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Abstract

Convex sets arising in a variety of applications are well-defined for every relevant dimension.
Examples include the simplex and the spectraplex that correspond, respectively, to probability
distributions and to quantum states; combinatorial polytopes and their associated relaxations
such as the cut polytope and the elliptope in integer programming; and unit balls of commonly-
employed regularizers such as the ¢, and Schatten norms in inverse problems. Moreover, these
sets are often specified using conic descriptions that can be obviously instantiated in any di-
mension. We develop a systematic framework to study such free descriptions of convex sets.
We show that free descriptions arise from a recently-identified phenomenon in algebraic topol-
ogy called representation stability, which relates invariants across dimensions in a sequence
of group representations. Our framework yields a procedure to obtain parametric families of
freely-described convex sets whose structure is adapted to a given application; illustrations are
provided via examples that arise in the literature as well as new families that are derived using
our procedure. We demonstrate the utility of our framework in two contexts. First, we develop
an algorithm for a free analog of the convex regression problem, where a convex function is fit
to input-output training data; in our setting, the inputs may be of different dimensions and we
seek a convex function that is well-defined for inputs of any dimension (including those that are
not in the training set). Second, we prove that many sequences of symmetric conic programs
can be solved in constant time, which unifies and strengthens several disparate results in the
literature. Our work extensively uses ideas and results from representation stability, and it can
be seen as a new point of contact between representation stability and convex geometry via
conic descriptions.
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1 Introduction

Convex sets are central objects in numerous areas of the mathematical sciences such as of interest in op-
timization, statistical inference, control, inverse problems, statistical inference, and information theory. In
domains such as inverse problems or integer programming, convex sets are of interest for algorithmic reasons
as one seeks optima of various functionals over these sets. In quantum information or in control, the geo-
metric properties of convex sets are of interest as they are used to describe fundamental quantities such as
collections of quantum states and channels or of controllers. Convex sets appearing in these areas are often
defined in every relevant dimension. For example, unit balls of regularizers in inverse problems (e.g., the ¢,
or Schatten norms), convex relaxations for intractable graph problems (e.g., elliptope approximations of cut
polytopes), controllers (e.g., in dynamical systems in which the system block-diagram structure is agnostic
to the dimensions of the states), and families of quantum states arise in every (meaningful) dimension. Thus,
convex sets in these and many other areas should be viewed as sequences indexed by dimension. In this
paper, we develop a framework to study and derive finitely-parametrized families of sequences of convex sets.
Our approach unifies specific cases that have been investigated previously in the literature in the context of
control systems and quantum information, and it yields a systematic method to obtain new families in many
other contexts.



Our first motivation for this effort is computational and stems from the growing interest in obtaining
solution methods for various problems in a data-driven manner. In this paradigm, one identifies procedures
given input-output data — inputs representing problem instances and outputs specifying solutions — rather
than handcrafting one based on insights about the structure of the problem family. This framework has
been fruitfully applied to domains including integer programming, inverse problems, and numerical solvers
for PDEs [1, 2, 3, 4, 5, 6]. A fundamental limitation in much of the literature on these topics is that the
solution methods learned from data are only applicable in dimensions that are manifest in the provided
training data, and extension to inputs of different sizes is handled on a case-by-case basis. In contrast, we
wish to learn algorithms that should be defined for inputs of any relevant size and constitute a sequence
of solution maps, one for each input size. To facilitate numerical search over spaces of algorithms, we seek
principled approaches to deriving finitely-parametrized such sequences. Our work addresses this challenge
for algorithms specified as linear optimization over convex sets, i.e., convex programs.

Our second motivation is mathematical, whereby we wish to facilitate structural understanding of convex
sets that can be instantiated in any dimension. Although such sequences of convex sets are ubiquitous, the
existence and interplay between the sets in different dimensions is rarely explicitly discussed or exploited
in the literature. One body of work in which relations between convex sets in different dimensions play a
prominent role is the theory of matrix convexity and free convex algebraic geometry. This theory studies
matrix convex sets, which are sequences of convex sets closed under matrix convex combinations that relate
the sets in different dimensions [7, 8, 9, 10]. In the present paper we consider sequences of convex sets with
more general relations between dimensions, which provides a framework in which to investigate the geometry
of sequences of convex sets beyond those that arise in matrix convexity.

A central feature of convex sets is the manner in which they are described. In particular, a canonical way
to describe convex sets is via conic descriptions in which a set is expressed as an affine section of a convex
cone. Conic descriptions have played a central role in modern convex optimization [11]. Indeed, we often
classify convex sets based on their conic descriptions—polytopes are affine sections of nonnegative orthants
and spectrahedra are affine sections of positive-semidefinite (PSD) cones. Formally, if V,W,U are vector
spaces and K C U is a cone, then a convex subset C' C V can be described using linear maps A: V — U,
B: W — U and a vector v € U by

C={zxeV:IyeWst. Ar+ By+uec K}. (Conic)

We call the spaces W and U the description spaces associated to the conic description. If the cone K is
a nonnegative orthant (resp., positive semidefinite cone), then linear optimization over C' is a linear (resp.,
semidefinite) program. The size of the cone K captures the complexity of optimization over C, blending
geometry and computation.

An interesting property of conic descriptions of convex sets that commonly arise in practice is that they
are often “free” — that is, these descriptions can be obviously instantiated in any desired dimension, thereby
yielding a sequence of convex sets.

Example 1.1 (Free descriptions). The following are simple examples of freely-described sequences of convex
sets arising in (quantum) information, graph theory, and the theory of matriz convexity.

(a) The simplex in n dimensions is A"~ ! = {x € R" : x > 0, 1,2 = 1}, which is the set of probability
distributions over n items. Here x > 0 denotes an entrywise nonnegative vector x, and 1,, € R™ is the
vector of all-1’s.

(b) The spectraplex, or the set of density matrices, of sizen is D" ! ={X €S": X =0, Tr(X) =1}. It
is the set of density matrices describing mized states in quantum mechanics [12, §2.4]. Here X = 0
denotes a symmetric PSD matriz X .

-
(c) The Ly ball in R™ is given by By, = {x ER": E g; } = 0}~
n

(d) The elliptope of size n is {X € S : X » 0,diag(X) = 1,,}. It arises in a standard relazation of the
maz-cut problem [13].



(e) Free spectrahedra of size n are families of sets parametrized by Ly, ..., Lq € S* for k € N of the form
{(Xl, o Xg) E(SME Lo® I, + Z?Zl L; ® X; = 0}. They arise in the theory of matriz convezity
and free convex algebraic geometry [14, 7].

(f) The following is a family of sets parametrized by o € R” that is defined for any n:
{oqdiag(X) + as X1, : X = 0, (asl, X1, + asTr(X))1, + asdiag(X) + ag X1, = arl,}. (1)

All the descriptions in Example 1.1 can be instantiated for every n € N, yielding infinite sequences of
convex sets in different dimensions. Further, Examples 1.1(e)-(f) are finitely-parametrized sequences of sets.
The goal of this paper is to develop a systematic framework to study and derive such finitely-parametrized
families of sequences of convex sets.

To formalize the notion of free descriptions, we begin by making three observations. First, we note
that the sequences of sets in Example 1.1 are described as slices of standard sequences of cones, such as
nonnegative orthants and PSD cones; expressing sets in terms of such standard sequences has the benefit
that optimization over these sets can be performed using standard off-the-shelf software. Going forward, we
shall assume that our cones as well as the vector spaces containing them come from such standard sequences,
and in particular, can be instantiated in any dimension. Second, and more importantly, the affine sections
of these cones are expressed in terms of vectors and linear maps such as 1,, € R*, I, € S”, diag: S" — R",
which are “free”, meaning that they are well-defined in any dimension. Third, finitely-parametrized free
descriptions can be obtained by taking linear combinations of any finite collection of such vectors and linear
maps, and by viewing the coefficients in the combination as parameters as in Example 1.1(f). Putting these
observations together, we seek finite-dimensional spaces of free vectors and linear maps.

The free vectors and linear maps in Example 1.1 are sequences of invariants under sequences of groups,
and these invariants are related in a particular way across dimensions. For example, the all-1’s vector 1,, of
length n is invariant under the group of permutations on n letters acting by permuting coordinates. Further,
the all-1’s vectors of different lengths are related to each other: extracting the first n entries of 1,41 yields
1,. Similarly, the n x n identity matrix I, is invariant under the orthogonal group of size n acting by
conjugation, and extracting the top left n x n submatrix of I, yields I,,. Thus, to give a formal definition
for free vectors and linear maps, we consider sequences of groups acting on sequences of vector spaces, and
we require the spaces in the sequence to be related to each other — specifically, we embed lower-dimensional
spaces into higher-dimensional ones and project higher-dimensional spaces onto lower-dimensional ones.
Such sequences of group representations are called consistent sequences, and they were introduced in [15] in
order to study the recently-identified phenomenon of representation stability. Representation stability implies
that the projections define isomorphisms between the spaces of invariants in the sequence. Consequently, the
dimensions of invariants in such a sequence stabilize, and the projections furnish the desired relations between
the invariants in different dimensions that constitute free vectors and linear maps. In this way, representation
stability yields the desired finite-dimensional spaces of free invariants, and hence finitely-parametrized free
descriptions of convex sets.

The combination of symmetry and relations across dimensions that constitute consistent sequences and
yield free descriptions arises commonly in applications. Indeed, there are natural embeddings in many
applications that relate problem instances of different dimensions. For example, probability distributions
over small alphabets can be viewed as distributions over large alphabets by putting zero weight on the
additional letters, and small graphs can be viewed as large ones by appending isolated vertices. Further,
many application domains exhibit an underlying symmetry, and this structure is inherited by the convex
sets appearing in those domains. Polytopes arising in graph theory are invariant under permutations [16],
and sets arising in quantum information are invariant under the orthogonal group [17, 18, 19]. In inverse
problems, data distributions are often group-invariant, and therefore the unit ball of regularizers used to
promote the structure in these distributions are group invariant as well [20, 21].

We use our framework to pursue the two motivating goals we outlined in the beginning of this section.
First, we describe a fully algorithmic procedure to obtain parametric families of freely-described convex sets
that are adapted to the structure of a given application. Our method only requires a consistent sequence
containing the desired convex sets, as well as sequences of description spaces and cones as in (Conic). The
former is dictated by the application at hand while the latter is chosen based on the expressivity of the



family sought by the user; larger description spaces yield more expressive families but they lead to more
computationally expensive optimization over the resulting sets. We apply this procedure to free convex
regression: given a consistent sequence {V,, } ey and training data (z;,y;) € V,,, ®R, we seek a freely-described
sequence of convex functions {f,: V,, — R} satisfying fy,(z;) = y; for all . An open-source implementation
is available at https://github.com/eitangl/anyDimCvxSets. Our procedure learns a function that can be
defined on inputs of any size including those that are not part of the training data, thus taking a taking a
step towards learning algorithms from data. Second, we obtain structural results for optimization over freely-
described convex sets. Specifically, it has been observed in the literature that certain sequences of symmetric
semidefinite and relative entropy programs can be solved in constant time [22, 23, 24, 25]. However, the
proofs of this fact proceed on a case-by-case basis by showing that the irreducible decompositions of the
representations that arise for each program stabilize. We unify the treatment of this phenomenon as well as
strengthen existing results in the literature using representation stability, which was developed to explain
the ubiquity of the stabilization of irreducible decompositions.

1.1 Owur contributions

In Section 2, we formally define free descriptions of sequences of convex sets (Definition 2.14). To do so, we
consider consistent sequences (Definition 2.1), which as mentioned above are sequences of groups and rep-
resentations related by embeddings and projections. Representation stability gives canonical isomorphisms
between spaces of invariants in such sequences of representations (Proposition 2.7), allowing us to formally
define freely-described elements (Definition 2.12) constituting free descriptions of convex sets, and to derive
parametric families of such descriptions. In several problem domains, it is desirable to not only relate the
descriptions of the sets across dimensions but also the sets themselves (see Example 2.28). We therefore
introduce compatibility conditions relating the convex sets across dimensions (Definition 2.20), and charac-
terize free descriptions of sets satisfying those conditions (Theorem 2.23). This allows us to parametrize only
sequences of sets that are compatible across dimensions, and hence extend better to higher dimensions, and
fit these sequences to data.

In Section 3, we illustrate our framework with a large number of examples of sequences of convex
sets and their descriptions. Some of our examples arise in the literature in application domains including
(quantum) information and graph theory, while several others constitute new families that are derived using
our procedure and are adapted to each application.

To use our parametric families for learning tasks such as free convex regression described above, we fit
a convex set in the largest dimension in which data is available and extend it to a freely-described sequence
that can be instantiated in any other dimension. To that end, in Section 4 we study extensions of a convex
set in a fixed dimension to a freely-described and compatible sequence, and characterize the existence of such
an extension (Theorem 4.15). The presentation degree of a consistent sequence plays a fundamental role in
our characterization and in the resulting algorithm, and we expose the relevant background theory from the
representation stability literature in a manner that is motivated by our computational goals.

In Section 5 we develop an algorithm to computationally parametrize and search over sequences of convex
sets (Algorithm 1). Our algorithm only requires a choice of description spaces and cones as inputs from the
user. It proceeds by combining recent ideas on computing bases for spaces of invariants with an alternating
minimization approach that searches over coefficients in these bases to fit a freely-described convex set to
data. We apply our algorithm in Section 5.3 to two stylized free convex regression problems. Specifically,
we consider two functions defined on inputs of any size that are not semidefinite representable, namely,
the ¢;-norm and a (nonnegative and positively homogenous) variant of the quantum entropy; we identify
semidefinite approximations entirely from evaluations of these functions on low-dimensional inputs, and are
then able to evaluate our approximations on inputs of any size. This task is particularly interesting as neither
of the functions can be evaluated exactly using semidefinite programming.

In Section 6, we use our framework to obtain structural results for sequences of invariant conic programs.
Specifically, we study sequences of invariant semidefinite and relative entropy programs and give conditions
under which they can be solved in constant time. To understand this phenomenon, we formally define
constant-sized descriptions for sequences of cones (Definition 6.1) and prove their existence for sequences
of symmetric PSD and relative entropy cones, as well as their variants such as sums-of-squares (SOS) and
Sums-of-AM/GM-Exponentials (SAGE) cones. Our study of these cones yields Theorems 6.12 and 6.15,
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which unify and generalize results in the literature mentioned above.

It is natural to consider limits of freely-described sequences of convex sets, and in particular, to obtain
conic descriptions of such limits. In Section 7, we show that free descriptions certifying our compatibility
conditions across dimensions often have such limits. Further, these limiting descriptions yield dense subsets
of limits of the convex sets in the sequence (Theorem 7.5). Many of our definitions can also be understood
in terms of such limits. These results raise the intriguing possibility of studying the complexity of infinite-
dimensional conic programs by viewing them as limits of finite-dimensional ones.

We conclude in Section 8 with several directions for future work pertaining to areas such as computational
algebra, convex analysis, and statistics. Sections 2.1, 4.1, 6.1 and 7.1 review the needed definitions and
results from the representation stability literature, which we present and motivate with a view towards free
descriptions.

1.2 Related work

We briefly survey several related areas.

Lifts of convex sets: There is a large literature as well as a systematic framework studying conic
descriptions of a fixed convex set, see [26] for a review. In particular, this framework can be applied to study
equivariant lifts of group-invariant convex sets, which are descriptions of the form (Conic) consisting of group-
invariant cones, vectors, and linear maps, see [27] and [26, §4.3]. These are precisely the type of descriptions
we consider for each of the convex sets in our sequences. Further, even though this framework is formulated
in terms of a fixed convex set, results in this area implicitly concern descriptions of a sequence {C},} of convex
sets and the complexity of these descriptions in n [28, 27, 29, 30]. Many of the descriptions proposed in this
literature can in fact be instantiated in any dimension, and they turn out to be free descriptions according
to our definition as we show in Section 3. However, the descriptions of each convex set in the sequence are
studied independently of each other in this literature. To our knowledge, however, free descriptions which
apply to the entire sequence as well as relations between the sets in the sequence have not been studied
systematically. Such study is necessary to obtain parametric families of freely-described sequences of sets,
which is significant in the context of of our motivating goal of learning algorithms from data.

Free spectrahedra, noncommutative convex algebraic geometry: A broad research program
pursued in several areas involves the study of “matrix” or noncommutative analogues of classical “scalar” or
commutative objects. Examples include random matrix theory and free probability [31], studying matrix-
valued random variables and their limits as opposed to scalar-valued ones; and noncommutative algebraic
geometry [14], studying polynomials in noncommuting variables and their evaluations on matrices as opposed
to standard polynomials in commuting variables that are evaluated on scalars [32, 33, 34, 35]. Applying this
program to convex sets yields matrix-convex sets and free spectrahedra, the latter being sequences of sets of
the form of Example 1.1(e). We refer the reader to [14, 7] for surveys and [36, 37] for some applications. In
analogy to the setting of the present paper, results in this area explicitly pertain to sequences of sets which are
“freely-described”, in the sense that their description can be instantiated in any dimension. For example, free
spectrahedra are sequences of sets described by a single linear matrix inequality, and free algebraic varieties
are defined by the same noncommutative polynomials instantiated on matrices of any size. Another point of
contact with our work is the consideration of relations between the sets in the sequence across dimensions,
such as matrix-convex combinations which have been formalized and studied in this literature. Our notion
of free descriptions is more general than the ones in this literature however, and it allows us to derive more
flexible families of freely-described sets which are adapted to different applications. Further, the relations
between sets in different dimensions we consider in this paper are less restrictive than matrix convexity, and
again allows us to consider more general families of sets than free spectrahedra (see Section 3.3).
Representation stability: Representation stability arose out of the observation that the decomposition
into irreducibles of many sequences of representations stabilize. This phenomenon has been formalized
in [15] using consistent sequences, and subsequently studied in [38, 39, 40] from a categorical perspective
and in [41, 42, 43] from a limits-based perspective. We relate the categorical and limits-based formalisms
to ours in appendix A and Section 7.1, respectively, and refer the reader to [44, 45, 46] for introductions to
this area.
Representation stability has been used to study sequences of polyhedral cones and their infinite-dimensional

limits [47], as well as sequences of algebraic varieties, their defining equations, and their infinite-dimensional



Symmetric group

Signed symmetric group
Even-signed symmetric group
Cyclic group

Orthogonal group

Space of linear maps

Direct sum

Direct powers

Tensor product

Tensor power

S, ={g € R"™"™: g is a permutation matrix.}
B, = {g € R"*™: g is a signed permutation matrix}

D,, = {g € By, : g flips evenly-many signed}

Cp={s":s€R"™™ sends s€; = €;41 modn and r € [n]}.

Op={geR™™:¢gTg=1,}
LV,U)={A: V — U linear}; LV)=L(V,V).
VaeU=VxU={(v,u):veV,ueU}.
VE=V® —vVae.. .0V,

—

k times

VeoUs=span{vu:veV,ueU}=L(V,U).
Vk=V®..-aV.
—_————

k times
Sym*(V) = span{v---vp:v; € V}
= {polynomials of degree =k on V'}

Symmetric algebra = {symmetric tensors of order k over V'}

k
Sym=k(V) = @ Sym‘ (V).
i=0

/\kV:span{vl/\-"/\Uk:vi eV}

= {skew-symmetric tensors of order k over V}.
S*={X eR”™: X" = X} = Sym?(R").
Skew(n) = {X e R : XT = —X} = A’R".
Vel={veV:g-v=vforall ge G},
LWV,U)Y ={A € L(V,U): gAg™" = Afor all g € G}.

Alternating algebra

Symmetric matrices

Skew-symmetric matrices

Spaces of invariants

Table 1: Commonly-used groups and vector spaces.

limits [48, 49, 50]. An important distinction between these works and ours is our application of representa-
tion stability to descriptions of convex sets rather than to their extreme points or rays as in [47]. Thus, we
are able to study non-polyhedral sets such as spectrahedra and sets defined by relative entropy programs.
Similarly, our study of infinite-dimensional limits in Section 7 focuses on limiting descriptions and not just
on limits of the sets themselves.

1.3 Notation and basics

We assume familiarity with the basics of representation theory and convex analysis, and refer the reader
to [51, 52] and [53], respectively, for references. We list several standard groups and constructions involving
vector spaces in Table 1.

