An0

, Bn0
, un0

to freely-described elements does not yield a
compatible sequence of convex sets. However, Theorem 3.5 identifies subspaces of invariant linear maps
An0

, Bn0
whose extensions do yield a compatible sequence of sets, provided we fix a freely-described element

{un} satisfying un+1 − un ∈ Kn. Specifically, we need to find a basis for equivariant linear maps satisfying
An0(Vj) ⊆ Uj for j ≤ dV where dV is the generation degree of V . This is again a linear condition on An0 ;
defining φn0,j = φn0−1 · · ·φj : Vj ↪→ Vn0

if j < n0 and φn0,n0
= idVn0

, and similarly for ψn0,j , we have

An0
(Vj) ⊆ Uj ⇐⇒ (I − PUj

)An0
|Vj

= 0 ⇐⇒ (I − ψn0,jψ
∗
n0,j)An0

φn0,j = 0. (29)

The subspace of L(Vn0
,Un0

)Gn0 satisfying the hypotheses of Theorem 3.5 is thus again the kernel of a matrix
obtained by combining (28) and (29). To also impose An0(V⊥

j ) ⊆ U⊥
j for j ≤ dU where dU is the generation

degree of U , so that A∗
n0

extends to a morphism, note that

An0
(V⊥

j ) ⊆ U⊥
j ⇐⇒ PUj

An0
|V ⊥

i
= 0 ⇐⇒ ψ∗

n0,iAn0
(I − φn0,iφ

∗
n0,i) = 0, (30)

hence the corresponding subspace of L(Vn0
,Un0

)Gn0 is the kernel of the matrix obtained by combining (28)-
(30). The subspace of L(Wn0

,Un0
)Gn0 satisfying the hypotheses of Theorem 3.5 is again the kernel of a

matrix and its basis is computed similarly.

Step 10: Extending bases to higher dimensions. Given bases of equivariant A
(i)
n0 , B

(j)
n0 , we wish

to extend them to freely-described elements. We do so computationally by applying a linear map for
n < n0 and solving a linear system for each n > n0 to which we wish to extend. For each n < n0, we

set A
(i)
n = ψ∗

n0,nA
(i)
n0φn0,n and similarly for B

(j)
n . For each n > n0, we set A

(i)
n to be the unique solution to

the linear system (28) (with n0 replaced by n) and ψ∗
n,n0

A
(i)
n φn,n0 = A

(i)
n0 . This linear system is typically

large and sparse, and we solve it using LSQR [86]. The extension of B
(j)
n0 is handled similarly, except that n0

needs to exceed the presentation degrees of both W and U to guarantee that both B
(j)
n0 and (B

(j)
n0 )

∗ extend
to morphisms.

Example 6.2 (Dimension counts). We use the above algorithm to obtain dimension counts for parametric
families of free descriptions. See the functions compute dims a, compute dims b, and compute dims c on
GitHub for the code computing these dimensions using Algorithm 1.
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(a) Let V = {Rn} with Gn = Sn as in Example 1.5, and let W = U = Sym2(Sym≤2V ). Then V ,U ,V ⊗
U ,W ⊗ U are all V -modules and are presented in degrees 1, 4, 5, 8, respectively, by Theorem 2.11.

The dimensions of invariants parametrizing free descriptions are dimL(Vn,Un)
Gn = 39, dimL(Wn,Un)

Gn

= 1068, and dimUGn
n = 17 for n ≥ 8. The dimensions of linear maps {An} and {Bn} satisfying Propo-

sition 3.2(a), yielding intersection-compatible convex sets, are

dim
{
{An : Vn → Un} morphism

}
= 6,

dim
{
{Bn : Wn → Un} : both {Bn} and {B∗

n} morphisms
}
= 104.

If we further require {A∗
n} to be a morphism to obtain projection compatibility, the dimension of {An}

decreases to 5.

(b) Let V = {Sn} with Gn = Sn used to obtain graph parameters in Example 1.7, and let W ,U be as in
(a). Then V ,U ,V ⊗U ,W ⊗U are all V -modules and are presented in degrees 2, 4, 6, 8, respectively.

The dimension of invariant {An} in this case is dimL(Vn,Un)
Gn = 93, and the dimensions of

dimL(Wn,Un)
Gn and dimWGn

n are as in (a), giving the number of parameters describing freely-
described convex sets with these description spaces. The dimensions of linear maps {An} and {Bn}
satisfying Proposition 3.2(a), and hence describing intersection-compatible sets, are 19 and 104, re-
spectively, as given in (18). If we further require {A∗

n} to be a morphism to get projection compatibility,
the dimension of {An} decreases to 12.

(c) Let V = {Rn} with Gn = Bn as in Example 1.5, used below to learn regularizers defined for vectors
of any length, let V ′ = {R2n+1} = W (2) ⊕ R as in Example 3.1, and let W = U = Sym2(Sym≤1V ′).
Then V ,U ,V ⊗ U ,W ⊗ U are all V -modules and are presented in degrees 1, 2, 3, 4, respectively.

The dimensions of invariants parametrizing freely-described convex sets in this case are

dimL(Vn,Un)
Gn = 4, dimL(Wn,Un)

Gn = 108, dimUGn
n = 8, for all n ≥ 4.

The dimensions of linear maps {An} and {Bn} satisfying Proposition 3.2(a) and parametrizing intersection-
compatible sets are

dim
{
{An : Vn → Un} morphism

}
= 3,

dim
{
{Bn : Wn → Un} : both {Bn} and {B∗

n} morphisms
}
= 37.

(31)

If we further require {A∗
n} to be a morphism, the dimension does not decrease in this case, so all of

these intersection-compatible sets are also projection-compatible.

