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Abstract
The affine inverse eigenvalue problem consists of identifying a real symmetric matrix
with a prescribed set of eigenvalues in an affine space. Due to its ubiquity in appli-
cations, various instances of the problem have been widely studied in the literature.
Previous algorithmic solutions were typically nonconvex heuristics and were often
developed in a case-by-case manner for specific structured affine spaces. In this short
note we describe a general family of convex relaxations for the problem by reformu-
lating it as a question of checking feasibility of a system of polynomial equations, and
then leveraging tools from the optimization literature to obtain semidefinite program-
ming relaxations. Our system of polynomial equations may be viewed as a matricial
analog of polynomial reformulations of 0/1 combinatorial optimization problems,
for which semidefinite relaxations have been extensively investigated. We illustrate
numerically the utility of our approach in stylized examples that are drawn from var-
ious applications.

Keywords Combinatorial optimization · Real algebraic geometry · Schur–Horn
orbitope · Semidefinite programming · Sums of squares polynomials

1 Introduction

The affine inverse eigenvalue problem (IEP) consists of identifying a real symmet-
ric matrix with a prescribed set of eigenvalues in an affine space. IEPs arise in a
range of applications in engineering and physical sciences, such as natural frequency
identification in vibrating systems, pole placement, factor analysis, reliability testing,
estimation of the Earth’s conductivity, graph partitioning and nuclear and molecular
spectroscopy [3,6,7]. Further, there are many situations in which a question of interest
is to solve a discrete inverse Sturm–Liouville problem [14], which is a special case of
an affine IEP. Due to its ubiquity, IEPs have received much attention in the literature
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over the past several decades. On one end of the spectrum, there have been several
efforts aimed at providing necessary and sufficient conditions for the existence of a
solution of a given IEP [10,15,17]. For example, Landau proved that there always
exists a symmetric Toeplitz matrix with a desired set of eigenvalues [17]; however,
computing such matrices in a tractable manner remains a challenge. At the other end
of the spectrum, several efforts have been aimed at developing efficient procedures for
numerically finding solutions to particular types of the inverse eigenvalue problems
[11,25], including some recent approaches based on convex optimization [19,26]. Our
work differs from these approaches in two prominent ways. First, our framework is
applicable to general affine IEPs, while some of the previous convex approaches are
only useful for certain structured problem instances; see Sect. 3 for the broad range
of examples to which we apply our methods. Second, we describe a family of convex
relaxations for IEPs rather than just a single convex program, and our work allows for
a tradeoff between computational cost and solution quality.

Webegin byfirst reformulating the affine IEP as a question of checking the existence
of a real solution to a system of polynomial equations. Formally, an instance of an
affine IEP may be stated as follows:

Affine InverseEigenvalueProblemGiven (i) adesired spectrum� = {(λi ,mi )}qi=1 ⊂
R × Z+ of eigenvalue-multiplicity pairs with

∑
i mi = n, and (i i) an affine space

E = {X ∈ S
n : Tr (Ck X) = bk, k = 1, . . . , �}, find an element of E with spectrum

given by � or certify that such a matrix does not exist. Here S
n denotes the space of

n × n real symmetric matrices.
This problem may be reformulated in terms of the existence of a real solution to

the following system of equations:

Siep :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 := ∑q
i=1 Zi − I = 0,

f (i)
2 := Tr (Zi ) − mi = 0 for i = 1, . . . , q,

f (i)
3 := Z2

i − Zi = 0 for i = 1, . . . , q,

f (k)
4 := ∑q

i=1 λiTr (ZiCk) − bk = 0 for k = 1, . . . , �.

(1)

The variables in this system are the matrices Z1, . . . , Zq ∈ S
n . The matrix I denotes

the n × n identity. We are interested in whether the system of polynomials Siep =
{ f1, f (1)

2 , . . . , f (q)
2 , f (1)

3 , . . . , f (q)
3 , f (1)

4 , . . . , f (�)
4 } has a common root over the reals,

or in otherwords checkingwhether the associated real varietyVR(Siep) is empty. To see

that (1) is equivalent to an IEP instance, first we note that the constraints { f (i)
3 }qi=1 and

{ f (i)
2 }qi=1 ensure that the Zi ’s are projection matrices onto mi dimensional subspaces.

Second, by adding the constraint f1 and noting that
∑

i mi = n, we further ensure that
the Zi ’s are matrices that project onto orthogonal subspaces whose direct sum equals
R
n . As such, the sum

∑
i λi Zi defines a matrix with spectrum specified by �. Finally,

f (k)
4 ensures that the resulting matrix

∑
i λi Zi lies in desired affine space E .