Basics:

e We denote [n] = {1,...,n}. A partition A of an integer n is a nonincreasing sequence A = (A; > ... >
Ak > 0) satisfying [A] :==>". \; = n.



e For i € [n], we denote by e; € R™ the ith standard basis vector with a 1 in the ith entry and zero
(n)

everywhere else, and denote e; ’ when we wish to emphasize its size.

e If z € R™ we denote by diag(z) € S™ the diagonal matrix with = on the diagonal. If X € R™*" we
denote by diag(X) € R™ the vector of its diagonal elements.

e All vector spaces in this paper are finite-dimensional real vector spaces equipped with an inner product
(+, ) unless stated otherwise. We emphasize that some of the inner products we use are nonstandard,
hence the transpose of a matrix and the adjoint of the linear operator it represents may differ.

e Given a subspace W C V| denote by Py : V' — W the orthogonal projection onto W.

e We denote by R} the cone of entrywise nonnegative vectors in R™, and by S7} the cone of PSD n x n
matrices. If V' is a vector space, denote Symi(V) =~ Sﬁirimv the cone of PSD self-adjoint linear maps
in L(V).
Representation theory:

o A (linear) action of a group G on a finite-dimensional vector space V' is given by a group homomorphism
p: G — GL(V).
If G is a Lie group, we denote by Dp: g — End(V) the induced representation of its Lie algebra g.
Usually p is clear from context and we omit it, writing g - v = p(g)v for g € G and v € V instead.

e All the groups we consider are compact and all group actions are orthogonal, meaning (g - z,g - y) =
(v,0") for all x,y € V.

o We denote the group ring of G by R[G] = span{e,}4ec, where e, is a basis element indexed by the
group element g. This is a ring with multiplication defined by e, - en, = eqp, for g, h € G and extended
by linearity. Note that a representation of G is the same as a module over the ring R[G].

e If H C (G is a subgroup, and V is a representation of H, the induced representation of G from V is
Indf} (V) = R[G] @p(s) V. We have dim Ind§} (V) = |G/H|dim V, and we apply this notion only when

H has finite index in G. If g1 =id, ga, . . ., g, are coset representatives for G/H, we have
E
md§ (V) = PV, (Ind)
i=1

together with the following action of G: If g € G is (uniquely) written as gg; = g;h for some 4, j € [k]
and h € H, then g - g;v = g;(h - v) for any v € V. This construction is independent of the choice of
coset representatives.

As vector spaces, we have an isomorphism Ind% (V) = VIG/H|, Hence an H-invariant inner product
(-,-) on V induces a G-invariant inner product on VI¢/#| by setting (giv, gju) = 6; j{v,u) for v,u € V
and 4,7 € [|G/H||. Here ¢; ; = 1 if i = j and zero otherwise.

We have an isomorphism (Ind% V) = V# sending v € V¥ to 3, giv € (Ind5V)# and ¥ € (Ind§V)H
to Pyv € VH,

If HC H and G C G’ such that H' NG = H, then we have inclusion G/H < G'/H’' sending
gH — gH’, inducing an inclusion IndgV — Indg/V between induced representations by completing
a set of coset representatives for G/H to representatives for G'/H”. Here V is assumed to be an
H'-representation.

If V,U are H-representations and A: V' — U is an equivariant linear map, we can extend it to a
map Ind(A): Ind%V — Ind%U by definined Ind(A)(g;v) = gi(Av) where g; is one of the above coset
representatives and v € V.

If V is a G-representation and W C V is an H-subrepresentation, there is a G-equivariant linear map
Ind%W — V sending g ® w — g - w whose image is precisely R[G]W = span{g - W}geq,wew -



e The action of G on V induces an action on V¥ and Symk(V) by setting g-v1 ®- - Qv = (gv1)®- - ®
(gux) and g-(v1 - - - vg) = (gv1) - - - (gvg) and extending by linearity. If V and U are both representations
of G, we have an action of G on V@ U by g- (v ®u) = (gv) ® (gu) and extending by linearity, and on
L(V,U) by g- A= gAg~!, making the representations V ® U and £(V,U) isomorphic. Linear maps
invariant under this group action are also called equivariant or intertwining, since they are precisely
the linear maps commuting with the group elements.

Convex analysis:
e The polar of a convex set C' C V is the convex set
C°={zeV:{(x,y) <lforallyeC}. (polar)

e There are several correspondences between convex sets and functions in convex analysis, which we
use to obtain freely-described and compatible functions from sets in Section 2.4. Given a convex
subset C' C V| its gauge function (also called Minkwoski functional) is the convex, nonnegative, and
positively-homogeneous function vo: V' — R defined by

vo(z) = iI>1(f)t s.t. z e tC. (gauge)
t>
Its support function is the convex and positively-homogeneous function ho: V' — R defined by
he(x) = sup (2', z). (supp)
z’'eC

Given a convex subset £ C V @ R, we can define a convex function fg: V' — R by

fe(z) = Egﬂgt s.t. (z,t) € E. (epi)

2 Freely-described and compatible sets

In this section, we formally define freely-described convex sets by generalizing Example 1.1, and explain
how to derive parametric families of such sets. To correctly extend a set learned in a fixed dimension
to higher dimensions, we also consider compatibility conditions relating sets in different dimensions and
derive conditions on free descriptions that certify these conditions. To do so, we use relations between
dimensions in the form of embeddings and projections, and their basic properties introduced and studied
in the representation stability literature. We begin by reviewing the necessary definitions and results from
there.

2.1 Background: Consistent sequences, generation degree, representation sta-
bility
We begin by defining the relations between dimensions that we shall use in this paper. A variant of the

following definition was made in the seminal paper [15] introducing representation stability.!

Definition 2.1 (Consistent sequences). Fiz a family of compact® groups 4 = {Gp}nen such that G, C
Grny1. A consistent sequence of ¢-representations is a sequence V' = {(Vy, n) }nen satisfying the following
properties:

(a) Vi, is an orthogonal G, -representation;
(b) on: Vo = Viiq is a linear Gp-equivariant isometry.

Unless we want to emphasize the embeddings @, , we shall identify V,, with its image inside V,11. We then
write ¥V = {V,,} and take o, to be inclusions V,, C V,,11,> see Figure 1.

As ¢, is an isometry, we have ¢! o ¢, = idy, so that ¢} = Py, is the orthogonal projector onto V;, in
Vit

!The maps @, are not assumed to be isometries in the original paper [15] introducing this definition. We make
this assumption here to simplify our presentation, and because it holds in all our examples.

20ur theory can be extended to reductive groups.

3Formally, we obtain such inclusions inside the direct limit of the sequence.
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Figure 1: Relations between dimensions.

Example 2.2. The following are simple examples of consistent sequences arising in optimization. We
analyze more sophisticated examples in Section 3.

(a) Let V,, = R™ with the standard inner product, and let o, (z) = [x7,0]7 padding a vector with a zero.
This is a consistent sequence for many standard sequences of groups, including G, = Oy, By, Dy, S,
acting by their standard nxn matriz representations. Here G,, is embedded in G11 by sending g € G,
represented as an n X n matriz to g ® 1.

(b) Let V,, = S™ with the Frobenius inner product, and let @, pad a symmetric matriz by a zero row and
column. All the sequences of groups in part (a) act on S™ by conjugation g- X = gX g~ where X € S"
and g € G, is represented as a n X n matriz.

(c) Let V,, = R?" with the normalized inner product (x,y) = 2""x "y, and ¢, (r) = x @ 1o. Here we can
take G, = Can in addition to the standard families of groups in part (a), and embed G,, into Gp41 by
sending a 2™ X 2™ matriz g to g ® Is.

Remark 2.3. Our results generalize to the following, more complicated, sequences of group representa-
tions. If N is a strict poset, an N -indexed consistent sequence of {Gy}nen-representations is a sequence
{(Vos ©N.n) fn<Nen of Gy -representations together with embeddings oy n: Vy — VN for each n < N such
that N n is Gp-equivariant, and Opr,N © ON.n = ©Mn whenever n < N < M. All our results apply in this
setting as well after replacing all occurrences of n+1 by N > n. This allows us to consider sequences such
as R71Xm2 <y R™X™2 yhere the embedding is padding by zeros, and R™ < R™ for all n,k € N by sending
r—x® 1.

To handle more complex description spaces, and thereby obtain more expressive families of sets, it is
useful to form more complex consistent sequences from simpler ones. The following remark addresses these
aims.

Remark 2.4 (Sums, tensors, polynomials). Fiz a family of group ¥4 = {G,}nen such that G,, C Gpy1.
Suppose ¥ = {(V,on)} and % = {(Un,¥n)} are consistent sequences of ¢4 -representations. Then the
following are also consistent sequences of 4 -representations.
(Sums) The direct sum of ¥ and % is V ® U = {(Vey ® Up, 00 B )}
If W is a fized vector space, viewed as a trivial Gp-representation for all n, denote ¥ @ W = {(V,, ®
W, o, ®idw )}
(Tensors) The tensor product of ¥ and % is ¥V @ U = {(Vey @ Uy, o @ ¥p)}-
This is also the sequence of spaces of linear maps L(V,,,U,,) = V,,®U,,, where we embed A,,: V,, — U,
to (¢on @ Yn)An = YnAnpy: Vag1r = Unya.
The order-k tensors over ¥ is VF =¥ @-.-@ V.
k times

If W is a fized vector space, viewed as a trivial G, -representation for all n, denote ¥ @ W = {(V,, ®
W, on @ idw)}.

(Polynomials) The degree-k polynomials over ¥ is Sym"¥ = {](CSymkVn,gaf?k)}, which is also the
sequence of order-k symmetric tensors over ¥ . Here we view Sym*V,, C VEF and restrict o@* to that
subspace.

The sequence of polynomials of degree at most k is denoted Sym=F¥ = @le Sym’ ¥ .

Similarly, we can form the sequence of kth exterior powers /\k V.
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(Moments) The sequence of moment matrices of order k over ¥ is Sym?(Sym=F¥). Its elements can
be viewed as symmetric matrices whose rows and columns are indexed by monomials of degree at most
k in basis elements for V.

The group actions on these spaces are given in Section 1.3. In particular, suppose V,, = R" with
embedding by zero-padding and the action of one of the standard families of groups from Example 2.2(a).
Then V,®% consists of n x --- x n-sized tensors with embeddings by zero padding and Sym*V,, consists
of homogeneous polynomials of degree k in n variables. In this case, we also have Sym?V,, = S" and
A’ V,, = Skew(n). The space Sym?(Sym=FV},) can be viewed as symmetric matrices whose rows and columns
are indexed by monomials of degree up to k£ in n variables. These sequences arises in tensor, sums-of-squares
and moment optimization problems [54, 55].

To relate invariants and equivariants across dimensions, we need canonical isomorphisms between the
spaces of invariants of a consistent sequence. Proposition 2.7 below shows that the projections Py, are such
isomorphisms, using the following parameter introduced in [38] to control the complexity of a consistent
sequence.

Definition 2.5 (Generation degree). A consistent sequence ¥ = {V,,} of {G,}-representations is generated
in degree d if R[Gp]Vy = V,, for all n > d. The smallest d for which this holds is called the generation
degree of the sequence. A subset S C Vy is called a set of generators for ¥ if R[G,|S =V, foralln>d. A
sequence is finitely-generated if it is generated in degree d for some d < co.

Note that R[G,,]Vq = span{gVg}4eq,, , so that ¥ is generated in degree d if the span of the G,-orbit of
V4, when embedded in V,,, is all of V,,, for any n > d. Note also that if ¥ is generated in degree d then Vy
is a set of generators for 7.

Example 2.6. We return to the examples from Example 2.2. Note that the symmetric group S,, is contained
in all the groups in Example 2.2(a).

(a) The sequence V,, = R™ with embeddings by zero-padding from Ezxample 2.2(a) is generated in degree
1 for all the standard families of groups listed there. Indeed, any of the canonical basis vectors e; are
obtained from the first one e; via the action of S, .

(b) The sequence V,, = S™ with embeddings by zero-padding from Ezample 2.2(b) is generated in degree 1
if G, = Oy, and in degree 2 if G, = By, Dy, Sy Indeed, the first claim follows by the spectral theorem,
and the second follows by applying transpositions (Section 1.3) to eje] and ejeq + egey .

(¢c) The sequence Vi, = R?" with embedddings ¢, (x) = ® 1o from Evample 2.2(c) is generated in degree
2 if G5, = Ogn,Baon, Don,Son but is not finitely-generated if G,, = Con. The first claim follows from
the identity e?n) = 2lid — (1,3) + (2,3)] - e§2n_1) ® 1o where (i,§) € San interchanges elements i and
j. The last claim follows because the vector lon ® [1,—-1]T = [1,-1,1,-1,...]T € V,,4; is orthogonal
to R[Gr11]on(Vy), for any n € N.

As the next proposition shows, finite generation gives us canonical isomorphisms between invariants in
different dimensions. We use these isomorphisms to formally define free invariants generalizing the examples
in Definition 2.12.

Proposition 2.7. Suppose ¥ = {(Vy,on)} is a consistent sequence of {G,}-representations generated in
degree d. Then the projections ) = Py, : Vncjf‘fl — V.S are injective for all n > d, and are therefore

isomorphisms for all large enough n.

Proof. First, the map ¢}, is Gy-equivariant because G,, acts orthogonally, and G,, C G411, hence it maps
Gy y1-invariants in V41 to G,-invariants in V,,. Second, suppose ¢%(v) = 0 for some v € Vﬁ;’l“. For any
u € Vg, write u = >, gion(u;) where u; € V,, and g; € G,q1. Because v is G,;-invariant, we have
(v,u) = (@5 (v), >, ui) = 0. As u € V41 was arbitrary, we conclude that v = 0.

The injectivity of ¢} shows that dim V¢ > dim Vgﬁ“ for all n > d, hence the sequence of dimensions
dim V,¢» eventually stabilizes at which point ¢} becomes an isomorphism. O
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Proposition 2.7 is stated in the representation stability literature in terms of the adjoints of the pro-
jections, viewed as maps between coinvariants, see [38, §3] for example. More precisely, the projections
become isomorphisms starting from the presentation degree of the consistent sequence, see Section 4.1 be-
low. Results in representation stability imply that many commonly-encountered consistent sequences are
finitely-generated, and yield bounds on the associated generation and presentation degrees, see Theorem 4.11
below for example.

We also define a notion of maps between consistent sequences, which enables us to define embeddings,
quotients, and isomorphisms identifying consistent sequences with others.

Definition 2.8 (Morphisms of sequences). If ¥ = {(Vy,on)} and % = {(Un,¥n)} are two consistent
sequences of {Gy }-representations, then a morphism of consistent sequences &7 : ¥ — % s a collection of
linear maps o = {A,: Vi, = U,} such that the following hold for each n:

(a) A, is Gp-equivariant;

If ,, and 1, are inclusions, condition (b) above becomes A,,11]v, = A,. Note also that the collection of
morphisms between two sequences ¥ — % forms a linear space, because if {A,} and {A/ } are morphisms
then so is {aA,, + A} for any a, 8 € R.

Example 2.9. Let ¥ = % = {S"} with the action of G, = S, be the consistent sequence from Ezam-
ple 2.2(b). The morphisms ¥ — % form a 3-dimensional space spanned by {Agll)X = X}, {A%Z)X =
diag(X1,)}n, and {ASE’)X = diag(diag(X))}.

As the following proposition shows, morphisms yield additional examples of consistent sequences by tak-
ing the sequences of their images and kernels. These will play a prominent role in our study of extendability
of a fixed convex set to a sequence in Section 4.

Proposition 2.10. If ¥ = {(V,,, on)} and % = {(Un,¥n)} are consistent sequences of { Gy, }-representations
and o = {A,: V, — Uy,} is a morphism of sequences, then the following are also consistent sequences of
{G }-representations.

(Image) Im.e/ = {(An(Vn), ¥n)};
(Kernel) kere? = {(ker A, ©n)}.

Proof. As A, is G,-equivariant, both its image and its kernel are G,,-representations. The embeddings v,
map A, (V;,) to Api1(Vai1) because for any € V,, we have ¢, (Apx) = Apt1(ont) € Any1(Vig1). Similarly,
the embeddings ¢, map ker A, to ker A,,11 because if A,z = 0 then A, 11(pnx) = Yp(Ant12) = 0. The
maps ¢, and ¥, remain G,-equivariant isometries when restricted to the G,,-subrepresentations ker A,, and
An (V). O

Furthermore, if & = {A,,: V,, = U, }: ¥ — % is a surjection of sequences, meaning it is a morphism of
sequences such that each A, is surjective, and if ¥ is generated in degree d, then % is generated in degree
d as well as can be seen by considering the images of a generating set for 7.

Example 2.11. In Ezample 2.9, the image of both {Ag)} and {Agf)} is the consistent sequence of diagonal
matrices with embeddings by zero-padding, which is isomorphic to Example 2.2(a) with G, = S, via the
(iso)morphism of sequences { A, X = diag(X)}. The kernel of {Ag)} is the consistent sequence of symmetric
matrices with zero row and column sums, and the kernel of {AS’)} is the sequence of zero-diagonal symmetric
matrices, both with embeddings by zero-padding.

Morphisms of sequences have appeared in the representation stability literature as the natural notion of
maps between sequences, see [38, Def. 2.1.1] and [39, §3.2]. They also arise when imposing compatibility
on convex sets in different dimensions (Theorem 2.23), and have a natural interpretation in terms of limits
(Section 7.1).
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2.2 Free conic descriptions

In this section, we define and study free descriptions of convex sets, formalizing our observations from
Section 1. We begin by defining freely-described vectors and linear maps which generalize the constituents
of the free descriptions in Example 1.1.

Definition 2.12 (Freely-described elements). A freely-described element in a consistent sequence ¥ =
{(Vi,0n)} of {G,}-representations is a sequence {v, € V.5"} of invariants satisfying ¢ (vni1) = v, for all
n.

Recall that ¢} = Py, , so a freely-described element is a sequence of invariants projecting onto each
other. Note that the set of freely-described elements of a given sequence ¥ is naturally a linear space,*
because if {v,} and {v],} are freely-described elements then so is {aw,, + v}, } for any a, 8 € R. This space
can be identified with V¢ whenever n is large enough by Proposition 2.7.

Example 2.13. The following are simple examples of spaces of freely-described elements.

(a) Let ¥ = {R"} be the consistent sequence from Ezample 2.2(a) with G, = S,,. The freely-described
elements in ¥ are {al,}, for a € R, forming a one-dimensional space.

(b) Let W = {S™} be the consistent sequence from Example 2.2(b) with Gy, = S,,.. Then the freely-described
elements in ¥ are {al, + B1,1}, for a,B € R, forming a two-dimensional space.

(c) Let % = W®% = {L(S"™)} where # is as in (b). Then the freely-described elements in % are

{AnX =a; (1) X1,)1,1,) + (1) X1,)I,, + asTr(X) 1,1, + s Tr(X)I,,
+ a5 (X1,1,) + 1,1} X) + ag (diag(X)1, + L,diag(X)") + a7 X + asdiag(X1,)

+ agdiag(diag(X))}, for some a € R,

forming a 9-dimensional space.

We now arrive at one of the central definitions of this paper, namely, that of free descriptions of convex
sets. These are sequences of conic descriptions consisting of freely-described vectors and linear maps.

Definition 2.14 (Free conic descriptions). Let ¥ = {V,,}, # = {W,}, % = {U,} be consistent sequences
of {Gy }-representations, and # = {K,, CU,} a sequence of convexr cones. A sequence of conic descriptions
of the form

Cp={x€eV,:JyeW, st. Apx+ Bpy+u, € K, }, (ConicSeq)

is called free if {A,},{Bn}, and {u,} are freely-described elements of the consistent sequences ¥ & U,
W U, and U , respectively.

All the descriptions in Example 1.1 become free when the relevant vector spaces are endowed with
natural consistent sequence structure. We consider a few simple examples now, and defer more sophisticated
examples to Section 3.

Example 2.15. Throughout this example, let ¥ = {V,, = R™} with embedding by zero-padding and the
standard actions of the sequences of groups in Example 2.2(a).

(Simplex) Let G,, = S,, and consider the sequence of simplices in Example 1.1(a). This sequence is
given by (ConicSeq) with

w :AI/EBR:{UTL:R”JA}; %:{Kn :Ri@{O}}, W:{WHZO}’

4Formally, the space of freely-described elements is the inverse limit @n V,Gn,
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and
I, 5 0
n |:]]_;LF:| ) n — 07 Up = |:_1:| .

Note that {An}, {Bn}, {wn} are all freely-described elements, hence the standard descriptions of sim-
plices is free.