6.2 Fitting Freely-Described Convex Functions to Data

We now present an algorithm for the free convex regression problem from Section 1.1.4. Recall that in this
problem we are given data {(xi, ϕi) ∈ Vni ⊕R} in finitely-many dimensions ni corresponding to a sequence of
vector spaces {Vn}, and our objective is to identify a sequence of convex functions {fn : Vn → R} such that
fni

(xi) ≈ ϕi in the dimensions in which data is available. We tackle this problem by endowing {Vn} with
the structure of a consistent sequence of {Gn}-representations, and choosing description spaces {Wn}, {Un}
that yield a finitely-parametrized family of freely-described and compatible convex functions which we fit to
the given data. We explain how to perform this fitting below in two key steps.

The first step is to define a finitely-parametrized family of freely-described convex functions. Let

{{A(i)
n }}dA

i=1 and {{B(j)
n }}dB

j=1 be the bases for freely-described maps computed by Algorithm 1 where we
choose n0 ≥ maxi ni so that we do not have to extend the basis elements computed there to access the
data dimensions. Further, we select intersection and projection compatible cones K = {Kn ⊆ Un}, and
freely-described {un ∈ UGn

n } satisfying un+1 − un ∈ Kn and un ∈ int(Kn) for all n. We consider families
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of nonnegative and positively-homogeneous convex functions fn parametrized by α ∈ RdA , β ∈ RdB , and
λ ∈ R of the form

fn(x;α, β, λ) = inf
t≥0

y∈Wn

t+ λ∥y∥ s.t.

dA∑
i=1

αiA
(i)
n x+

dB∑
j=1

βjB
(j)
n y + tun ∈ Kn (P)

= sup
z∈Un

−
dA∑
i=1

αi⟨z,A(i)
n x⟩ s.t.

∥∥∥∥∥∥
dB∑
j=1

βj(B
(j)
n )∗z

∥∥∥∥∥∥ ≤ λ, ⟨z, un⟩ ≤ 1, z ∈ K∗
n, (D)

where the primal and dual programs above are equal since Slater’s condition is satisfied by our choice of un.
Here ∥ · ∥ is the norm on Wn induced by its inner-product and the parameter λ is chosen to be positive; the
purpose of this term in (P) is to prevent numerical issues arising in our subsequent regression procedure (see
(Regress)). Note that this is indeed a finitely-parametrized (by dA + dB +1 parameters) infinite sequence of
functions. Also note that if we require compatibility in Algorithm 1, then the sequence {fn} is intersection
(and if desired, projection) compatible for any value of the parameters, since it is the sequence of gauge
functions of a correspondingly compatible sequence of sets (see Section 1.3).

The second step concerns optimizing over the parameters α, β, λ to fit {fn} to the available data. To
this end, we consider the following optimization problem, with a user-specified λmin > 0:

min
ε∈RD

+

α∈RdA ,β∈RdB ,λ≥λmin

{(ti,yi)},{zi}

∥ε∥ℓ2 s.t. (Regress)

(yi, ti) feasible for (P) with n = ni and cost ≤ ϕi + εi, (PC)

zi feasible for (D) with n = ni and cost ≥ ϕi − εi, . (DC)

The constraints (PC) and (DC) are required to hold for all i ∈ [D] and they ensure that ϕi − εi ≤
fni

(xi;α, β, λ) ≤ ϕi + εi, so that minimizing ∥ε∥ℓ2 yields a good fit to the data. We emphasize that this
problem is finite-dimensional even though the it yields an infinite sequence of convex functions {fn}.

As (Regress) involves bilinear constraints, we solve the problem via alternating minimization, where we
alternate between fixing α, β, λ and {(ti, yi)}, {zi} while optimizing over the rest of the variables. Note that
Slater’s condition holds in (Regress) for both steps of alternating minimization when un ∈ int(Kn).

Remark 6.3. The quantity n0 in Algorithm 1 is governed by the choice of description spaces and leads to a
tradeoff between the richness of the parametric family and the dimensions of the available data. The data we

are given only contains information about {fn}n≤maxi ni
which, in turn, only depends on {{A(i)

n }n≤maxi ni
}dA
i=1

and {{B(j)
n }n≤maxi ni}

dB
j=1. If n0 in Algorithm 1 is strictly larger than the maximum dimension maxi ni in

which data is available, then the number of distinct basis elements for n ≤ maxi ni might be strictly smaller
than dA and dB, respectively, in which case our parameters α, β are not identifiable from such low-dimensional
data. Imposing compatibility decreases the bound on n0, thus facilitating free convex regression from lower-
dimensional data. More broadly, even when maxi ni ≥ n0, it is of interest to investigate the landscape
of (Regress).

6.3 Numerical Results

In all experiments below, we use U = Sym2(Sym≤kV ′) for some V -module V ′ and some k, with the
corresponding PSD cones K = Sym2

+(Sym
≤kV ′). We choose {un} to be the sequence of identity matrices,

which satisfy un ∈ int(Kn) and un+1 − un ∈ Kn as required. We apply our algorithm to learn semidefinite
approximations of two non-SDP-representale functions, comparing the results obtained with and without
imposing compatibility in Algorithm 1.

The first function we approximate is the ℓπ norm ∥x∥π = (
∑

i |xi|π)
1/π

, which is not SDP-representable
because π is irrational. We view the ℓπ norm as defined on the sequence V = {Rn} with Gn = Bn from
Example 1.5. It satisfies both intersection and projection compatibility. We choose description spaces
W = U = {Sym2(Sym≤1R2n+1) = S2n+2} as in Example 6.2(c), with the corresponding PSD cones {Kn =
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S2n+2
+ }. We used 50 data points in Rn for ni ∈ {1, 2}. When we impose compatibility on our family of

functions, we use n0 = 2 = maxi ni in Algorithm 1. If we do not impose compatibility and search over
all freely-described (possibly incompatible) sequences, we take n0 = 4 which is the presentation degree of
W ⊗U , and which strictly exceeds maxi ni. The constraints in the fitting program (Regress) do not depend
on some of the entries of α, β in this case, and we set such entries to zero. This highlights the advantage
of imposing compatibility mentioned in Remark 6.3–it allows us to uniquely identify a free description from
lower-dimensional data.