The strength of this polynomial reformulation is that it allows us to leverage
results from the optimization literature to systematically obtain convex relaxations
for the affine IEP. Specifically, Parrilo [22] and Lasserre [18] developed hierarchies
of semidefinite programming relaxations for polynomial optimization problems using
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results from real algebraic geometry. These relaxations entail the solution of increas-
ingly larger convex optimization problems that search over successivelymore complex
collections of certificates that prove the infeasibility of the systemdefinedbySiep. From
a dual perspective, these relaxations may also be viewed as providing a sequence
of convex outer approximations R1(�, E) ⊇ R2(�, E) ⊇ · · · ⊇ conv

(VR(Siep)
)
,

which leads to a natural heuristic for attempting to obtain solutions of the system Siep.
We describe the mechanism to obtain these relaxations in Sect. 2. As an illustration,
searching over a simple class of infeasibility certificates gives the following convex
outer approximation to VR(Siep):

R1(�,E) =
{

(Z1, . . . , Zq ) ∈ ⊗q
S
n |

q∑

i=1

Zi = I ; Tr (Zi ) = mi , Zi � 0 ∀i; Tr

( q∑

i=1

λi ZiCk

)

= bk ∀k
}

.

(2)
In Sect. 2.2 we relate the setR1(�, E) to the Schur–Horn orbitope [23] associated to
the spectrum�, which is the convex hull of all real symmetric matrices with spectrum
�. If R1(�, E) = ∅, then it is clear that VR(Siep) = ∅; otherwise, VR(Siep) may or
may not be empty, and one can either attempt to find an element of VR(Siep) or search
over a larger family of infeasibility certificates (see Sect. 2.1). In Sect. 2.3 we describe
a convex outer approximation R2(�, E) to conv

(VR(Siep)
)
that is in general tighter

than R1(�, E).
The description ofR1(�, E) in (2) consists of q semidefinite constraints on matrix

variables of size n × n. The description of R2(�, E) in Sect. 2.3 involves a semidef-
inite constraint on a matrix variable of size

(n+1
2

)
q × (n+1

2

)
q. Tighter relaxations to

conv
(VR(Siep)

)
thanR1(�, E) andR2(�, E) require even larger semidefinite descrip-

tions, and they become prohibitively expensive to solve for large n. Consequently,
although we describe the general mechanism by which semidefinite relaxations of
increasing size may be generated, we restrict our attention in numerical experiments to
the performance of the relaxationsR1(�, E) andR2(�, E). As the affine IEP includes
(co-)NP-hard problems as special cases, these two relaxations generally do not solve
every instance of an affine IEP (as expected); nonetheless, we demonstrate their effec-
tiveness in Sect. 3 on stylized problems such as certifying non-existence of planted
subgraphs, solving discrete Sturm–Liouville equations, and computing Toeplitz matri-
ces with a desired spectrum.
Connection to combinatorial optimization A number of combinatorial problems such
as computing the stability number of a graph or the knapsack problem may be formu-
lated as checking feasibility of a system of equations in a collection of variables that
take on values of 0/1. As many of these problems are NP-hard, a prominent approach
to developing tractable approximations is to first specify the problems via polynomial
equations and to then employ the methods referenced above to obtain semidefinite
relaxations [2]. The polynomial reformulations consist of a systemof equations defined
by affine polynomials and quadratic equations of the form x2i − xi = 0 for each of
the variables xi to enforce the Boolean constraints. Our system (1) for the affine IEP
may be viewed as a matricial analog of those arising in the literature on combinatorial
problems, as the idempotence constraints Z2

i − Zi = 0 represent a generalization of
the scalar Boolean constraints x2i − xi = 0. The present note describes promising
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experimental results of the performance of semidefinite relaxations for the affine IEP.
As with the significant prior body of work on combinatorial optimization, it is of
interest to investigate structural properties of our relaxations for specific affine spaces
E and spectra �. We outline future directions along these lines in Sect. 4.

Notation We use ⊗q to denote the product space formed by q-tuples; i.e. ⊗q
S
n =

{(A1, . . . , Aq) | A1, . . . , Aq ∈ S
n}. The usual convex hull operator is denoted by

conv(·) and the usual trace operator is denoted by Tr(·).