(¢a-ball) Let G,, = O,, and consider the {s-unit balls in Example 1.1(c). These are given by (ConicSeq)
with
U = Sym2(sym§17/) = {Un = Sn+1}a H = {Kn = Si+1}v W = {Wn = 0}7

and 0 2T
A,x = L mo], B, =0, u,=1I,11.
Again, {An}, {Br}, {un} are freely-described elements, hence these descriptions are free.
(¢1-ball) Let G, = B,, and consider the following extended formulation for the unit-¢, norm ball
Chn={zeR":|z[1 <1}={zeR":FyeR" st. y >0, —y<z <y, (1,,y) <1}
This is a free description of the form (ConicSeq) with
U ={U,=R")VoR}, X ={K,=R.*OR.}, #=7.

Here G,, acts on U, as follows. The subgroup S, permutes each of the three copies of R™ in U,
separately, while a sign matriz diag(s) with s € {£1}" acts trivially on the first copy and interchanges
the coordinates of the second and third copies whose indices lie in {i € [n] : s; = —1}. Define

Apx = (JJ, —JT,O), By = (yvya_]lTy)7 Up = (0a071)
Then {An}, {Bn}, {un} are freely-described and C,, is given by (ConicSeq).

Remark 2.16 (Other description formats). While we phrase all our results in terms of descriptions of the
form (ConicSeq), other formats for descriptions can be rewritten in that form to fit within our framework.
For example, if there are consistent sequences ¥ = {Vn},@v: {U,.}, W = (W} of {G,}-representations
and cones A = {K, CU,} such that

C, = {gnz 1z € I?n, Enz = Wy},

for A, € L(V,, ﬁn)G", B, € E(WN/R, (}n)G” and w, € WS", then C,, is given by (ConicSeq) with
z,

W= U=WoWaV, H=x3000,
and
0 I 0
An: 0 3 Bn: _Bn ) Up = | Wn
I A, 0

Note that gn,én,wn are freely-described if and only if A,, Bn,u, are. The description of the simplex in
Ezxample 2.15 is an example of such a reformulation.

Remark 2.17. The convex sets we obtain from Definition 2.1/ are often group-invariant themselves. Indeed,
standard sequences of cones are often invariant under natural sequences of groups. For example, nonnegative
orthants are permutation-invariant, while PSD cones are orthogonally-invariant. It is then easy to check that
the convex sets we obtain from Definition 2.14 are all group-invariant. This is not a fundamental restriction
of our framework however; to describe non-invariant sets, the different components in a conic description
could be required to be invariant under the actions of different sequences of groups.
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Figure 2: Given points on 2D unit squre, recover unit cube in all dimensions.

Definitions 2.12-2.14 enable us to derive parametric families of free descriptions by finding freely-described
bases for the relevant spaces of invariants. Such a basis can be found either manually by giving expressions for
basis elements as functions of n and checking Definition 2.12; or computationally as explained in Section 5.1
below.

Example 2.18. Consider the following illustrative problem. Given points on the boundary of the unit square
[—1,1]2 as in Figure 2, recover the sequence {[—1,1]"} of unit cubes for all n. This is a simple task that
nevertheless requires parametrizing sequences of convex sets, one in every dimension, and identifying the
right parameters fitting the two-dimensional data. We can obtain the desired parametric families from our
framework. Indeed, let ¥ = {R"} and G,, = B,, as in Example 2.2(a). For the description spaces, define

Y — {Rzn-H} D {Rn}, W = {Rinﬂ D 0}7 W= {Rn} @R,

where R™ is viewed as a representation of S, extended to B, (so signs act trivially), and {R?*"*1} is the
consistent sequence from the description of the {1 ball in FExample 2.15. We then obtain the following 12-
parameter family of freely-described convex sets

I 0421 + Olg]].n]].,z a4]ln Oé'ﬂln
C, :{x eR":JyeR",BeR s.t. a; |—I|z+ |aod + a3]ln]ll ayl, [5] 4+ |azl,| >0,
0 015]1;5 (67 ag (2)

[agl—l— Oélo]ln]l,;r all]ln} |:%:| + 0[12]]_n = 0}

This family contains the sequence {[—1,1]"} of unit cubes, which can be written as

I I 0
[-L,1]"=<zeR*":FyeR",feR st |[-I|ax+|] O mzo, I 0] m—ﬂn:o . (3
0 0 0 p p

To obtain a larger family, we choose the larger description spaces
% =W = Sym®(Sym="{R*"1}) = {§*"F%), o = {s"FP.
Then the dimensions of the relevant spaces of invariants are:
dim £(V,,, U,)9" = 4,  dim L(W,,, U,)%" =108, dimWE" =8, for all n > 4. (4)

We obtain these dimension counts using the algorithm in Section 5.1, see Example 5.2(c).

2.3 Compatibility across dimensions

The following example shows that a freely-described sequence of sets may not extend correctly to higher
dimensions when fitted to data in a fixed dimension.
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Example 2.19. Consider again the problem of fitting the sequence of cubes from Example 2.18. The following
freely-described sequence is contained in the family in (2) and fits the two-dimensional data in Figure 2

perfectly

I I 0 0
C,=2aecR": |-I|lz+| I 0 MJF 0| >0, [[-1,1] 1,] m_o ,
0 -1 -1 3
3
- —1,1).
2n—1[ 1]

However, we have Cy, # [—1,1]™ for all n # 2, so this sequence incorrectly extends to other dimensions. The
issue is that Definition 2.1/ of free descriptions only relates descriptions of convex sets across dimensions,
rather than the sets themselves.

In this section, we define and study relations between the sets in a sequence themselves, which we call
compatibility conditions. As we will see here and in Section 3, our conditions are satisfied by sequences of
sets arising in various applications including the unit cubes, but not by the sequence in Example 2.19. By
searching only over sequences of sets satisfying these conditions, we are guaranteed to obtain sets that are
not only freely-described, but also correctly related across dimensions.

Definition 2.20 (Compatibility conditions). Let ¥ = {V;,} be a consistent sequence of { Gy, }-representations.
Let € = {C,, CV,,} be a sequence of convex sets. We say that € satisfies

Intersection compatibility if C,,p1 NV, = Cy;
Projection compatibility if Py, Cpy1 = C,.

Example 2.21. The following are simple examples of sequences of convex sets satisfying the conditions in
Definition 2.20.

(Simplices) Let V,, = R™ and G,, = S, as in Example 2.2(a). Consider the sequence of standard
simplices A"~ (Ezample 1.1(a)), The sequence ¢ = {A""'} satisfies intersection compatibility but
not projection compatibility.

(¢, norm balls) For the same V,, Gy, the sequence of £, unit-norm balls C,, = {x € R™ : |z||, < 1}
satisfies intersection and projection compatibility for each p € [1,00).

(Stability number) Let V,, = S™ and G,, = S,, as in Example 2.2(b), and let o,;': S® — R be the
inverse stability number given by o (X) = mingean— 2" (X + I,,)x, see [56]. These are concave
functions whose superlevel sets C,, = {X € S" : a,(X)~! > 1} are projection-compatible but not
intersection-compatible, because if a,(X) > 0 then ap41(X) = an(X) + 1.

We mention that intersection and projection compatibility are dual to each other. The following result
is an instance of [53, Cor. 16.3.2].

Proposition 2.22. Suppose {V,,} is a consistent sequence and let € = {C,, C V,,} be a sequence of convex
bodies.® Define the polar sequence €° = {C2 C V,,} by (polar). Then € is intersection-compatible if and
only if €° is projection-compatible.

Example 2.19 shows that a freely-described sequence of sets may not satisfy either compatibility condi-
tion. We therefore derive conditions on descriptions that certify our compatibility conditions.

Theorem 2.23. Let {V,,}, {W,},{U,} be consistent sequences of {Gp}-representations, let {K,, C U,} be a
sequence of convex cones, and let € = {C,, C V,,} be described by linear maps {A,: V, = Up}, {Bn: W, —
U,} and elements {u, € US"} as in (ConicSeq). Assume that the cones {K,} are both intersection-
compatible and projection-compatible.

5A convez body is a compact convex set containing the origin in its interior.
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(a) If {An},{Bn},{Bj} are morphisms, {uy} is freely-described, and up+1 —u, € Kpq1 for alln, then €

is intersection-compatible. If, in addition, { A%} is a morphism, then € is also projection-compatible.

(b) If{A,},{A:H Bn}, {B;} are morphisms, {u,} is freely-described, and u, 41—, € Kpy1+An1 (VD) +

Proof.

B, 11 (W), then € is projection-compatible.

(a) First, we show C,, C Cyp,41. If z € C), then there exists y € W, satisfying A,z + B,y+u, € K,.
Then
An-i—lx + Bn+1y + Unt1 = Anx + Bny + up + (un+1 - un) € Kn-i—la

where we used the facts that {A,,}, {B,,} are morphisms, that K,, C K, 1 by intersection-compatiblity,
and that u,41 — up € Kyy1. Thus, € Cpq1.

Second, we show Cp, 11NV, C C,. If x € C, 11NV, there exists y € W, 11 satisfying A, 112+ Bp1y+
Unt1 € Kpi1. Because {A,} is a morphism, we have A, 12 = A,z and hence Py, A, 112 = A,z.
Because { B} is a morphism, we have Py, B,+1 = B, Pw, , hence Py, Bp11y = Bnt1(Pw, y). Finally,
we have Py uny1 = up, because {u,} is freely-described, and Py, K,+1 C K, because {K,} is
projection-compatible. Thus, applying Py, we obtain A,z + B, (Pw,y) + u, € K,, showing that
x € Cy,. We have shown that € is intersection-compatible.

Because ¥ is intersection-compatible, we have Py, C,41 2 C,,. Conversely, if z € Cp,41 then A, 12+
Bhi1y+uny1 € Kyqq for some y € W1, If {Af} is a morphism, then Py, A,,+1 = A, Py, . Applying
Py, to both sides we obtain A, Py, x + B,Pw,y + un € K, and hence Py, x € C,,, showing that € is
projection-compatible.

First, we show Py, C, 11 C C),. If x € )11 then there is y € W, 41 satisfying A, 1124+ Br11y+uny1 €
K,+1. Applying Py, to both sides and using the facts that {A}}, {B}} are morphisms, that {u,} is
freely-described, and that { K} is projection-compatible, we obtain A, (Py, x)+ B, (Pw, y)+u, € K,
showing that Py, x € C),.

Second, we show C,, C Py, Cpr1. Suppose A,z + Bpy + u, € K, for x € V,,. Let x; € V- and
Yy € W, satisfy upt1 — tn + Anp121 + Bpi1y' € Knyi1. As {A,}, {B,} are morphisms,

Apir1(@+21) + Bop1(y+ V') + ung1 = Apx + Bpy + Uy + (Uns1 — un + Anp121 + Brg1y') € Kpya,

hence z + z) € Cpy1 and Py, (x 4+ 21 ) = x. This shows € is projection-compatible. O

Interestingly, the conditions in Theorem 2.23, which arise naturally when certifying compatibility, actu-
ally smply that the descriptions are free. We say that a sequence of conic descriptions certifies compatibility
when it satisfies the hypotheses of Theorem 2.23.

Remark 2.24. We make a number of remarks about the conditions in Theorem 2.23.

Standard sequences of cones such as nonnegative orthants and PSD cones satisfy both intersection and
projection compatibility.

The set of linear maps {A,} and {B,} satisfying the hypotheses of Theorem 2.23(a) form linear
subspaces of the corresponding spaces of freely-described elements. The set of sequences {u, } satisfying
those hypotheses form a convex cone.

Similarly, we can parametrize descriptions satisfying the hypotheses of Theorem 2.23(b) by a convex
cone, by considering {u,} of the form u, = A, (v,) + By (wy,) + 2, where {v,, € VE}, {w, € WG},
and {z, € K&} are freely-described.

Freely-described sets satisfying the hypotheses of Theorem 2.23(b) need not be intersection-compatible,
as the elliptope in (12) studied below demonstrates.

Free descriptions certifying compatibility often extend to descriptions of infinite-dimensional limits,
see Theorem 7.5 below.

All the descriptions in Example 2.15 certify the compatibility of the sets they describe since they satisfy
the hypotheses of Theorem 2.23(a). We treat more sophisticated examples in Section 3, where we show that
many descriptions arising in practice certify compatibility as well, and that we can obtain rich parametric
families of such descriptions.
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Example 2.25 (Learning the cube). We can attempt to recover the sequence of unit cubes from the data in
Figure 2 by searching only over members of the family (2) certifying intersection and projection compatibility
as in Theorem 2.23(a). These form the T-parameter family

I O{QI 0 a4]1n
Ch,=2xzeR":yeR",BeR s.t. a1 |—T|x+ [zl 0 {y} + layl,| >0,
0 0 « B
3 Qa5

[aGI 0] [Z} + ayl,, = 0}, with oy, a7 > 0.

The only member of this family fitting the data is the desired sequence of cubes (3).

2.4 Convex functions from sets and their compatibility

Thus far, our theory only concerned convex sets. However, problems such as task 2 in Section 1 of ap-
proximating the quantum entropy involve convex functions. Fortunately, there are several correspondences
between convex sets and functions that allow us to tackle such problems using our theory, see Section 1.3.
Our compatibility conditions for sets in Definition 2.20 can be translated via these correspondences to the
following conditions on functions. Denote by R = R U {+oc} the extended real line and recall that if
f:V — R is a convex function and A: V — U is linear, then Af: U — R is a convex function defined by
(Af)(x) = infyrca-1¢z) f(2'), see [53, Thm. 5.7].

Definition 2.26 (Compatibility conditions for functions). Let {V,} be a consistent sequence of {Gy}-
representations. Let f = {fn: V,, = R} be a sequence of convex functions. We say f satisfies

Intersection compatibility if fni1lv, = fn;

Projection compatibility if Py, fn41 = fn-

The following proposition shows that compatibility of functions can be derived from compatibility of sets
using the above correspondences.

Proposition 2.27. Let ¥ = {V,,} be a consistent sequence of {G,,}-representations.

(a) If a sequence {E,, C V,, @R} of convex subsets of ¥ @R is intersection (resp., projection) compatible,
then {fg, : Vi, = R} defined by (epi) is intersection (resp., projection) compatible.

(b) If a sequence € = {C,, C V,} of convexr subsets of ¥ is intersection (resp., projection) compatible,
then {vc, } defined by (gauge) is intersection (resp., projection) compatible.

(c) Let € be as in (b). If € is projection-compatible, then {hc,} defined by (supp) is intersection-
compatible. If € is intersection-compatible and either all the C,, are compact or 1i(Cpy1) NV, # O for
all n, then {h¢, } is projection-compatible.

Proof. Part (a) follows from the identities fg, ,,|v, = fe,,.nv,er) and Py, fE, ., = [Py, oxE.,., as can be
verified directly from (epi). Similalrly, part (b) follows from v¢, ., v, = vc, :1nv, and Py, ve,., = VPy, Cois
as can be verified directly from (gauge). For (c), we have h¢,,,|v, = hp,c,,, by [53, Cor. 16.3.1], from
which the first claim follows. If C), ;1 is compact, then Sion’s minimax theorem gives

(Pv,h¢,.,)(x) = inf sup (7,2') = sup inf (T,2")= sup (T,2') =hc, v,
2/ €Py, ! (2) TECh 41 FECp i1 o' EPY,! (2) FECn+1NVa
This identity, which also holds if ri(Cy4+1) NV, # 0 by [53, Cor. 16.3.1], yields the second claim. O

The compatibility conditions in Definition 2.26 naturally arise in the context of inverse problems.
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Example 2.28 (compatibility in inverse problems). Consider a consistent sequence ¥ = {V,,} of {Gn}-
representations. A popular approach to recover x € V, from m € N linear observations takes as input a
forward map A:V, — R™ and data y € R™ and outputs

Fn(A,y) = argmin f,,(z) + M| Az — y||3, (5)
zeVy,
where fn,: Vi, = R is a convex regularizer promoting desired structure in the solution.

The maps (5) constitute an algorithm which can clearly be instantiated for any (A,y) € L(V,,R™) ®R™
and for any n,m € N. It is desirable for the different maps in this collection to satisfy

Fm,n+1(A7Dn7 y) = Fm,n(Av y), (6)

whenever the corresponding minimizers are unique. Indeed, this says that if the data only depends on the
component of x € V41 in Vy,, then the recovered solution should also lie in V,, to avoid overfitting. When
does (6) hold? If the sequence of regularizers f = {f,} is projection-compatible, then

_min fu1(Z) + AAPLT — b3 = min _min fo11(2) + M| Az — g3 = min f.(2) + Al Az~ y]3

T€Vn41 xeVy, zeV, 11 zeVy,

PrnIT=x

Moreover, if v« = Fp, n(A,y) minimizes f,,(z) + M||Az — y||3 and § is intersection-compatible, then f,(x.)+
MAz, — yl|I3 = fur1(zs) + M|APLz. — yl|3 and hence x. = Fppy pny1(APn,y), showing (6).

3 Examples of freely-described and compatible sets

We consider additional, more sophisticated examples of freely-described sets and functions arising in the
literature and the compatibility conditions that they satisfy.

3.1 Regular polygons

The following example illustrates a natural sequence of convex sets that is freely-described but satisfies
neither intersection nor projection compatibility. Let ¥ = {(V,,, ©»)} be the consistent sequence V,, = R?
with ¢, = idgz and the standard action of the dihedral group G,, = Dihyn. Consider the sequence of regular
2"-gons ¢ = {C,, C R?} defined by

anconv{[CObel]}, 0, = ie{0,...,2" —1}. (7)

sin 91 on’

Because V,, = V,,;1 while the sets C,, # C, 41, the sequence % satisfies neither intersection nor projection
compatibility. Nevertheless, it admits the free description

", [ ~ cos(2mi/2") 0
Co={zeR?:IyeR¥ st. |0 |z+ Sln@[m/z) y+|0|coaRI ®0},
0 o -1
211,

where # = {R?"},, with embeddings y — y ® [1,0]7, and % = ¥ © # ®R. We put the standard inner
products on R?". The group permutes the 2" vertices of C),, defining a permutation action on [2"], and it
acts on R?" by applying these permutations to coordinates.
If 9, = 7(2i + 1)/2" in (7) instead, the following semidefinite description of C,, given in [29] is also free.
Let
Wn — (RQ)nfl D R, Un — (SB)n717 Kn — (Si)n717

where we embed (X1,..., X, 1) € U, = (X1,...,X,-1,0) € Upyq and (zM ... 272 o) € W, —
(™. 22 [y,0]T,0) € W,41. The action of G,, on U, and W, is given in [29]. Then it follows
from [29, Thm. 3] that {C},} is given by (ConicSeq) with

A, (z) = ([2 ”()T] ,0,...,0),
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0 0 0 (z@)T
)

(1) (1) 3 (3)
B (l’(l) x(n72) ): T ) L1 )
n sy , Y 0 21 21 ) ZL'(2) 2 2 )
e _Tg ) e 2®
2 2 2 )
0 (x(n=3))T (n—2)\T
(n—2) (n—2) 0 (1‘ )
(n-3) —3— 3 g2 03 :
x > _ x
l‘gn 2) _zgn 2) % 0

and u,, = (diag(L %7 %), ..., diag(1, %7 %)) It is straightforward to check that all these sequences are freely-

described elements of their corresponding consistent sequences.

3.2 Permutahedra, Schur-Horn orbitopes

In this section, we consider permutahedra, which are convex hulls of all permutations of a vector, and
their matrix analogous, the Schur-Horn orbitopes, which are convex hulls of all symmetric matrices with a
given spectrum. Permutahedra appear as constraint sets in the relaxation of the 2-SUM problem proposed
in [57], with applications ranging from gene sequencing to archaeology. These polytopes have also been
studied in [58, 59]. Schur-Horn orbitopes were studied in [60], and their efficient description as projected
spectrahedra was derived in [61].

Permutahedra: Consider the sequence of standard permutahedra
Perm,, = conv {g S[1,2,... ,n}T} = {M[l,Z,...,n]T : M e RY, M1, = M1, = ]ln} , (8)

where the second equality follows by the Birkhoff-von Neumann theorem. The sequence {Perm,, }, viewed as
subsets of the consistent sequence in Example 2.2(a) with G,, = S,,, is neither intersection- nor projection-
compatible. Furthermore, their description (8) is not free because the map M +— MJ[1,2,...,n] is not
Gp-equivariant. The smaller descriptions of these permutahedra in [62, 63] are also not free because they are
not equivariant. However, there is a sequence of permutahedra arising naturally from a limiting perspective
that is both intersection- and projection-compatible and whose description certifies this compatibility.

