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Abstract—We study the representation, approximation, and
compression of functions in // dimensions that consist of constant
or smooth regions separated by smooth (M — 1)-dimensional
discontinuities. Examples include images containing edges, video
sequences of moving objects, and seismic data containing geolog-
ical horizons. For both function classes, we derive the optimal
asymptotic approximation and compression rates based on
Kolmogorov metric entropy. For piecewise constant functions,
we develop a multiresolution predictive coder that achieves the
optimal rate—distortion performance; for piecewise smooth func-
tions, our coder has near-optimal rate-distortion performance.
Our coder for piecewise constant functions employs surflets, a
new multiscale geometric tiling consisting of 3 -dimensional
piecewise constant atoms containing polynomial discontinuities.
Qur coder for piecewise smooth functions uses surfprints, which
wed surflets to wavelets for piecewise smooth approximation.
Both of these schemes achieve the optimal asymptotic approxima-
tion performance. Key features of our algorithms are that they
carefully control the potential growth in surflet parameters at
higher smoothness and do not require explicit estimation of the
discontinuity. We also extend our results to the corresponding
discrete function spaces for sampled data. We provide asymptotic
performance results for both discrete function spaces and relate
this asymptotic performance to the sampling rate and smooth-
ness orders of the underlying functions and discontinuities. For
approximation of discrete data, we propose a new scale-adaptive
dictionary that contains few elements at coarse and fine scales, but
many elements at medium scales. Simulation results on synthetic
signals provide a comparison between surflet-based coders and
previously studied approximation schemes based on wedgelets
and wavelets.

Index Terms—Compression, discontinuities, metric entropy,
multidimensional signals, multiscale representations, nonlinear
approximation, rate—distortion, sparse representations, surflets,
wavelets.
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1. INTRODUCTION

A. Motivation

parse signal representations feature prominently in a broad
S variety of signal processing applications. The advantages
of characterizing signals using just a few elements from a dic-
tionary are clear in the case of compression [3]-[6], but also
extend to tasks such as estimation [7]-[10] and classification
[11], [12]. The dimensionality of signals is an important factor
in determining sparse representations. Wavelets provide an ap-
propriate representation for smooth one-dimensional (1-D) sig-
nals, achieving the optimal asymptotic representation behavior
for this class [13], [14], and they maintain this optimal perfor-
mance even for smooth 1-D signals containing a finite number
of point discontinuities.

Unfortunately, this optimality does not extend completely to
two—dimensional (2-D) signals due to the different nature of dis-
continuities in two dimensions [15], [16]. While smooth signals
in two dimensions containing a finite number of point singu-
larities are sparsely represented by a wavelet basis, 2-D piece-
wise smooth signals containing discontinuities along 1-D curves
(“edges”) are not represented efficiently by a wavelet basis.

The problem is that the isotropically scaled wavelet basis fails
to capture the anisotropic structure of 1-D discontinuities. Due
to its global support, the Fourier basis also fails to effectively
capture the local nature of these discontinuities. Nonetheless,
2-D piecewise smooth signals containing 1-D discontinuities
are worthy candidates for sparse representation. The 1-D dis-
continuities often carry interesting information, since they sig-
nify a boundary between two regions. Edges in images illustrate
this point well. Lying along 1-D curves, edges provide funda-
mental information about the geometry of a scene. Therefore,
any signal processing application that relies on a sparse repre-
sentation requires an efficient tool for representing discontinu-
ities.

A growing awareness of the limitations of traditional bases
for representing 2-D signals with 1-D discontinuities has
resulted in new multiscale representations. (Multiscale repre-
sentations offer a number of advantages for signal processing,
enabling, for example, predictive and progressive source
coding, powerful statistical models, and efficient tree-structured
processing.) The resulting solutions fall into two broad cate-
gories: tight frames and geometric tilings. Loosely speaking,
tight frames refer to dictionaries from which approximations
are formed using linear combinations of atomic functions,
while geometric tiling schemes create an adaptive partitioning

0018-9448/$25.00 © 2009 IEEE
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Fig. 1. (a) Piecewise constant (“Horizon-class”) functions for dimensions A/ = 2 and M = 3. (b) Piecewise smooth function for dimension M = 2.

of the signal to which local approximation elements are as-
signed. The key factor exploited by all these solutions is that
the discontinuities often have a coherent geometric structure in
one dimension. A primary solution proposed in the class of 2-D
tight frames is the curvelet dictionary [16]. The salient feature
of curvelets is an anisotropic scaling of the atomic elements,
with increased directionality at finer resolution; the resulting
dictionary is well-suited to represent 1-D singularities. In the
category of geometric tilings, wedgelets [8] are piecewise con-
stant functions defined on 2-D dyadic squares, where a linear
edge singularity separates the two constant regions. Tilings of
wedgelets at various scales combine to form piecewise linear
approximations to the 1-D edges in images. Each of these
solutions assumes that the underlying 1-D discontinuity is
C%-smooth. The class of 2-D signals containing such smooth
1-D discontinuities is often referred to as the Horizon function
model [8].

Unfortunately, the tight frames and geometric tilings pro-
posed to date also face certain limitations. First, none of these
techniques is directly applicable to problems in arbitrary higher
dimensions; for example, curvelets are not applicable to prob-
lems with dimensions beyond 3-D [17], while wedgelets are
not applicable to problems with dimensions greater than two.
Signals in video (3-D), geophysics (3-D, 4-D), and light-field
imaging (4-D, 5-D) [18] frequently contain information-rich
discontinuities separating different regions. The confounding
aspect, as before, is that these discontinuities often have a
well-defined geometric structure in one lower dimension than
that of the signal. In video signals, for example, where we
can imagine stacking a 2-D image sequence to form a 3-D
volume, 3-D regions are separated by smooth, well-structured
2-D discontinuities traced out by the moving boundaries of
objects in the video. Therefore, we can model discontinuities in
M -dimensional signals as smooth functions of M — 1 variables.
This is an analogous extension to the Horizon function model
[8] used for 2-D signals with 1-D smooth discontinuities.

Another limitation of current frame and tiling approaches
is that they are intended primarily for signals with underlying
C2-smooth discontinuities. There exist signals, however, for
which the discontinuities are inherently of a higher order of
smoothness [19]. While CX ¢ C? for K > 2, dictionaries
achieving the optimal performance can be constructed only
if the full smoothness of the discontinuities is exploited.
Interesting mathematical insights can also be obtained by

considering higher orders of smoothness. Finally, some of
the proposed solutions such as wedgelets [8] consider repre-
sentation of piecewise constant signals in higher dimensions.
Real-world multidimensional signals, however, often consist
of discontinuities separating smooth (but not constant) regions.
This motivates a search for sparse representations for signals
in any dimension consisting of regions of arbitrary smoothness
that are separated by discontinuities in one lower dimension of
arbitrary smoothness.

B. Approximation and Compression

In this paper, we address the problem of approximating and
compressing M -dimensional signals that contain a smooth
(M — 1)-dimensional discontinuity separating regions in M
dimensions! (see Fig. 1 for examples in two and three dimen-
sions). The discontinuities in our models have smoothness C*¢
in M — 1 dimensions. They separate two regions that may
be constant (Section I-C1) or CX+-smooth in M dimensions
(Section I-C2). Our approximation results characterize the
number of atoms required to efficiently represent a signal and
are useful for tasks such as estimation [8], [10] and classifica-
tion [11], [12]. The measure for approximation performance is
the asymptotic rate of decay of the distortion between a signal
and its approximant as the number of atoms becomes large.
Compression results, on the other hand, also take into account
which atoms are used in constructing a sparse approximation
and are crucial for communicating an approximation to a
signal. Compression performance is assessed by considering
the asymptotic rate—distortion behavior, which specifies the rate
of decay of the distortion between a signal and its approximant
as the number of bits used to encode the approximant becomes
large. Since it is impossible to determine for abstract function
classes precise approximation or rate—distortion results, we will
state our performance results in terms of metric entropy [20],
which characterizes the order of the number of atoms or bits
required to describe a function in the class under consideration.

C. Contributions

We consider two function classes as models for M-dimen-
sional signals containing (M — 1)-dimensional discontinuities.

I'We discuss possible extensions to signals containing multiple discontinuities
in Section IV-F.
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Fig. 2. Example surflets, designed for (a) M = 2, Kq € (1,2]; (b)) M = 2, Kq € (2,3];(c) M =3, Kq € (1,2];(d) M =3, Kq € (2,3].
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Fig. 3. Example surflet tilings: (a) piecewise cubic with M = 2 and (b) piece-
wise linear with M = 3.

This section outlines our contributions toward constructing ef-
ficient representations for elements of these classes, including
extensions to discrete data.

1) Piecewise Constant M -Dimensional Functions: We
consider the function class Fc(M, Kq), consisting of M-di-
mensional piecewise constant Horizon functions [8] that
contain a CX4-smooth (M — 1)-dimensional discontinuity sep-
arating two constant regions. We begin by deriving the optimal
asymptotic rates for nonlinear approximation and compression
of functions in the class F(M, Kq). These bounds extend the
results of Cohen et al. [14], Clements [21], and Kolmogorov
and Tihomirov [20], which characterize the optimal asymptotic
approximation and compression behavior of (M — 1)-dimen-
sional smooth functions.

We introduce a new M -dimensional geometric tiling frame-
work for multiscale representation of functions in Fc(M, Kq).
We propose a dictionary of atoms defined on dyadic hypercubes,
where each atom is an M -dimensional piecewise constant func-
tion containing an (M — 1)-dimensional polynomial disconti-
nuity. We christen these atoms surflets after the fact that they
resemble small pieces of surfaces in higher dimensional space
(see Fig. 2 for examples in two and three dimensions).

The surflet dictionary is a generalization of the wedgelet dic-
tionary [8] to higher dimensional signals containing disconti-
nuities of arbitrary smoothness (a wedgelet is a surflet with
K4 = 2 and M = 2). We show that tilings of elements drawn
from the surflet dictionary can achieve the optimal approxima-
tion rate

Kq

2 1 M-1
s i
L (N)

for the class Fo(M, Kq),2 where f¢ € Fc(M, Kq4) and flff is
the best V-term approximant to f¢. Example 2- and 3-D surflet
tilings appear in Fig. 3.

We also propose a tree-structured compression algorithm for
M -dimensional functions using surflets and establish that this
algorithm achieves the optimal rate—distortion performance

Kq
2 1 M—1
< (=
‘ Lo <R>

for the class Fo (M, Kq). Here, f; is the best approximation to
f¢ that can be encoded using R bits.

Our approach incorporates the following major features:

* the ability to operate directly on the M -dimensional func-
tion, without requiring explicit knowledge (or estimation)
of the (M — 1)-dimensional discontinuity;

* the use of multiresolution predictive coding in order to re-
alize significant gains in rate—distortion performance; and

* a technique to quantize and encode higher order polyno-
mial coefficients with lesser precision without a substantial
increase in distortion.

Without such a quantization scheme, higher order polynomials
would be impractical for representing boundaries smoother than
C2, due to an exponential explosion in the number of polynomial
parameters and thus the size of the dictionary. A fascinating
aspect of our solution is that the size of the surflet dictionary can
be reduced tremendously without sacrificing the approximation
capability.

2) Piecewise Smooth M-Dimensional Functions: We
consider the function class Fs(M, K4, Ks), consisting of
M -dimensional piecewise smooth functions that contain a
CXa_smooth (M — 1)-dimensional discontinuity separating
two regions that are C*+-smooth in M dimensions. We estab-
lish the optimal approximation and rate—distortion bounds for
this class.

Despite their ability to efficiently describe a discontinuity,
surflets alone are not a suitable representation for functions in
Fs(M, Kq, K) because a piecewise constant approximation is
inefficient on the smooth M -dimensional regions. Conversely,
we note that wavelets are well suited for representing these
M -dimensional smooth regions, yet they fail to efficiently cap-
ture discontinuities. Thus, we propose a dictionary consisting of
the following elements:

-7

2We focus here on asymptotic performance. We use the notation f(a) <

g(a), or f(a) = O(g(a)), if there exists a constant C', possibly large but not
dependent on the argument «, such that f(a) < Cg(a).
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Fig. 4. Comparison of pruned surflet tilings using two surflet dictionaries (see Section VI for more details). (a) Test image with M/ = 2 and K4 = 3. (b) The
wedgelets from Dictionary 2 can be encoded using 482 bits and yields PSNR of 29.86 dB. (c) The quadratic/wedgelet combination from Dictionary 3 can be

encoded using only 275 bits and yields PSNR of 30.19 dB.

e an M-dimensional basis of compactly supported wavelet
atoms having sufficiently many vanishing moments [22];
and

* adictionary of M -dimensional surfprint atoms. Each surf-
print can be viewed as a linear combination of wavelet
basis functions. It is derived by projecting a piecewise poly-
nomial surflet atom (having two M -dimensional polyno-
mial regions separated by a polynomial discontinuity) onto
a wavelet subspace.

The surfprint dictionary is an extension of the wedgeprint
dictionary [23] for higher dimensional signals having regions
of arbitrary smoothness separated by discontinuities of arbi-
trary smoothness (a wedgeprint is a surfprint with Kq4 = 2,
K, = 2, and M = 2). Constructed as projections of piecewise
polynomial surflets onto wavelet subspaces, surfprints interface
naturally with wavelets for sparse approximation of piecewise
smooth M -dimensional functions. We show that the combined
wavelet/surfprint dictionary achieves the optimal approxima-
tion rate for Fg(M, Kq, K)

2 1 min(M—l’ M
< (=
’ L (N)

Here, f* € Fs(M, Kq, Ks), and ]/‘Z\SV is the best N-term ap-
proximant to f*. We include a careful treatment of the surfprint
polynomial degrees and the number of wavelet vanishing mo-
ments required to attain the optimal approximation rates. We
also propose a tree-based encoding scheme that comes within
a logarithmic factor of the optimal rate—distortion performance
for this class

Here, ff\z is the best approximation to f* that can be encoded
using R bits.

3) Extensions to Discrete Data: We also address the problem
of representing discrete data obtained by sampling a continuous
function from Fc(M, Kq) or Fs(M, Kq, K). We denote these
classes of discretized (or “voxelized”) data by Fc(M, Kq4) and
Fs(M, Kq, Ky), respectively, and we allow for different sam-
pling rates in each of the M dimensions.

=TI

_ <logR>mi“(;fl’2ﬁs) |

“\ R

=T

2
L

In order to efficiently represent data from ]?é(M ,Kq), we
use a dictionary of discrete surflet atoms derived by voxelizing
the surflet atoms of our continuous surflet dictionary. We show
that, up to a certain critical scale (which depends on K4 and the
sampling rates in each dimension), the approximation results
for Fo (M, Kq) extend to Fo(M, Kq4). Beyond this scale, how-
ever, voxelization effects dominate, and the surflets designed
for elements of Fc(M, Kq) offer unnecessary precision for
representing elements of Fc (M, Kq). To account for these ef-
fects, we propose a new scale-adaptive dictionary that contains
few elements at coarse and fine scales, but many elements at
medium scales. We also present preliminary simulation results
that demonstrate the compression performance of our surflet
coding strategies when applied to synthetic signals; see Fig. 4
for an example illustrating the use of quadratic surflets.?