2 Semidefinite relaxations for affine IEPs

2.1 From polynomial formulations to semidefinite relaxations

We summarize here the basic aspects of obtaining semidefinite relaxations for certi-
fying infeasibility of a polynomial systems over the reals; we refer the reader to the
survey [2] for further details. Let R[x] denote the ring of polynomials with real coef-
ficients in indeterminates x = (x1, . . . , xn). A polynomial ideal I is a subset of R[x]
that satisfies the following properties: (i) 0 ∈ I, (i i) f1, f2 ∈ I ⇒ f1 + f2 ∈ I,
and (i i i) f ∈ I, h ∈ R[x] ⇒ h f ∈ I. The ideal generated by a collection of
polynomials f1, . . . , ft ∈ R[x] is the set 〈 f1, . . . , ft 〉 = {∑t

i=1 fi hi : hi ∈ R[x]} –
here, f1, . . . , ft and h1, . . . , ht are referred to as generators and coefficients, respec-
tively. The real variety corresponding to polynomials g1, . . . , gr ∈ R[x] is denoted
VR (g1, . . . , gr ) = {x ∈ R

n : gi (x) = 0, i = 1, . . . , r}. Finally, the set of
polynomials that can be expressed as a sum of squares of polynomials is denoted
� := {p ∈ R[x] : p = ∑

i p
2
i , pi ∈ R[x]}, where the sum is finite. We state next

the real Nullstellensatz due to Krivine for certifying infeasibility of a system of a
polynomial equations over R:

Theorem 1 (RealNullstellensatz) [16]Givenany collectionof polynomials f1, . . . , ft ∈
R[x], we have that:

−1 ∈ � + 〈 f1, . . . , ft 〉 ⇐⇒ VR ( f1, . . . , ft ) = ∅.

Here −1 ∈ R[x] refers to the constant polynomial. In general, the best-known
bounds on the size of infeasibility certificates – i.e., the degrees of the polynomials in
�, 〈 f1, . . . , ft 〉 that sum to −1 – are at least triply exponential. This is to be expected
as many NP-hard problems (such as the induced subgraph isomorphism problem
we discuss in Sect. 3) can be reformulated as certifying infeasibility of a system of
polynomial equations.

Obtaining tractable relaxations based on the real Nullstellensatz relies on three key
observations. First, one fixes a subset Ĩ ⊂ 〈 f1, . . . , ft 〉 by considering polynomials∑

i hi fi in which the coefficients hi ∈ R[x] have bounded degree (sets of the form
Ĩ are sometimes called truncated ideals, although they are not formally ideals). In
searching for infeasibility certificates of the form −1 = p + q, p ∈ �, q ∈ Ĩ , one
can check that without loss of generality the search for p can also be restricted to
sum-of-squares polynomials of bounded degree; formally, if every element of Ĩ has

123



A note on convex relaxations for the inverse eigenvalue… 2761

degree at most 2d, one can restrict the search to elements of� with degree at most 2d.
Second, a decomposition−1 = p+∑

i hi fi where the p and the h
′
i s all have bounded

degree is a linear constraint in the coefficients of p and the hi ’s. Finally, checking that
a polynomial p ∈ R[x] in n variables of degree at most 2d is an element of � can be
formulated as a semidefinite feasibility problem; letting mn,d(x) denote the vector of
all

(n+d
d

)
monomials in n variables of degree at most d, we have that:

p ∈ � ⇔ ∃P ∈ S
(n+d

d ), P � 0, p(x) = mn,d(x)
′ P mn,d(x).

The relation p(x) = mn,d(x)′ P mn,d(x) is equivalent to a set of linear equations
relating the entries of P to the coefficients of p. Thus, the search over a restricted
family of infeasibility certificates via bounding the degree of the coefficients of the
elements of 〈 f1, . . . , ft 〉 is a semidefinite feasibility problem.