Fix ¢,m € N and a vector A\ € R? with distinct entries, and define A = (A1,..., A1,..., Ag, ..., Ag) € R™
in which A; appears m; times (so ) . m; = m). Let G, = S;,2» embedded in G, by sending a m2™ x m2"
matrix g € G, to g ® I. Let ¥ = {R™2"},, with embeddings « — z ® 1, the normalized inner product
(z,y) = (m2")~'z Ty, and the standard action of G,,. We consider convex hulls of all the vectors in ¥
containing A; in m;/m of its entries, which are given using the Birkhoff-von Neumann theorem by

Perm(A),, = conv{g - (X ® Limon) bges,an

n (9)
- {M)\ M ERTTX M1y = Loge, M Lyge = 2"[m1,...,mq]T}.

This is an intersection- and projection-compatible sequence of subsets of ¥". Moreover, the description (9)
is free and certifies intersection and projection compatibility. Indeed, let # = ¥®4 = {R™2"*4}, and

U =W OV ®R? containing cones {RTTLXQ ®0®0}. Then (9) is of the form (ConicSeq) with
Apx = (0,—2,0,0), B,M = (M, M\, M1,, (m2")" "M "1,,2n),

and u, = (0,0, = Tpon, — [22,..., ™2] 7). Note that B;(M,z1, 2, 11) = M + 23 AT — 2514 + Lyygnp| as the
adjoint is taken with respect to the normalized inner product. Thus, {A,}, {A%}, {Bn}, {B}} are morphisms
and u, = u,41 under our embedding, so Theorem 2.23(a) applies.

The insight behind this construction is to view elements of {V,,} as piecewise-constant functions in
L?([0,1]) such that v € V,, takes value v; on [(i — 1)/m2",i/m2") for i € [m2"]. Then {Perm(\),} is the set
of piecewise-constant functions that take values A; on a subset of [0, 1] of measure m;/m. See Section 7 for
such limit-based interpretations of compatibility, in particular Example 7.6(a). We can extend our consistent
sequence to include vectors and matrices of any size by having our consistent sequence be indexed by the

poset N with the divisibility partial order, see Remark 2.3.

20



Schur-Horn orbitopes: We consider the matrix analogs of the above permutahedra, which are convex
hulls of all matrices with a given spectrum. Let G,, = O,,2n embedding in G,,41 by sending a m2"™ x m2"
matrix g to ¢ @ I, let V,, = S™" embedded in Vit1 by X — X ® I, with normalized inner product
(X,Y) = (m2")~1Tr(XY), and with the action of G,, by conjugation. Consider the sequence of Schur-Horn
orbitopes [64, Eq. (19)]

SH(A),, = conv{g - diag(A ® Lan)}gec0,,2n

q q 10
={ZAM:Y1,...,YgeVn st. Y Yi=1, Y =0, Te(Y;) = m,2" fori:l,...,q}, (10)
=1

i=1

which is the matrix analog of (9). This is again a free description certifying both intersection- and projection-
compatibility. Indeed, let # = ¥®9 and % = # & ¥ ®2 &R containing the cones {K,, = (ST?")®1 &0 0}.
Then (10) is of the form (ConicSeq) with

AnX = (0,-X,0,0), BV, = (Vs 3o A¥e, Y Yo (m2") 7 [Te(¥a), .. Te(¥,)])

and u, = (0,0, —Lman, —[72, ..., %}T) Again, note that B} ([Z;]:, X1, Xo, 1) = [Z; + Mi X1 + Xo + pilman]
since the adjoint is taken with respect to the above normalized inner product. Then {A,},{A%}, {B.},{B}}
are all morphisms and u,, = 441 under the above embedding, hence Theorem 2.23(a) applies. Once again,
we can extend this consistent sequence to include matrices of any size using Remark 2.3, and this sequence
has a limit arising in operator algebras, see Example 7.6(b).

Schur-Horn orbitopes are special cases of so-called spectral polyhedra studied in [65]. It would be inter-

esting to identify further examples of freely-described sequences of spectral polyhedra arising in applications.

3.3 Free spectrahedra

The family of free spectrahedra of Example 1.1(e) (discussed more extensively in Section 1.2) is precisely
the parametric family we obtain from our recipe from Section 2.2 when choosing the appropriate description
spaces and imposing compatibility.

Let ¥ = {S"} be the sequence from Example 2.2(b) with the action of G,, = O,, by conjugation. Fix
d,k €N, and let ¥ = %>, U, =S¥ ® ¥, and # = {W,, = 0}.

As the only morphisms %) — % are multiples of the identity, and elements of S*¥ @ S™ are dim S¥ blocks
of n X n symmetric matrices, we conclude that the morphisms ¥ — % are precisely maps of the form
(X1,...,Xq) = >, Li ® X; for some Ly,...,Lq € S¥. As the only G,,-invariants in S™ are multiples of I,,,
the space of freely-described elements in % is {{Lo ® I,,},, : Lo € S¥}, which satisfy Lo ® (I,41 — I,) = 0
if and only if Ly = 0. We conclude that the parametric family of free descriptions of the form (ConicSeq)
satisfying Theorem 2.23(a) is

d
(Dg)n = {(Xl,...,Xd) €SN L@+ LiwX; zo}, Lo > 0.

i=1

which are free spectrahedra parametrized by £ = (Lg, ..., Lg). It is common to assume either Lo = I (the
monic case) or Ly = 0 (the homogeneous case) [7]. As discussed in 1.2, free spectrahedra are fundamental
objects in noncommutative free convex and algebraic geometry, see [7, 14] for an introduction. In particular,
they satisfy both intersection and projection compatibility, and more generally closure under so-called matriz-
convexr combinations.

3.4 Spectral functions, quantum entropy and its variants

Let ¥ = {V,, = S™} with the action of O,, as in Example 2.2(b), and let ¥’ = {V,] = R"} with the action of
S, as in Example 2.2(a). Recall (e.g., [66]) that a convex function F,,: V,, — R is O,-invariant if and only
if there exists an S,-invariant convex function f,,: V! — R satisfying F,,(X) = f,(A(X)) where A\(X) € R"
is the vector of eigenvalues of X € S". Furthermore, the sequence {F,: V,, — R} is intersection-compatible
if and only if the sequence {f,: V, — R} is.
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Examples of such sequences of functions § = {F,} and f = {f,} arise in (quantum) information theory,
where § is the quantum analog of classical information-theoretic parameters f. These are often intersection-
compatible as distributions on n states can be viewed as distributions on n 4 1 states with zero probability
on the last state. For example, the negative entropy and relative entropy and their quantum variants are
given by

ho(x) =Y wilogmi,  Hn(X) = hn(A(X)) = Tr(X log X),

Z ” (11)
Do) = Y ailo ™, S,(X,¥) = DaAX),A(¥) = Tr(X log X — log ).

Here dom(h,) = A" and dom(D,) = (R7)?, while dom(H,,) = D" ! is the spectraplex from Exam-
ple 1.1(b) and dom(S,) = (S7%)?. We use the standard convention that Olog% = 0 even if y = 0, and
xlog% = oo when x # 0 [67, §2.3]. Viewing these sequences of functions as defined over (¥')%? and
¥ ®2 they are intersection-compatible but not projection-compatible (e.g., their domains are not projection-
compatible).

Semidefinite approximations: The functions (11) are not semidefinite-representable (i.e., cannot be
evaluated using semidefinite programming), though semidefinite approximations of them have been proposed
in the literature [68]. We show that these approximations are freely-described, though these descriptions do
not certify intersection compatibility in the sense of Theorem 2.23. The family of approximations of [68] to
the negative quantum entropy {f E”(Lm,k)} is parametrized by m, k € N and is given by (epi) with

Iy, ..., T, Zo, ... Zy €S™ s.b. Zy =1, ijTj = —27FTy,
j=1

E(mk) — {(X, t)eV, ®R

Z;  Zin . Zy—X -T; — 57T}
— — _ —
|:Zi+1 X :| - 0’ for 4 07.”’]6 1’ |: _\/ijj X—SjTj - 07

for j=1,...,m, Tr(To) §t},

where s,w € R™ are the nodes and weights for Gauss-Legendre quadrature.
This is a free description of the form (ConicSeq) which is almost, but not quite, an instance of The-
orem 2.23(a). Indeed, let # = ¥@m+k+tl) and % = ¥ @ (S* @ ¥)®"+k) @ R containing the cones

(K, = {0} & (25" 2" o R, }. Define

o= (o o) (5! 9en) )

" 0 1 Mo 0 1
_ —k T, . .
Bn(TO,...,Tm,Zl,...,Zk)(2 To+z;ij],L 0]@21,. 1({0 O}®Z1+[1 0}@21“),
J:
([ o L Vel o
S(h Yon s 1Fom) ).

1 0
= (0]} Y ono..o).

Note that {A,} and {B,,} are morphisms, that {u,} is a freely-described element of % satisfying w41 —un, €
K41, but that {B;:} is not a morphism because of the Tr(7p) term in B,,. By the proof of Theorem 2.23,

this description certifies that E,Sm k) C Er(ﬂik) but not ESZ’lk) NV,®R) C E,(Lm’k). We fit a semidefinite
approximation to a variant of the quantum entropy from data in Section 5, which is both freely-described

and certifies intersection compatibility.

Parametric families: We can use the description spaces of [68] to derive parametric families of freely-
described sets. Note that S? @ S* = (S")3 as O,,-representations, and these isomorphisms commute with

1=
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zero-padding, so that % = ¥13(m+k) G R as consistent sequences. As dim(S™)%» = 1 and dim £(S")%" = 2,
the dimension of invariants parametrizing free descriptions are

dim L(Vy,, U,)%" = 2[1 +3(m+ k)] + 1, dim L(W,,,U,) = 3(m + k+ 1)[2(m + k) + 1],
dim U2 =2+ 3(m + k).

When m = k = 3 (the default values in the implementation of [68]), we get
dim £(V,,,U,)%" =57,  dim £L(W,,,U,)° =570, dim U~ = 29.

As the only morphisms of sequences ¥ — ¥ are multiples of the identity, and the only morphisms ¥ — R
are multiples of the trace, the dimensions of {A,},{B,} satisfying Theorem 2.23(a) are

dim {{An: Vo = Up} morphism} =3(m+k)+1=29,

dim {{an W,, — Uy} : both {B,} and {B} morphisms} =(m+k+1)3B(m+k)+2] =290.

3.5 Graph parameters

Let ¥ = {S"} and G,, = S,, as in Example 2.2(b). Graph parameters are sequences {f,} of G,-invariant
functions f,: S™ — R, since those are precisely the functions of (weighted) graphs only depending on the
underlying graph rather than on its labelling. Many standard graph parameters are convex (or concave),
see [16]. Some graph parameters, such as the max-cut value, are unchanged if we append isolated vertices to
the graph, hence they are intersection-compatible. Others, such as the stability number, are nonincreasing
when taking induced subgraphs. Moreover, any small graph occurs as an induced subgraph of a larger
graph that has the same parameter value. Such parameters are projection-compatible. Standard graph
parameters often admit freely-described convex relaxations satisfying the same compatibility conditions,
and whose descriptions certify their compatibility. We consider the max-cut and inverse stability number
here as examples and derive parametric families of free descriptions from our framework that may be used
to fit graph parameters to data.

Max-cut: Computing the max-cut value of a weighted undirected graph reduces to evaluating the support
function of the cut polytope C,, = conv{zx ' : x € {1}"}. The sequence of cut polytopes € = {C,} viewed
as subsets of ¥ is projection-compatible, hence the sequence of their support functions and the max-cut
value itself are intersection-compatible by Proposition 2.27(c). Approximation of the max-cut value reduces
to approximation of the cut polytopes. A standard outer approximation of the sequence of cut polytopes is
the sequence of elliptopes

E,={XeS": X »0,diag(X) = 1,}. (12)

The sequence {&,} also satisfies projection compatibility, and the above is a free description certifying this
compatibility. Indeed, let # = {0} and % = ¥ & {R"} where the latter sequence is Example 2.2(a), with
cones & = {S% @ {0}}. Then (12) is of the form (ConicSeq) with A4, X = (X,diag(X)), B, =0, and u,, =
(0,—1,). Note that {4,}, {A;} are morphisms and wy,+1—up = (0, —€p+1) = (en41€m41,0)—Ant1€ntie, 1,
hence Theorem 2.23(b) applies. Neither the cut polytopes nor the elliptopes is intersection-compatible, as
zero-padding a matrix with unit diagonal entries does not yield such a matrix.

Inverse stability number: Computing the inverse stability number reduces to evaluating the support
functions of D,, = conv{zz ' : x € A""1} see [56]. A natural SDP relaxation for this problem is evaluating
the support function of

D,={XeS":X+=0,X>0,1X1, =1},

where X > 0 denotes an entrywise nonnegative matrix. Both {D,} and {D,} are intersection-compatible.
Moreover, the above description of {75”} is free and certifies this compatibility as in Theorem 2.23(b). Indeed,
let # = {0} and Z = ¥ &R with cones K,, = (S NR}*") & 0. Then the above description of D,, is of the
form (ConicSeq) with 4,X = (X, 1, X1,), B, =0, and u,, = (0, —1). Note that {A,} is a morphism and
Up = Up+1, hence Theorem 2.23(a). Neither D,, nor D, is intersection-compatible, see Example 2.21.
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Parametric families: Convex graph parameters can be obtained from permutation-invariant convex

subsets of ¥, see [16] for examples, hence it is desirable to obtain expressive parametric families of such
n+1

sets. To that end, let # = % = Sym?(Sym=?{R"}) = {S( B )} We compute the dimensions of invariants

parametrizing free descriptions using the algorithm in Section 5.1, see Example 5.2(b):

dim £(V,,,U,) =93, dim £(W,,,U,)¢" = 1068, dim WS =17, for alln > 8.

Using the same algorithm, the dimensions of sequences {4, }, {B,} certifying intersection compatibility as
in Theorem 2.23(a) are

dim {{An: Vi = Un} morphism} =19,
(13)
dim {{Bn: W, — Uy} : both {B,} and {B} morphisms} = 104.

3.6 Graphon parameters

A different embedding between graphs arises in the theory of graphons [69], where a weighted graph X € %"
is viewed as a step function Wx : [0,1]2> — R defined by Wx (z,y) = X, ; if (z,y) € [(i —1)/2",i/2") x [(j —
1)/2",5/2"). See Figure 3. Note that X and X ® 1,1] € $2""" correspond to the same step function, and
that the inner product of two such step functions Wy, Wy in L?(]0,1]?) equals the normalized Frobenius
inner product (X,Y) = 272" Tr(X "Y). We therefore define the graphon consistent sequence ¥ = {V,, = $*"}
with embeddings ¢, (X) = X ® 1oy, the above normalized inner products, and the action of G,, = Son by
conjugation. Here G,, is embedded into G, 11 by sending a permutation matrix g to g ® Is.

0 0 05 0
0 0 07 0
X = 0.5 075 0 1
0 0 1 025
0 1/4 2/4 3/4 1
0 ‘ 1
141 0.75
2/4 0.5
3/4f 0.25
1 0

WX('T’ y)

Figure 3: Weighted undirected graph represented as a graph, an adjacency matrix X, and a sym-
metric function (graphon) Wx on [0, 1]2.

The graphon sequence is finitely-generated, as the following computer-assisted proof shows.
Proposition 3.1. The graphon sequence {V,, = Szn} is generated in degree 2.

Proof. Define E§") = e§2n)(e§2n))—r and ESQW) = e§2n)(e§n))—r + eézn)(egw))—r, which span V,,. We verify
computationally that dim 2?21 ]R[S23]<p2(Ei(2)) = dim V3, see the GitHub repository. Therefore, we can
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write

2
Ei(S) = Zri,j@2(E]('2))7 S [2}’ Tij € R[SQS]' (14)
Jj=1

Let 1, (X) = X @ 0 be an embedding of V,, into V41 by zero-padding, and note that EZ.("H) = z/;n(EZ-(n))
and that 1, commutes with a different embedding of Sgn into Sy.+1, namely, one that sends g — g @ Ion.
Applying 9, to (14), we conclude that Ei(nH) can be written as R[Sgn+1]-linear combinations of gpn(E,L-("))

for all n > 2, hence that R[Son+1]0,(Vs) = Viyq for all n > 2. O

We can extend our consistent sequence to include symmetric matrices of any size by having our consistent
sequence be indexed by the poset N with the divisibility partial order, see Remark 2.3.
Graphon parameters: A permutation-invariant and intersection-compatible sequence of functions f =
{fn: Vo — R} is called a graphon parameter, since these are precisely the functions that only depend on
graphs via their associated graphons. A family of graphon parameters that plays a central role in the theory of
graphons and in extremal combinatorics are graph homomorphism densities [69]. Their convexity is related to
weakly-norming graphs and Sidorenko’s conjecture, a major open problem in extremal combinatorics [70, 71].
Interestingly, convex graphon parameters that extend continuously to a certain limit of the graphon sequence
(Example 7.4(b)) are also projection-compatible by [72, Thm. 3.17].

We get parametric families of graphon parameters by taking the gauge functions of parametric families
of intersection-compatible and freely-described convex sets. For example, let % = S* ® ¥ with cones # =
{K, = (S*®S$?"),} and # = {W,, = 0}. Using Example 2.13(c) and Theorem 2.23(a), we get the following

parametric family of freely-described and intersection-compatible sets, parametrized by L1, ..., Lg € S*:
A 1TX1 Tr(X 1
Cn :{X €S —Li®ll’ + %LQ ®11T +Ly® — (X117 + 117 X)
n

+ Ly ® (diag(X)1" + 1diag(X) ") + Ly ® X + Ly ® 117 + Ls ® (2" Ion) = o}, Lg > 0.

Note that all the functions of X appearing in the above description only depend on the associated step
T
function Wx. For example, % = f[o 12 Wx(t,s)dtds and Trz(,f() = fol W (t,t)dt.

4 Extendability

Theorem 2.23 gives sufficient conditions for a sequence of freely-described convex sets to satisfy compatibility
across dimensions. In this section, we consider extending a conically-described set in a fixed dimension to
a freely-described sequence of sets satisfying compatibility. As the hypotheses of Theorem 2.23 require
sequences of linear maps to be morphisms, we focus on extending a fixed linear map to a morphism of
sequences. This question is motivated by our computationaly goals and, to our knowledge, has not been
studied in the representation stability literature. We use the results of the present section to computationally
parametrize and search over sequences of descriptions satisfying Theorem 2.23 in Section 5. We begin by
reviewing additional concepts from the representation stability literature, which we motivate by our new
extendability question above.

4.1 Background: Algebraically free sequences, presentation degree

Let ¥ = {V,.}, % = {U,} be consistent sequences of {G,}-representations and consider a linear map
Apy € L(Vi,, Uno)G"O. When can we extend A,, to a morphism of sequences {A4,}? We seek conditions
on A,, which are easy to enforce computationally, and we use these conditions in Section 5 to develop an
algorithm to parametrize and search over compatible sequences of convex sets. The following proposition
gives an equivalent characterization for the existence of such an extension.

Proposition 4.1. Let ¥ = {V,},% = {U,} be consistent sequences such that ¥ is generated in degree d,
and fir Apy € L(Vyy, Upny) G0 for ng > d.
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(a) There exists an extension {A, € £(Vn,Un)G"}n<n0 satisfying Apt1lv, = A, for all m < ng if and
only if An,(V;) CU; for j < d.

(b) There exists an extension {A, € L(V,,Upn)% Yrsn, satisfying Anyily, = A, for all n > ng if and
only if the following implication holds

Zgimi =0 = ZgiAnoxi =0, forall g; € G, ©; € Vy, neN. (15)
i i

If an extension {A,} of An, exists, then it is unique.

Proof.  (a) If such {A,, }rn<n, exists, then it is uniquely given in terms of A,, by A, = An,|v,. Therefore,
we have A, (V;) = A;(V;) C U; for all j < d. Conversely, suppose A,,(V;) C U; for j < d. We
claim that A,,(V,,) C U, for all n > d as well. Indeed, because ¥ is generated in degree d, we have
Ano (Vi) = Ay (R[GR] V) = R[GR]Ar,(Va) C R[GR]Ug C U, for n > d. Defining A4,, = A,,|v, for
each n < ng yields the desired extension to lower dimensions.