For elements of Fgs(M, K4, K), we use a dictionary of
compactly supported discrete wavelet basis functions. The
number of discrete vanishing moments required is the same
as that of the continuous wavelet basis applied to members
of Fs(M, K4, Ky). Discrete surfprint atoms are obtained by
projecting discrete surflet atoms onto this discrete wavelet
basis. As before, we see a critical scale at which voxelization
effects begin to dominate; again these effects can be addressed
by the appropriate scale-adaptive surfprint dictionary.

D. Relation to Previous Work

Our work can be viewed as a generalization of wedgelet [8]
and wedgeprint [8] representations. Our extensions, however,
provide fundamental new insights in the following directions.

» The wedgelet and wedgeprint dictionaries are restricted to
2-D signals, while our proposed representations are rele-
vant in higher dimensions.

* Wedgelets and wedgeprints achieve optimal approxima-
tion rates only for functions that are C2-smooth and con-
tain a C2-smooth discontinuity; our results not only show
that surflets and surfprints can be used to achieve optimal
rates for more general classes, but also highlight the nec-
essary polynomial quantization scheme (a nontrivial exten-
sion from wedgelets).

3The peak signal-to-noise ratio (PSNR) we quote is a common measure of
distortion that derives from the mean-square error (MSE); assuming a maximum
possible signal intensity of 7, PSNR := 101log,, ﬁ



* In the construction of surfprint atoms, we derive the surf-
print polynomial degrees required for optimal performance
as a function of K, K4, and M. Such insight cannot be
gained from wedgeprints, which are derived simply from
the projection of piecewise constant wedgelets.

e We also present a more thorough analysis of discretiza-
tion effects, including new insights on the multiscale be-
havior (not revealed by considering wedgelets alone), a
new strategy for reducing the surflet dictionary size at fine
scales, and the first treatment of wedgeprint/surfprint dis-
cretization.

During final preparation of this manuscript we learned of a re-
lated generalization of wedgelets to quadratic polynomials [24],
and of an extension of directional filter banks to multidimen-
sional signals [25]. Novel components of our work, however,
include its broad generality to arbitrary orders of smoothness
and arbitrary dimension; the quantization scheme, predictive
coding, and analytical results; the scale-adaptive dictionary to
deal with voxelization; and the surfprints construction.

E. Paper Organization

In Section II, we define our function models and state the
specific goals of our approximation and compression algo-
rithms. We introduce surflets in Section III. In Section IV, we
describe our surflet-based representation schemes for elements
of Fo(M, Kq) in detail. In Section V, we present our novel dic-
tionary of wavelets and surfprints for effectively representing
elements of Fs(M, K4, KS); Section VI discusses exten-
sions to discrete data from Fo(M, Kq4) and Fs(M, Kq, K5).
Section VII summarizes our contributions and insights. The
appendices provide additional details and proofs of all the
theorems.

II. BACKGROUND

A. Lipschitz Smoothness

A function of D variables has smoothness of order K > 0,
where K = r+q, risan integer, and « € (0, 1], if the following
criteria are met [20], [21].

* All iterated partial derivatives with respect to the D direc-

tions up to order r exist and are continuous.

e All such partial derivatives of order r satisfy a Lipschitz

condition of order « (also known as a Holder condition).4
We consider the space of smooth functions whose partial deriva-
tives up to order r are bounded by some constant (2. We de-
note the space of such bounded functions with bounded par-
tial derivatives by C K where this notation carries an implicit
dependence on 2. Observe that r = [K — 1], where [-] de-
notes rounding up. Also, when K is an integer CX includes as
a subset the traditional space “C” (the class of functions that
have K = r 4 1 continuous partial derivatives).

A function d € Lip(e) if [d(z1 + 22) — d(z1)| < C||z2||™ for all D-di-
mensional vectors 21, z5.
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B. Multidimensional Signal Model

Let z € [0,1]*, and let ; denote its ith element, where
boldface characters are used to denote vectors. We denote the
first M — 1 elements of z by y, i.e.,y = [z1,T2,...,Tp_1] €
[0,1]M=1 Let f, g1, and go be functions of M variables

fv.gth : [07 1]]\/[ — R
and let b be a function of M — 1 variables
b:[0,1]M! - R.

We define the function f in the following piecewise manner:

f(.’l:) _ { T n Z b(y)

Ty < b(y)

g1(z),
92(3)7

1) Piecewise Constant Model: We begin by considering the
“piecewise constant” case when g1 = 1 and go = 0. The
(M — 1)-dimensional discontinuity b defines a boundary be-
tween two constant regions in M dimensions. The piecewise
constant functions f defined in this manner are Horizon-class
functions [8]. When b € CKa, with K4 = rq + aq, we de-
note the resulting space of functions f by Fc(M, K4). When
M = 2, these functions can be interpreted as images containing
a C¥a_smooth 1-D discontinuity that separates a 0-valued re-
gion below from a 1-valued region above. For M = 3, func-
tions in Fo(M, Kq4) can be interpreted as cubes with a 2-D
C%a_smooth surface cutting through them, dividing them into
two regions—0-valued below the surface and 1-valued above it
(see Fig. 1(a) for examples in two and three dimensions).

2) Piecewise Smooth Model: Next, we define a model for
piecewise smooth functions. For this class of functions, we let
g1,92 € CH with K, = 74 4+ ag, and b € Kg, with Kg =
rq + aq. The resulting piecewise smooth function f consists of
an (M — 1)-dimensional C¥<-smooth discontinuity that sepa-
rates two CX+-smooth regions in M dimensions (see Fig. 1(b)
for an example in two dimensions). We denote the class of such
piecewise smooth functions by Fs(M, K4, K). One can check
that both Fo(M, K4) and the space of M-dimensional uni-
formly C¥= functions are subsets of Fs(M, K4, Ky).

C. Approximation and Compression Performance Measures

In this paper, we define dictionaries of atoms from which
we construct an approximation f to f, which may belong to
Fo(M,Kq) or Fs(M, K4, Ks). We analyze the performance
of our coding scheme using the L, distortion measure between
the M -dimensional functions f and f

|71 ipao,lw) N ./[0,1]M 7=

with p = 2 (i.e., the standard squared-L- distortion measure).
We measure the ability of our dictionary of atoms to represent
f sparsely by the asymptotic approximation performance || f —
f]\VH%Q Here, N is the number of atomic elements from the

dictionary used to construct an approximation to f and fy is the

best N-term approximant to f. We consider the rate of decay of
T2

If = fnllz, as N — oo
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We also present compression algorithms that encode those
atoms from the corresponding dictionaries (depending on
whether f € Fo(M,Kq) or f € Fs(M, Ka, K5)) used to

construct f. We measure the performance of these compres-

sion algorithms by the asymptotic rate-distortion function
IIf - fR|| 7, Where f R is the best approximation to f that can
be encigded using R bits [26]. We consider the behavior of
If ~ Fal2, as B — oo.

In [14], Cohen et al. establish the optimal approximation rate
for D-dimensional CX -smooth functions d

2K
1 D
=|= .
()
Similarly, the results of Clements [21] (extending those of Kol-
mogorov and Tihomirov [20]) regarding metric entropy estab-

lish bounds on the optimal achievable asymptotic rate—distor-
tion performance for D-dimensional C¥ -smooth functions d

2K
2 1\ o
|5 .
Ly <R>

These results, however, are only useful for characterizing op-
timal separate representations for the (M — 1)-dimensional dis-
continuity (D = M — 1, K = Kg,d = b in Section II-A) and
the M -dimensional smooth regions (D = M, K = K, d =
g1, g2 in Section II-A).

We extend these results to nonseparable representations
of the M-dimensional function classes Fc(M,Kq4) and
Fs(M, Kq, K) in Theorems 1 and 2, respectively.

o~ |

Theorem 1: The optimal asymptotic approximation perfor-
mance that can be obtained for all f¢ € F(M, Kq4) is given by

Ky
2 1 M —1
c_ < _
‘f L, <N> '

Similarly, the optimal asymptotic compression performance that
can be obtained for all f¢ € Fc(M, Kq) is given by

Ky
2 1 M—1
=| = .
‘ L, <R>

Implicit in the proof of the above theorem, which ap-
pears in Appendix A, is that any scheme that is optimal for
representing and compressing the M -dimensional function
f¢ € Fc(M, Kq) in the squared-Lo sense is equivalently op-
timal for the (M —1)-dimensional discontinuity in the ; sense.
Roughly, the squared-L, distance between two Horizon-class
functions f7 and f5 over an M-dimensional domain

D =[Dy, D] x -+ x [Dy', D]
is equal to the L; distance over the (M — 1)-dimensional subdo-
main [D}, D] x - - - x [DM =1, DM~1] between the (M — 1)-di-
mensional discontinuities by and b$ in f and f5, respectively.

More precisely and for future reference, for every y in the
(M —1)-dimensional subdomain of D, we define the D-clipping

-7

of an (M — 1)-dimensional function b as
_ b(y), DI <b(y) < DY
b(y) = D, b(y) > DY
DI b(y) < DY,

The D-active region of b is defined to be
{ye D, D) x - x Dy, D] - b(y) € [P, D'}
that subset of the subdomain of D for which the range of b lies
in [DM, DM]. The D-clipped L, distance between b and b is
then defined as
La(63,05) = 185 = 85| 1, (o2 pa] e [pp = 02 1]) -

One can check that || f{ — f5|17,p) = L1 (b5, 05) for any D.

The following theorem, which is proved in Appendix B,
characterizes the optimal achievable asymptotic approximation
rate and rate—distortion performance for approximating and
encoding elements of the function class Fs(M, Kq, K5).

Theorem 2: The optimal asymptotic approximation perfor-
mance that can be obtained for all f* € Fs(M, Kq4, Ky) is given

by
2 1 min ( % s % )
) I = <\~ :
Lo N
Similarly, the optimal asymptotic compression performance that
can be obtained for all f* € Fs(M, Kq, K5) is given by

2 1 min(%f}{%)
= p— .
) L~ <R>

D. “Oracle” Coders and Their Limitations

In order to approximate or compress an arbitrary function
f¢ € Fo(M,Ky), an algorithm is given the function f¢; we
denote its (M — 1)-dimensional CX -smooth discontinuity by
bc. As constructed in Section II-B, all of the critical information
about f€ is contained in the discontinuity 5°. One would expect
any efficient coder to exploit such a fact; methods through which
this is achieved may vary.

One can imagine a coder that explicitly encodes an approx-
imation b° to b° and then constructs a Horizon approximation
fC Knowledge of b° could be provided from an external “or-
acle” [27], or b° could conceivably be estimated from the pro-
vided data f¢. Wavelets provide an efficient method for com-
pressing the (M — 1)-dimensional smooth function b°. Cohen
et al. [14] describe a tree-structured wavelet coder that can be
used to compress b° with optimal rate—distortion performance
in the L; sense. It follows that this wavelet coder is optimal (in
the squared- Lo sense) for coding instances of f€ at the optimal
rate of Theorem 1. In practice, however, a coder is not provided
with explicit information of b°, and a method for estimating b¢
from f€ may be difficult to implement. Estimates for b° may
also be quite sensitive to noise in the data.

A similar strategy could also be employed for f° €
Fs(M, Kq, K). For such a function, we denote the (M —1)-di-
mensional CX-smooth discontinuity by b° and the M-dimen-
sional CKS-smoothAregions by ¢} and g5. Approximations to
the discontinuity b5 and the M -dimensional smooth regions
cﬁ and (;3 may be encoded separately and explicitly. This
strategy would have disadvantages for the same reasons that
were mentioned above. In fact, estimating the discontinuity in
this scenario would be much harder.

In this paper, we propose representation schemes and algo-
rithms that approximate f€ and f* directly in M dimensions.
We emphasize that no explicit knowledge of the functions b°,

-1
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b°, g3, or g3 is required. We prove that surflet-based approxi-
mation techniques and encoding algorithms for f¢ achieve the
optimal decay rates, while our surfprint-based methods for f*
achieve the optimal approximation decay rate and a near-op-
timal rate—distortion decay rate (within a logarithmic factor of
the optimal decay rate of Theorem 2). Although we omit the dis-
cussion in this paper, our algorithms can be extended to similar
piecewise constant and piecewise smooth function spaces. Our
spatially localized approach, for example, allows for changes
in the variable along which the discontinuity varies (assumed
throughout this paper to be z;; as described in Section II-B).

III. THE SURFLET DICTIONARY

In this section, we introduce a discrete dictionary of M -di-
mensional atoms called surflets that can be used to construct
approximations to a function f¢ € Fc(M, Kq). A surflet is
a piecewise constant function defined on an M -dimensional
dyadic hypercube, where an (M — 1)-dimensional polynomial
specifies the discontinuity. Section IV describes compression
using surflets.

A. Motivation—Taylor’s Theorem

The surflet atoms are motivated by the following property. If
d is a function of D variables in CX with K = r + o, ris a
positive integer, and a € (0, 1], then Taylor’s theorem states
that

D
1
d(z+ h) =d(z)+ T zi (2)hi,
! i1=1
1 2
+ 5 Z dzil 1Zig (Z)hilhiz +oee
iy,ip=1
D
+ > dey e (2D, - hi 4 O(|[RIS)
iy ,eyip=1
(1)
where d, . ., refers to the iterated partial derivatives of d with
respect to 21, ...,z in that order. (Note that there are D’ /th

order derivative terms.) Thus, over a small domain, the function
d is well approximated using a polynomial of order r (where the
polynomial coefficients correspond to the partial derivatives of
d evaluated at 2).

Clearly, in the case of f¢, one method for approximating the
discontinuity b would be to assemble a piecewise polynomial
approximation, where each polynomial is derived from the local
Taylor approximation of b¢ (let D = M — 1, K = K4, and
d = b° in the above characterization). These piecewise polyno-
mials can be used to assemble a Horizon-class approximation of
the function f€. Surflets provide the M -dimensional framework
for constructing such approximations and can be implemented
without explicit knowledge of b or its derivatives.