The second sequence of functions we approximate is the nonnegative and positively-homogeneous variant
of the quantum entropy given by (2) given in Section 1.1.4, defined on the sequence {Sn} with embeddings by
zero-padding and the action of Gn = On by conjugation. Once again, the function (2) cannot be evaluated
using semidefinite programming, though a family of semidefinite approximations is analytically derived
in [36]. Here we aim to learn a semidefinite approximation entirely from evaluation data. To that end, we
choose description spaces W = {Wn = Sym2(Sym≤1Rn) = Sn+1} and U = {Un = Sym2(Sym≤2Rn) =

S(
n+2
2 )}, with corresponding PSD cones {Kn = S(

n+2
2 )

+ }. Our data consists of 200 PSD matrices in Sn for
n ≤ n0 = 4. Without a calculus for presentation degrees for Gn = On, our theory does not guarantee the
existence of an On-invariant extension of our learned description. Our theory does however guarantee a
unique Bn-invariant extension, and in practice we observe that the extension is, in fact, On-invariant.

To approximate the above functions, which we generically denote {f truen }, we used (Regress) with 100
random initializations to fit the data in degree n0. For the above two examples, not only is f truen0

positively-
homogeneous and nonnegative, but also f truen0

(x) ̸= 0 for x ̸= 0 in the domain. We therefore normalize the
data xi by xi 7→ xi/f

true
n0

(xi), so that f truen0
(xi) = 1 for all i and all points contribute equally to the objective

of (Regress). We impose λ ≥ λmin = 10−3 in (Regress). To evaluate the results, we extended our learned
descriptions to n = 20, sampled 103 unit-norm points (also PSD for the quantum entropy example) and

computed the average normalized errors
|fn(x)−ftrue

n (x)|
ftrue
n (x) in each n up to 20.

The resulting errors are plotted in Figure 1, shown and discussed in Section 1.1.4. Since imposing com-
patibility conditions decreases the search space in (Regress), we expect the optimal solution of (Regress)
with compatibility conditions to exhibit larger errors in dimensions in which data is available compared to
the optimal freely-described (but possibly incompatible) solution. That is not the case in Figure 1(b), illus-
trating the nonconvexity of the fitting problem (Regress) and demonstrating another advantage of imposing
compatibility—the resulting smaller parametric family allows our algorithm to better fit the data.

7 Conclusions and Future work

We developed a systematic framework to study convex sets that can be instantiated in different dimensions
using representation stability, as well as a computational method to parametrize such sets and fit them to
data. We did so by formally defining free descriptions of convex sets and compatibility conditions relating
sets in different dimensions. We then proved a number of structural results pertaining to free descriptions,
namely, characterizing such descriptions certifying compatibility; giving conditions on fixed-dimensional
descriptions ensuring their extendability to free ones; and studying infinite-dimensional limits of freely-
described sequences of sets. We further used representation stability to systematically derive constant-sized
descriptions for sequences of invariant sections of PSD and relative entropy cones. Finally, we developed
an algorithm to computationally parametrize and search over free descriptions to fit them to data. Our
work can be viewed as identifying and exploiting a new point of contact between representation stability and
convex geometry through conic descriptions of convex sets.

Our work suggests questions and directions for future research in several areas.

(Computational algebra) Is there an algorithm to compute the generation and presentation degrees of a
given consistent sequence?

(Lie groups) Can we extend our calculus for presentation degrees in Theorem 2.11 to Lie groups such as
Gn = On?

(Constructing descriptions) Given a sequence of convex sets instantiable in any relevant dimension,
can we systematically construct freely-described, and possibly compatible, approximations for the
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sequence? When are approximations derived from sums-of-squares hierarchies such as [38] free and
certify compatibility?

(Complexity) Is there a systematic framework to study the smallest possible size of a free description for
a given sequence of sets, extending the slack operator-based approach for fixed convex sets [87]?

(Free separation) Under what conditions can a point outside a compatible sequence of convex sets be
separated by a freely-described sequence, generalizing the Effros-Winkler theorem [88]?

(Statistical inference) How much data do we need to learn a given sequence of sets or functions, and in
what dimensions should this data lie?
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[48] Andreas Bluhm, Anna Jenčová, and Ion Nechita. Incompatibility in general probabilistic theories,
generalized spectrahedra, and tensor norms. Communications in Mathematical Physics, 393(3):1125–
1198, 2022.

[49] Thomas Church, Jordan S. Ellenberg, and Benson Farb. FI-modules and stability for representations
of symmetric groups. Duke Mathematical Journal, 164(9):1833 – 1910, 2015.

[50] Jennifer C.H. Wilson. FIW -modules and stability criteria for representations of classical Weyl groups.
Journal of Algebra, 420:269–332, 2014.

[51] Nir Gadish. Categories of FI type: A unified approach to generalizing representation stability and
character polynomials. Journal of Algebra, 480:450–486, 2017.

[52] Steven V Sam and Andrew Snowden. Stability patterns in representation theory. Forum of Mathematics,
Sigma, 3:e11, 2015.

45



[53] Steven Sam and Andrew Snowden. GL-equivariant modules over polynomial rings in infinitely many
variables. Transactions of the American Mathematical Society, 368(2):1097–1158, 2016.
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A Representations of Categories

As Remark 2.10 shows, the set of embeddings from low to high dimensions in a consistent sequence V of
{Gn}-representations, determined by {Gn} and the centralizing subgroups {Hn,d} from Definition 2.4, play
a central role in our framework. These sets of embeddings are conveniently encoded in a category, whose
representations are precisely the V -modules of Definition 2.5. Morphisms between such representations in
the categorical sense coincide with morphisms of sequences. This categorical approach to representation
stability was introduced in [49] for the case Gn = Sn and the Hn,d from Example 2.8, and has since been
extended to other groups in [50, 51, 54].