(b) If such {A,, }n>n, exists, it is unique and is explicitly given in terms of A,,, as follows. For any n > ng
and z € V,, we can write = ), g;z; for some g; € G,, and z; € Vg C V,, by definition of the

generation degree. Because A,,: V,, — U, is G,-equivariant and satisfies A, Vig = Ap,, we have

Anz = Ay (ZZ gﬂz‘) = 9i(Anyi), (16)

which expresses A, in terms of A,,. The expression (16) shows that (15) is satisfied. Conversely,
suppose that (15) is satisfied. For each n > ng define A,,: V,, — U, as follows. For any x € V,,, write
x = ), gix; for some g; € G,, and z; € Vy, which is possible because 7" is generated in degree d,
and set Anx to the right-hand side of (16). This is well-defined because if z = >°, giv; = 3, ;]
for gi,g;» € G, and xi7x9 € Vg then ), giAn 2z = Zj g}Anox; by (15). Moreover, A, is linear,
Gn-equivariant, and extends A,,, by construction, so {A, }n>n, is the desired extension of A, . O

The conditions on A,, in Proposition 4.1(a) are easy to impose computationally, and we do so in
Section 5.1. In contrast, while condition (15) in Proposition 4.1(b) fully characterizes extendability of A,
to higher dimensions, it is unclear how to impose it computationally. We therefore proceed to study it
further. In algebraic terms, elements x; € V; are called the generators of ¥, and expressions of the form
> giri = 0 with g; € G, are called relations between those generators over the group G,,. Proposition 4.1(b)
shows that A,, extends to a morphism iff any relation satisfied by the generators of ¥ is also satisfied by
their images under A,,. We therefore need to understand the relations among the generators in V.

We study these relations in two stages. First, we identify two simple types of relations that are satisfied by
the images of the generators under A, for appropriate ¥',% . We then define algebraically free consistent
sequences whose generators satisfy only these two types of relations. Second, we express an arbitrary
consistent sequence as the quotient of an algebraically free one. The kernel of this quotient morphism is a
consistent sequence that encodes all additional relations. To capture the degree starting from which both
the generators and the relations between them stabilize, we define the presentation degree of a consistent
sequence as the maximum of the generation degree of the sequence itself and that of the above kernel, see
Definition 4.9. The presentation degree plays a prominent role in our results in Section 4.2.

We begin carrying out the first stage of the above program and identify two simple types of relations.
The first source for relations between generators in Vg arises from relations over G4. Indeed, if )", g;z; =0
for g; € G4 and x; € Vi then ), gg;x; = 0 for any g € G,,. Such relations are always satisfied by the images
Anyxi. A second source for such relations arises from subgroups of G,, acting trivially on V.

Definition 4.2 (Stabilizing subgroups). Let {V,,} be a consistent sequence of {Gy}-representations. For
any d < n, define the stabilizing subgroups of Vi by

Hoa={9€Gy:g-v=u foralveV}.

Example 4.3. Different consistent sequences may have the same stabilizing subgroups.
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(a) If ¥ = {R"™} with the action of G,, = B, Dy, or S, as in Example 2.2(a), then H, 4 = Gy,_q is the
subgroup of (signed) permutations fizing the first d letters. These are also the stabilizing subgroups
in Ezample 2.2(b), and for the sequence {R?*"*1} appearing the description of the {1 norm ball in
Ezample 2.15.

b) If ¥ = {R2"} with the action of Gy, = Son as in Ezample 2.2(c , then H, 4 is the direct product

( p : p
(Sand)zd of the permutations of each consecutive set of 2"~% coordinates. These are also the stabilizing
subgroups for the graphon sequence in Section 3.6. If G,, = Can, then H, 4 = {id}.

Stabilizing subgroups yield a second source for relations, namely, the relations (h —id)x = 0 for all
x € Vg and h € H, 4. Thus, if A, extends to a morphism then A4, (Vy) C >4 Uf"’d. Rather than
attempt to enforce these constraints computationally, we make a standard simplifying assumption from the
representation stability literature. Specifically, we assume that Uy is fixed by H, 4 (or a subgroup of it, see
below) for all n > d, in which case there is a simple sufficient condition for the above constraints that we
can impose computationally.

Definition 4.4 (¥-modules). Let ¥ = {V,,} and % = {U, } be consistent sequences of { Gy, }-representations,
and let {Hy, q}a<n be the stabilizing subgroups of ¥ as in Definition 4.2. We say that % is a ¥-module if

U; C Uf”‘d for all d < n.

This terminology comes from a categorical approach to representation stability, see Appendix A. Se-
quences constructed from #-modules as in Remark 2.4 and Proposition 2.10 remain ¥-modules.

Example 4.5. Sym?(Sym=4(A\" ¥)) is a ¥ -module for any consistent sequence ¥ . This sequence arises in
Theorem 6.12 below.

If % is a #-module, then imposing A,,(Vy) € Uy is sufficient to guarantee A, (Va) C (),>q4 U
since Uy is contained in the right-hand side of this inclusion. Imposing this sufficient condition can done
computationally, see Section 5.1. This concludes the first stage of our program.

To go beyond the above two simple types of relations satisfied by the generators, we begin by defining
algebraically free® consistent sequences, whose generators do not satisfy any additional types of relations.
We then write any consistent sequence as the image under a morphism of sequences of an algebraically free
one. The kernel of this morphism precisely captures the relations satisfied by the generators.

Definition 4.6 (Induction, algebraically free sequences). Let ¥ be a consistent sequence of {G,, }-representations,
and for d <n let H, 4 C Gy, be its stabilizing subgroups.

(a) Fiz d € N and a Gg-representation W. The associated ¥-induction sequence is defined by
Indg, (W) = {mdz,, W}

where the induced representation is taken to be 0 when n < d. This is a ¥ -module.
Here GqHy g = {gh:g € Gq, h € H, 4} is the subgroup generated by G4 and H,, 4 inside Gy,.

(b) A consistent sequence F is an algebraically free ¥-module if it is a direct sum of ¥ -induction se-
quences. The sequence ¥V itself is algebraically free if it is an algebraically free ¥ -module.

Definition 4.6 uses the fact that ghg™' € H,, 4 for any g € G4 and h € H,, 4 by Definition 4.2, implying
that the subgroup generated by G4 and H, 4 inside G,, is just the product GqH, 4. To see that Indg, (W) is

indeed a consistent sequence of {G,, }-representations, note that there is a natural inclusion Indgs u, Wi —
Indg;‘}iﬂ)de described in Section 1.3 induced by the inclusions G4H, ¢ C GaHpy1,4 and G,, € G419 and
the fact that GyHy 414N Gy = GaHy, g4, which follows by Definition 4.2. The inner product and group action
on the induced representation with which it becomes a consistent sequence are also described in Section 1.3.

SFreeness in Definition 4.6 is meant in the algebraic sense of being generated by generators with no nontrivial
relations between them, in contrast to Definition 2.14 where it is meant in the sense of dimension-free descriptions.
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Example 4.7. The following are examples of algebraically free sequences.

(a) The sequence ¥ = {V,, = R"} with G,, = B,,D,,, or S, as in Example 2.2(a) is the ¥ -induction
sequence ¥ = Indg, V1.

(b) Let ¥ be as in (a). Then % = {U, = S™} with G, = B,,Dy, or S, as in Example 2.2(b) is the
algebraically free ¥ -module U = @?:1 Indg, W; where Wy = Uy and Wa = R(erey + ezef ) C Us.

Any consistent sequence is the image under a morphism of sequences of an algebraically free sequence.

Proposition 4.8. Let ¥ be a consistent sequence of {Gy, }-representations and let % = {Uy} be a ¥ -module.
Then % is generated in degree d if and only if there exists an algebraically free ¥ -module F generated in
degree d and a surjective morphism of sequences F — U .

Proof. It # = {F,} is a ¥-module and {A,: F, — U,} is a surjective morphism, then for any n > d we
have U,, = A, (F,) = An(R[Gr]Fy) = R[G,]An(Fu) = R[Gr)Ag(Fa) = R[G,,]Uqy, where we used the fact that
F is generated in degree d; the equivariance of A, ; the fact that A,|r, = A4 since {A,} is a morphism; and
the surjectivity of A4. This shows % is generated in degree d.

Conversely, if % is generated in degree d, define the algebraically free ¥-module .% = @?:1 Indg, (U;)
and consider the morphism &% — % defined by g @ u — ¢ - u for each g € G,,, u € U;, and i € [d] (see
Section 1.3). The image of this morphism in U, is precisely Y™™} R[G,,]U;, hence it is surjective for all
n. Finally, Indg, (U;) is generated in degree i, so .% is generated in degree d. O

The kernel of the morphism in Proposition 4.8 precisely encodes all the additional relations beyond the
two simple types above satisfied by the generators of . The generation degree of this kernel then captures
the point at which relations stabilize. We therefore define the presentation degree as the maximum of the
generation degree of ¥ and that of this kernel, which captures stabilization of the generators as well as of
the relations between them.

Definition 4.9 (Relation and presentation degrees). Let ¥ be a consistent sequence of { Gy, }-representations.
We say that a ¥ -module % is generated in degree d, related in degree r, and presented in degree k =
max{d,r} if there exists an algebraically free ¥ -module F generated in degree d, and a surjective morphism
of sequences F — % whose kernel is generated in degree r. The smallest k for which this holds is called the
presentation degree of % .

Note that the presentation degree is at least as large as the generation degree (cf. Definition 2.5).
The presentation degree enables us to strengthen Proposition 2.7 and to quantify more precisely when the
projections there become isomorphisms.

Proposition 4.10. Let ¥ be a consistent sequence of { Gy, }-representations and % be a ¥ -module presented
in degree k. Then the maps Py, : Uﬁ:{’l — US are isomorphisms for all n > k.

Proof. As % is presented in degree k, there exists an algebraically free ¥-module .# = {F,} and a surjective
morphism .# — % such that both its kernel # = {K,,} and .# itself are generated in degree k. Because
each map F;,, — U, is a G,-equivariant surjection with kernel K,, its restriction to invariants FnG" — UGn
is surjective with kernel KGn.

As .7 is an algebraically free #-module, there exist integers d; and Gg;-representations Wy, satisfying
F = @j Ind(;dj Wy, . Such .# has generation degree max; d; < k. Therefore, letting { H,, 4} be the stabilizing
subgroups of ¥, we have for n > k

Gn Ga.
Gn _ Gn ~ dj
B = @j <Indej Hp (de)> = @j de )

see Section 1.3. Thus, dim F¢» is constant for n > k. Moreover, by Proposition 2.7 and the fact that %
and % are generated in degree k, we have dim K¢ > dim KnGﬁrl and similarly dim U$" > dim Ufjfl for
alln > k.

By the rank-nullity theorem, we have dim US" = dim F&» — dim KS». As dim F& is constant while
both dim US» and dim KS» are nonincreasing for n > k, we conclude that they are all constant for n > k.
To conclude, note that Py, is injective for all n > k£ by Proposition 2.7. O
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The presentation degree allows us to ensure condition (15) is satisfied and hence to extend a fixed linear
map to a morphism of sequences in Theorem 4.14, thus answering the question posed in the beginning of this
section. Therefore, the presentation degree appears in our extendability result for convex sets (Theorem 4.15),
and in our algorithm for computationally parametrizing such sets (Section 5.1). Because of the importance
of the presentation degree to our framework, we give a calculus for these degrees. This calculus allows us
to bound the presentation degrees of complicated sequences constructed from simpler sequences with known
presentation degrees. The following theorem is a consequence of results in [38, 39, 40] concerning calculus
for generation degrees. We combine these results to obtain the following analogous calculus for presentation
degrees, whose proof is given in Appendix A.

Theorem 4.11 (Calculus for generation and presentation degrees). Let ¥ be a consistent sequence of {Gp}-
representations and let W ,% be ¥ -modules generated in degrees dw ,dy and presented in degrees ky, ky,
respectively. Then

(Sums) # @ % is generated in degree max{dw,dy} and presented in degree max{kw,ky}.

(Images and kernels) If & : # — % and </* are morphisms, then im</ and ker & are generated in
degree dyy and presented in degree kyy .

If v ={V, =R"} with G,, = B,,,D,,, or S,, as in Ezample 2.2(a), we further have
(Tensors) # @ % is generated in degree dw + dy and presented in degree max{kw + dy, ky + dw }.
(Sym and A) Sym‘#, N*# are generated in degree {dy and presented in degree (£ — 1)dy + k.
Proof. This follows from Theorem A.13 in the appendix. O

Example 4.12. Let ¥ = {R"} with G, = B, Dy, or S, as in Example 2.2(a), which is algebraically free
and generated in degree 1. Therefore,

(a) V& Sym" ¥, Symgk”//,/\k ¥ are generated and presented in degree k, Sym*(Sym=F¥) is generated
and presented in degree 2k, and Symé(/\k V) is generated and presented in degree k¢.

(b) ¥ @Sym?(Sym=F¥) = {L(R", S(ntk))} is generated and presented in degree 2(k+1) and [Sym?(Sym=F¥)]®2 =
{E(S(ktn))} is generated and presented in degree 4k.

It would be interesting to extend the calculus of Theorem 4.11 to other sequences of groups, such as
G, = 0,, as well as to modules over the consistent sequence of graphons from Section 3.6. It would also
be interesting to algorithmically compute presentation degrees, such as by extending the computer-assisted
proof of Proposition 3.1.

Remark 4.13 (¥-modules vs. stabilizing subgroups). All of the statements in this section assume a “base”
consistent sequence ¥. Note however that these statements only depend on the stabilizing subgroups {H,, 4}
of V. In fact, any sequence of subgroups {Hpq C Gp}a<n satisfying Hpt1qa 2 Hpa, Hpa+r1 C Hpd,
and Hpy1,0 N Gp = Hyq for all d < n arise as stabilizing subgroups of a consistent sequence of {G}-
representations.

The stabilizing subgroups play a central role because they determine the sets of embeddings {gpn—1- - ¢a}gea, =
Gn/Hy q of V4 into V,,, and the combinatorics of these embeddings yields Theorem 4.11. See the proof of [38,
Prop. 2.8.6] and Appendiz A for example. We formulate our results in terms of ¥ -modules rather than the
subgroups {Hp q} directly because the sequences we use are often constructed from the same base sequence
using Remark 2.4, easing the application of our results, see Section 5 for example.

4.2 Extension to a freely-described and compatible sequence

Let ¥ = {V,}, % = {U,},# = {W,} be consistent sequences of {G,, }-representations, and let {K,, C U,}
be convex cones satisfying both intersection and projection compatibility. In this section, we fix ng and
consider a convex subset C,, C V,, described as in (ConicSeq). We want to extend C,, with its fixed
description to a freely-described and compatible sequence.
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If ng exceeds the presentation degrees of W', %,V ® % and # & %, then Proposition 4.10 shows that
we can uniquely extend all the invariants in the description of C,,, to freely-described elements, and hence
extend C,, to a freely-described sequence. How can we ensure that this unique extension satisfies our
compatibility conditions (Definition 2.20)7? More specifically, when do the extensions of the above invariants
to freely-described elements satisfy the conditions of Theorem 2.237

We begin by using the presentation degree to simplify our characterization in Proposition 4.1 for when a
fixed equivariant linear map extends to a morphism. The following theorem answers the motivating question
we presented in Section 4.

Theorem 4.14. Let ¥ be a consistent sequence of {G,}-representations and let V' = {V,}, % = {Uy,}
be two ¥y-modules. Assume ¥ is generated in degree d and presented in degree k, and fix ng > k. If
Any € L(Vyg, Upny)Cro satisfies A, (V;) C Uj for j < d, then A,, extends to a morphism of sequences
V= U.

Proof. Let {H,_ q} be the stabilizing subgroups of #;. Suppose first that ¥ = % = P ; Inde 4 Wy, is free.
Note that it is generated in degree max; d; < d.

Let Ag, = An0|de and fix n > d;. Because % is a ¥p-module, we have Uy, C Uf"’dj, S0 we can view
U4, as a representation of G4, Hy 4, on which H, 4, acts trivially. As Ay, (Wy,) C Uy, and is Gg; Hp a;-
equivariant, the following composition defines an equivariant map

Ind(Adj )

. GTL Gn
Ang: Indgy o (Wa)) ——=nd@ Uy,

gRu>g-u
et g,

where the induced map Ind(A4,) was defined in Section 1.3. Note that A,,; = Anohndcd (W )ng» SIDCE
3 J
Ao jlg@w) =g- Apyw for all g € Gn and w € Wy, . Also, {An ;} defines a morphism Indg, (Wa,) — %.
Therefore, the desired extension of A,, to a morphism of sequences {4, } is given by A4,, = @ ; Apj: Vi —
U,.
Now suppose % is an algebraically free ¥-module as above with a surjection % — ¥ whose kernel
K ={K,} is generated in degree k. Define the composition

~ A
70
Ano : an — ‘/no —_— Unoa

which satisfies Zno (F;) CUjfor all j < d by assumption and gno (Ky,) = 0 by its definition. By the previous
paragraph, it extends to a morphism {A,,: F,, — U,}. Because % is generated in degree k and ng > k, we
have K,, = R[G,,]K,,. Because 4, is equivariant, we have A, (K,) = 0. Therefore, A4,, can be factored as

F, - F,/K,=V, An, U, where the maps A,, in this factorization give the desired extension of A, to a
morphism ¥ — % . O

Comparing Theorem 4.14 with Proposition 4.1, we see that condition (15) there is satisfied merely by
choosing ng exceeding the presentation degree. To satisfy the conditions in Theorem 2.23, we also use
Theorem 4.14 to ensure {A}} defines a morphism. To that end, note that Ay (U;) C Vj if and only if
An, (Vf) CcU J-L, where orthogonal complements are taken inside V,,, and U,,. We can now give conditions
guaranteeing extendability of a convex set to a freely-described and compatible sequence. We use the
following theorem to computationally parametrize and search over such sequences of sets in Section 5.

Theorem 4.15 (Parametrizing freely-described and compatible sequences). Let ¥ be a consistent sequence
of {Gn} representations and let V' = {V,.}, # = {W,}, and % = {U,} be ¥y-modules generated in degrees
dy,dy,dw, respectively, and presented in degree k. Let {K, C U,} be a sequence of convex cones that is
both intersection- and projection-compatible. Fix ng > k.

Let Apy € L(Vig, Ung )90, By € L(Why, Ung )90 satisfying

Any (Vi) CU; fori <dy, Bpn,(W;) CU; fori<dw, B, (W) CU* fori<dy. (17)

Also let uy, € US;"O.
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Then there are unique extensions of An, and By, to morphisms of sequences {An}: ¥V — % and
{Bpn}: W — % such that {BX} is a morphism of sequences % — W as well. Furthermore, there is a
unique extension of un, to a freely-described element {u,}. Let € = {C,} be the freely-described sequence
given by (ConicSeq).

(a) If upy1 — Uy € Kpyq for all n, then € is intersection-compatible. If we also have A,,(Vit) C Ui for
1 < dy, then it is also projection-compatible.

(b) If upi1 — tn € Kpi1 + Ans1(VE) 4 Bruy1(Ung1) for all n, then € is projection-compatible.
Proof. This is a combination of Theorem 4.14 and Theorem 2.23. O

In Section 5, we use Theorem 4.15 to computationally parametrize and search over free descriptions
certifying compatibility. We do so by fixing ng as in the theorem and finding a basis for the space of linear
maps An,, Bn, satisfying (17), and searching over the coefficients in this basis. In contrast, we lack a good
description for the collection of u,, satisfying the hypotheses of Theorem 4.15, such as the convex cone of
Un, satisfying the hypotheses in part (a). In the numerical examples in Section 5, we fix a freely-described
element {u,} satisfying u, 1 — un € K41 in advance and only search over linear maps A, Bn,. In those
examples, we have % = Sym?(Sym="¥) for some consistent sequence ¥ and K, = Symi(SymSk V) are
the corresponding PSD cones, in which case the identities {un = id\symgkvn} form such a sequence. Here we
view Sme(SymSkVn) as self-adjoint endomorphisms of SymSkVn, and the cone K, as those endomorphisms
which are positive-semidefinite.

Example 4.16. Let G,, = B,,, Dy, or'S,,, and let %5 = {R"} as in Example 2.2(a). Let ¥ = Sym?>¥; = {S"}
and choose description spaces W = U = Symz(SymSk”f/g) = {S(n:k)} with the corresponding PSD cones
H = Sym?(Sym=Fp).