B. Definition

A dyadic hypercube X ; C [0,1]M atscale j € N is a domain
that satisfies®

X;=[81277, (B +1)277) x -+ x [Bar27, (Bar + 1)277)

5To cover the entire domain [0, 1], in the case where (3; + 1)277 = 1,
i €{1,..., M}, wereplace the half-open interval [3;2 77, (3; +1)277) with
the closed interval [3;277, (3; + 1)277].
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,Ba € {0,1,...,29 —1}. We explicitly denote
the (M — 1)-dimensional hypercube subdomain of X; as

Y; = (81279, (BL+1)277) x ---
X[Bar-1277, (B + 1)277). (2)

The surflet s(X;;p;-) is a Horizon-class function over the
dyadic hypercube X, defined through the (M — 1)-di-
mensional polynomial p. For z € X, with corresponding
Y = [r1,%2,...,20-1]

s(Xjip;m) = {

L zm > p(y)
0, otherwise

where the polynomial p(y) is defined as

M-1
p(y) = po + Z P1i1Yi
=1
M-1
D P YinYis o
i in=1
M-1

+ >

11

Praiyia,..ivg YirYia = Yi,, -
jeging =1

We call the polynomial coefficients {p¢,.....i, },2 the surflet
coefficients.® We note here that, in some cases, a surflet may
be identically O or 1 over the entire domain X ;. We sometimes
denote a generic surflet by s(X;), indicating only its region of
support.

A surflet s(X ;) approximates the function f° over the dyadic
hypercube X ;. One can cover the entire domain [0, 1] with
a collection of dyadic hypercubes (possibly at different scales)
and use surflets to approximate f¢ over each of these smaller do-
mains. For M = 3, these surflets tiled together look like piece-
wise polynomial “surfaces” approximating the discontinuity b¢
in the function f€. Fig. 2 illustrates a collection of surflets with
M =2and M = 3.

C. Quantization

We obtain a discrete surflet dictionary M () at scale j by
quantizing the set of allowable surflet polynomial coefficients.
For ¢ € {0,1,...,rq}, the surflet coefficient py;, . ;, at scale
j € N is restricted to values { - Af i } ez, where the stepsize
satisfies
Ai‘]d — 9—(Ka=0)j

3

3)

The necessary range for ;1 will depend on the derivative bound
 (Section II-A). We emphasize that the relevant discrete surflet
dictionary M(7) is finite at every scale j.

These quantization stepsizes are carefully chosen to ensure
the proper fidelity of surflet approximations without requiring
excess bit rate. The key idea is that higher order terms can be
quantized with lesser precision without increasing the residual
error term in the Taylor approximation (1). In fact, Kolmogorov

6Because the ordering of the terms Yiy Yis  * * Yi, iInamonomial is irrelevant,
only (“’1‘5_2) monomial coefficients (not (M — 1)*) need to be encoded for
order . We preserve the slightly redundant notation for ease of comparison with

M.
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and Tihomirov [20] implicitly used this concept to establish the
metric entropy for bounded uniformly smooth functions.

IV. REPRESENTATION AND CODING OF PIECEWISE Constant
FUNCTIONS

A. Overview

We now propose a surflet-based multiresolution geometric
tiling approach to approximate and encode an arbitrary func-
tion f¢ € Fc(M, Kq). The tiling is arranged on a 2% -tree,
where each node in the tree at scale j corresponds to a hyper-
cube of side length 277 Each node is labeled with a surflet ap-
propriately chosen from M () and is either a leaf node (hyper-
cube) or has 2 children nodes (children hypercubes that per-
fectly tile the volume of the parent hypercube). Leaf nodes pro-
vide the actual approximation to the function f¢, while interior
nodes are useful for predicting and encoding their descendants.
This framework enables an adaptive, multiscale approximation
of f°—many small surflets can be used at fine scales for com-
plicated regions, while few large surflets will suffice to encode
simple regions of f€ (such as those containing all 0 or 1). Fig. 3
shows surflet tiling approximations for M = 2 and M = 3.

Section IV-B discusses techniques for determining the
proper surflet at each node. Section IV-C describes a construc-
tive algorithm for building tree-based surflet approximations.
Section IV-D describes the performance of a simple surflet
encoder acting only on the leaf nodes. Section IV-E presents
a more advanced surflet coder, using a top-down predictive
technique to exploit the correlation among surflet coefficients.
Finally, Section IV-F discusses extensions of our surflet-based
representation schemes to broader function classes.

B. Surflet Selection

Consider a node at scale j that corresponds to a dyadic hy-
percube X, and let Y; be the (A — 1)-dimensional subdomain
of X; as defined in (2).

We first examine a situation where the coder is provided with
explicit information about the discontinuity b¢ and its deriva-
tives. In this case, determination of the surflet at the node that
corresponds to X; can proceed as implied by Section III. The
coder constructs the Taylor expansion of b° around any point
y € Y; and quantizes the polynomial coefficients (3). We choose

and call this an expansion point. We refer to the resulting sur-
flet as the quantized Taylor surflet. From (1), it follows that the
squared-L- error between f¢ and the quantized Taylor surflet
approximation s(X ;) (which equals the X ;-clipped L, error be-
tween b° and the polynomial defining s(X;)) obeys

155 = (X0, = [ (7 = 5(5)°

J

-0 (2—1(1‘('“1—1)) W

However, as discussed in Section II-D, our coder is not pro-
vided with explicit information about b°. Therefore, approxi-
mating functions in Fc (M, K4) using Taylor surflets is imprac-

tical.” We now define a technique for obtaining a surflet esti-
mate directly from the function f¢. We assume that there exists
a method to compute the squared-Ly error || f — s(X;)|| (X))
between a given surflet s(X ) and the function f¢ on the dyadic
block X;. In such a case, we can search the finite surflet dic-
tionary M) for the minimizer of this error without explicit
knowledge of b°. We refer to the resulting surflet as the native
Lo-best surflet. This surflet will necessarily obey (4) as well.
Section IV-D discusses the coding implications of using L-best
surflets from M(35). Using native Lo-best surflets over dyadic
blocks X; achieves near-optimal performance.

As will be made apparent in Section IV-E, in order to achieve
optimal performance, a coder must exploit correlations among
nearby surflets. Unfortunately, these correlations may be diffi-
cult to exploit using native Lo-best surflets. The problem arises
because surflets with small X ;-active regions (Section II-C)
may be close in Lo distance over X; yet have vastly different
underlying polynomial coefficients. (These coefficients are used
explicitly in our encoding strategy.)

To resolve this problem, we compute Lo-best surflet fits to f¢
over the L-extension of each dyadic hypercube X ;. That is, if

Xj =162, (B +1)277) x - x [Bar277, (Bu +1)277)
then the L-extension of X; is defined to be
XP=1B—0)27, (b1 +1+L)277) x -

x [(Bur — L)277, (Bar + 1+ L)277)
where L > 0 is an extension factor (designed to expand the
domain of analysis and increase correlations between scales).
An L-extended surflet is a surflet from M(j) that is now de-
fined over X JL whose polynomial discontinuity has a nonempty
Xj-active region. We define the L-extended surflet dictionary
R.(J) to be the set of L-extended surflets from M (j) plus the
all-zero and all-one surflets s(X;) = 0 and s(X;) = 1. An
L-extended Lo-best surflet fit to f° over X; is then defined to
be the Ly-best surflet to € over X JL chosen from R (7). Note
that even though extended surflets are defined over extended do-
mains X jL, they are used to approximate the function only over
the associated native domains X;. Such extended surflet fits
(over extended domains) provide sufficient mathematical con-
straints for a coder to relate nearby surflets, since extended sur-
flets that are close in terms of squared- L distance over X JL have
similar polynomial coefficients (even if extended surflets have
small X ;-active regions, they have large X j’;-active regions). In
Section IV-E, we describe a coder that uses extended surflets
from R . (j) to achieve optimal performance.

C. Tree-Based Surflet Approximations

The surflet dictionary consists of M -dimensional atoms at
various scales. Thus, a 2 -tree offers a natural topology for
arranging the surflets used in an approximation. Specifically,
each node at scale j in a 2 -tree is labeled by a surflet that
approximates the corresponding dyadic hypercube region X ; of
the function f°. This surflet can be assigned according to any of
the procedures outlined in Section IV-B.

TWe refer the reader to our technical report [28] for a thorough treatment
of Taylor surflet-based approximation of piecewise constant multidimensional
functions.

8If necessary, each L-extension is truncated to the hypercube [0, 1] .



382

Given a method for assigning a surflet to each tree node, it
is also necessary to determine the proper dyadic segmentation
for the tree approximation. This can be accomplished using the
CART algorithm, which is based on dynamic programming, in
a process known as tree-pruning [8], [29]. Tree-pruning pro-
ceeds from the bottom up, determining whether to prune the tree
beneath each node (causing it to become a leaf node). Various
criteria exist for making such a decision. In particular, the ap-
proximation-theoretic optimal segmentation can be obtained by
minimizing the Lagrangian cost D + AN for a penalty term .
Similarly, the Lagrangian rate—distortion cost D 4+ AR can be
used to obtain the optimal rate—distortion segmentation. We note
here that the optimal tree approximations computed according
to these criteria are nested, i.e., if A\; > A, the optimal tree for
A1 is contained inside the optimal tree for A,.

We summarize the construction of a surflet-based approxima-
tion as follows.

Surflet-based approximation

* Choose scale: Choose a maximal scale J € Z for the
2M _tree.

¢ Label all nodes: For each scale 5 = 0,1,...,.J, label all
nodes at scale 5 with either a native or an extended L2-best
surflet chosen appropriately from either discrete dictionary
of surflets M(j) or Rz (j).

e Prune tree: Starting at the second-finest scale j = J — 1,
determine whether each node at scale j should be pruned
(according to an appropriate pruning rule). Then proceed
up to the root of the tree, i.e., until 5 = 0.

The approximation performance of this algorithm is described
in the following theorem, which is proved in Appendix C.

Theorem 3: Using either quantized Taylor surflets or Lo-best
surflets (extended or native), a surflet tree-pruned approximation
of an element f¢ € Fc(M, Kq4) achieves the optimal asymp-
totic approximation rate of Theorem 1

Kg
1 M-1
&)

We discuss computational issues associated with finding
best-fit surflets in Section VI-F, where we also present results
from simulations.

D. Leaf Encoding

<
~

2
Lo

|re- 75

An initial approach toward surflet encoding would involve
specification of the tree segmentation map (which denotes the
location of the leaf nodes) along with the quantized surflet co-
efficients at each leaf node. The rate—distortion analysis in Ap-
pendix D then yields the following result.

Theorem 4: Using either quantized Taylor surflets or Lo-best
surflets (extended or native), a surflet leaf-encoder applied to an
element f¢ € Fc(M, Kq) achieves the following rate—distor-

tion performance
g
log R\ -1
I .

Comparing with Theorem 1, this simple coder is near-optimal
in terms of rate—distortion performance. The logarithmic factor

<

~

2
Ly
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is due to the fact that it requires O(5) bits to encode each surflet
at scale j. In Section IV-E, we propose an alternative coder that
requires only a constant number of bits to encode each surflet.

E. Top-Down Predictive Encoding

Achieving the optimal performance of Theorem 1 requires a
more sophisticated coder that can exploit the correlation among
nearby surflets. We now briefly describe a top-down surflet
coder that predicts surflet parameters from previously encoded
values.

Top-down predictive surflet coder

+ Encode root node: Encode the best surflet fit ([0, 1])
to the hypercube [0, 1]*. Encode a flag (1-bit) specifying
whether this node is interior or a leaf. Set j «— 0.

e Predict surflets from parent scale: For every interior
node/hypercube X; at scale j, partition its domain into
2M children hypercubes at scale j + 1. Compute the
polynomial coefficients on each child hypercube X;;
that agree with the encoded parent surflet s(X ). These
serve as “predictions” for the polynomial coefficients at
the child.

* Encode innovations at child nodes: For each predicted
polynomial coefficient, encode the discrepancy with the
L-extended surflet fit s(Xf, ;).

* Descend tree: Set ;7 «— j + 1 and repeat until no interior
nodes remain.

This top-down predictive coder encodes an entire tree segmen-
tation starting with the root node, and proceeding from the top
down. Given an L-extended surflet s(X JL) at an interior node
at scale j, we show in Appendix E that the number of possible
L-extended surflets from R (j) that can be used for approxi-
mation at scale j + 1 is constant, independent of the scale j.
Thus, given a best fit surflet at scale 0, a constant number of bits
is required to encode each surflet at subsequent scales. This pre-
diction is possible because L-extended surflets are defined over
L-extended domains, which ensures coherency between the sur-
flet fits (and polynomial coefficients) at a parent and child node.

We note that predicting L-extended best fit surflets to dyadic

hypercube regions around the borders of [0, 1]* may not be pos-
sible with a constant number of bits when the discontinuity is
not completely contained within the dyadic hypercube. How-
ever, we make the mild simplifying assumption that the inter-
sections of the discontinuity with the hyperplanes x s 0
or 3y = 1 can be contained within O(2(*~2)7) hypercubes
at each scale j. Therefore, using O(Kq4j) bits to encode such
“border” dyadic hypercubes (with the discontinuity intersecting
xpr = 0 or zpr = 1) does not affect the asymptotic rate—dis-
tortion performance of the top-down predictive coder. In Ap-
pendix E, we prove the following theorem.

Theorem 5: The top-down predictive coder applied to an ele-
ment ¢ € Fo(M, Kq) using L-extended Lo-best surflets from
R () achieves the optimal rate—distortion performance of The-

orem 1
Kq
1 M—-1
(7)"

<

~

2
L,

-7
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Although only the leaf nodes provide the ultimate approx-
imation to the function, the additional information encoded
at interior nodes provides the key to efficiently encoding the
leaf nodes. In addition, unlike the surflet leaf-encoder of Sec-
tion IV-C, this top-down approach yields a progressive bit
stream—the early bits encode a low-resolution (coarse scale)
approximation, which is then refined using subsequent bits.

F. Extensions to Broader Function Classes

Our results for classes of functions that contain a single dis-
continuity can be extended to spaces of signals that contain
multiple discontinuities. Functions containing multiple discon-
tinuities that do not intersect can be represented using the sur-
flet-based approximation scheme described in Section IV-C at
the optimal asymptotic approximation rate. This is because at a
sufficiently high scale, dyadic hypercubes that tile signals con-
taining multiple nonintersecting discontinuities contain at most
one discontinuity.

Analysis of the surflet-based approximation scheme of
Section IV-C applied to signals containing intersecting dis-
continuities is more involved. Let ftc be an M -dimensional
piecewise constant function containing two (M — 1)-dimen-
sional C%4-smooth discontinuities that intersect each other
(the analysis that follows can easily be extended to allow
for more than two intersecting discontinuities). Note that
the intersection of (M — 1)-dimensional functions forms an
(M — 2)-dimensional manifold. Again, we make the mild
simplifying assumption that the intersection of the discontinu-
ities can be contained in O(2(™=2)7) hypercubes at each scale
7. The following theorem (proved in Appendix F) describes
the approximation performance achieved by the scheme in
Section IV-C applied to ft A consequence of this theorem
is that there exists a smoothness threshold K" that defines
the boundary between optimal and suboptimal approximation
performance.