Definition A.1. A (real) representation of a category C, also called a C-module, is a functor C → VectR
from C to the category of real vector spaces.
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In other words, a C-module is an assignment of a vector space Vn to each object n ∈ C and a linear map
φn,N : Vn → Vn to each morphism in HomC(n,N) such that compositions are respected. Each Vn is then a
representation of the group Gn = EndC(n)

× of the automorphisms of n in C. Every consistent sequence is a
representation of a suitable category.

Definition A.2. Given a consistent sequence V = {(Vn, φn)} of {Gn}-representations, define a category CV

whose set of objects is N and whose morphisms are HomCV
(n,N) = {gφN−1 · · ·φn : g ∈ GN} for n ≤ N and

zero otherwise. Note that HomCV
(n,N) = GN/HN,n where HN,n ⊆ GN is the subgroup of elements acting

trivially on Vn.

This definition clearly extends to consistent sequences indexed by posets (Remark 4.4). If U = {(Un, ψn)}
is a V -module (Definition 2.5), then U is a CV -module, since sending n ∈ N to Un and gφN−1 · · ·φn to
the map gψN−1 · · ·ψn for each g ∈ GN is a well-defined functor CV → VectR. Conversely, if U is a CV -
module then it is a V -module since Hn,d acts trivially on the image of ψN−1 · · ·ψd by definition of a functor.
Furthermore, if W ,U are CV -modules, then a morphism of functors W → U (also called a natural transfor-
mation) coincides with a morphism of sequences in Definition 2.1. Applying the constructions in Section 2.3
to C-modules yields other C-modules.

Example A.3. Here are some examples of the categories resulting from Definition A.2.

(a) The category corresponding to Example 1.5 with Gn = Sn is (the skeleton of) C = FI, the category
whose objects are finite sets and whose morphisms are injections.

(b) The category corresponding to Example 1.5 with Gn = Bn (resp., Dn) is C = FIBC (resp., C = FI|D)
defined in [50], whose objects are the sets [±n] := {±1, . . . ,±n} for n ∈ N and whose morphisms are
injections f : [±n] ↪→ [±N ] satisfying f(−i) = −f(i) (and reverse evenly-many signs if Gn = Dn).

(c) The category corresponding to the graphon sequence in Section 4.7 is the opposite category C = Pop
2

of the category P2 with objects [2n] and morphisms which are 2N−n-to-one surjections [2N ] → [2n], or
equivalently, partitions of [2N ] into 2n equal parts.

Following [50], we say C = FI|W if C = FI,FI|BC or FI|D. (Algebraically) free C-modules are defined
exactly as in Definition 2.6, see [49, Def. 2.2.2] and [51, Def. 1.8,3.1] for example. The theory of [51] gives
the following result for C = FI|W , which extends to categories of FI-type introduced in [51].

Theorem A.4 ([51, Thm. B(1)]). Tensor products of free FI|W -modules are free.

The following result illustrates two further properties of FI|W -modules, the second of which is included
in our Theorem 2.11 stated above.

Theorem A.5 (Noetherianity and tensor products). Let C = FI|W .

(Noetherianity) Any submodule of a finitely-generated C-module is finitely-generated.

(Tensor products) If V1 and V2 are C-modules generated in degrees d1 and d2, respectively, then V1⊗V2

is generated in degree d1 + d2.

Proof. Noetherianity is shown for FI in [49, Thm. 1.13] and for FI|BC ,FI|D in [50, Thm. 4.21]. The generation
degree bound is shown in [49, Prop. 2.3.6] for FI and in [50, Prop. 5.2] for FI|BC ,FI|D.

Noetherianity helps explain the ubiquity of representation stability, while the generation degree bound
for tensor products allows us to bound the generation degrees of complicated sequences from degrees of
simple ones. The two properties in Theorem A.5 hold over more general categories than FI|W , including
for categories of FI-type and certain quasi-Gröbner categories introduced in [54]. We remark that these two
types of categories only include representations of finite groups, and do not include the graphon category in
Example A.3(c), whose properties would be interesting to study in future work.

Definition A.6 (Property (TFG)). We say that a category C satisfies property (TFG) if Tensor products
of free C-modules are Free and satisfy the Generation degree bound in Theorem A.5.
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An example of a category not satisfying (TFG) is given in [54, Rmk. 7.4.3]. We can use property (TFG)
to obtain a calculus for presentation degrees from which Theorem 2.11 may be deduced.

Proposition A.7. Suppose C is a category satisfying (TFG). If V ,U are C-modules which are generated in
degrees dV , dU and presented in degrees kV , kU , respectively, then V ⊗ U is presented in degree max{dV +
kU , dU + kV }.

Proof. Suppose FV ,FU are free C-modules generated in degrees dV , dU , respectively, and FV → V and
FU → U are surjective morphisms whose kernels KV and KU are generated in degrees rV , rU , respectively.
Then FV ⊗FU is a free C-module generated in degree dV + dU by (TFG), and the morphism FV ⊗FU →
V ⊗U is surjective with kernel KV ⊗FU +FV ⊗KU . Since KV ⊗FU is generated in degree rV + dU and
similarly for FU ⊗ KV , their sum is generated in degree max{rV + dU , dV + rU}.

Our next goal is to understand presentation degrees for images, and in particular, for Schur functors.
We begin with a number of elementary lemmas.

Lemma A.8. Let V and U be C-modules. If V ,U are generated in degrees dV , dU and presented in degrees
kV , kU , respectively, then V ⊕U is generated in degree max{dV , dU} and presented in degree max{kV , kU}.

Proof. The claim about the generation degree is immediate from its definition. Suppose that FV → V
and FU → U are surjective morphisms with FV ,FU being free C-modules generated in degrees dV , dU
with kernels KV ,KU generated in degrees kV , kU , respectively. Then FV ⊕ FU is free (by definition) and
generated in degree max{dV , dU}, and surjects onto V ⊕ U with kernel KV ⊕ KU which is generated in
degree max{kV , kU}.