Theorem 4.11 shows that the presentation degrees of ¥V and W = % are 2 and 2k, respectively, and
their generation degrees are equal to their presentation degrees. Fix ng > 2k, and suppose Cp, C S™ is
given by (ConicSeq) with A,,(V;) C U; for j < 2, B, (We) C Uy and By, (W) C Uit for £ < 2k, and
Up, = I(nzk). By Theorem 4.15, the unique extension of C,, to a freely-described sequence € is intersection-

compatible. If, furthermore, Ay, (le) C Ujl for j < 2k then € is also projection-compatible.

5 Computationally parametrizing and searching over descriptions

In this section, we explain how to computationally parametrize free descriptions of convex sets, and search
over them in the context of certain regression problems such as the one from Section 1. Our Matlab
implementation of the following algorithms can be found at

https://github.com/eitangl/anyDimCvxSets.

5.1 Computationally parametrizing descriptions

Suppose we seek a parametric family of convex subsets {C,, C V,} of a consistent sequence ¥ = {V,,} of
¢ = {G,, }-representations. Both ¥ and ¢ are usually dictated by the application at hand and the symmetries
it exhibits. We then choose description spaces % = {U,}, # = {W,} and convex cones # = {K, C U,}.
These are usually constructed from ¥ using Remark 2.4, and are therefore #-modules. There is a trade-off
in choosing description spaces; large description spaces yield more expressive families, but optimization over
the convex sets in these families becomes more expensive. In this section, we explain how to parametrize free
descriptions with and without certifying compatibility as in Theorem 2.23. Our procedure is summarized in
Algorithm 1.

Fix np € N. We now explain how to find bases for equivariant linear maps A,, and B, that extend
to freely-described elements of ¥ ® % and # ® %, and to morphisms ¥ — % and # — % , respectively.
We also specify how large ng needs to be for our procedure to work. This elaborates steps 5, 8 and 11 in
Algorithm 1.
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Algorithm 1 Learn a freely-described (and possibly compatible) sequence of convex sets.

1: Input: Consistent sequences ¥, % , %, cones % , and freely-described {u, € US"} satisfying
Upt+1 — Up € K.
Output: Freely-described {A,},{B,}.
if compatibility not required then
Fix ng > presentation degrees of ¥ @ % and # ® %« .
Find bases for £(V,,y, Upy )90 and LWy, Upg)Emo.
else
Fix ny > presentation degrees of ¥, %, % .
Find bases for subspaces of £L(Vyy, Up,)¢m0 and L£(Wi,,, Un,)¢70 satisfying the hypotheses
of Theorem 4.15.
9: end if
10: Search over coefficients in above basis to learn A,,,, By, at level ny.
11: For any n > ng, find unique equivariant A,,, B, projecting onto A, By,

Step 5: Computing basis for equivariant maps. We explain how to compute a basis for invariants
in a fixed vector space, then instantiate the algorithm to perform step 5. If V' is a representation of a group
G, a vector v € V is G-invariant iff g - v = v for all g € G, which can be rewritten as v € ker(g — I) for all
g € G. Thus, finding a basis for invariants in a fixed vector space reduces to finding a basis for the kernel of
a matrix, though this matrix may be very large or even infinite. We can dramatically reduce the size of this
matrix by only considering discrete and continuous generators of G [73]. Formally,

Theorem 5.1 ([73, Thm. 1]). Let G be a real Lie group with finitely-many connected components acting on
a vector space V' wvia the homomorphism p: G — GL(V). Let {H;} be a basis for the Lie algebra g of G and
{h;} be a finite collection of discrete generators. Then

v e VY — Dp(H;)v =0 and (p(h;) —idy)-v =0 for alli,j.

Sets of Lie algebra bases and discrete generators for various standard groups are given in [73]. For
example, G = S,, is generated by two elements, namely, the transposition (1,2) and the n-cycle (1,...,n),
reducing the number of group elements that must be considered from the naive n! to two. For G = O, a
basis for the Lie algebra g = Skew(n) is given by E; ; = eie;-r —eje] for i < j, and only a single discrete
generator such as h; = diag(—1,1,...,1) is needed, for a total of (g) + 1 elements.

As equivariant linear maps are precisely the invariants in the space of linear maps, Theorem 5.1 allows
us to obtain a basis for equivariant maps between fixed vector spaces. Explicitly, if py: Gy, — GL(V,,,)
and py: Gp, — GL(U,,) are the group homomorphisms defining the actions of G,, on V,,,U,,, then

Apy € L(Vyyy, Upy )0 if and only if

The equations (18) express the space £(V;,,, Uy, )% 0 as the kernel of a matrix, which is often very large and
sparse. A basis for the kernel of such a matrix can be computed using its LU decomposition as in [74, 75],
or using the algorithm of [73, §5]. A basis for the space L(W,,,Upn,)%" is obtained analogously.

Step 8: Computing a basis for extendable equivariant linear maps. By Theorem 4.15, to
find a basis for maps A,, extending to a morphism we need to find a basis for equivariant linear maps
satisfying A,,,(V;) C U; for i < dy where dy is the generation degree of #". This is again a linear condition
on Ap,. Indeed, defining ¢n, i = @no—1---@i: Vi = Vi if i < ng and ppgn, = iano, and similarly for
Une i, We have

Ano(‘/i) - []z < (I— PUi)Ano

v, =0 <= (I =YgV i) AngPro,i = 0. (19)

The subspace of L£(V,,,,Un,)% satisfying the hypotheses of Theorem 4.15 is thus again the kernel of a
matrix obtained by combining (18) and (19). To also impose A, (V;t) C U+ for i < dy where dy is the
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generation degree of %, so that A}, extends to a morphism, note that
Ano (‘/’LJ_) < U’LJ_ — ,PUiATLo|ViL =0 = w:o,iAno (I - (pno,i(p;o,i) =0, (20)

hence the corresponding subspace of L£(V,,,,Uy,,)%"0 is the kernel of the matrix obtained by combining (18)-
(20). The subspace of £(W,,,Uy,,)%0 satisfying the hypotheses of Theorem 4.15 is again the kernel of a
matrix and its basis is computed similarly.

Step 11: Extending to higher dimensions. Given equivariant A,,,, By, we wish to extend them to
freely-described elements. These extensions are morphisms if the hypotheses of Theorem 4.14 are satisfied.
We do so computationally by solving a linear system for each n > ng to which we wish to extend. Specifically,
the map A, € L(V,,U,) extending a fixed A, is the unique solution to the linear system (18) (with ng
replaced by n) and ¥y, An@nn, = Any. If Ay, is equivariant and ng exceeds the presentation degree of
YV @ U, or if A,, also satisfies (19) and ng exceeds the presentation degree of ¥, then this system has a
unique solution for any n > ng by Proposition A.11 and Theorem 4.14. This linear system is typically large
and sparse, and we solve it using LSQR [76]. The extension of B,, is handled similarly, except that ng
needs to exceed the presentation degrees of both #" and % to guarantee that both B,,, and B;, = extend to
morphisms.

Example 5.2 (Dimension counts). We use the above algorithm to obtain dimension counts for the spaces
of linear maps {An},{Bn} and {u,} parametrizing free descriptions. See the functions compute_dims_a,
compute_dims_b, and compute_dims_c on GitHub for the code computing the dimensions in the three examples
below.
(a) Let ¥ = {R™} with the action of G, =S, as in Example 2.2(a), and let # = U = Sym?(Sym=2¥).
Then V', %,V Q U, W QU are all ¥-modules and are presented in degrees 1,4,5,8, respectively, by
Theorem 4.11.

The dimensions of invariants parametrizing free descriptions were given in (4) as
dim £(V,, U,)% = 39, dim L(W,,,U,,)%" = 1068, and dimUS"» = 17 for n > 8. The dimensions
of linear maps {A,} and {B,} satisfying Theorem 2.23 are

dim {{An: Vi, = Upn} morphism} =6,
dim {{Bn: W, — Uy,} : both {B,} and {B};} morphisms} = 104.

If we further require { A%} to be a morphism, the dimension of {A,} decreases to 5.

(b) Let ¥ = {S"} with the action of Gy, = S,, as in Ezample 2.2(a), and let W ,% be as in (a). Then
VU,V QU W QU are all ¥ -modules (by Example 4.5(a)) and are presented in degrees 2,4,6,8,
respectively.

The dimension of invariant {A,} in this case is dim L(V,,,U,)%" = 93, and the dimensions of
dim L(W,,, U,,)¢" and dim WS are as in (a). The dimensions of linear maps {A,} and {B,} satisfy-
ing Theorem 2.23 are 19 and 104, respectively, see (13). If we further require { A%} to be a morphism,
the dimension of {A,} decreases to 12.

(c) Let v = {R"} with the action of Gy, = B,, as in Ezample 2.2(a), let V' = {R*"*1} with the action
of Gy, = By, as in the description of the ¢1 ball in Example 2.15, and let W = U = Sme(Symgl“f/’).
Then VU,V Q U, W & U are all ¥-modules (by Example 4.3(a)) and are presented in degrees
1,2,3,4, respectively.

The dimensions of invariants in this case are

dim £(V,,, Up)9" =4,  dim L(W,,,U,)%" =108, dimUS" =8, for alln > 4.
The dimensions of linear maps {A,} and {By,} satisfying Theorem 2.23 are
dim {{An: Vi = Un} morphism} =3,
dim {{Bn: W, — U,} : both {By,} and {B;;} morphisms} = 37.

If we further require {A} to be a morphism, the dimension does not decrease in this case.
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https://github.com/eitangl/anyDimCvxSets/blob/main/compute_dims_c.m

5.2 Searching over descriptions: Convex regression

We give an algorithm to search over the parametric families of descriptions obtained in Section 5.1 in the
context of the following regression problem, which includes our tasks from Section 1. Let {V},} be a consistent
sequence of {G,, }-representations and let "¢ = {ffrue: V,, — R} be an unknown sequence of functions we
wish to estimate given some of its values. Assume the following conditions are satisfied by f**ue:

e firue ig G, -invariant for all n,
e U jg intersection-compatible (possibly also projection-compatible),
e firue ig 4 gauge function, i.e., a nonnegative positively-homogeneous convex function.

We are given evaluation data {(x;, fi¢(z;))}2; C Vy, xR to which we fit a freely-described and intersection-

compatible sequence of gauge functions of the form

fu(z; Ay, Bpy A) = gg t+ Myl st Apz+ Bpy +tuy, € K,y (P)
YEWn,

= sup —(z, Apz) st ||Bizll <A (2,Ch) <1, z€ K, (D)
z€U,

where we take wu, € int(K,) so that Slater’s condition is satisfied, and the values of the primal (P) and
dual (D) programs above are equal. If §7 is also projection-compatible, then we wish the fitted sequence
{fn} to be projection-compatible as well. Here || - || is an arbitrary intersection- and projection-compatible
norm on %, and || - ||, is its dual norm. In all experiments below, we use % = Sym?(Sym=F7") for some
¥-module ¥’ and some k with the corresponding PSD cones ¢ = Symi(Symgk”f/’ ) and Frobenius norm.
We then choose {u,, € int(K,)} to be the sequence of identity matrices. The case A = 0 gives the gauge
function (gauge) of (ConicSeq), which satisfies intersection and projection compatibility under the conditions
in Theorem 2.23(a). It is easy to show that the above f is intersection and projection compatible under the
same conditions.
To fit Ay, Bn,, A to the given data, we consider the optimization problem.

min el s.t. (Regress)
c€RY
ATL07B’H-()7)‘Z)‘Inin
HOEEDIRER
(yi, t;) feasible for (P) with cost < fr™"(x;) + &, (PC)
2; feasible for (D) with cost > ff;g“e(acl) — &, (DC)
Anpg, Bn, satisfy (17). (Ext)

Constraints (PC) and (DC) are required to hold for all i € [D].

The constraints (PC) and (DC) ensure that fi™¢ —&; < fp, (24 An, Bp,A) < fi(z;) + €4, hence
minimizing ||e|| fits the data. The constraint (Ext) ensures that the fitted f,, extends to a freely-described
and compatible sequence f = {f,,: V,, = R}. We enforce the last constraint by finding a basis for feasible
A, and B, using the algorithm from Section 5.1 and optimizing over the coefficients in that basis. We
omit constraint (Ext) when optimizing over freely-described (but not necessarily compatible) sequences.

As (Regress) involves bilinear constraints, we tackle that program via alternating minimization, where
we alternate between fixing Ay, Bno, A and {(¢;,v:)}, {z:} while optimizing over the rest of the variables.
Note that Slater’s condition holds in (Regress) for both steps of alternating minimization when u,, € int(X,).

The regularization parameter X is kept above a positive threshold A, to prevent numerical issues during
the alternation.

5.3 Numerical results

We apply our algorithm to learn semidefinite approximations of two non-SDP-representale functions, com-
paring the results with and without imposing compatibility (Ext). The first function we approximate is the

ly norm ||z = (3, |ﬂvi|7r)1/7r7 which is not SDP-representable because  is irrational. We view the ¢, norm
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Figure 4: Errors for learning the ¢, norm and the quantum entropy variant (22). The dashed
vertical lines denote the max n for which data is available.

as defined on the sequence ¥ = {R"} with G,, = B,, from Example 2.2(a). It satisfies both intersection
and projection compatibility. We choose description spaces # = % = {Sym?(Sym='R27+1) = §2712} g
in Example 5.2(c), with the corresponding PSD cones {K, = Si"”}. We used 50 data points in R™ for
n < ng = 2. We remark that ny = 2 exceeds the presentation degrees of ¥, # , %, hence we can uniquely
extend the learned two-dimensional set to a freely-described and compatible sequence when imposing (Ext).
If we do not impose (DC) and search over all freely-described (possibly incompatible) sequences, the dimen-
sion of equivariant A,,, B, only stabilizes from n = 4, the presentation degree of # ® % . As we only have
two-dimensional data, the maps A, B, we obtain from (Regress) do not uniquely extend to higher dimen-
sions. In the experiments below, we find a basis for equivariant maps in dimension n = 4, and zero out the
coefficients of all the basis elements on which (Regress) does not depend. This highlights another advantage
of imposing compatibility—it allows us to uniquely identify a free description from lower-dimensional data.

The second sequence of functions we approximate is the nonnegative and positively-homogeneous variant
of the quantum entropy given by

fu(X) =Tr [(X + Tr(X)I)log (X/Tr(X) + 1) ]: ST = R, (22)

defined on the sequence {S"} with G,, = O,, from Example 2.2(b). Once again, the function (22) and the
quantum entropy itself cannot be evaluated using semidefinite programming, though a family of semidef-
inite approximations for the quantum entropy is analytically derived in [68]. We aim to learn such an
approximation entirely from evaluation data. To that end, we choose description spaces # = {W,, =

Sym?(Sym='R") = §"*'} and % = {U, = Sym?(Sym=?R") = S(n;z})}7 with corresponding PSD cones

n+2
{K, = Si 2 )} Our data consists of 200 PSD matrices in S™ for n < ny = 4. Without a calculus for presen-
tation degrees for G,, = O,,, our theory does not guarantee the existence of an O,,-invariant extension of our
learned description. Our theory does however guarantee a unique B,,-invariant extension, and in practice we
observe that the extension is, in fact, O,,-invariant.

To approximate the above functions, we used (Regress) with 100 random initializations to fit the data
in degree ng. For the above two examples, not only is foJ“e positively-homogeneous and nonnegative, but
also fire(x) # 0 for x # 0 in the domain. We therefore normalize the data x; by x; — x;/f}"*(xz;), so
that fi"(2;) = 1 for all 7 and all points contribute equally to the objective of (Regress). We used the /5
norm for the cost function and Ay, = 1072 in (Regress). To evaluate the results, we extended our learned

descriptions to n = 20, sampled 103 unit-norm points (also PSD for the quantum entropy example) and
|fn ()= fr0 ()]
o L dae@) ) . . .
The errors are plotted in Figure 4, which shows that imposing compatibility conditions yields larger errors

computed the average normalized errors in each n up to 20.
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in dimensions in which data is available, but ensures that the error increases gracefully when extending to
higher dimensions. Since imposing compatibility conditions decreases the search space in (Regress), we
expect the optimal solution of (Regress) with compatibility conditions to exhibit larger errors in dimensions
in which data is available compared to the optimal freely-described (but possibly incompatible) solution.
That is not the case in Figure 4(b), illustrating the nonconvexity of the fitting problem (Regress) and
demonstrating another advantage of imposing compatibility—the resulting smaller parametric family allows
our algorithm to better fit the data.

6 Constant-sized invariant conic programs

In the previous sections, we studied freely-described and compatible sequences of convex sets {C}, } contained
in a consistent sequence ¥. As observed in Remark 2.17, these convex sets are often group-invariant because
they are given by (ConicSeq) as projections of the intersection of invariant cones K, with invariant affine
spaces.

In this section, we further consider optimizing invariant linear functions over such sets. Such programs
can be simplified by restricting their domain to invariant vectors [77, §3]. As we have seen in Proposition 2.7,
when ¥ is finitely-generated the dimensions of its spaces of invariants stabilize, so the size of the variables in
such programs stabilizes as well. However, the size of the constraints may not stabilize, because the cones of
invariants { K~} may grow in complexity. For example, if K, is the cone of n-variate degree k polynomials
that are nonnegative over all of R™ and G,, = S,,, the best-known description of K&~ has complexity which is
a (nonconstant) polynomial in n [78, 79, 80]. We therefore seek conditions for the existence of constant-sized
descriptions for a family of convex cones { K$»}, and bounds on the value of n after which the size stabilizes,
in the sense of the following definition.

Definition 6.1 (Constant-sized descriptions). Let {U,} be a consistent sequence of {G,} representations
and {K, C U,} a sequence of convex cones. Fort € N, we say that the sequence {KS» C US"} admits a
constant-sized description for n >t if there exists a single vector space U containing a cone K, linear maps
Tn: U — UG, and subspaces L,, C U such that K¢ = T,,(K N Ly,) for alln > t.

In other words, constant-sized descriptions express all cones in the sequence as images of linear slices of
the same cone. If { K"} admit constant-sized descriptions for n > ¢ as in Definition 6.1, then optimization
over convex sets given by (ConicSeq) can be rewritten as an optimization problem over an affine slice of the
fixed cone K. In order to apply standard software to solve such a problem, we might express K in terms of
standard cones such as the PSD and relative entropy cones, as these are among the most expressive families
for which such software is available. Constant-sized descriptions for symmetric PSD and relative entropy
cones have been obtained on a case-by-case basis in the literature [22, 23, 24, 25]. In this section, we explain
how these results can be generalized and derived systematically from an interplay between representation
stability and the structure of the cones in question.

6.1 Background: Uniform representation stability, permutation modules

Let {U,} be a finitely-generated consistent sequence of {G, }-representations. We derive constant-sized
descriptions for {KS» C US»} by finding constant-sized bases for US in terms of which membership in
K& is simply expressed. For PSD cones and their variants, such bases are obtained by viewing symmetric
matrices as self-adjoint operators on a group representation, which can be block-diagonalized using the
decomposition of their domains into irreducibles. For the relative entropy cones and their variants, such
bases are obtained by viewing vectors as functions on a finite set on which the group acts, and considering
indicators for orbits of that set. We proceed to state a few additional results from the representation stability
literature pertaining to these two cases.

Proposition 2.7 shows that dim VnG" stabilizes whenever {V,,} is a finitely-generated consistent sequence
of {G,, }-representations. In fact, the theory of [38, 39, 41] and others shows that for many standard families
{G,} of groups, the entire decomposition of V,, into irreducibles stabilizes. This phenomenon was called
uniform representation stability in [15], and implies that the sizes of the blocks in PSD matrices stabilize
by Schur’s lemma, a fact that we shall use below to obtain constant-sized descriptions for PSD cones. The
following is a concrete instance of this phenomenon that we shall use below.
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Theorem 6.2 ([38, Thm. 1.13],[39, Thm. 4.27]). Let ¥, = {R"} with G,, = B,,, Dy, orS,, be the consistent
sequence from Example 2.2(a) and let ¥V = {V,} be a ¥j-module generated in degree d and presented in
degree k. Then there exists a finite set A and integers my € N, together with an assignment X\ — Wy, of a
distinct G, -irreducible Wy(,,) to each A € A for n > k+d such that V,, = @)\E/\ W;\ﬁ] as G, -representations.