Theorem 6: Using either quantized Taylor surflets or Lo-best
surflets (extended or native), the approximation scheme of Sec-
tion IV-C applied to a piecewise constant M -dimensional func-
tion f{ that contains two intersecting CK _smooth (M — 1)-di-
mensional discontinuities achieves performance given by

. 2(M—1)
M>2Kq < Ty

2
¢ — fc <
fi fﬁ?NHL2

l
A/~
2=
~—
S
|

2(M—1

« M >2,Kq> 2020
el = ()
8N ~\N :

=
|
l

1 M—1
= —— .

Thus, the representation scheme in Section IV-C achieves
optimal approximation performance for M = 2 even in the
presence of intersecting discontinuities, while it achieves op-
timal performance for M > 2 up to a smoothness threshold of

Kt = M (for Kq > K&, t]he scheme performs subop-
Kb

timally: || f — f;NH%Q = (%I)M 7). This performance of the
approximation scheme for M > 2 is still superior to that of
wavelets, which have K vl — 1 The reason for this differ-
ence in performance between the cases M = 2 and M > 2 is
that intersections of discontinuities when M = 2 correspond to
points,® while intersections in higher dimensions correspond to
low-dimensional manifolds. Hence, the number of hypercubes
that contain intersections in the two-dimensional case is con-
stant with scale, whereas the number of hypercubes that contain
the intersections when M > 2 grows exponentially with scale.
The analysis above can clearly be extended to prove analogous
results for functions containing piecewise C*4-smooth discon-
tinuities.

Future work will focus on improving the threshold K flh for
the case M > 2. In order to achieve optimal performance for
M > 2, one may need a dictionary containing regular surflets
and specially designed “intersection” surflets that are specifi-
cally tailored for intersections. In addition to classes of func-
tions containing multiple intersecting discontinuities, our repre-
sentation scheme may also be adapted to function spaces where
the transient direction of the discontinuity is not fixed to be
xps. This is possible due to the localized nature of our sur-
flet-based approximations. Indeed, we note that with a minor
modification, our surflet-based encoder can achieve the near-op-
timal rate—distortion performance (off by a logarithmic factor)
of Section IV-D. This follows from the observation that each
node in the surflet tree can be labeled with a best fit surflet from
one of M different surflet dictionaries (one for each transient
direction). Since the leaf nodes are encoded independently, the
rate—distortion performance is given by Theorem 4.

V. REPRESENTATION AND CODING OF PIECEWISE Smooth
FUNCTIONS

In this section, we extend our coding strategies for piecewise
constant functions to encoding an arbitrary element f* from the
class Fs(M, K4, K;) of piecewise smooth functions.

A. Motivation

For a C+-smooth function f in M dimensions, a wavelet
basis with sufficient vanishing moments [22] provides %p
proximations at the optimal rate—||f — f N ||L2 ~ (%)
Even if one introduces a finite number of point singularities
into the M-dimensional CE=-smooth function, wavelet-based
approximation schemes still attain the optimal rate. Wavelets
succeed in approximating smooth functions because most of
the wavelet coefficients have small magnitudes and can thus be
neglected. Moreover, an arrangement of wavelet coefficients on
the nodes of a tree leads to an interesting consequence: wavelet
coefficients used in the approximation of M -dimensional
smooth functions are coherent—often, if a wavelet coefficient
has small magnitude, then its children coefficients also have
small magnitude. These properties of the wavelet basis have
been exploited in state-of-the-art wavelet-based image coders

(4], [5].

90ur analysis also applies to “T-junctions” in images, where one edge termi-
nates at its intersection with another.
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Fig. 5. Example surflet and the corresponding surfprint. The white box is the
dyadic hypercube in which we define the surflet; note that the removal of coarse
scale and neighboring wavelets causes the surfprint to appear different from the
surflet.

Although wavelets approximate smooth functions well,
the wavelet basis is not well-equipped to approximate func-
tions containing higher dimensional manifold discontinuities.
Wavelets also do not take advantage of any structure (such as
smoothness) that the (M — 1)-dimensional discontinuity might
have, and therefore many high-magnitude coefficients are often
required to represent discontinuities [16]. Regardless of the
smoothness order of the discontinuity, the approximation rate
achieved by wavelets remains the same.

Despite this drawback, we desire a wavelet domain solution
to approximate f° € Fs(M, K4, K,) because most of the func-
tion f* is smooth in M dimensions, except for an (M — 1)-di-
mensional discontinuity. In order to solve the problem posed
by the discontinuity, we propose the addition of surfprint atoms
to the dictionary of wavelet atoms. A surfprint is a weighted
sum of wavelet basis functions derived from the projection of
a piecewise polynomial surflet atom (an (M — 1)-dimensional
polynomial discontinuity separating two M -dimensional poly-
nomial regions) onto a subspace in the wavelet domain (see
Fig. 5 for an example in two dimensions). Surfprints possess all
the properties that make surflets well-suited to represent discon-
tinuities. In addition, surfprints coherently model wavelet co-
efficients that correspond to discontinuities. Thus, we obtain a
single unified wavelet-domain framework that is well-equipped
to sparsely represent both discontinuities and smooth regions.

The rest of this section is devoted to the definition of surf-
prints and their use in a wavelet domain framework to represent
and encode approximations to elements of Fg(M, Kq, K;). We
do not discuss the extension of our results to classes of piecewise
smooth signals containing multiple intersecting discontinuities,
but note that such an analysis would be similar to that described
in Section IV-F.

B. Surfprints
Let X7, be a dyadic hypercube at scale .J,. Let vy, v2 be
M -dimensional polynomials of degree rZP, and let v be an
M -dimensional function as follows:
v1,v2,v : Xy, — R.

Let ¢ be an (M — 1)-dimensional polynomial of degree r}”

q:Y;, =R
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As defined in Section II-B, let £ € X, and let ¥ denote the
first M — 1 elements of z. Let the M-dimensional piecewise
polynomial function v be defined as follows:

o(@) = { v1(2),

’Uz(l‘),

zm > q(y)
zyr < q(y).

Next, we describe how this piecewise polynomial function is
projected onto a wavelet subspace to obtain a surfprint atom.
Let W be a compactly supported wavelet basis in M dimen-
sions with K*! vanishing moments. A surfprint sp(v, X ;. , W)
is a weighted sum of wavelet basis functions with the weights
derived by projecting the piecewise polynomial v onto the sub-
tree of basis functions whose idealized supports nest in the hy-

percube Xz,

32J0,X;CXy,

Sp(’U,XJO,W) = (’U,’U)‘\'j >wX]- (5)

where wx, represents the wavelet basis function having ideal-
ized compact support on the hypercube X ;. (The actual support
of wx,; may extend slightly beyond X;.) The hypercube X,
thus defines the root node (or coarsest scale) of the surfprint
atom.

We propose an approximation scheme in Section V-E, where
we use wavelet atoms to represent uniformly smooth regions
of f* and surfprint atoms to represent regions through which
the discontinuity passes. Before presenting our approximation
scheme, we begin in Section V-C by describing how to choose
the surfprint polynomial degrees 5P and r;}” and the number of
vanishing moments K'! for the wavelet basis.

C. Vanishing Moments and Polynomial Degrees

In general, due to Taylor’s theorem, when approximating ele-
ments f° € Fs(M, Kq, K;), the required surfprint polynomial
degrees and wavelet vanishing moments are determined by the
orders of smoothness K4 and K

KM > K,r? =[Kq—1] and 7P =[K,-1].

However, the exponent in the expression of Theorem 2 for the
optimal approximation rate for Fs(M, Kq, K) indicates that
for every (Kq, K), either the (M — 1)-dimensional disconti-
nuity or the M -dimensional smooth region dominates the decay
rate. For instance, in two dimensions, the smaller of the two
smoothness orders K4 and K defines the decay rate.!0 This im-
plies that the surfprint polynomial degrees and/or the number of
wavelet vanishing moments can be relaxed (as if either the dis-
continuity or the smooth regions had a lower smoothness order),
without affecting the approximation rate.

Rather than match the surfprint parameters directly to the
smoothness orders K4 and K, we let K" and K£P denote the
operational smoothness orders to which the surfprint parame-
ters are matched. These operational smoothness orders are se-
lected to ensure the best approximation or rate—distortion perfor-
mance. The detailed derivations of Appendices G and H yield
the following values for the operational smoothness orders.

10We note also that in the case where the functions ¢; and g», which char-
acterize f* above and below the discontinuity, have differing orders of smooth-
ness, the smaller smoothness order will determine both the achievable approxi-
mation rates and the appropriate approximation strategies.
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* Discontinuity dominates: In this case, ]\fj‘l < 2]\1/‘[ We
let K3* = K4 and choose K3P € [£4-1 K ] and KM €
[ KaqM Ks]-

2(M—1)’
* Smooth regions dominate: In this case, 2}5 < j\ffjl.We

let K = K, and choose K:P € [K (1 — &) — 3, K]

M
and K € [2X00=D fey).

* Both contribute equally: In this case, 25+ = X4 We
let KM = K, K’ = Kq, and choose K € [K (1 —

%) - %7 K s]'

The surfprint polynomial degrees are given by
rf=[KP—-1] and rP=[KP —1].
Therefore, if [’ —1] < [Kq—1] and [KP —1] < [K;—1],
then the required surfprint polynomial degrees for optimal ap-
proximations are lower than what one would naturally expect.
Note that even in the scenario where both terms in the exponent
of the approximation rate match, one can choose KZP slightly

smaller than K while still attaining the optimal approximation
rate of Theorem 2.

D. Quantization

In order to construct a discrete surfprint/wavelet dictionary,
we quantize the coefficients of the wavelet and surfprint atoms.
The quantization step size AKs ' for the wavelet coefficients de-
pends on the specific parameters of an approximation scheme.
We present our prototype approximation scheme and discuss the
wavelet coefficient step sizes in Section V-E (see (8) below).

The quantization step size for the surfprint polynomial coef-
ficients of order / at scale j is analogous to the step size used to
construct a discrete surflet dictionary (3)

Afj:ib _ 27(1(:11)72)]' (6)
and
Ag; =27 K705, %

As before, the key idea is that higher order polynomial coeffi-
cients can be quantized with lesser precision without affecting
the error term in the Taylor approximation (1).

E. Surfprint-Based Approximation

We present a tree-based representation scheme using quan-
tized wavelet and surfprint atoms and prove that this scheme
achieves the optimal approximation rate for every function f* €
Fs(M, Kq, K). Let W be a compactly supported wavelet basis
in M dimensions with K¥! vanishing moments, as defined in
Section V-C. Consider the decomposition of f* into the wavelet
basis vectors: f* =} .(f*, wx,)wx;. The wavelet coefficients

(f®,wx;) are quantized according to the step size AK defined
below. Let these wavelet atoms be arranged on the nodes of a
2M _tree. We classify the nodes based on the idealized support
of the corresponding wavelet basis functions. Nodes whose sup-
ports X; are intersected by the discontinuity b° are called Type
D nodes. All other nodes (over which f* is smooth) are classified

as Type S. Consider now the following surfprint approximation
strategy.!l

Surfprint approximation

* Choose scales and wavelet quantization step size:
Choose a maximal scale J € Z and m,n € Z such that
m M

T = 37— and both m and n divide J. The quantization

step size for wavelet coefficients at all scales j is given by

AR = 9= (KM +4) ®)

and thus depends only on the maximal scale J and the

parameter m.

* Prune tree: Keep all wavelet nodes up to scale %; from
scale % to scale %, prune the tree at all Type S nodes
(discarding those wavelet coefficients and their descendant
subtrees).

* Select surfprint atoms: At scale % replace the wavelet
atom at each Type D discontinuity node and its descen-
dant subtree (up to depth .J) by a quantized surfprint atom
chosen appropriately from the dictionary with .J, = % in
(5):

— M -dimensional polynomials: Choose M -dimensional
polynomials v; and vy of degree r*¢ = [KP —1].
These polynomials should approximate the M -dimen-
sional smooth reéions up to an absolute (pointwise)

error of O(2 = ). The existence of such poly-

nomials is guaranteed by Taylor’s theorem (1) (let

D =M, K = KZP, and r = rP) and the quantization

scheme (7).

— (M —1)-dimensional polynomial: Choose an (M —1)-
dimensional polynomial ¢ of degree r}" = [K}® — 1]
such that the discontinuity is approximated up to an

—K Sl" J

absolute error of O(2—= ). The existence of such a
polynomial is guaranteed by Taylor’s theorem (1) (let
D=M-1,K =K}, andr = r3") and the quantiza-
tion scheme of (6).
The following theorem summarizes the performance analysis
for such surfprint approximations (see Appendix G for the
proof).

Theorem 7: A surfprint-based approximation of an element
f5 € Fs(M, K4, K;) as presented above achieves the optimal
asymptotic approximation rate of Theorem 2

2 1 mi“(%ﬁ#)
< |
) L, <N> '

An approximation scheme that uses the best configuration of
N wavelet and surfprint atoms in the Lo sense would perform
at least as well as the scheme suggested above. Hence, surfprint
approximation algorithms designed to choose the best N-term
approximation (even without explicit knowledge of the discon-
tinuity or the M -dimensional smooth regions) will achieve the
optimal approximation rate of Theorem 2.

=T

IIThe wavelet decomposition actually has 2 — 1 distinct directional sub-
bands; we assume here that each is treated identically. Also we assume the
scaling coefficient at the coarsest scale j = 0 is encoded as side information
with negligible cost.
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F. Encoding a Surfprint/Wavelet Approximation

We now consider the problem of encoding the tree-based ap-
proximation of Section V-E. A simple top-down coding scheme
that specifies the pruned tree topology, quantized wavelet co-
efficients, and surfprint parameters achieves a near-optimal
rate—distortion performance (see Appendix H for proof).

Theorem 8: A coding scheme that encodes every ele-
ment of the surfprint-based approximation of an element
15 € Fs(M, Kq, K) as presented in Section V-E achieves the
near-optimal asymptotic rate—distortion performance (within a

logarithmic factor of the optimal performance of Theorem 2)

' () )

_fRL R

Repeating the argument of Section V-E, this near-optimal
rate—distortion performance serves as an upper bound for an en-
coding scheme that encodes elements of an Ly-best approxima-
tion. We will discuss the extension of these theoretical results
to the approximation of discrete data and related issues in Sec-
tion VI-C.