Lemma A.9. Let V = {Vn} and U = {Un} be two C-modules, let A = {An} : V → U be a surjective
morphism, and let W = {Wn ⊆ Un} be a C-submodule of U . If kerA is generated in degree d and W is
generated in degree dW , then A −1(W ) = {A−1

n (Wn)} is a C-module generated in degree max{d, dW }.

Proof. Define the consistent sequence Zn = R[Gn]
(
A†

dW
WdW

)
⊆ Vn if n ≥ dW and Zn = 0 otherwise,

where A†
dW

is the pseudoinverse of AdW
. Note that {Zn} is generated in degree dW . Moreover, A−1

n (Wn) =

kerAn + Zn. Indeed, we have AnA
†
dW

= AdW
A†

dW
= idUdW

because {An} is a surjective morphism, hence
An(kerAn + Zn) = An(Zn) = R[Gn]WdW

= Wn. Conversely, if Anx ∈ Wn = R[Gn]WdW
then we can

write Anx =
∑

i giwi for gi ∈ Gn and wi ∈ WdW
. Then x̂ =

∑
i giA

†
dW
wi ∈ Zn and An(x − x̂) = 0, so

x ∈ kerAn + Zn. Since kerA is generated in degree d and {Zn} is generated in degree dW , their sum is
generated in degree max{d, dW }.

Lemma A.10. Suppose V = {Vn} and {Un} are two C-modules, and A = {An} : V → U is a morphism.
If V is generated in degree d, then imA is generated in degree d. If, moreover, A ∗ = {A∗

n} is a morphism,
then kerA is also generated in degree d.

Proof. The first claim follows from An(Vn) = An(R[Gn]Vd) = R[Gn]An(Vd) = R[Gn]Ad(Vd), where we used
the equivariance of An and the fact that An|Vd

= Ad. For the second claim, note that if A ∗ is a morphism,
then {imA∗

n = (kerAn)
⊥} is a C-submodule of V . Therefore, {PkerAn

} : V → V is a morphism, and its
image is precisely kerA .

Proposition A.11. Suppose V = {Vn},U = {Un} are two C-modules and both A = {An : Vn → Un}
and {A∗

n : Un → Vn} are morphisms. If V is generated in degree d and presented in degree k, then imA =
{An(Vn)} is generated in degree d and presented in degree k.

Proof. Let F = {Fn} be a free C-module generated in degree d and let B = {Bn} : F → V be a surjective

morphism whose kernel K = {Kn} is generated in degree k. The composition F
B−→ V

A−→ imA is
a surjective morphism from the free C-module F whose kernel is B−1(kerA ) and is generated in degree
max{d, k} = k by Lemmas A.9 and A.10.

Corollary A.12. Suppose C satisfies property (TFG). If V is a C-module generated in degree d and presented
in degree k, and λ is a partition, then SλV is generated in degree d|λ| and presented in degree k+ d(|λ| − 1).
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Schur functors generalize symmetric and alternating algebras, see [62, §6.1]. Their generation degree for
C = FI was bounded using a similar approach in [49, Prop. 3.4.3].

Proof. By Proposition A.7, the C-module V ⊗|λ| is generated in degree d|λ| and presented in degree d(|λ| −
1)+ k. Let S|λ| act on each V⊗|λ|

n by permuting its factors σ · (v1 ⊗ · · · ⊗ v|λ|) = vσ(1) ⊗ · · · ⊗ vσ(|λ|), which is

an orthogonal action commuting with the emebddings V⊗|λ|
n ⊆ V⊗|λ|

n+1 . In this way, any element cλ ∈ R[S|λ|]
defines a morphism cλ : V ⊗|λ| → V ⊗|λ| such that c∗λ ∈ R[S|λ|] is also a morphism. If cλ ∈ R[S|λ|] is the Young
symmetrizer corresponding to partition λ, then im cλ = SλV . The result follows from Proposition A.11.

We conclude this appendix by summarizing our calculus for generation and presentation degrees. In-
stantiating the following theorem with C = FI|W yields Theorem 2.11.

Theorem A.13 (Calculus for generation and presentation degrees). Let V = {Vn},U = {Un} be C-modules
generated in degrees dV , dU and presented in degrees kV , kU , respectively.

(Sums) V ⊕ U is generated in degree max{dV , dU} and presented in degree max{kV , kU}.

(Images and kernels) If A : V → U and A ∗ are morphisms, then imA and kerA are generated in
degree dV and presented in degree kV .

Suppose C satisfies (TFG). Then

(Tensors) V ⊗ U is generated in degree dV + dU and presented in degree max{kV + dU , kU + dV }.

(Schur functors) SλV is generated in degree dV |λ| and presented in degree dV (|λ| − 1) + kV for any
partition λ.

B Deriving the Presentation Degree from Extendability

In this appendix, we show how the definitions of algebraically free consistent sequences and the presentation
degree naturally arise when trying to extend a fixed equivariant linear map to a morphism of sequences,
necessary for our algorithm in Section 6.

Let V = {Vn}, U = {Un} be consistent sequences of {Gn}-representations, fix n0 ∈ N and consider
a linear map An0

∈ L(Vn0
,Un0

)Gn0 . When can we extend An0
to a morphism of sequences {An}? We

seek conditions on An0
which are easy to enforce computationally, so that they can be used to parametrize

and search over compatible sequences of convex sets computationally. The following proposition gives an
equivalent characterization for the existence of such an extension.

Proposition B.1. Let V = {Vn},U = {Un} be consistent sequences such that V is generated in degree d,
and fix An0

∈ L(Vn0
,Un0

)Gn0 for n0 ≥ d.

(a) There exists {An ∈ L(Vn,Un)
Gn}n<n0

satisfying An+1|Vn
= An for all n < n0 if and only if An0

(Vj) ⊆
Uj for j ≤ d.