Proof. The irreducibles of the groups S,,,D,,B,, are indexed as in [39, §2.1], and the consistent labelling
of irreducibles for different n is given in [39, §2.2]. Under this labelling, the ¥j-module ¥ is uniformly
representation stable with stable range n > k + d by [39, Thms. 4.4, 4.27], which precisely says that the
set of irreducibles appearing in the decomposition of the V,, and their multiplicities become constant for
n > k+d by [15, Def. 2.6]. O

Example 6.3. Irreducibles of S,, are indexed by partitions of n. If Ai[n] = (n) is the trivial partition and
Az2[n] = (n —1,1), then R™ = Wy (] © Wi, [n for all n > 1, where Wy, () = span{l,} and Wy, = {z €
R™ : ]II:U = 0} are distinct irreducible representations of Sy,.

Next, to study relative entropy cones and their variants, we introduce a class of particularly simple
consistent sequences on which the group acts by permuting basis elements. If a group G acts on a (finite) set
A, define R4 = @, 4 €a to be the (|.A|-dimensional) vector space spanned by orthonormal basis elements
{€a}tac., which is a G-representation with action g- e, = €g.q-

Definition 6.4 (Permutation modules). Let ¥ = {V,,} be a consistent sequence of {Gy,}-representations.
Let { A, C V,,} be finite G, -invariant sets satisfying A, C Apy1 for all n. Then the permutation ¥-module
generated by the sets {A,} is the ¥ -module {R4},,.

Permutation modules can be analyzed in terms of the orbits in the sets A,,. In particular, indicators of
orbits form a basis for the space of invariants in a permutation module.

Proposition 6.5. Let ¥ be a consistent sequence of {G,}-representations, let {A, C V,,} be a nested
sequence of finite group-invariant sets, and let % = {RA"}n be the corresponding permutation ¥ -module.

(a) % s generated in degree d if and only if A, = UgEGn gAqg for allm > d.

(b) The projections Py, : Ugjrlfl — UG are isomorphisms for all n > d if and only if (a) holds and the
number of orbits in A, which equals dim US" , is constant for all n > d.

(c) If ¥ = {R"} and G,, = B,,, Dy, orS,, as in Ezample 2.2(a), then % is an algebraically free ¥ -module.

Proof. (a) Wehave R[G,,|Vqg =) acua, Rega = &b Req, which equals V,, ifand only if | o 9Ad =
9€Gn a€lUgec, 944 ’

Ay

(b) If ./(n C A, is a set of G,-orbit representatives, then US" >~ RA» has a basis consisting of ]lt(ln) =
deG”/StabG (a) €ga for a € A, where Stabg (o) = {g € G, : g- o = a}. Finally, PUn]l&"'H) =1

for such «.

(¢) Let A C Ay be a set of minimal degree Gg-orbit representatives. We argue that these are also the
G ,-orbit representatives of A, forAall n > d. Indeed, since A, = J yeG gAs=U yeG gA, it suffices
to show that distinct elements in A lie in distinct G,-orbits. To that end, observe that ¥ satisfies the
property

g-a€VyforaeVy, geG, = g€ Gyst. g-a=g-a. (23)
Indeed, define § to act as g on the coordinates {i € [d] : a; # 0} and act trivially on all the others.
Therefore, if a,a’ € Ay lie in the same G,-orbit for n > d, then they also lie in the same Gg4-orbit.
This also shows that AN A; is a set of minimal degree G;-orbit representatives for each j < d, hence
that U,, = @, 4 R[Gnleq for all n.
Next, we argue that % is an algebraically free #-module. Observe that ¥ satisfies the additional
property

a € Vg \ V4_1 has min. degree in its Gg-orbit = Stabg,, (a) = Stabg, (a)H,, 4, (24)
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Indeed, if o € V3 \ V41 has minimal degree then all its d entries are nonzero, hence any g € G,, fixing
a must map the first d coordinates to themselves. Therefore, if a € V;\ V41 has minimal degree and

91,92, - - -, gMm are coset representatives for G, /Stabg, (o) Hp 4, then
M M
Gn _ 1.1Gn G
RGalea = D Reg,a = @D g - Rea =Gy, (o, (Rea) = ndGry,  (dSe, o Rea)
m=1 m=1

where the first equality follows by (24), the second by the definition of a permutation represen-
tation (Definition 6.4), and the third equality follows by (Ind), and the last equality follows be-
cause Gg/Stabg,(a) =2 (GqeHy q4)/(Stabg,(a)Hy,q). Thus, if @ € A has degree d, and we define

W, = Ind;‘;‘facda (ayRéa; then % = D.c.ilndg,, (W) is indeed free. O
Note that Proposition 6.5(c) applies to permutation ¥-modules for any ¥ satisfying (23) and (24).
Finally, we shall need the following result, showing stabilization of invariants under stabilizing subgroups.

Proposition 6.6 ([39, Lemma 4.19]). Let ¥ = {R"} and G, = B,,,D,,, orS, as in Example 2.2(a) and let
U be a ¥ -module presented in degree k. If {H, 4} are the stabilizing subgroups of ¥ and { € N, then the

L Hpyq, Hy, ; ;
projections Py, : U, 1" — Un' ™" are isomorphisms for all n > £ + k.

Corollary 6.7. Let ¥ = {R"} and G, = B,,D,, or S, as in Example 2.2(a) and let % be a V-

module presented in degree k. If B € R4\ RY™! has minimal degree in its Gg-orbit, then the projections

Stab
Pu, : Un_s_a1 Sni1 (P — Uyrben B are isomorphisms for alln > d + k.

n

Proof. As shown in (24), we have Stabg, (8) = Stabg, (8)Hy, 4 for all n > d, hence

Stab H, Stab B
Sta Gn(B) _ ylina St ca(B)

By Proposition 6.6, the projections Py, : Utriva 5yt are isomorphisms for all n > d + k. It thus

n+1
. . Stab Stab
suffices to show that if u € Ufff’l'd satisfies Py, u € U, Gd(ﬁ), then u € Unfl @al® por any such v and
g € Stabg,(B) we have g-u € U:i"fl‘d because Hy11,4 and Stabg,(8) € G4 commute for our specific 7. As
Py, (u—g-u) =0 and Py, is injective on Uf_:fl’d, we get u =g - u. O

Proposition 6.6 is one of the main ingredients in the proof of Theorem 6.2. More generally, properties
of shifted consistent sequences, which are sequences with group actions restricted to stabilizing subgroups,
yield many of the phenomena in the representation stability literature, see [81] and references therein.

6.2 The PSD cone and its variants

We begin by giving constant-sized descriptions for certain sequences of PSD cones. We do so by deriving
constant-sized bases for spaces of invariants in terms of which membership in the cones are simply expressed.

Theorem 6.8. Let ¥y = {R"} with G,, = B,,,D,,, orS,, as in Example 2.2(a), and let ¥ = {V,} be a %-
module generated in degree d and presented in degree k. Then the cones {Symi(Vn)}n admit constant-sized
descriptions forn > k + d.

Proof. By Theorem 6.2, there exists a finite set A satisfying

Vo =D Wi
AEA S~
=:Van)
where Wy, is a Gy-irreducible and V), is the corresponding isotypic component. Invariant elements of

U, = Sym2(Vn) are equivariant and self-adjoint endomorphisms of V,,. If X € U%" is such an endomorphism
and A # p € A index distinct irreducibles, then Py, X|v,,, = 0 by Schur’s Lemma [51, §1.2]. Because the
irreducibles of G,, = B,,,D,,, and S,, are of real type [82] (meaning they remain irreducible when complex-
ified), Schur’s Lemma also implies that Pw,, X|w,, is a multiple of the identity for each A € A, hence
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’PVWL]X ‘V)\[n] = X\ ® Igim Wi for some X, € S™*. We conclude that there exists an orthogonal matrix @,
depending on the irreducible decomposition of V,, satisfying

UrcL;n = {Qn @(X)\ ® IdimWA[n])Q:L : X)\ S Sm/\} ) (25)
AEA
hence
Sym? (V)¢ = {X e US" : X = 0} = {Qn @ (X) @ Liimw, )@ X € ST*} ) (26)
AEA,

Thus, we obtain constant-sized descriptions by defining U = @,., ™ and T,,: U — UG sending (X))aea
to Qn D rca(Xx ® Laimw, )@y, which maps K = @, ., S onto Symi(Vn)G". O

We now instantiate ¥ to obtain more concrete corollaries.

Corollary 6.9. IfG,, = S,,,D,, or B, acts on R™ as in Example 2.2(a), then the cones Symi(Symng")G” =~
ntk

G'Vl
(S(+ * )) admit constant-sized descriptions by (26) for n > 2d.

Proof. The sequence ¥ = {SydeR"} is generated and presented in degree d by Theorem 4.11. O

Remark 6.10. The basis for US™ obtained by mapping the standard basis for U via T, in the proof of Theo-
rem 6.8 is not freely-described because Py, Qny1 7# Qn in general, as Py, does not map isotypic components
Vilnt1] to V. For example, if ¥ is the sequence from Example 2.2(a), which decomposes into irreducibles
as in Example 6.3, we have Py, Wy, 1) = R". In contrast, the basis that we shall use in Section 6.3 to
give a constant-sized description of the relative entropy cone is freely-described. The choice of basis here is
dictated by compatibility with the cone rather than by free descriptions.

To obtain further corollaries, we consider equivariant images of cones.

Proposition 6.11. Let % = {U,} and # = {W,} be consistent sequences of {G}-representations. Let
{K,, CU,} be a sequence of convex cones such that K,, is G,,-invariant for eachn. If {KS»} admits constant-
sized descriptions for n > t, then so does {m,(K, N L,)% C W,} for any sequence {m, € L(U,, W,)"}
and any sequence of Gy -invariant subspaces L,, C U,.

Proof. Suppose K¢» = T,(K N L) for n > t where T),: U — US» and L!, C U are subspaces as in
Definition 6.1. Because 7, is G,-equivariant,

T (K N Ly) % =m0, (K§ NLE™) = (m, 0 T,) (K N Ly, N T Y (LE™)).
Noting that L, N T, 1(LS") is a subspace of U, we get the desired constant-sized descriptions. O

We now show that various cones of symmetric sums of squares polynomials admit constant-sized descrip-
tions, generalizing a number of results in the literature. For the following theorem, a polynomial f is a sum
of squares modulo an ideal Z if there exist finitely-many polynomials g; such that f — > j gj2- el

Theorem 6.12. Let G,, = B,,,D,, orS,,, with their standard action on R™. Let
k
o < P sym’ (/\ Rn) =Rz, ilicin<<ip<n,
d>0

be a Gy-invariant ideal, and let U, = Sym=2*(\* R")/Z,, together with the sums-of-squares cone SOSy,, =
{f €U, : fisasum of squares mod I,}. Then the sequence {SOSgﬂ} admits a constant-sized description
for n > 2kd.
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of degree

Proof. If v(zx) is the vector whose coordinates are all the monomials in the (Z) variables z;, .,

at most d, then [54, Thm. 3.39] yields
k
SOSy, =, (Sym2+ (Sym<d (/\ R”))) . (M) =v(z)" Mu(z) +T,,.

The map 7, : Sym? (Symgd ( /\k R”)) — U, is equivariant by definition of the action of G,, and the invari-

ance of Z,,. If % = {R"} as in Example 2.2(a), then ¥ = Sym=¢ (/\k ”1/0) is a #p-module generated and
presented in degree kd by Theorem 4.11. Thus, the result follows from Theorem 6.8 and Proposition 6.11. [J

If k=1,Z, = (0), and G,, = S,, then we recover [22, Thms. 4.7, 4.10], and when G,, = D,, or B,, we
recover [24, Cor. 3.23] with improved range of n for which the cones admit constant-sized descriptions for
G, =D, fromn >2dton>2d. It k>2ifZ, = (z; — x?)lc([n]) is the ideal generated by x2 — x; where I

=k

ranges over all k-subsets of [n], and if G,, = S,,, we recover [23, Thm. 2.4]. Theorem 6.12 generalizes all of
these results to include any of the classical Weyl groups and any sequence of invariant ideals.

An application of Theorem 6.12 is obtaining constant-sized SDPs to certify graph homomorphism density
inequalities [23, 83]. Many problems in extremal combinatorics can be recast as proving polynomial inequal-
ities between homomorphism densities of graphs, which is the fraction of maps between the vertex sets of
two graphs that define graph homomorphisms. A simple example is Mantel’s theorem, which states that the
maximum number of edges in a triangle-free graph is [n?/4]. Razborov proposed a method of certifying such
inequalities using flag algebras [84], which were shown in [23, 83] to be sums-of-squares certificates of certain
symmetric polynomial inequalities. Razborov’s flags are interpreted there as “free” spanning sets for spaces
of symmetric polynomials. Formally, they are freely-described elements in the sense of Definition 2.12. Our
development above shows that both the existence of such freely-described spanning sets and the resulting
constant-sized SDPs are consequences of representation stability.

6.3 The relative entropy cone and its variants

Let %) be a consistent sequence of {G,,} representations and ¥ = {R“47} be a permutation #j-module. Let
U = 79?2 @R, and define the relative entropy cone

REA, = {(r,c,t) e R @R @R :v,¢ >0, D(v,¢) < t}, (27)

where D(v,c) =3 c 4. Valog ("‘*) is the relative entropy (see Section 3.4).

Co

Proposition 6.13. Let ¥ = {RA"} be a permutation ¥o-module such that dim V.S is constant for all
n > d. Then the cones {REiZ} given by (27) admit constant-sized descriptions for n > d.

Proof. Let M = dim(RA4)% and fix n > d. Let {o;};e(m) C An be a set of Gy-orbit representatives, and
let Ljn =3 cq, /Stabe, (a,) €9, for each j € [M], so that {1;,}je(n) is a basis for (RA»)Gn = RM | Then
a basis for US" consists of {(1;,0,0),(0,1;,,0)}emn U{(0,0,1)}.

If (v,c,t) € UG for n > d is expanded as v = Zjle v;1; , and similarly for ¢, then

M X
REf\Z =< (v,e,t) € UG 106> 0, Z |G /Stabg,, (o) |75 log (?) <t
j=1 J

Let U = RE @ RE @ R, define
M o
K= (0é6t) eRFORVOR: 2,620, Y #5log (J> <ty,
Cj

j=1

and define T}, : U — US™ sending (e;,0,0) — |G, /Stabg, (a;)| 71 (1;.0,0,0), sending (0, e;,0) — |G, /Stabg,, ()] (0, 1,0
and sending (0,0,1) — (0,0,1). Then REiZ = T,(K) for all n > d, giving the desired constant-sized de-
scriptions. 0
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Now suppose # = {RB»} is another permutation #)-module. Let U=WeU = {U, = L(R5,U,)}
and consider the cones of maps

REM_4, 5, = {M €U, : M(RE") C REAn} - {M €U, : Mes € RE4, forall B € B,L} . (28)

We obtain constant-sized descriptions for these cones for a specific 7§.

Proposition 6.14. Suppose ¥y = {R"} with G,, = B,,,D,,, orS,, as in Example 2.2(a) and that {RA»}, {RB~}
are permutation ¥y-modules generated in degrees dy , dyy , respectively. Then the sequence of cones {REMi: Bn}
in (28) admits constant-sized descriptions for n > dy + dw .

Proof. Let BC Ba,, be a set of minimal-degree orbit representatives, which are also orbit representatives
for B,, for all n > dy, by Proposition 6.5(c). Any M € US» = L(RB~,U,,)%" for n > dy is fully determined

Ustabcn (ﬂ)

by the images Meg € of the basis elements eg for 5 € B and conversely, for any collection

Uﬁ c UnStabGn,(ﬁ)
Be

Meg € K3#Pen(B) g4 a1l 8 € B. Thus, we have

U = @une? REMG 5 = P RES™ )
peB seB

4 there is a unique M € [7,? satisfying Meg = ug. Moreover, M € K, if and only if

By Corollary 6.7, the projections Py, : (RAn+1)StabGn+1<ﬁ> — (RA)Staben () are isomorphisms for all n >
dy + dy . Proposition 6.13 then gives constant-sized descriptions for {REitbe"(ﬁ )} for each A € B. O
n

As an application of Proposition 6.14, we obtain constant-sized descriptions for SAGE cones of signomials.
Indeed, if A,,B, C R™ as in the above proposition, define the sequence # = ¥ @ # = {F,}, viewed as
spaces of functions on {R"},

Fo=1{f@) =Y cael® + 3 tgel®™ e\ tg e Ry 2RA @R,
acA, BEB,

with G,, acting by g- f = fog™'. Sums of exponentials as in F}, are called signomials, and their optimization
has a number of applications [85]. As usual, minimizing a signomial f over R™ can be recast as maximizing
v € R such that f—v > 0 on R™, hence optimizing signomials can be reduced to certifying their nonnegativity.
This is NP-hard in general, but can be done efficiently if only a single coefficient of f is nonnegative, or if f
is a sum of such signomials [86]. Formally, define the cones of (Sums of) nonnegative AM/GM Exponential
functions, called AGE (resp., SAGE) functions, by

AGE4, g = {f(x) = Z cael®® 4 tel7) . f >0 on R" and ¢, > 0 for all o € An} )
acA,

SAGE4, 5, = Y AGE4, 3.
/BEB’VL
Theorem 6.15. Suppose A,,B, C R" where R" is embedded in R"*' by zero-padding and with the standard
action of G, =S,,,D,, or B,,. If A, = UgGGn gAa, foralln > dys and B, = UgGGn gAag for alln > dp,
then the invariant SAGE cones SAGE%;B” admit constant-sized descriptions forn > da + dp.

Proof. Identify M € U, with tuples (Meg)ges, = (P, D) t5)sep, € R4 @ RA @ R for each B € B,,.
The authors of [86] show that, in our notation,

SAGE4, 5, = {(c, t) e R4 @RB :3M = (), e 15) e, € REM4, 5, sit. > P =¢,
BEBn

Z v (a—B)=0forall g e Bn}

acA,
=7, (REMa, 5, N L),
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where

L, = {M =D, t5)pen, €Un: Y vl (a—B)=0forall B e Bn} 7
acA,

(M) = | > P (ts)sen, | € R4 @R,
BEB;,

Note that , is equivariant, since
_ -1 -1 —1 1
(g : M)eﬂ = gMg 166 = gMeg*1B =g- (V(g ,3),0(9 ﬂ)atgflﬁ) = (g : V(g B)7g . C(g ﬂ)atgflﬁ)a

hence

—1
mlg- M) = | > g-c% D (tgp)ses, | = (9 Y P9 (ts)sen, | =g mn(M).
BEB, BEBL
Similarly, if ZaEA (ﬁ)( — ) =0 for all g € B,, then
> (@ v Mala=B) =g 3 L g a g ) =g X v Pla—gT'8) =0,
acAy, acA, acA,
hence L,, is G-invariant. Thus, the result follows from Proposition 6.14 and Proposition 6.11. O

Theorem 6.15 generalizes [25, Thm. 5.3] beyond S,, to the other classical Weyl groups D,, and B,,. It
would be interesting to further generalize to signomials defined on more general consistent sequences than
{R"}, which would require generalizing the description of the AGE cone from [86].

7 Limits

In this section, we consider infinite-dimensional limits of consistent sequences and of their convex subsets. In
particular, we show that free descriptions certifying compatibility conditions as in Theorem 2.23 naturally
extend to descriptions of limiting convex sets. To do so, we begin by reviewing a limiting approach to
representation stability.

7.1 Background: A limiting approach to representation stability

We define limits of consistent sequences, and interpret our definitions from Section 2.2 in terms of these
limits.

Definition 7.1. For a consistent sequence ¥ = {V,,} of {G,}-representations, define its limiting represen-
tation as the vector space Voo = J,, Vi, viewed as a representation of Goo = J,, Gn.

There is an approach to representation stability studying limiting representations of limiting groups as
above, instead of representations of categories as in Appendix A. For example, the authors of [41] analyze
representations of five standard infinite groups, including O, S, defined above, that occur as quotients or
subrepresentations of tensor powers of R> and its dual.

Example 7.2. We give the limits of some sequences encountered above.

(a) If ¥ = {R"} as in Example 2.2(a), then
Ve =R®={2cRY:IN €N s.t. ,, =0 for alln > N}.

This is viewed as a representation of Oy = UneN 0., or the similarly-defined By, Doo, Seo, viewed as
N x N matrices differing from the identity in finitely-many entries.
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(b) In Example 2.2(b), we have Vo, = S, the set of Nx N symmetric matrices with finitely-many nonzero
entries, with O or one of its subgroups in (a) acting by conjugation.

(¢) For the consistent sequence used in Section 3.2, we have
Voo = {f € L?([0,1]) : 3n € N s.t. f is constant on [(i — 1)/m2™,i/m2") for each i € [m?”]}.