VI. EXTENSIONS TO DISCRETE DATA

A. Overview

In this section, we consider the problem of representing
discrete data obtained by ‘“voxelizing” (pixelizing in two
dimensions) functions from the classes Fc(M, Kq4q) and
Fs(M,Kq,Ks). Let f be a continuous M-dimensional
function. We discretize f according to a vector 1 =
[27,...,2™] € 7™, which specifies the number of voxels
along e each dimension of the discretized M -dimensional func-
tion fr. Each entry of f,, is obtained either by averaging f
over an M-dimensional voxel or by sampling f at uniformly
spaced intervals. (Because of the smoothness characteristics of
Fo(M,Kq) and Fs(M, Kq4, Ky), both discretization mech-
anisms provide the same asymptotic performance.) In our
analysis, we allow the number of voxels along each dimension
to vary in order to provide a framework for analyzing various
sampling rates along the different dimensions. Video data,
for example, is often sampled differently in the spatial and
temporal dimensions. Future research will consider different
distortion criteria based on asymmetry in the spatio-temporal
response of the human visual system.

For our analysis, we assume that the voxelization vector 7
is fixed and denote the resulting classes of voxelized functions
by Fc(M, Ka) and Fs(M, Kq, K). Sectiond VI-B and VI-C
describe the sparse representation of elements from Fo (M, K 4)
and ]-'S(M K, K,), respectively. In Section VI-D, we discuss
the impact of discretization effects on fine scale approximations.
In Section VI-E, we provide an overview of practical methods to
choose best fit elements from the discrete dictionaries. Finally,
we present our simulation results in Section VI-F.

B. Representing and Encoding Elements ofﬁé(M? Ky)

Suppose f¢ € Fc(M, Kq) and let fe € Fo(M, Kq) be its
discretization. (We view fS as a function on the continuous
domain [0, 1] that is constant over each voxel.) The process
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of voxelization affects the ability to approximate elements of
TC(M ,K4). At coarse scales, however, much of the intuition
for coding Fc(M, Kq) can be retained. In particular, we can
bound the distance from f& to f¢. We note that f¢ differs from
f€ only over voxels through which b° passes. Because each

voxelhas size 27 ™ x 2772 ...x 27 ™™  the number of voxels in-
M—-1

M—1
tersected by b° is 0(227':1 T[(Q- 27 min(m)iZ) /(27 )]),
where (2 is the universal derivative bound (Section II-A). The
squared-L» distortion incurred on each such voxel (assuming
only that the voxelization process is bounded and local) is
O(2~ (mi+-+m)) Summing over all voxels it follows that the
(nonsquared) Lo distance obeys

|- 7

where the minimum is taken over all ¢ € {1,..., M}.

__Now we consider the problem of encoding elements of
Fo(M,Ky). At a particular bit rate R, we know from The-
orem 1 that no encoder could represent all elements of
Fo(M, Kq) usmg R bits and incurring Lo distortion less

than Cs - (—)2<M D). (This lower bound for metric entropy
is in effect for R sufficiently large, which we assume to be
the case.) Suppose we consider a hypothetical encoder for
elements of Fc(M, Kq) that, using R bits, could represent
any element with Lo distortion of Fc (M, Kq) less than some
Duyp(R). This coder could also be used as an encoder for
elements of Fc(M, K4) (by voxelizing each function before
encoding). This strategy would yield Lo distortion no worse
than Cy - 2-(minm)/2 1 Dy (R). By applying the metric
entropy arguments on Fc(M, Kq), we have the following
constraint on Dyyp(R):

<O - 27(min7ri)/2 9)

Lo ([0,1]*)

Kgq

. 1 (M—1)
Gy 22 D)2 G- ()

or equivalently

1\ D :
Dhyp(R) > Cs - <E> — Oy -2~ minm)/2 - (q0)

This inequality helps establish a rate—distortion bound for the
class Fo (M, Kq). At sufficiently low rates, the first term on the
right-hand side (RHS) dominates, and Fc (M, Kq) faces sim-
ilar rate—distortion constraints to Fc(M, Kq). At high rates,
however, the RHS becomes negative, giving little insight into
the coding of Fo(M, K4). This breakdown point occurs when
R ~ z(min ) (M—1)/Kq )

__We can, in fact, specify a constructive encoding strategy for
Fc(M, Kq) that achieves the optimal compression rate up to
this breakdown point. We construct a dictionary of discrete sur-
flet atoms by voxelizing the elements of the continuous quan-
tized surflet dictionary. Assuming there exists a technique to
find discrete /2-best surflet fits to fg, the tree-based algorithm
described in Section IV-C can simply be used to construct an

approximation fg.

Theorem 9: While R = 4, the top-down
predictive surflet coder from Section IV-E applied to encode the

2(min7r7-)(]\/1—1)/K
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o~

approximation f£ to f¢ using discrete /2-best surflets achieves
the rate—distortion performance

il < ()
< (= :
Lo R

As detailed in the proof of this theorem (see Appendix J), the
breakdown point occurs when using surflets at a critical scale
Jyvox = % Up to this scale, all of the familiar approxima-
tion and compression rates hold. Beyond this scale, however,
voxelization effects dominate. An interesting corollary to The-

orem 9 is that, due to the similarities up to scale .J,x, the discrete

approximation f{,' itself provides an effective approximation to
the function f°.

Corollary 10: While R < 2(minm)(M=1)/Ka the discrete

approximation f¢ provides an approximation to f© with the fol-
lowing rate—distortion performance:

K
2 1\ ™ =

< (= :
Lo R

The details of the proof appear in Appendix J. While we
have provided an effective strategy for encoding elements of
Fo(M, Kq) at sufficiently low rates (using surflets at scales
J_ < Jyvox), this leaves open the question of how to code
Fo(M, Kq) at higher rates. Unfortunately, (10) does not offer
much insight. In particular, it is not clear whether surflets are an
efficient strategy for encoding F (M, Kq) beyond scale Jyox.
We revisit this issue in Section VI-D.

oo e

C. Representing and Encoding Elements of]/};(M, Kq4, Ky)

_Next, let fr be an arbitrary signal belonging to
Fs(M, K4, K,). Similar arguments apply to the voxelization
effects for this class. In order to approximate functions in
Fs(M, Kq, K), we use a dictionary of compactly supported
discrete wavelet basis functions with K vanishing moments
and discrete surfprint atoms. A discrete surfprint atom is
derived by projecting a discrete piecewise polynomial surflet
atom onto a subspace of the discrete wavelet basis.
We use the scheme described in Section V-E with

JVOX _

min(7;)
n min(K3}", 2K 4+ 1)

to approximate E by E Using (40), (41), and (42), this scale
corresponds to a range of bit rates up to O(Jye 21 oo )
Within this range, the approximation is encoded as described
in Section V-F. The performance of this scheme is evaluated in

Appendix K and appears below.

J.
= where

Theorem 11: While R < .J,,.2(M-1
n - min(7;)

Jvox = B sp sp
min(K3}", 2K 4+ 1)

the coding scheme from Section V-E applied to encode the ap-

proximation E to E using a discrete wavelet/surfprint dictio-
nary achieves the following near-optimal asymptotic rate—dis-

tortion performance (within a logarithmic factor of the optimal
performance of Theorem 2):

Again, a corollary follows naturally (see Appendix L for the
proof).

Corollary 12: While R < Joox 24=1)

proximation f5 provides an approximation to f° with the fol-
lowing rate—distortion performance:

D. Discretization Effects and Varying Sampling Rates

: <1ogR)mm<Afu%>.

“\ R

BT

Lo

Jvox

=, the discrete ap-

2 <1OgR>mln(l\};—fl,%)

s_ml o<
r-1 7

~

Lo

We have proposed surflet algorithms for discrete data at suf-
ficiently coarse scales. Unfortunately, this leaves open the ques-
tion of how to represent such data at finer scales. In this sec-
tion, we discuss one perspective on fine scale approximation that
leads to a natural surflet coding strategy.

Consider again the class Fc(M, Kq4). Section VI-B
provided an effective strategy for encoding elements of
Fo(M, Kq) at sufficiently low rates (using surflets at scales
7 < Jeox = %) Beyond scale Jy.x, however, the
voxelization effects dominate the resolution afforded by
surflet approximations. To restore a balance, we suggest a
coding strategy for finer scales based on the observation that
Fc(M,K4) C Fo(M,K) for K < Kg. Surflet approxi-
mations on the class Fc (M, K) (tied to the smoothness K)
have lower accuracy in general. As a result, Fc(M, K) has
a higher “breakdown rate” than fc(M ,Ka), and discrete
surflets tailored for smoothness K will achieve the coding
rate O(R™%/(M=1)) yp to scale LT While this may not
be a worthwhile strategy before scale .Jyx, it could be useful
beyond scale Jyx and up to scale % In fact, beyond that
scale, we can again reduce K, obtaining a new breakdown
rate and a finer scale to code (using lower order surflets).
This gives us a concrete strategy for coding Fc(M, Kq4) at
all scales, although our optimality arguments apply only up to
scale Jyox. At scale j, we use surflets designed for smoothness
K, = min(Kyq, %.(“’)),0 < j < min(m;). A surflet dictio-
nary constructed using such scale-adaptive smoothness orders
consists of relatively few elements at coarse scales (due to the
low value of j in the quantization stepsize) and relatively few
at fine scales (due to the decrease of K;), but many elements at
medium scales. This agrees with the following intuitive notions.

» The large block sizes at coarse scales do not provide suf-
ficient resolution to warrant large dictionaries for approxi-
mation at these scales.

* The relatively small number of voxels in each block at very
fine scales also means that a coder does not require large
dictionaries in order to approximate blocks at such scales
well.

* At medium scales, where the block sizes are small enough
to provide good resolution but large enough to contain
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Fig. 7. (a) Test function E (b) Rate—distortion performance for each dictionary (selected using best convex hull in R/D plane over all dictionary parameters).

many voxels, the dictionary contains many elements in
order to provide good approximations.
Similar strategies can be proposed, of course, for the class
Fs(M, Kq, Ky).

Finally, we note that the interplay between the sampling rate
(number of voxels) along the different dimensions and the crit-
ical approximation scale J,.x can impact the construction of
multiscale source coders. As an example of the potential effect
of this phenomenon in real-world applications, the sampling rate
along the temporal dimension could be the determining factor
when designing a surfprint-based video coder because this rate
tends to be lower than the sampling rate along the spatial dimen-
sions.

E. Choosing Best Fit Surflets

In order to algorithmically build an approximation E using
surflets, it is necessary to first find the 5-best surflet fit at each
node. Based on the quantization of the surflet dictionary, we
must distinguish from among O(2%47) discrete candidates to
find the best surflet fit for each block of voxels at scale j. Fortu-
nately, it is not necessary in practice to actually enumerate each
of these possibilities in order to find the best fit. In fact, the same
multiscale dependencies that enable efficient top-down predic-
tive coding (see Section IV-E) can be used to facilitate the surflet
fitting: given the best fit quantized surflet at a parent node, there
are only O(1) possibilities for the best quantized child surflet.
Each of these could conceivably be enumerated.

However, it is also possible to avoid a discrete search alto-
gether when finding best fit surflets. One alternative is to for-
mulate the search as a continuous optimization problem, seeking
the (nonquantized) surflet coefficients that minimize the ¢, error

from the surflet to the voxelized data. Geometrically, this can be
viewed as a search along a manifold (whose dimension matches
the number of surflet coefficients) for the closest point to the data
point. As described in [30], this search is complicated by the
fact that such manifolds are nowhere differentiable. A remedy
is proposed to this situation through a coarse-to-fine iterative al-
gorithm that employs successive iterations of Newton’s method
on regularized versions of the data cube. The complexity of such
an algorithm depends on several factors, such as the accuracy of
an initial guess [30]; however, such a starting guess can again
be provided from each parent node. In practice, the multiscale
Newton algorithm tends to converge in a very small number of
iterations (10 or fewer), and it performs significantly faster than
a discrete search. We have used it below for the experiments
described in Section VI-F. This algorithm can be immediately
adapted to find best fit surfprints as well.

F. Simulation Results on Synthetic Signals

To demonstrate the potential for coding gains based on surflet
representations, we present the following preliminary numerical
experiments in two and three dimensions. .

1) 2-D Coding: We start by coding elements of Fc(M, Kq)
with M = 2 and K4 = 3. We generate 1024 x 1024 discretized
versions of these images (that is, 71 = mo 10). Our two
example images are shown in Figs. 6(a) and 7(a).

On each image we test three types of surflet dictionaries for
encoding.

* Dictionary 1 uses wedgelets as implemented in our pre-
vious work [23], [31]. In this dictionary we do not use the
quantization stepsizes as specified in (3). Rather, we use a
quantization step size Ay j ~ 2~ (=07 As a result, the
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TABLE I

SURFLET DICTIONARY SIZE AT EACH SCALE (USING THE SURFLET PARAMETERS CHOSEN TO GENERATE FIG. 6(B)). OUR SURFLET DICTIONARIES (2 AND 3)
ADAPT TO SCALE, AVOIDING UNNECESSARY PRECISION AT COARSE AND FINE SCALES

Scale j | 0 1 2 3 4 5 6 7 8 9
Dictionary 1 | 181631 181631 181631 181631 181631 181631 181631 181631 181631 181631
Dictionary 2 219 4143 62655 987903 987903 248191 62655 15967 4143 1119
Dictionary 3 357 14335 407719 12216207 6264455 248191 62655 15967 4143 1119

quantized wedgelet dictionary has the same cardinality at
each scale and is self-similar (simply a dyadic scaling of
the dictionary at other scales).

* Dictionary 2 adapts with scale. Following the arguments
of Section VI-D, at a given scale j, we use surflets tailored
for smoothness

in ; ) 10
K; = min (2./ mH_”T ) = min <2, —) .
J J

We use surflets of the appropriate polynomial order and
quantize the polynomial coefficients analogous to (3); that
is, Ay ~ 2= (Ki=0J The limitation K; < 2 restricts our
surflets to linear polynomials (wedgelets) for comparison
with the first dictionary above.

* Dictionary 3 is a surflet dictionary that also adapts with
scale. This dictionary is constructed similarly to the
second, except that it is tailored to the actual smoothness
of the discontinuity in f°: we set

in7; ) 10
K; = min (Kd, m) = min (Kd, —) .
J J

This modification allows quadratic surflets to be used at
coarse scales 0 < 5 < 5, beyond which K; again dictates
that wedgelets are used.
For each dictionary, we must also specify the range of allow-
able polynomial coefficients and a constant multiplicative factor
on each quantization stepsize. We optimize these parameters
through simulation.

Our coding strategy for each dictionary uses a top-down
prediction. Based on the prediction from a (previously coded)
parent surflet, we partition the set of possible children surflets
into two classes for entropy coding. A probability mass of p is
distributed among the W surflets nearest the predicted surflet
(measured using /5 distance), and a probability mass of (1 — p)
is distributed among the rest to allow for robust encoding. We
optimize the choice of W and p experimentally.

To find the discrete ¢»-best fit surflet to a given block, we
use a coarse-to-fine iterative algorithm to search for the closest
point along the manifold of possible surflets (see Section VI-E).
Based on the costs incurred by this coding scheme, we optimize
the surflet tree pruning using a Lagrangian tradeoff parameter
A. We repeat the experiment for various values of \.