(b) There exists {An ∈ L(Vn,Un)
Gn}n>n0

satisfying An+1|Vn
= An for all n ≥ n0 if and only if the

following implication holds∑
i
gixi = 0 =⇒

∑
i
giAn0

xi = 0, for all gi ∈ Gn, xi ∈ Vd, n ∈ N. (32)

If an extension {An} of An0 exists, then it is unique.

Proof. (a) If such {An}n<n0
exists, then it is uniquely given in terms of An0

by An = An0
|Vn

. Therefore,
we have An0

(Vj) = Aj(Vj) ⊆ Uj for all j ≤ d. Conversely, suppose An0
(Vj) ⊆ Uj for j ≤ d. We claim

that An0(Vn) ⊆ Un for all d ≤ n ≤ n0 as well. Indeed, because V is generated in degree d, we have
An0(Vn) = An0(R[Gn]Vd) = R[Gn]An0(Vd) ⊆ R[Gn]Ud ⊆ Un for such n ≥ d. Defining An = An0 |Vn

for each n < n0 yields the desired extension to lower dimensions.
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(b) If such {An}n>n0
exists, it is unique and is explicitly given in terms of An0

as follows. For any n > n0
and x ∈ Vn, we can write x =

∑
i gixi for some gi ∈ Gn and xi ∈ Vd ⊆ Vn0

by definition of the
generation degree. Because An : Vn → Un is Gn-equivariant and satisfies An|Vn0

= An0
, we have

Anx = An

(∑
i
gixi

)
=
∑

i
gi(An0

xi), (33)

which expresses An in terms of An0
. The expression (33) shows that (32) is satisfied. Conversely,

suppose that (32) is satisfied. For each n > n0 define An : Vn → Un as follows. For any x ∈ Vn,
write x =

∑
i gixi for some gi ∈ Gn and xi ∈ Vd, which is possible because V is generated in degree

d, and set Anx to the right-hand side of (33). This is well-defined because if x =
∑

i gixi =
∑

j g
′
jx

′
j

for gi, g
′
j ∈ Gn and xi, x

′
j ∈ Vd then

∑
i giAn0

xi =
∑

j g
′
jAn0

x′j by (32). Moreover, An is linear,
Gn-equivariant, and extends An0

by construction, so {An}n>n0
is the desired extension of An0

.

The conditions on An0 in Proposition B.1(a) are easy to impose computationally, and we do so in
Section 6.1. In contrast, while condition (32) in Proposition B.1(b) fully characterizes extendability of An0

to higher dimensions, it is unclear how to impose it computationally. We therefore proceed to study it
further. In algebraic terms, elements xi ∈ Vd are called the generators of V , and expressions of the form∑

i gixi = 0 with gi ∈ Gn are called relations between those generators over the group Gn. Proposition B.1(b)
shows that An0

extends to a morphism iff any relation satisfied by the generators of V is also satisfied by
their images under An0 . We therefore need to understand the relations among the generators in Vd.

We study these relations in two stages. First, we identify two simple types of relations that are satisfied by
the images of the generators under An0

for appropriate V ,U . We then define algebraically free consistent
sequences whose generators satisfy only these two types of relations. Second, we express an arbitrary
consistent sequence as the quotient of an algebraically free one. The kernel of this quotient morphism is a
consistent sequence that encodes all additional relations. To capture the degree starting from which both
the generators and the relations between them stabilize, we define the presentation degree of a consistent
sequence as the maximum of the generation degree of the sequence itself and that of the above kernel, see
Definition 2.7. The presentation degree plays a prominent role in our structural results in Section 3.

We begin carrying out the first stage of the above program and identify two simple types of relations.
The first source for relations between generators in Vd arises from relations over Gd. Indeed, if

∑
i gixi = 0

for gi ∈ Gd and xi ∈ Vd then
∑

i ggixi = 0 for any g ∈ Gn. Such relations are always satisfied by the
images An0xi. A second source for such relations arises from subgroups of Gn acting trivially on Vd, which
are presicely the centralizing subgroups of Definition 2.4. Centralizing subgroups yield a second source for
relations, namely, the relations (h − id)x = 0 for all x ∈ Vd and h ∈ Hn,d. Thus, if An0

extends to a

morphism then An0
(Vd) ⊆

⋂
n≥d U

Hn,d
n . Rather than attempt to enforce these constraints computationally,

we make a standard simplifying assumption from the representation stability literature. Specifically, we
assume that Ud is fixed by Hn,d (or a subgroup of it, see below) for all n ≥ d, in which case there is a simple
sufficient condition for the above constraints that we can impose computationally. This is precisely the
assumption that U is a V -module as in Definition 2.5. This terminology comes from a categorical approach
to representation stability, see Appendix A. If U is a V -module, then imposing An0

(Vd) ⊆ Ud is sufficient

to guarantee An0
(Vd) ⊆

⋂
n≥d U

Hn,d
n since Ud is contained in the right-hand side of this inclusion. Imposing

this sufficient condition can done computationally, as we do in Section 6.1. This concludes the first stage.
To go beyond the above two simple types of relations satisfied by the generators, we define algebraically

free consistent sequences (Definition 2.6), whose generators do not satisfy any additional types of relations.
We then write any consistent sequence as the image under a morphism of sequences of an algebraically
free one. The kernel of this morphism precisely captures the relations satisfied by the generators. To that
end, note that any finitely-generated consistent sequence is the image under a morphism of sequences of an
algebraically free sequence.

Proposition B.2. Let V be a consistent sequence of {Gn}-representations and let U = {Un} be a V -module.
Then U is generated in degree d if and only if there exists an algebraically free V -module F generated in
degree d and a surjective morphism of sequences F → U .