Here Goo = U,, Sman acts on [0,1] by permuting intervals of the above form, and acts on f € L*([0,1])
byg-f= fog t. The limit in Example 2.2(c) is the special case m = 1 above, with the action of
G = U,, Con consisting of cyclic shifts of [0,1] by i/2™ for some i € {0,...,2" —1} and n € N.

(d) For the graphon sequence in Section 3.6, we have

Voo = {W € L*([0,1]) : W(x,y) = W(y,x), In € N s.t. W is constant on

[(k —1)/2", k/2") x [(£ — 1)/2",£/2") for each k,{ € [2”]},

and Goo =UJ,, San as in (c). Here Goo acts on Voo by o - W =W o (o1, 071).

Given two consistent sequences {V, }, {U,} of {G,, }-representations, a sequence of equivariant linear maps
{A, € L(V,,,U,)%"} extends to the limit, meaning there exists Ao, € L(Vio, Us ) satisfying As|y, = A,
for all n, if and only if {4, } is a morphism of sequences. Similarly, a sequence of invariants {v, € V,%}
defines a sequence of invariant linear functionals £,(x) = (v,,z): V,, — R, and these linear functionals
extend to a Goo-invariant linear functional on V., if and only if {v,} is a freely-described element. Every
invariant functional on V,, arises in this way, so freely-described elements are in one-to-one correspondence
with invariant linear functionals on the limit of a consistent sequence.

We also consider continuous limits of consistent sequences. Because we require the embeddings in a
consistent sequence ¥ = {V,,} to be isometries (Definition 2.1(b)), the inner products on the V,, extend to
the limit V. We can then take the completion with respect to the inner product topology to get a Hilbert
space V,, on which G, acts unitarily. It is then natural to consider sequences of linear maps which extend
to continuous maps between these limits.

Definition 7.3 (Continuous limits). Let ¥ = {V,,} be a consistent sequence of {G,,}-representations and let
Vo be the Hilbert space completion with respect to the inner product topology. We call Vo with its Goo-action
the continuous limit of the sequence V.

A sequence of maps {A,: V, — U,} extends continuously to the limit if there exists a bounded linear
operator Ao : Voo — Us such that Aso|y, = A, for all n. A freely-described element {u,, € Uf"} extends
continuously to the limit if there exists uso € Uy satisfying Py, oo = Uy for all n.

Because U, is a Hilbert space, such us exists if and only if the linear functionals corresponding to
{un} extend continuously to the limit. Note that a morphism of sequences {A4,,: V,, — U, } extends to the
continuous limit if and only if the sequence of operator norms {||A,|lop} Wwith respect to the norms on V,,
and U, is bounded. Similarly, a freely-described element {u,} extends continuously to the limit if and only
if the sequence of norms {||uy]||} is bounded.

Example 7.4. (a) In the setting of Evample 7.2(a), we have R>® = l5(R). The only sequences of maps
extending continuously to the limit are {A,, = al,} for a € R.

(b) In Ezample 7.2(b), we have S® = {X esh: Efj}j:l Xi%j < oo}. The only sequences of maps R — S™

extending continuously to the limit are {A,, = adiag} for a € R, and similarly for S* — R™. Note

that the sequence {A,(X) = diag(X1,)} of maps S* — R™ extends to the limit, but not continuously.

(c) In Ezample 7.2(d), we have Voo = {W € L%*([0,1]?) : W(x,y) = W(y,x) for a.e. (z,y) € [0,1]?},
which is known as the space of L*>-graphons [87, Def. 2.8]. The sequences of maps {A,, € L(V,,)%"} that
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extend continuously to this limit are linear combinations of the three maps A%l)(X) =X, AP (X) =
(1TX1)117, and AP (X) =1 (X117 + 117 X), which can be written in terms of graphons as

AD W) (x,y) = W(z,y), ADW)(z,y) = W (s, t) dsdt,
[0,1]2

AP (W)(z,y) = /[0 ; (W (, )+ W(s,y)] ds.

There are extensions of Definition 7.3 that we do not pursue in this paper. For example, one can complete
Voo with respect to different G -invariant metrics. For example, the map A (X) = diag(X 1) from S*™ to
itself and the trace S°° — R do no extend continuously with respect to the £o-norm above, but are continuous
with respect to the ¢;-norm.

7.2 Limiting conic descriptions

The goal of this section is give conditions under which free descriptions extend to descriptions of continuous
limits of convex sets. Certificates of compatibility as in Theorem 2.23 play a major role once again. If
¢ = {C,, C V,,} is an intersection-compatible sequence of convex subsets of a consistent sequence {V,,},
define Cx = |J,, Cr, which is a convex subset of V.

Theorem 7.5 (Descriptions of limits). Suppose € = {C,, C V,,} is given by (ConicSeq). If all the hypotheses
of Theorem 2.23(a) are satisfied (so that € is certifiably intersection and projection compatible) and if
{4} {Br}, {un} extend continuously to the limit, then

{zeVi:3ye Wy st. Az + Booy + oo € Koo } (29)
contains Cuo and is dense in its closure. If Boo = 0, then (29) equals Cw.

Proof. To prove that C is contained in (29), observe that us, — u, = HMy_soo(uy — u,) € Ko for
all n. Therefore, if z € C, and y € W, satisfy A,z + Boy + un € K,, then Aoz + Booy + tse =
At + Bpy + Uy + (Uoo — up) € Ko, proving that z is in (29).

To prove that (29) is contained in Cu, suppose x € Vo and y € W, satisfy Ao + Bool + Uso €
Koo. Because {A%},{B;} are morphisms and {K,} is projection-compatible, applying Py, we obtain
A, (Py, x) + Bn(Pw, y) + un € Ky, hence Py, x € C, for all n and x = lim,, Py, z € Cx.

If By, = 0 then (29) is the preimage under the continuous map  + A2 + us, of the closed cone Ko,

hence (29) is closed and must equal C. O
If (29) is dense in C,, then optimizing a continuous function over (29) and over C, are equivalent.

Example 7.6. The following are simple examples of limiting sets C .

(a) For the sequences ¥, W U used to describe the permutahedron in Section 3.2, we have Vo, = L?*([0,1])
since functions constant on intervals [(i — 1)/m2™,i/m2"] are dense in L?[0,1], and Wy, = AR
U = Woo & K@Z @ R2. The maps {An},{Bn} given there extend continuously to the limit since
| ALl =1 and || Bnll < /2 + q+ ||M|3 for alln. Also, w, = w41 for alln so {u,} extends continuously
to the limit. Thus, Theorem 7.5 implies that the following is a dense subset of Perm(\)qo:

{Z)‘ifi GLQ([O,I]):fl,...,fqu7 ;fizl, /[071]]2: %for each i € [q]}

i=1

Similarly, Theorem 7.5 applies to the description of the Schur-Horn orbitopes in Section 3.2. The
Hilbert spaces one obtains in this case appear in the construction of the hyperfinite 11y factor [88, §1.6]
in the theory of operator algebras.
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(b) Theorem 7.5 yields the following parametric family of closed convex subsets of the space of L* graphons
(see Section 3.6 and Example 7.2(b)):

Co = {W € L*([0,1]%) symmetric :

0= K(z,y) =m W (t, s)dtds + ag/
[0,1]2 [0,1]

(W (z,t) + W(t,y)] dt + asW (z,y) + a4}.

Other interesting examples are obtained by taking closures with respect to topologies other than the
one induced by inner products. For example, the simplices and spectraplices of Example 1.1(a)-(b) admit
natural closures in weak topologies (since their elements are viewed as probability measures), and Schur-Horn
orbitopes in Section 3.2 admit a natural closure in a certain strong operator topology [88, §1.6] (since we
want to associate spectral measures to their elements).

We also mention that the above limiting perspective can be applied to the sequences of invariant cones
from Section 6. In particular, the authors of [89] study the difference between the cone of symmetric
nonnegative polynomials and the cone of symmetric SOS polynomials under two isomorphisms between
the relevant spaces of invariants (neither of which corresponds to our projections). Similarly, the authors
of [90] study limits of certain symmetric cones and show how the geometry of these limits underlies various
undecidability results. It would be interesting to relate these works to out framework and extend them to
other consistent sequences.

8 Conclusions and future work

We developed a systematic framework to study convex sets that can be instantiated in different dimensions
using representation stability, as well as a computational method to parametrize such sets and fit them to
data. We did so by formally defining free descriptions of convex sets and compatibility conditions relating
sets in different dimensions. We then gave conditions on free descriptions to certify this compatibility, and
characterized descriptions in a fixed dimension that extend to free descriptions satisfying these conditions.
We also used representation stability to systematically derive constant-sized descriptions for sequences of
symmetric PSD and relative entropy cones. Finally, we showed that free descriptions certifying compatibility
often extend to descriptions of continuous limits of sequences of convex sets. Our work can be viewed as
identifying and exploiting a new point of contact between representation stability and convex geometry
through conic descriptions of convex sets.
Our work suggests questions and directions for future research in several areas.

(Computational algebra) Is there an algorithm to compute the generation and presentation degrees of a
given consistent sequence?

(Lie groups) Can we extend our calculus for presentation degrees in Theorem 4.11 to Lie groups such as
G, =0,7

(Constructing descriptions) Given a sequence of convex sets instantiable in any relevant dimension, can
we systematically construct freely-described, and possibly compatible, approximations for it? When
are approximations derived from sums-of-squares hierarchies such as [27] free and certify compatibility?

(Complexity) Is there a systematic framework to study the smallest possible size of a free description for
a given sequence of sets, extending the slack operator-based approach for fixed convex sets [91]7

(Free separation) Under what conditions can a point outside a compatible sequence of convex sets be
separated by a freely-described sequence, generalizing the Effros-Winkler theorem [92]?

(Statistical inference) How much data do we need to learn a given sequence of sets or functions, and in
what dimensions should this data lie?
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A Representations of categories

As Remark 4.13 shows, the set of embeddings from low to high dimensions in a consistent sequence ¥ of
{G,, }-representations, determined by {G,} and the stabilizing subgroups {H,, 4} from Definition 4.2, play
a central role in our framework. These sets of embeddings are conveniently encoded in a category, whose
representations are precisely the #-modules we used in Section 4. Morphisms between such representations
in the categorical sense coincide with morphisms of sequences. This categorical approach to representation
stability was introduced in [38] for the case G,, = S,, and the H,, 4 from Example 4.3(a), and has since been
extended to other groups in [39, 40, 43].

Definition A.1. A (real) representation of a category C, also called a C-module, is a functor C — Vectg
from C to the category of real vector spaces.

In other words, a C-module is an assignment of a vector space V,, to each object n € C and a linear map
Yn.N: Vy, — Vi to each morphism in Home(n, N) such that compositions are respected. Each V,, is then a
representation of the group G, = End¢(n)* of the automorphisms of n in C. Every consistent sequence is a
representation of a suitable category.

Definition A.2. Given a consistent sequence ¥ = {(Vi,on)} of {Gy}-representations, define a category
Cy whose set of objects is N and whose morphisms are Home,, (n, N) = {gon—1--¢n:9 € Gn} forn <N
and zero otherwise. Note that Home, (n, N) = Gn/Hn,, where Hn,, C Gy is the subgroup of elements
acting trivially on V,,.
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This definition clearly extends to consistent sequences indexed by posets (Remark 2.3). If % = {(U,, ¥»)}
is a #-module (Definition 4.4), then % is a Cy-module, since sending n € N to U,, and gony_1 - - ¢, to the
map gyn_1--- ¥, for each g € G is a well-defined functor Cy — Vectg. Conversely, if % is a Cy-module
then it is a ¥-module since H,, 4 acts trivially on the image of 1)y _1 - - - g by definition of a functor. Further-
more, if #', % are €y-modules, then a morphism of functors # — % (also called a natural transformation)
coincides with a morphism of sequences in Definition 2.8. Applying the constructions in Remark 2.4 to
C-modules yields other C-modules.

Example A.3. Here are some examples of the categories resulting from Definition A.2.

(a) The category corresponding to Examples 2.2(a)-(b) with G, = S, is (the skeleton of) C = FI, the
category whose objects are finite sets and whose morphisms are injections.

(b) The category corresponding to Examples 2.2(a)-(b) with G,, = B, (resp., D,,) is C = Flgc (resp.,
C = Fl|p) defined in [39], whose objects are the sets [£n| == {x1,...,£n} for n € N and whose
morphisms are injections f: [£n] < [£N] satisfying f(—i) = —f(i) (and reverse evenly-many signs
if Gy, = Dy).

(c) The category corresponding to the graphon sequence is the opposite category C = Py¥ of the category
Py with objects [2"] and morphisms which are 2N ~"-to-one surjections [2V] — [27], or equivalently,
partitions of [2V] into 2" equal parts.

Following [39], we say C = FI|yy if C = FI,FI|p¢c or F|p.

(Algebraically) free C-modules are defined exactly as in Definition 4.6, see [38, Def. 2.2.2] and [40,
Def. 1.8,3.1] for example. The theory of [40] gives the following result for C = FI|y, which extends to
categories of FI-type introduced in [40].

Theorem A.4 ([40, Thm. B(1)]). Tensor products of free FI|yy-modules are free.
The following result illustrates two further properties of FI|yy-modules.

Theorem A.5 (Noetherianity and tensor products). Let C = FI|yy.
(Noetherianity) Any submodule of a finitely-generated C-module is finitely-generated.

(Tensor products) If ¥1 and ¥ are C-modules generated in degrees di and ds, respectively, then ¥1 ® %3
is generated in degree di + ds.

Proof. Noetherianity is shown for FI in [38, Thm. 1.13] and for FI| ¢, FI|p in [39, Thm. 4.21]. The generation
degree bound is shown in [38, Prop. 2.3.6] for FI and in [39, Prop. 5.2] for FI|gc, FI|p. O

Noetherianity helps explain the ubiquity of representation stability, while the generation degree bound
for tensor products allows us to bound the generation degrees of complicated sequences from degrees of
simple ones. The two properties in Theorem A.5 hold over more general categories than FI|y, including
for categories of Fl-type and certain quasi-Grébuner categories introduced in [43]. We remark that these two
types of categories only include representations of finite groups, and do not include the graphon category in
Example A.3(c), whose properties would be interesting to study in future work.

Definition A.6 (Property (TFG)). We say that a category C satisfies property (TFG) if Tensor products
of free C-modules are Free and satisfy the Generation degree bound in Theorem A.5.

An example of a category not satisfying (TFG) is given in [43, Rmk. 7.4.3]. We can use property (TFG)
to obtain a calculus for presentation degrees from which Theorem 4.11 may be deduced.

Proposition A.7. Suppose C is a category satisfying (TFG). If V', % are C-modules which are generated in
degrees dy,dy and presented in degrees ky, ky, respectively, then ¥ ® % is presented in degree max{dy +
ku,dy + k‘v}.
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Proof. Suppose %y, %y are free C-modules generated in degrees dy,dy, respectively, and #, — ¥ and
Fu — % are surjective morphisms whose kernels JZ1, and %, are generated in degrees ry, ry, respectively.
Then #y ® %y is a free C-module generated in degree dy + dy by (TFG), and the morphism %y ® %y —
YV QU is surjective with kernel £y ® Fy + Fy ® Hy. Since Ay @ Fy is generated in degree ry + dy and
similarly for &y ® J/, their sum is generated in degree max{ry + dy,dy + v }. O

Our next goal is to understand presentation degrees for images, and in particular, for Schur functors.
We begin with a number of elementary lemmas.

Lemma A.8. Let ¥V and % be C-modules. If V', % are generated in degrees dy,dy and presented in degrees
kv, ky, respectively, then ¥V ® % is generated in degree max{dy,dy} and presented in degree max{ky,ky}.

Proof. The claim about the generation degree is immediate from its definition. Suppose that Fy — ¥
and Fy — % are surjective morphisms with Zy, %y being free C-modules generated in degrees dy, dy
with kernels J#y,, %1 generated in degrees kv, ky, respectively. Then F#y @ Fy is free (by definition) and
generated in degree max{dy,dy}, and surjects onto ¥ & % with kernel £, & J#; which is generated in
degree max{ky, ky}. O

Lemma A.9. Let ¥ = {V,} and % = {U,} be two C-modules, let o7 = {A,}: ¥V — U be a surjective
morphism, and let W = {W,, C U,} be a C-submodule of % . If kere/ is generated in degree d and W is
generated in degree dy, then o1 (#) = {A;1(W,,)} is a C-module generated in degree max{d,dy }.

Proof. Define the consistent sequence Z,, = R[G,] (ALW de> CV,ifn >dw and Z, = 0 otherwise,

where ALW is the pseudoinverse of A, . Note that {Z,} is generated in degree dy . Moreover, A, 1(W,,) =
ker A, + Z,. Indeed, we have AnA:riW = AdAlTi = idy, because {A,} is a surjective morphism, hence
Apker A, + Z,,) = An(Z,) = R[G,|Wg,, = W,,. Conversely, if A,z € W,, = R[G,]Wg,, then we can
write Apz = Y. g;w; for g; € Gy, and w; € Wy,,. Then & = ), giAIlei € Z, and A,(x — &) = 0, so
x € ker A, + Z,. Since ker .o/ is generated in degree d and {Z,} is generated in degree dy, their sum is
generated in degree max{d, dw }. O

Lemma A.10. Suppose ¥ = {V,} and {U,} are two C-modules, and of = {An}: ¥ — % 1is a morphism.
If v is generated in degree d, then ime/ is generated in degree d. If, moreover, of* = {A%} is a morphism,
then ker o7 is also generated in degree d.

Proof. The first claim follows from A, (V,,) = A, (R[Gr]Va) = R[G]A4, (Vi) = R[G,]Aa(Vy), where we used
the equivariance of A4,, and the fact that A, |y, = Ag. For the second claim, note that if &/* is a morphism,
then {imA} = (ker A,)1} is a C-submodule of ¥. Therefore, {Pyey 4, }: ¥ — ¥ is a morphism, and its
image is precicely ker .o/ O

Proposition A.11. Suppose ¥ = {V,},% = {U,} are two C-modules and both of = {A,: V,, — U,}
and {A%: U, — V,} are morphisms. If ¥ is generated in degree d and presented in degree k, then ime/ =
{4, (V,,)} is generated in degree d and presented in degree k.

Proof. Let % = {F,} be a free C-module generated in degree d and let # = {B,}: . — ¥ be a surjective

morphism whose kernel J# = {K,} is generated in degree k. The composition .# Zy v 2y imd s
a surjective morphism from the free C-module .# whose kernel is %~ !(kers/) and is generated in degree
max{d, k} =k by Lemmas A.9 and A.10. O

Corollary A.12. Suppose € satisfies property (TFG). If ¥ is a C-module generated in degree d and presented
in degree k, and X is a partition, then SNV is generated in degree d|\| and presented in degree k+d(|\| —1).

Schur functors generalize symmetric and alternating algebras, see [51, §6.1]. Their generation degree for
C = FI was bounded using a similar approach in [38, Prop. 3.4.3].
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Proof. By Proposition A.7, the C-module #®*l is generated in degree d|\| and presented in degree d(|\| —
1) + k. Let S|y act on each Vn®|)“ by permuting its factors o - (v1 ® -+ @ vz|) = Vo) @+ @ Ug(|a))>
which is an orthogonal action commuting with the emebddings Vn®‘k| - Vnéili“. In this way, any element
cx € R[S ] defines a morphism cy: #® — ¥ ® A guch that ¢§ € R[S}y is also a morphism. If ¢) € R[S)y(]

is the Young symmetrizer corresponding to partition A, then imcy = S*¥. Hence the result follows from
Proposition A.11. O

We conjecture that, moreover, Schur functors of free modules remain free. This is true if C = FI|,y and
¥ = {R"} by Proposition 6.5(c). We conclude this appendix by summarizing our calculus for generation
and presentation degrees. Instantiating the following theorem with C = FI|)y yields Theorem 4.11.

Theorem A.13 (Calculus for generation and presentation degrees). Let ¥ = {V,}, % = {U,} be C-modules
generated in degrees dy ,dy and presented in degrees kv, ki, respectively.

(Sums) ¥ & % is generated in degree max{dy,dy} and presented in degree max{ky,ky}.

(Images and kernels) If &: ¥ — % and </* are morphisms, then ima/ and ker &/ are generated in
degree dy and presented in degree ky .

Suppose C satisfies (TFG). Then
(Tensors) ¥ ® % is generated in degree dy + dy and presented in degree max{ky + dy,ky + dy }.

(Schur functors) S*7 is generated in degree dy |\ and presented in degree dy (|\| — 1) + kv for any
partition .
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