Fig. 6(b) shows what we judge to be the best R/D curve for
each dictionary (Dictionary 1: dotted curve, 2: dashed curve, and
3: solid curve.) Each curve is generated by sweeping A but fixing
one combination of polynomial parameters/constants. Over all
simulations (all polynomial parameters/constants), we also take
the convex hull over all points in the R/D plane. The results are
plotted in Figs. 6(c) and 7(b).

We see from the figures that Dictionary 2 outperforms Dictio-
nary 1, requiring 0-20% fewer bits for an equivalent distortion

(or improving PSNR by up to 4 dB at a given bit rate). Both
dictionaries use wedgelets—we conclude that the coding gain
comes from the adaptivity through scale. Table I lists the number
of admissible quantized surflets as a function of scale j for each
of our three dictionaries.

We also see from the figures that Dictionary 3 often out-
performs Dictionary 2, requiring 0-50% fewer bits for an
equivalent distortion (or improving PSNR by up to 10 dB at a
given bit rate). Both dictionaries adapt to scale—we conclude
that the coding gain comes from the quadratic surflets used
at coarse scales (which are designed to exploit the actual
smoothness Kq = 3). Fig. 4 compares two pruned surflet
decompositions using Dictionaries 2 and 3. In this case, the
quadratic dictionary offers comparable distortion using 40%
fewer bits than the wedgelet dictionary.

2) 3-D Coding: We now describe numerical experiments
for coding elements of Fc(M, Kq) and M = 3. We generate
64 x 64 x 64 discretized versions of these signals (that is, m; =
6). Our two example discontinuities ¢ are shown in Fig. 8(a)
(for which K4 = 2) and Fig. 10(a) (for which K4 = 00).

For these simulations, we compare surflet coding (analogous
to Dictionary 2 above, with K; = min(2, %)) with wavelet
coding. Our wavelet coding is based on a 3-D Haar wavelet
transform, which we threshold at a particular level (keeping the
largest wavelet coefficients). For the purpose of the plots, we
assume (optimistically) that each significant wavelet coefficient
was coded with zero distortion using only three bits per coef-
ficient. We see from the figures that surflet coding outperforms
the wavelet approach for the synthetic examples presented, re-
quiring up to 80% fewer bits than our aggressive wavelet esti-
mate (or improving PSNR by up to 10 dB at a given bit rate).
Fig. 9 shows one set of coded results for the synthetic function
in Fig. 8; at an equivalent bit rate, we see that surflets offer an
improvement in PSNR and also reduce ringing/blocking arti-
facts compared with wavelets. We also notice from Figs. 8 and
10, however, that at high bit rates the gains diminish relative
to wavelets. We believe this is due to small errors made in the
surflet estimates at fine scales using our current implementation
of the manifold-based technique. Future work will focus on im-
proved surflet estimation algorithms; however using even these
suboptimal estimates we still see improved performance on syn-
thetic signals across a wide range of bit rates.

VII. CONCLUSION

In this paper, we have studied the representation and com-
pression of piecewise constant and piecewise smooth functions
with smooth discontinuities. For both classes of functions, we
determined the metric entropy and then provided compression
strategies based on multiresolution predictive coding in order
to realize significant gains in rate—distortion performance. For
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Fig. 9. Volumetric slices of 3-D coded functions. (a) Original test function E from Fig. 8. (b) Surflet-coded function using 2540 bits; PSNR is 33.22 dB. (c)

Wavelet-coded function using approximately 2540 bits; PSNR is 23.08 dB.

/// X\

Vi AN
R N
Y 150X \
SN

s

@ "2 *

o
z
i
Z
2 15!
H —Surflets
10 ‘l - --Wavelets
|
54
!
0
(b) 0.5 1 15 2 25
R (bits) x10*

Fig. 10. (a) Horizon b° used to generate 3-D test function jN; (b) Rate—distortion performance for surflet coding compared with wavelet coding.

piecewise constant functions, our surflet-based compression
framework approximates and encodes such functions by as-
sembling piecewise approximations over dyadic hypercubes
at different scales, where each surflet approximant contains a
(high-order) polynomial discontinuity that separates two con-
stant regions. This surflet-based approach achieves the optimal
approximation performance and the metric entropy bound. For
piecewise smooth functions, we derived surfprints by com-
bining surflets with wavelets. Our surfprint-based compression
framework provides optimal approximation performance and
near-optimal rate—distortion performance.

In addition, we extended our results for the continuous signal
classes Fc(M, Kq) and Fs(M, K4, K5) to their corresponding
discrete function spaces. We provided asymptotic performance
results for both discrete function spaces and related this asymp-
totic performance to the sampling rate and smoothness orders
of the underlying functions and discontinuities. Our simulation
results for synthetic 2-D discrete piecewise constant functions
demonstrate the coding gains achieved by using higher order

polynomials in the construction of surflet-based approximations
and by defining surflet dictionaries based on scale-adaptive
smoothness orders. Our preliminary 3-D simulation results
show that surflet-based approximations provide improved
compression performance for synthetic signals compared to
wavelet-based methods over a large range of bit rates.

The insights that we gained, namely, in quantizing higher
order terms with lesser precision and using predictive coding
to decrease bit rate, can be used to solve more sophisticated
signal representation problems. In addition, our methods require
knowledge only of the higher dimensional function and not the
smooth discontinuity. We believe that the encouraging prelim-
inary simulation results presented in this paper for synthetic
signals provide motivation for the future development of surf-
print-based coders that are applicable to real-world signals.

Future research will focus on the application of the approxi-
mation schemes presented in this paper to statistical estimation
of higher dimensional signals containing arbitrary smooth dis-
continuities given noisy data (extending the piecewise constant
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K4 =2, M = 2 case treated in [8]). We would like to develop
new representation schemes that provide optimal approximation
performance for functions containing multiple intersecting dis-
continuities with high smoothness orders (for M > 2). We are
also interested in studying practical applications of our coding
schemes to the compression of natural images (addressing is-
sues similar to those discussed in [23]), video, and light-field
data. Such a study will involve tuning the various parameters
related to the quantization schemes, and the construction of the
surflet and surfprint dictionaries. Additional work will also im-
prove practical methods for fitting £5-best surflets, extending the
methods described in [30].

APPENDIX

A. Proof of Theorem 1

Main idea: Let f5; be an N-term approximant from any
representation scheme that provides an approximation to a
function f¢ € Fc(M, Kq) using N terms. We show that we
can construct a Horizon-class function from f§, with the same
asymptotic rate as this approximation scheme. As a result, it
follows that we only need to consider Horizon-class approxima-
tion schemes in establishing a bound on the optimal asymptotic
approximation performance for Fo(M, Kq). (There cannot
exist a scheme using non-Horizon approximants that performs
better asymptotically.) This connection allows us to directly
apply the approximation and metric entropy results pertaining
to the (M — 1)-dimensional discontinuity.

Approximation: Let z € [0,1]™ and let y denote the first
M — 1 elements of x (as defined in Section II-B). Define a
function f such that

(z) = {(1] (@) > 0.5

[~

otherwise.

Considering the four cases of f¢ being 0 or 1 and f being 0 or
1, we have

(11)

2
c 2
o= £, <4 |

[ =In

Now we construct a Horizon-class function from f. Let b%; be
an (M — 1)-dimensional function defined as

_ 1
) = 1= [ fando.

Finally, let f;cv be a Horizon-class function defined by the (M —
1)-dimensional discontinuity b$,

o 1, T m Z gc\(y)
Rm=4p 2l
N 0, zpy< b“N(y)

Again, considering the four cases of f€ being 0 or 1 and ]/‘]\“\,
being 0 or 1, we have

|

—~ 12
fo=1rIy

L,

<|Ife = fI13,

and using (11) we conclude that

This result shows that the approximation performance of any
scheme that approximates f is bounded below by the approxi-
mation performance of a corresponding Horizon-class represen-
tation scheme.

Because fg; is a Horizon-class function

where b° is the CX4 discontinuity in f¢ and bS,, the implicit
estimate to b°, is the Horizon discontinuity in fAf\, From the work
of Cohen et al. [14] regarding optimal approximation rates, the
optimal approximation rate for the (M — 1)-dimensional %«

class of functions is
Kq
1 M—-1
= | = .
Ly N

Combining (12)—(14), we have an upper bound on achievable
approximation performance for Fo(M, Kq4)

Kq
2 1 M—1
== :
‘ Ly <N>

However, (13) is satisfied with equality when both b and g?;
are completely contained inside the unit hypercube (i.e., 0 <
b°(y), b (y) < 1), and we also know that (14) provides the op-
timal approximation rate for the (M —1)-dimensional C*¢ class
of functions. Thus, (15) provides the optimal approximation per-
formance that could be achieved for every f© € Fo(M, Kq).

Rate distortion: To find the optimal rate—distortion per-
formance for Fc(M, K4), a similar argument could be made
using the work of Clements [21] (extending Kolmogorov and
Tihomirov [20]) regarding metric entropy. It follows from these
papers that the optimal asymptotic rate—distortion performance
for the (M — 1)-dimensional CX4 class of functions is

Kq
1\ 71
=\|5 . O
.= (z)
B. Proof of Theorem 2

Let f* be defined by the (M — 1)-dimensional C¥4 discon-
tinuity b° separating two M -dimensional C*= functions g5, g5.
We first establish a lower bound on the optimal approxima-
tion rate with respect to the squared-L» distortion measure for
Fs(M, Kq, K). We note that both the space of M -dimensional
uniformly C%=-smooth functions and Fc (M, K4) are subsets
of Fs(M, Kq4, K). Cohen et al. [14] show that the optimal
approximation decay rate for the space of M-dimensional

1

. . . ZKS .
uniformly C¥<-smooth functions is (%) , while Theorem

1 proves that the optimal approximation rate for Fc (M, Kq)

—~ 12
re-F| <4 (12)

L

2
Lo

fo=Ix

b —b%

=Ty

2
< (13)
Lo

Ly

b — b,

(14)

=Ty (15)

b — b5,

is (%)Mfl. Therefore, the optimal approximation rate for
2K,
=)

Fs(M, K4, Ky) is bounded below by (L )min(sr: %
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We now prove that this lower bound can be achieved, thus es-
tablishing the optimal approximation rate for Fs(M, Kq4, Ky).
We assume that explicit information about b° and g%, ¢5 is pro-
vided by an external “oracle.” Given such information about the
M -dimensional C*= functions, one could use a wavelet-based
approximation scheme [14] to achieve the optimal approxima-
tion rate () %1 for such functions. Next, one could use a sim-
ilar wavelet-based approach in M — 1 dimensior;{s to represent
b with the optimal approximation rate of (%)Tﬂl Thus, we
have provided the optimal approximation rate for every func-
tion f5 € Fs(M, Kq, K;). (The assumption about availability
of explicit information about b° enables to prove the existence
of efficient approximations for f*.) Finally, given the results of
Clements [21] (extending Kolmogorov and Tihomirov [20]), the
optimal rate—distortion performance for Fs(M, Kq, K5) can be
derived similarly. O
C. Proof of Theorem 3

Consider a candidate surflet decomposition grown fully up to
level J but pruned back in regions away from the discontinuity
to consolidate nodes that are entirely 0- or 1-valued. This surflet
decomposition then consists of the following leaf nodes:

* dyadic hypercubes at level .J through which the singularity

b passes, and which are decorated with a surflet; and
» dyadic hypercubes at various levels through which the sin-
gularity b does not pass, and which are all-zero or all-one.
We establish the asymptotic approximation rate for this candi-
date decomposition. Because this configuration is among the op-
tions available to the approximation rate optimized tree-pruning
in Section IV-C, this provides an upper bound on the asymptotic
approximation rate of the algorithm.

Distortion: First we establish a bound on the distortion in
such a decomposition. We assume quantized Taylor surflets for
this analysis; this provides an upper bound for the distortion
of native Lo-best surflets as well (since native Lo-best surflets
are chosen from a dictionary that includes the quantized Taylor
surflets). In fact, the behavior of the upper bound will also hold
for extended Lo-best surflets, but with slightly larger constants.
Let X; be a dyadic hypercube at level .J, and let y,,, be its
expansion point. Using Taylor’s theorem (with D = M —1,d =
b, K = Kq,7 = 14, @ = aq in (1)), we construct a polynomial
approximation of the discontinuity b° using the Taylor surflet
sT(X;p;-) as follows. For each y € Y

p(¥) = p(Ye, +h)
= [0°(Yep) + o - 2757
M-1
+ F |:b;i1 (yep) + C1,4y - 2_(Kd_1)']:| : h”il
ii=1
M-1

1 C
5 Z I:byu?y?z

ip,ia=1

+ (Yep)

+C2,i4 s 27(Kd72)‘]] ~h; h

i2
M-—1

+c"d’i1s---,ird . 2—a(|Ji| “hi, ---h (16)

i rq
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C

Yy vos, Yep) and
lce,in,. o] < L The surflet polynomial discontinuity p is con-
structed by using quantized values of the derivatives of b° eval-
uated at y,,, as the polynomial coefficients. The set of all such
sT(Xy;p;-)’s is precisely M(J). From Taylor’s theorem (1)
and (2), we have that the X y-clipped L, distance between b°
and p is

where each constant cg;, ... ;, depends on b

L_l(bC,P) < 03 . 2—Kd,]—(M—1)J. (17)

Thus, we have that the squared-L, error between f¢ and
sT(Xy;p;-) over Xy is

We construct an approximation E to f¢ at scale .J by tiling to-
gether all the surflets s7 (X 7; p; -) (where the surflet polynomial
p differs from one hypercube to another). Let N; s1, denote the
number of nodes at level j through which the discontinuity b
passes. Due to the bounded curvature of b°, N; s1, < 2(M=1)j
Therefore, we have that the total distortion is

Number of terms: Next we establish a bound on the number
of surflets required to encode this decomposition (using either
quantized Taylor surflets or Lo-best surflets). We know from
the above that due to the bounded curvature of b€, the number
of nodes at level j through which the discontinuity b passes is
givenby N; g1, < 2(M =17, Let N; 70 be the number of all-zero
and all-one nodes in the pruned decomposition at level j

c 2 — - —1).
=T (X)) € Ca-27 MO0 g

2
(19)
L

-7

< Q-2 K
2

Njzo < 2M.N;_1 g1 < 2M.05.2M=D0-D < .21,

Thus, the number of terms required in the approximation is
given by

J
N <Y (Njst + Njzo) < Cr - 2M=D7(20)
j=0

Finally, we combine (19) and (20) to obtain the result. O

D. Proof of Theorem 4

As in Theorem 3, we consider a candidate surflet decomposi-
tion grown fully up to level J but pruned back in regions away
from the discontinuity. This surflet decomposition then consists
of the following nodes:

¢ Jeaf nodes at level .J, which are decorated with a surflet;

¢ Jeaf nodes at various levels, which are all-zero or all-one;

and

¢ internal nodes at various levels, which are decorated with

surflets.
Since the leaf nodes are used to construct the approximation, we
may use the distortion bound (19) from Theorem 3. This bound
holds for both quantized Taylor surflets and Lo-best surflets.