Proof. If F = {Fn} is a V -module and {An : Fn → Un} is a surjective morphism, then for any n ≥ d we
have Un = An(Fn) = An(R[Gn]Fd) = R[Gn]An(Fd) = R[Gn]Ad(Fd) = R[Gn]Ud, where we used the fact that
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F is generated in degree d; the equivariance of An; the fact that An|Fd
= Ad since {An} is a morphism; and

the surjectivity of Ad. This shows U is generated in degree d.
Conversely, if U is generated in degree d, define the algebraically free V -module F =

⊕d
i=1 IndGi

(Ui)
and consider the morphism F → U defined by g ⊗ u 7→ g · u for each g ∈ Gn, u ∈ Ui, and i ∈ [d] (see

Section 1.3). The image of this morphism in Un is precisely
∑min{d,n}

i=1 R[Gn]Ui, hence it is surjective for all
n. Finally, IndGi

(Ui) is generated in degree i, so F is generated in degree d.

The kernel of the morphism in Proposition B.2 precisely encodes all the additional relations beyond the
two simple types above satisfied by the generators of V . The generation degree of this kernel then captures
the point at which relations stabilize. We therefore define the presentation degree (Definition 2.7) as the
maximum of the generation degree of V and that of this kernel, which captures stabilization of the generators
as well as of the relations between them.

The presentation degree allows us to ensure condition (32) is satisfied and hence to extend a fixed linear
map to a morphism of sequences in Theorem 3.4, thus answering the question posed in the beginning of
this section. Indeed, comparing Theorem 3.4 with Proposition B.1, we see that condition (32) is satisfied by
any fixed equivariant map in dimension n0 exceeding the presentation degree. Thus, the presentation degree
appears in our extendability result for convex sets (Theorem 3.5), and in our algorithm for computationally
parametrizing such sets (Algorithm 1).

C Schur-Horn Orbitopes in AF Algebras

The permutahedra and Schur-Horn orbitopes studied in Section 4.3 are special cases of a more general
construction arising in the field of operator algebras, and which is naturally analyzed using our framework.
In this appendix, we present this unified view. Let An ⊆ Mn := Cm2n×m2n be a unital C-subalgebra with the
faithful tracial state τn(x) = Tr(x)/m2n which induces the inner product ⟨x, y⟩n = τn(x

∗y), and the max-
singular value operator norm ∥ · ∥(n). Let φn : Mn ↪→ Mn+1 be the unital algebra embedding φn(x) = x⊗ I2,
and note that ∥x ⊗ I2∥(n+1) = ∥x∥(n) and τn+1 ◦ φn = τn, so φn is an isometry with respect to the above
inner product. Thus, both the operator norm ∥·∥ and the normalized trace τ do not depend on n and extend
to the limit A∞ =

⋃
n An, and we omit their subscripts above. Let A∞ be the closure of A∞ with respect to

the operator norm, which is now a C∗ algebra called an approximately finite-dimensional (AF) algebra [89,
Chap. 3]. Note that τ extends continuously to A∞ since |τ(x)∥ ≤ ∥x∥ for all x ∈ A∞, and hence τ defines a
tracial state on A∞.

The spectral theorem for C∗ algebras gives an (isometric) isomorphism of algebras between continuous
functions on the spectrum σ(x) = {λ ∈ C : x− λI not invertible} of any self-adjoint x ∈ A∞ and the closed
subalgebra it generates [90, Thm. 11.19]. This allows us to apply continuous functions f : σ(x) → C to x
itself to obtain f(x) ∈ A∞. Using this functional calculus, for each self-adjoint x ∈ A∞ we get the positive
unital linear functional on such functions sending f 7→ τ(f(x)). By the Riesz representation theorem [91,
Thm. 6.19], there is a unique probability measure µτ

x on σ(x) satisfying µτ
x(f) = τ(f(x)) for all continuous

f : σ(x) → C, which is called the spectral measure of x with respect to τ . Finally, if σ(x) = {λ1, . . . , λq} is
finite then we have a spectral decomposition x =

∑q
i=1 λipi where {pi} are orthogonal projectors satisfying

pipj = δi,jpi,
∑

i pi = 1, and µτ
x =

∑q
i=1 τ(pi)δλi

.
Let Vn = An∩Ms.a.

n be the (finite-dimensional real) vector space of self-adjoint elements in An, and note
that φn(Vn) ⊆ Vn+1 and that V∞ is the collection of self-adjoints in A∞. Let Gn ⊆ U(m2n) be a group of
unitaries acting on Vn by conjugation such that Gn ⊆ Gn+1 under the embedding g 7→ g ⊗ I2, so that {Vn}
is a consistent sequence of {Gn}-representations.

Lemma C.1. Let Pn : V∞ → Vn be orthogonal projections. Then ∥Pnx∥ ≤ ∥x∥ and τ ◦ Pn = τ for all n.

Proof. Note that φ∗
n : Vn+1 → Vn satisfies

φ∗
n(x) =

1

2

2∑
i=1

(I ⊗ ei)
⊤x(I ⊗ ei), hence ∥φ∗

nx∥ ≤ ∥x∥, (34)
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for all x ∈ Vn+1. Because the orthogonal projection Pn : V∞ → Vn satisfies Pn|VN
= φ∗

n ◦ . . .◦φ∗
N−1 for each

N > n, we conclude that ∥Pnx∥ ≤ ∥x∥ for all x ∈ V∞. Also, for any x ∈ V∞ we have τ(Pnx) = ⟨Pnx, 1⟩ =
⟨x,Pn1⟩ = ⟨x, 1⟩ = τ(x), hence the second claim follows.

In particular, the norm ∥·∥ satisfies the condition of Definition 2.21. Let λ ∈ Rq and λ̃ = [λ11
⊤
mi
, . . . , λq1

⊤
mq

]⊤

∈ Rm has entry λi repeated mi times (so m =
∑

imi). Then x1 = diag(λ̃) has spectral measure µτ
x1

=∑q
i=1

mi

m δλi
. The Shur-Horn orbitopes associated to x1 is then

SH(x1)n = conv{x ∈ Vn : µτ
x = µτ

x1
} = conv

{∑q

i=1
λipi : pi ∈ Vn, pipj = δi,jpi,

∑
i
pi = 1, τ(pi) =

mi

m

}
,

To obtain conic descriptions for the above orbitopes, let Kn = {xx∗ : x ∈ An} ⊆ Vn be the cone of
positive-semidefinite Hermitian matrices in An, so that Kn ⊆ Kn+1 and K∞ = {xx∗ : x ∈ A∞}. We also have
Pn(Kn+1) = Kn by (34), hence Pn(K∞) = Kn. Therefore, the finite-dimensional description of Schur-Horn
orbitopes [70, Eq. (19)] reads

SH(x1)n =
{∑q

i=1
λipi : pi ∈ Kn,

∑
i
pi = 1, τ(pi) = mi/m

}
. (35)

Our Theorem 3.6 now yields the following infinite-dimensional extension of these descriptions.

Proposition C.2. Let λ1, . . . , λq are distinct real numbers, and let m1, . . . ,mq ∈ N with sum m =
∑

imi.

Then SH(x1)∞ with x1 = diag(λ̃) as above is

conv
{
x ∈ V∞ : µτ

x =
∑q

i=1

mi

m
δλi

}
=
{∑q

i=1
λipi : pi ∈ K∞,

∑
i
pi = 1, τ(pi) = mi/m

}
. (36)

Proof. First, the left-hand side of (36) is just SH(x1)∞. Indeed, if xn ∈ V∞ is a sequence converging to x with
µτ
xn

= µτ
x1

for all n, then for any continuous f : R → C we have µτ
x(f) = τ(f(x)) = limn τ(f(xn)) = µτ

x1
(f)

so µτ
x = µτ

x1
. Conversely, if µτ

x =
∑

i
mi

m δλi then x admits a decomposition x =
∑

i λipi with τ(pi) = mi/m.
Define xn = Pnx =

∑q
i=1 λi(Pnpi) and note that Pnpi ∈ Kn for all i, that

∑
i Pnpi = Pn1 = 1, and that

τ(Pnpi) = τ(pi) = mi/m. Thus, xn ∈ SH(x1)n for all n and xn → x by Lemma 2.22, hence x ∈ SH(x1)∞.
Second, we appeal to Theorem 3.6 to obtain equality in (36). Note that the conic description (35) is of

the form (ConicSeq) with V = {Vn},W = V ⊕q,U = W ⊕ V ⊕2 ⊕ Rq, and

Anx = (0,−x, 0, 0), Bn(p1, . . . , pq) =
(
p1, . . . , pq,

∑
i
λipi,

∑
i
pi, τ(p1), . . . , τ(pq)

)
,

and un = (0, 0,−I,−m1/m, . . . ,−mq/m). Observing that {An}, {A∗
n}, {Bn}, {B∗

n} are all morphisms, that
un = un+1 (under our embeddings), the descriptions in (35) are free and satisfy the hypohteses of Proposi-
tion 3.2(a). Furthermore, putting the norm ∥(p1, . . . , pq)∥ = maxi ∥pi∥ on W∞ and ∥(p1, . . . , pq, y1, y2, v)∥ ≤
max{∥pi∥, ∥yj∥, ∥v∥∞} on U∞, we have W∞ = V∞

⊕q
and U∞ =W∞ ⊕V∞

⊕2 ⊕Rq. Moreover, ∥An∥op = 1,
∥Bn∥op ≤ max{

∑
i |λi|, q} for all n. Thus, both An and Bn extend to the continuous limit and Theorem 3.6

indeed applies and yields (36).

The Schur-Horn orbitopes SH(x1)n are precisely the Schur-Horn orbitopes SH(λ)n in (15) from Sec-
tion 4.3 if An = Rm2n×m2n with Gn = O(m2n). They also reduce to the permutahedra SH(x1)n = Perm(λ)n
as in (12) from Section 4.3 if An is the algebra of diagonal matrices in Mn with Gn = Sm2n .

Proposition C.2 yields a generalization of the Schur-Horn theorem to AF algebras. Indeed, let Dn =
{x ∈ Vn : x diagonal} which is a unital subalgebra of An embedded in Dn+1 under φn. For x1 ∈ D1, define

Perm(x1)n = SH(x1)n ∩ Dn.

The sequence of linear maps (diagn : Vn → Dn)n extracting the diagonal of a Hermitian matrix in Vn

extend to a bounded linear map diag : V∞ → D∞ since diagn+1 ◦ φn = φn ◦ diagn and ∥diagn∥op = 1. The
finite-dimensional Schur-Horn theorem states that diagn(SH(x1)n) = Perm(x1)n. Using Proposition C.2, we
obtain the following infinite-dimensional extension.
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Proposition C.3. Let x1 ∈ D1 and let diag : V∞ → D∞ be the bounded linear map extending the diagonal
maps. Then diag(SH(x1)∞) = Perm(x1)∞.

Proof. Since Perm(x1)∞ ⊆ SH(x1)∞ and diag is a projection onto D∞, we get diag(SH(x1)∞) ⊇ Perm(x1)∞.
Conversely, Proposition C.2 and continuity of diag yields

diag(SH(x1)∞) ⊆
{∑q

i=1
λidiag(pi) : pi ∈ K∞,

∑
i
pi = 1, τ(pi) = mi/m

}
=
{∑q

i=1
λipi : pi ∈ K∞ ∩ D∞,

∑
i
pi = 1, τ(pi) = mi/m

}
= Perm(x1)∞,

where the last equality follows from Proposition C.2 applied to D∞ instead of V∞.

The finite-dimensional Schur-Horn theorem yields Perm(x1)∞ = diag(SH(x1)∞), and taking closures
yields a weaker statement since it involves the closure of the image of diag. Proposition C.3 shows that this
closure can be removed.

There is a considerable literature on extending the Schur-Horn theorem to infinite-dimensional setting,
including the extension in [92] for operators with a finite spectrum, and in [93] for von Neumann algebras.
As explained in [93, §1], removing the closure over the image of diag has been a major challenge in these
more general settings. Our descriptions of limiting convex sets from Theorem 3.6 can be seen as resolving
this challenge in our simpler setting of AF algebras.
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