Number of bits: We establish a bound on the bit rate required
to encode this decomposition (using either quantized Taylor sur-
flets or Lo-best surflets). There are three contributions to the bit
rate.
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* To encode the structure (topology) of the pruned tree indi-
cating the locations of the leaf nodes, we can use one bit
for each node in the tree [32]. Using (20), we have

J
Ry <Y (Njsu+ Njzo) < Cr-2M=D7 0 (a1)
j=0

¢ For each leaf node that is all-zero or all-one, we can use a
constant number of bits to specify the homogeneous nature
of the node and the constant value (0 or 1). We have

J
Ry < ZN]',ZO < Cg - 2= (22)
i=o

¢ For each leaf node at scale J labeled with a surflet, we
must encode the quantized surflet parameters. For a sur-
flet coefficient at scale J of order £ € {0,...,rq}, the
number of bits required per coefficient is O((Kq — £).J),
and the number of such coefficients is O((M —1)*). Hence,
the total number of bits required to encode each surflet is
O(J Y4y (Kq — £)(M — 1)Y) = O(J). (Note that our
order term describes the scaling with .J.) Therefore, we
have that
R3 < NysL-O(J) < Co-J-2M=DJ (23)
Combining (21)—(23), the total bit rate R(f°¢, E) required to
describe the surflet decomposition satisfies

R (fc:ﬁ) = Ri+ Ry + R3 < Cyg - J - 2M~1)J
We conclude the proof by combining this result with (19). [

E. Proof of Theorem 5

The proof consists of three steps. First, we show that the L-ex-
tended Lo-best surflet fits to f¢ over a hypercube X ; and one of
its children X, shares a nontrivial common X jL_i_l-active re-
gion. Second, we use this fact to show that the surflet polynomial
coefficients of these L-extended Ly-best surflet fits are similar
in the case where the common X ]’-:+1—active region is aligned
with the center of the hypercube X ;. Finally, we extend the
second step to show that the surflet polynomial coefficients of
the L-extended Lo-best surflet fits are similar regardless of the
exact location of the common X ]-L+1-active region. We combine
these steps to prove that the surflet polynomial coefficients at
scale j+ 1 can be encoded using a constant number of bits given
the surflet polynomial coefficients at scale j.

Surflet fits over X; and X, share nontrivial active re-
gion: Assume that the discontinuity b“ passes through X, ;.
(Note that if b© passes through X; but not through X1, our
coder uses an all-0 or all-1 surflet to approximate f€ over X;1;
checking for such an occurrence does not require explicit knowl-
edge of b°.) From (17), we have that the L-extended Ly-best sur-
flet fits s”(X;;pj;-) and s™(X4+1;p;+1;-) obey the following
relations:

Ly (b%,pj) < Cg - 27 (KatM=1)j (24)

and

Li(b°,pjg1) < Cy - 27 KatM=1GHY, (29)

Since b¢ passes through X1, it is clear that b will have
a nontrivial (M — 1)-dimensional X jL+1-active region. One
can also check that the surflet polynomials p; and p;4; have
similar X jL_H-active regions. In particular, there exists an
(M — 1)-dimensional hypercube region A;;; that is con-
tained in the X]»L+1—active regions of b°, p;, and p;y;, with
side length(A;41) = Cy; - 27U*Y in each dimension with
the constant C'1; independent of j; otherwise, the bounds (24)
and (25) could not hold with b passing through X; ;. Hence,
vol(Aj11) = (Cpp)M~1 . 2=(M=DG+D) where the constant
C11 depends on the universal derivative bound for functions
in Fo(M, Kq), the extension L, and the dimension of the
problem M. We emphasize here that the notion of L-extensions
of hypercubes is the key reason that surflet fits at successive
scales share such a nontrivial common X f+1—active region.

We now restrict the domain of consideration of p; to the L-ex-
tended domain corresponding to the hypercube X;,; at scale
7+ 1. We denote the resulting polynomial by pg."'l. Thus, using
(24), (25), and the triangle inequality, the L, distance between
pj""l and p;41 over the (M —1)-dimensional active region A ;41
is bounded by

with the constant C5 independent of j.

Surflet polynomial coefficients are similar when A, is
centered with respect to X;: We first assume for simplicity
that

< Oy - 27 KatM-1)(i+1)

(26)
Li(Aj+1)

+1
Pl —Pj+1H

M-1

Ajy1 = {—7 :

In order to relate the similarity (26) between p; and p;41 in
the L sense to their polynomial coefficients, we present the
following lemma.

Lemma 1: [33, pp. 72-73] Let {v1,v3,...,vp} be a set of
linearly independent vectors. Then there exists C' > 0 such that
for any collection of coefficients ¥ = {v;}2,

il <C-vll, Vie{l,...,D}

D .
wherev = ) ;=1 Yivi. (For any norm, such a constant exists.)

In order to employ the lemma, we define a monomial basis
that contains all monomials of the form y/i* -4” - - - /3y "1, where
i14+1%24+---+im-1 € {0,...,7rqa}. We denote by v, ¢ a mono-
mial basis element of order 41 + 49 + - - - + 42371 = £, with i as
an index (z specifies the powers in the basis monomial). At level
J + 1, the domain of each v; ¢ is restricted to Ajy1. We express
pj+1 and pj-“ as polynomials in the vector space spanned by
the monomial basis

j+1 J+1 .
r; = Z @; g pit1Yict
il ’

and
Jj+1

@i, pyya Virte

Pj+1 =
il
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Now, we define an error vector

i+1 _ i+l
e’ =DP; —DPj+1-
We define
J+1 _ g+l Jj+1
Bie = Bppitr T Yt

and so we have ef ! = Ez i ﬁ

domain A, {1 of volume (C’H)M L.

Vi Usmg (26), over a sub-
—(M-1)(j+1)

e Iz ay0) S Crz - 27 FHMEIOED @)

To complete the proof, we must show that the Ly-best sur-
flet polynomial coefficients at scale 7 4+ 1 can be encoded using
a constant number of bits given the surflet polynomial coeffi-
cients at scale 5. To do so, note that the quantization bin-size
(3) of an /th-order coefficient at scale j + 1 is 2~ (Ka—0(+1),

Consequently, it suffices to show that

(28)

J+1‘ < Cyy - 2~ Ka=0G+D)

with C3 independent of ;. Such a bound on |af ';1 | would imply
that the Lo-best surflet coefficients at scale j + 1 can be encoded
using roughly log,(2C13 + 1) (constant) bits, given the La-best
surflet coefficients encoded at scale 5. We now proceed to es-
tablish (28) in the case where

M—1

Aoy = _% L9=G+D). % L g=(i+D) ;
in the third part of the proof we will adjust our arguments to
establish (28) for arbitrary A ;.

Since we only have bounds on the L; distance between p;;
and p] I+ over Aj41, we restrict our attention to this shared ac-
tive region. Normalizing the basis vectors v; , with respect to
the domain A;, 1, we have that

_7+1 _ E C J+1

J+1

where
A
w; " = wie/|vielln, a0
||v'i,[||L1(Aj+1) = / |’U'L',[|
Aj+r
and
A
Ci,f] = a “vl ellz, (Aj41)-

Letv; , = yil y§2 e yh’/‘[”_l1 be a basis monomial with 41 + 4o +
-+ +ipr—1 = £. From the definition of the || - ||z, (4,,,) norm,
we have that

||’v’i7[||L1(Aj+1)

iM—1
M-—1

Yyt dy

/"’le[_%e_(j_'—l):%-?—(j-t—l)]M1
— 2—KCK+M_1 Z_Z(j'i'l) . 2—(1\/1—1)(j+1) .
1 (i +1)- (i1 +1)

(29)

Note that C; is independent of j. Because the basis vectors
wAg ** are linearly independent over A;1, we know from the
lemma that there exists a C(j + 1) such that

e [ < OG+1) - e I a (30)

J+1)"
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We need to show that C(j + 1) is actually independent

of j. This would allow us to conclude (28) for A;;
[_% . 27(.7'4’1)7 % . 27(]’4’1)]]”71 because

A.
aajﬂ |G
17 ||vi,(||L1(Aj+1)
A (i 1) - (a1 4+ 1)

2= QM1 9-tG+1) L 2= (M=1)(j+1)

< Ci+1)-Cia-(i1+1) - (ipn-1+1)
9 €. UrM—1
11

« 9~ (Ka=0)(i+1) (31)

where we obtain the second equality from (29), and the in-
equality from (27) and (30). Indeed, if C(j + 1) is independent
of j, we note from (31) that we could set Cy3 = [C(j+1)-Cya-
(i +1)---(iag—1 + D]/[27 - CH M1 in (28).

We let ¢ € [—<t, S1]M-1 denote the “relative position”
within the active hypercube region of a surflet. For any level j;

with 4, = [_% L2, % L miM-1
A (s A, i
w, l+ (€2 (J+1)) _wy (€.270)
w“}JZI (é’ . 2*(j+1)) ,wf:[},(f . 2—j1)

from (29). Setting ¢’ = 0, we have that

wA]Jrl (f 9- (j+1))_2 (M-1)(j1—j-1) , .w (5 2= ]1)
(32)

Thus, we can construct a vector e at level j; using the same

Aj, A
coefficients ¢, ”1 Je, et =¢ fl so that
A
”e ’ ||L1(Aj+1)
Ajpr, Ajtr

— Zc

il

(y)|-dy

il il

/yGAj+1

(Substituting &= 2(j+1)>

>

il

A A (¢ 9=(+1)
Cio Wy (5'2

_ Cll]M—l
2 72

9—(M—-1)(5+1)

w;“zi (5 . 2*]’1)

Ajta
00

Zc

ety it
x2~M=Dir . g¢
(Substituting yi =& - 2791, cfél

L[z

it
= [len “Ll(A]-l)

_ A
¢, N2 )

A; A
¢ w; g (¥)
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where we get the third equality from (32). Since the coefficients
at the two levels, 7 + 1 and j;, are the same, we can set C14 =
C(j+ 1) in (30)

| < O [let

(PR
In this manner, one can show that

A )
i < Cra- € Ly a0 (33)

is true for all j (because j is arbitrary), and hence C'4 is inde-
pendent of j. Switching back to the original coefficients a; 'Zl,
we have that

(34)

ag;l’ < Oy - 2~ (Ka=0OG+1)

following the logic in (31), with C;3 independent of j.

Surflet polynomial coefficients are similar independent of
the specific location of A;1: We now suppose 441 = [— % :
2-G+D) 4 Cu9-GHY) 4 m] x - x [_% LG+
NM—1, % .-G+ 4 Na—1], where 7 denotes the “center”
of Aji1. As in the previous step, let e/t! = 3., al T v, 4.
Suppose that we transform the basis vectors v; ¢ to be centered
around 7 rather than around 0. The transformed coefficients
would then satisfy the bound in (34). To make this point pre-
cise, let

Ajtr

v, () =vi(y—n)=(n —m)™ (Y1 =g 1) M

A .

and let a; ;"' denote the transformed coefficients of the error
. i Ajp, A,

vector so that e/+1 = 3", a7 7 v, ;" . We have that

A
a Jj+1

i | < Cse 9= (Ka=0)(3+1)

(35)
from (34). In order to complete the proof, we need to show that

(36)

agﬂ < Oy - 2~ Ka=0G+1)

with C15 independent of j. Note that the key difference between
this step and the result of the previous step of the proof is that
Ajy1 is not necessarily aligned with the center of the hyper-
cube X 1. Hence, proving (36) is more general than the result
in the previous step. Using the binomial theorem, we have the
following relationship between the two sets of coefficients:

M—1 .
A; 1 i) —ip,

>l (H (3%, ) ey )

. , L k— Lk

(i £ €S (i,0) k=1

where S(i,¢) = {(@',¢') : U > L;i > Gy, >

inf—1;9 + 15 + - + 14y, = £'}. The outer sum is finite and
Ine| < Cre - 2-U+D for all k, thus establishing (36)

j+1 _
Ao =

M—-1
j+1 Aj i —ip
Zu D DR Al | RSTR T
(i 0)ES(3,L) k=1
Z Aj M-1
S ai/j[tl : (017 . Cl6)

(@, 0)eS(5,0)
><2_(j+1)2£411ii»—“}

< Z O3 - 2~ Fa=)(+1)

(i ) ES(i,0)
% (C7 - Cyg)M 1 2—(j+1)(f'—f)]
< Oy - 2~ Ea=0OG+1),

Here, we use (35) for the third inequality. O

FE. Proof of Theorem 6

We begin by providing a simple performance bound (which
we improve upon below) for the approximation scheme
described in Section IV-C applied to f{. At scale .J, the
(M — 2)-dimensional intersection manifold passes through
O(2<M —2)J ) hypercubes. Let one such hypercube be denoted
by Xj;. The squared-Lo error in X due to the use of a
surflet (that is ill-suited for representing intersections) can be
approximated by the volume of the hypercube and is equal to
O(2~M7)_ Therefore, the total squared-L, approximation error
in representing the (M — 2)-dimensional intersection manifold
is given by O(2727) (for every M). Comparing this result to
the bound in (19), we see that the approximation performance
achieved by our surflet-based representation scheme applied to
feas|lfs - ffN||%? = (%)Mz—l. Hence, the representation
scheme from Section IV-C applied to fﬁ‘ achieves optimal
approximation performance for K4 = 2, but suboptimal perfor-
mance for K4 > 2. Thus, the smoothness threshold K fih = 2.
This performance is still better than that achieved by wavelets,
which treat the discontinuities as C!-smooth functions regard-
less of any additional structure in the discontinuities, and thus
have a smoothness threshold of Kfl’h’WI = 1 (i.e., the perfor-
mance achieved by wavelets is || f5 — f{nCTvH%z = (%) T,

Using more sophisticated analysis, we now improve upon the
performance bound described above to show that the approx-
imation scheme has a smoothness threshold K(tih greater than
two, thus increasing the range of K4 for which we achieve op-
timal performance. In order to improve the performance bound,
we consider the scenario where the approximation scheme fur-
ther subdivides those hypercubes at scale .J containing intersec-
tions. At scale .J, the scheme described in Section IV-C uses
N = 0(2M-17) terms to construct an approximation (an-
alyzed in detail in Appendix C). This suggests that an addi-
tional O(2”) mini-hypercubes could be used within each of
the O(2(M=2)7) hypercubes that contain the (M — 2)-dimen-
sional intersection manifold (again, let one such hypercube be
denoted by X5 ;), while still maintaining the same order for N.
Let the side length of the mini-hypercubes be 2~°. Each of these
mini-hypercubes is labeled with a surflet (chosen from a dictio-
nary at scale s). Within each X ;;, the approximation scheme
would ideally use the O(2”) mini-hypercubes to only approxi-
mate those regions that contain the intersection manifold rather
than to tile the entire hypercube X 7 ;. Using this idea, we com-
pute the side length, and consequently the smoothness threshold
K1b, as follows.

e M > 2: The number of mini-hypercubes used in each
Xz is O(27). We would like all these mini-hypercubes
of side length 277 to approximate regions within Xy 4 that
contain the intersection manifold. This implies that 27 ~

2(M=2)(s=J) \which results in s = [(AI/\[J__lz)J}- The total
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squared- Lo error due to the use of these mini-hypercubes
in each X; is

0@ 27 M) =0 (27 27 ).

The total squared-Ly error over all of the O(2(M=2)7)

X 7,4’s due to the mini-hypercubes is given by

—M(M-1)J —2(]\4—1)])
M—2 .

0 (2J T ~2(M_2)J) -0 (2

Comparing with (19), we have that K fih = 2(]\131:21).

e M = 2: In this case, discontinuities intersect at points.
Therefore, only a constant number of mini-hypercubes are
needed inside each X5 ;. As a result, the number of mini-
hypercubes that are required to cover the intersection man-
ifold does not grow with scale. Choosing s = [£447, we
see that the total squared- L5 error due to the use of these
mini-hypercubes in each X ;; is O(27M%) = O(27Ka/),
The total squared-Ls error over all of the hypercubes X j
(a constant number) due to the mini-hypercubes is also
given by O(2~%47)_ Comparing with (19), we see that the
scheme in Section IV-C achieves optimal approximation
performance for every K.

Note that the analysis of the approximation scheme as described
above requires explicit information about the location of the
intersections; however, an approximation scheme based on
Ly-best surflets (with the dictionary containing regular and
“mini”-surflets) would not require such explicit information but
would still achieve the same performance. O

G. Proof of Theorem 7

According to the prototype algorithm, there are three sources
of error in the approximation—quantizing wavelet coefficients
that are kept in the tree, pruning Type S nodes (and their descen-
dant subtrees) from scale % to scale %, and approximating Type
D discontinuity nodes at scale % (and their descendant subtrees)
by surfprint atoms. The terms used in constructing the approxi-
mation include Type S wavelet coefficients, Type D wavelet co-
efficients, and surfprint atoms. We will analyze the approxima-
tion error and number of terms separately before calculating the
approximation rate of the surfprint-based representation.

Distortion: The sources of distortion contribute in the fol-
lowing manner.

Quantizing wavelet coefficients:

There are N;..
O(2 = ) wavelet nodes up to scale . The number of Type
D nodes (which are not pruned) at scales j € [% +1, %] is
given by N;p = O(2(M~17)_ This implies that the total
number of Type D nodes at these scales is bounded by

)

NJHJD_O( ) =o (2

because 7+ = 7- Using (8), each wavelet coefficient in

M
the approximatlon is quantized up to resolution (AK )?

9— L (2K"'+M) . Therefore, the total quantization distortion
2k Wy

isO(2=— ).
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* Pruning Type S nodes: First, we consider Type S nodes
at scale % The magnitude of wavelet coefficients for
Type S smooth nodes decays as O(2~ (K" +M/2)i) [26].
The squared-L» error from a single pruning at scale % is
given by

Z oM(j—%) . 9— (2K +M) <2 = (M42K*") (37)

where a Type S node at scale .J/m has 2M (G=+%) children
nodes at scale j. Thereare N, ¢ = = O(2°" ) Type S nodes

at scale % Therefore, the total distortion from pruning

l

Type S nodes at scale L is 0(2_—) Second, we con-
sider Type S nodes (not previously pruned) at deep scales
greater than -L. The error given by (37) also serves as an
upper bound for every Type S pruning from scale £ —+1to
scale . For a Type S node at these scales to have not been
prev10usly pruned, it must have a Type D parent. Because
Nijyap= O(27"), the total error due to pruning is

o )-o(e5).

e Using surfprint approximations The number of Type D
discontinuity nodes at scale < = (approximated by surfprint
atoms) is Nu p = Nigp = O(QM) The error due
to each surfprlnt appr0x1mat10n is given by

-k —(M—1)J —(2KP+M)J
(0] (2 w227 42 z
(This error is bounded by the squared-Ly error of the
quantized piecewise polynomial surflet approximation
over each hypercube X 7/,,, extended if necessary to cover
the supports of the wavelets.) Therefore, the total error
due to surfprint approximations is given by

>),

Thus, the total squared distortion is given by

) >> . (38)

Number of Terms: The following three types of terms are
used in assembling an approximation to f* € Fs(M, Kq, K5).
* Coarse-scale wavelets: The total number wavelets used at

coarse scales is
(2 A;’J) -0 (2<M—1>%) _

» Intermediate Type D wavelets: The number of Type D
nodes used at intermediate scales is N, .0 p
(M—1)J ™ "
o2 ).
* Surfprints: The total number of surfprints used in the ap-

. .. (M—1)J
proximation is N gp = O(27 = ).

—2Kk%g
™

J(M+42KNT)
™

1
—2KY'J
m

MJ
m

+ 27

sp

KSPJ (2KP+1)J

0<2mi“( e

okl KPJ (2x3P i1y

:o<2—mm< O R

r-7l
JL2

NI:L = O

™m
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Thus, the total number of terms, NV, used in assembling the ap-
proximation is

(M—1)J
N = N11+NJ+11D+NJSP_O( —)

:0(2%).

Combining (38) and (39), we get the following approxima-
tion rate for the performance of our prototype surfprint-based
approximation scheme:

(39)

L2k 2K5P41

1 mm( M i v 7?)
=\ .
Lo N

The conditions on the operational smoothness orders K3”, K},

and K:P (as specified in Section V-C) ensure that the proper
terms dominate the decay in this expression and it matches the
optimal asymptotic approximation rate of Theorem 2. O

H. Proof of Theorem 8

Consider an /V-term approximation f]?v to f* constructed by
the scheme in Section V-E. The distortion between f]{, and f*
is given by (38). We only need to analyze the number of bits
required to encode this approximation.

Number of bits: We encode the topology of the tree and the
quantized wavelet and surfprint terms.

* To encode the structure of the tree, we use O(1) bits to

encode each node in the tree

R =0(N)=0(2%F%) =0 (2%) @0
from (39).

* The number of possible quantization bins for a wavelet
coefficient (f*, wx,) at scale j is given by

Bins(j) = O(2= K"+ ¥)-7)

based on the quantization step size (8) and the fact that a
wavelet coefficient at scale j near the (M —1)-dimensional
discontinuity decays as 27 [26]. Thus, the number of bits

required to encode wavelet coefficients is given by

L
m

Ry = Z(Nj,s +
=0
g
+ > Njplog(Bins(j))
j=Z+1

—0 (J2Mn—f).

* The number of bits required to encode surfprint coefficients
at scale % is

N;p)log(Bins(j))

(41)

J ,
Rs = N 4pO ((Kj" + K _) -0 (JQ(M*U%) ,
n’ n

(42)

Combining (38), (40), (41), and (42), we obtain the desired re-
sult. O

1. Proof of Theorem 9

Let X; be an M-dimensional dyadic hypercube!? with .J <
Joox 1= % Let f ¢ be the continuous L-best surflet fit to
f€ over X ;. We know from (4) that

‘ -0 (Z—J(Kd-i-M—l)) ‘
Lz(X])

We assume that the values of the discretized function E
are obtained by averaging f¢ over each voxel. The distortion
between f¢ and f¢ over X is nonzero only over voxels
through which the discontinuity b° passes. The squared-Ls dis-
tortion over each such voxel is O(2~(m++7u)) " Also,
the number of voxels through which b° passes within

M—1 M—1
Xy = 0@k MI[(Q - g7 mn g,
where (2 is the universal derivative bound (Section II-A). Thus,
we have

(43)

ffL

ff°

-0 (27J(]\/171)7min(7ri))

-0 (Q—J(Kd+M—1))

La2(Xy)
(44)

where the second equality is due to fact that J < %(:) Note

that we define f¢ as a continuous function (constant over each
M -dimensional voxel) in order to compare with f. Similarly,
one can check that

2

fi-fin =0 (277D ) )
L2(X )
where fL is the sampled version of fL

Equatlons (44) and (45) indicate that at scale .J, voxelization
effects are comparable to the approximations afforded by sur-
flets. Essentially, then, all of the approximation results for sur-
flets at this scale are preserved when applied to the voxelized
function. In particular, combining (43)—(45), we have the fol-
lowing result:

2

‘ f‘l(l" - fz,r
LQ(XJ)
( f La(X) ‘f _fL La(X)
2
o )
Lo (X )

-0 (27J(Kd+Mfl)) .

Thus, discrete surflets are as effective on the discrete block as
continuous surflets are on the corresponding continuous block
(see Appendix C). However, we are only provided with the dis-
crete function f7 and would like to use £>-best surflets on dyadic

blocks of E Let E denote the discrete /2-best surflet fit to E
over X 7.

1ZWe omit an additive constant that may be added to J,.. to ensure a more
exact agreement with the voxelization breakdown rate.
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By definition, ||fC fC||L2(XJ) < ||f fL7r||L2 (x,)- Thus,
we have that

=2
Je—fs

-0 (27J(Kd+Mfl)) '
La(Xy)

(46)

It remains to be shown that ¢5-best surflets can be predicted
across scales. The proof of this fact is analogous to the Proof
of Theorem 5. O
J. Proof of Corollary 10

Combining (44) and (46) from Appendix I, we have the fol-
lowing result:

—~ 12

Fe- e
+ | fe—

< ( “— I3 ‘
La(Xy)
-0 (2—J(Kd+M—1)) .

LQ(XJ)

—
fc
T

2
L2(XJ)>

Hence, the quality of the approximation provided by the /5-best
surflets fS operating on f¢ to the continuous function f¢, with

E considered to be continuous (constant over each M -dimen-
sional voxel), is as good as the approximation performance pro-
vided by continuous Ls-best surflet fits to f¢ (see Appendix C).
The rest of the proof follows in an analogous manner to the Proof
of Theorem 5. |

K. Proof of Theorem 11

In smooth regions of f;, discrete wavelet coefficients (cor-
responding to a discrete wavelet basis with K *! vanishing mo-
ments applied to f3) decay as O(2~ (K" +M/2)5 7) [26]. This is
the same decay rate that continuous wavelet coefficients obey
on smooth regions of f* (see Appendix G). Therefore, the total
error due to the use of discrete wavelets to approximate f3,
the quantization of the corresponding discrete wavelet coeffi-
cients, and the pruning of Type S nodes is analogous to the corre-
sponding error in the continuous case analyzed in Appendix G.

What remains to be analyzed is the distortion due to the use of
discrete surfprint approximations. This analysis is analogous to
the analysis in Appendix I. Consider a Type D node at scale < to
which a surfprint approximation is assigned. Let the hypercube
corresponding to this node be X ;. First, we have the following
distortion between f* and the Ls-best surfprint fit to f5 over
X a, fssp’ 1, (see Appendix G):

2

LQ(Xi)

—(KZP+M—1)J
o <2 -

-0 (2 —(M 17 .9~ mln(KSp 2K: P—l—l %

fS - :p,L‘

—(21{ ‘)+M

(47)
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Second, we characterize the error due to voxelization of f* over
X . For each voxel in X through which the discontinuity

passes, the squared-Lo error between f° and E is given by
O(2~(m++m1)) The number of such voxels in

1

Xy =0 (325 E B (g gl g )

where () is the universal derivative bound (Section II-A).
Discretization over the smooth regions of f° can be viewed
as a construction of Oth-order Taylor approximations (con-
stants) locally over each voxel. Therefore, the squared-Lo
error between f* and f3 over a voxel in the smooth region is
O(2~2min(m:) : 2~ (mi+-++71)) The number of such voxels in

1 . J
X, = O(ZZ :1(“1’5)). Thus, the total error between f° and
E is

7

|

fS

2

Lo (XJ)

O( (M- 1)J—min(7l'7) +2_¥—2min(m))
O( —Qong min(m))

_o ( M 2—min(KZP,2K§p+1)%) . (48)

The last equality is due to the assumption that

J

n

min{m;}

< .
~ min{K3}, 2K + 1}

Similarly, the squared-Ly error between a continuous surfprint
atom and its discrete analog at scale % is also given by

—
s

2

L, (xi)

=0 (2—4 L2- min<K:‘ﬂ2K:"+1>%) )

sp,L f:p,Lﬂr

Combining (47)—(49), we have the following result:

2

a2

- -
a(v2)

ol o)

-0 (2 M—I)J .9— min(K5P,2KP+1)L )

fr-

s
sp,L,m

= o)

L (xi)

2

s __ fs
+ sp,L fSp,Lﬂr

(50)

There are 0(2( = )J) Type D nodes at scale Z. From (50), we
have that the total error due to discrete surfprint approximations
. . H 8| S| J . .

is given by O(2~ ™in(Ky" 2K +1)5)  Similar to the argument
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made in Appendix I, we have by definition that the discrete surf-

print approximation fg, ,

surfprint atoms, satisfies

—

constructed using the discrete £5-best

I fs — fssp,r”%Q(X,) <|fs- ssp,L,ﬂ'H%g(XJ)'

Thus
2

Ly (xi)

Combining this result with the arguments made in the first
paragraph of this proof, the squared-Ly error between the dis-
crete function f3 and the discrete wavelet/surfprint approxima-

—

f1sr_ ssp,‘lr

-0 (2_—(”’;1” 9 min(Kjlf’,zK:"H)%)

tion f5 (this approximation now represents a composite wavelet/
surfprint approximation; the previous paragraph only analyzed
surfprint approximations) is

>> . (5D

The rest of this proof is analogous to the Proof of Theorem 8 in
Appendix H. O

2 .l sp sp
oMy KT (2KP+1)g

:O(Qmi“( S R

Lo

L. Proof of Corollary 12

This proof is similar to the proof in Appendix J. We begin
by extending the bound provided by (45). This bound holds for
Type D hypercubes at scale % The total number of such Type
D hypercubes at scale £ is given by 02 =1)3) Following
the logic preceding (48), we have that the squared-L, error be-
tween f° and f3 over a Type S hypercube at scale j is given by
O(2~Mi—2min(m)) "and the total number of such Type S hy-
percubes at scale j is given by O(27). Combining these argu-
ments with (51) from Appendix K, we have the following result:

—~ |2 —
lr-%| <(|r-7), +|5-%
L L L
(52,5 )
— O 2 m ’ n ’ n

The rest of the proof follows in an analogous manner to the proof
of Theorem 8. O
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