By considering a sequence of degree-bounded subsets I ′ ⊂ I ′′ ⊂ · · · ⊂
〈 f1, . . . , ft 〉, one can search for more complex infeasibility certificates at the expense
of solving increasingly larger semidefinite programs. Associated to this sequence of
semidefinite programs is a sequence ofdual optimization problems that provide succes-
sively tighter convex outer approximations toVR( f1, . . . , ft ) (assuming strong duality
holds), i.e., R′ ⊇ R′′ ⊇ · · · ⊇ conv (VR( f1, . . . , ft )). This dual perspective is espe-
cially interesting for attempting to identify elements ofVR( f1, . . . , ft ). Concretely, fix
a subset I ′ ⊂ 〈 f1, . . . , ft 〉, and suppose that the search for an infeasibility certificate of
the form−1 ∈ �+I ′ is unsuccessful. Then VR( f1, . . . , ft )may or may not be empty.
At this stage, one can attempt to find an element of VR( f1, . . . , ft ) by optimizing a
random linear functional over the set R′ (obtained by considering the dual problem
associated to the system −1 ∈ � + I ′), and checking whether the resulting optimal
solution lies inVR( f1, . . . , ft ); this heuristic is natural asR′ ⊇ conv (VR( f1, . . . , ft )),
and if these sets were equal then the heuristic would generically succeed at identifying
an element of VR( f1, . . . , ft ). If this approach to finding a solution is also unsuc-
cessful, one can consider a larger subset I ′′ ⊂ 〈 f1, . . . , ft 〉 and an associated tighter
approximationR′′ ⊇ conv (VR( f1, . . . , ft )) (here I ′ ⊂ I ′′ andR′ ⊇ R′′), and repeat
the above procedure at a greater computational expense.

In Sects. 2.2 and 2.3, we employ the methodology described above to give concrete
descriptions of two convex outer approximations of the variety specified by the system
Siep associated to the affine IEP.

2.2 A first semidefinite relaxation

Asour first example,we consider the following truncated ideal associated to the system
Siep:

I1 =
{
Tr (h1 f1) +

q∑

i=1

[
h(i)
2 f (i)

2 + Tr
(
h(i)
3 f (i)

3

)]
+

�∑

k=1

h(k)
4 f (k)

4 : h(i)
2 , h(k)

4 are degree-0 polynomials,

h1, h
(i)
3 are n × n symmetric matrices of degree-0 polynomials ∀i, k

}
.

(3)
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Here, each entry of the matrices h1 and h(i)
3 represents a degree zero real polynomial

in entries of Zi for i = 1, . . . , q (i.e. a constant) that is the coefficient multiplying the
corresponding index of f1 and f (i)

3 , respectively. The truncated ideal I1 ⊂ 〈Siep〉 is
obtained by restricting the coefficients to be constant polynomials (i.e., degree-zero
polynomials).As a result, the elements ofI1 consist of polynomialswith degree atmost
two. Consequently, in searching for infeasibility certificates of the form −1 ∈ I1 +�

one need only consider quadratic polynomials in �, which in turn leads to checking
feasibility of the following semidefinite program:

−Tr (A) −
q∑

i=1

midi −
�∑

k=1

bkξk = 1; A + di I + λi

�∑

k=1

ξkCk − Bii = 0, Bii � 0, i = 1, . . . , q (4)

in variables A ∈ S
n , di ∈ R and Bii ∈ S

n for i = 1, . . . , q, and ξk ∈ R for k =
1, . . . , �. The elements of the truncated ideal I1 can be associated to the above problem
via the relations h1 = −A, h(i)

2 = −di , h
(i)
3 = −Bii , h

(k)
4 = −ξk , and then observing

that the constraints in (4) are equivalent to checking that the polynomial Tr (h1 f1) +
∑q

i=1 h
(i)
2 f (i)

2 + ∑q
i=1 Tr

(
h(i)
3 f (i)

3

)
+ ∑�

k=1 f (k)
4 h(k)

4 in variables (Z1, . . . , Zq) can

be decomposed as −1−� (this can be observed by substituting the coefficients in the
polynomial and grouping the terms that multiply Zi together for i = 1, . . . , q). Next
we relate R1(�, E) and the system −1 ∈ I1 + � via strong duality:

Proposition 1 Consider an affine IEP specified by a spectrum � and an affine space
E ⊂ S

n. Let I1 be defined as in (3) and R1(�, E) as in (2). Then exactly one of the
following two statements is true:

(1) R1(�, E) is nonempty, (2) − 1 ∈ I1 + �.

Proof Here, the feasibility of the system (4) is equivalent to the condition−1 ∈ I1+�.
One can check that the system (4) and the constraints describingR1(�, E) are strong
alternatives of each other, which follows from an application of conic duality – strong
duality follows from Slater’s condition being satisfied.

Proof We begin by posing a non-convex feasibility problemwith objective function of
minimizing 0 and constraints given by the system of equations Siep. The dual problem
of this system is equivalent to the following convex program:

max
A,Bii∈Sn; di ,ξk∈R
i=1,...,q; k=1,...,�

− Tr (A) −
q∑

i=1

midi −
�∑

k=1

bkξk

s.t . A + di I + λi

�∑

k=1

ξkCk − Bii = 0, Bii � 0, i = 1, . . . , q

(5)

Note that convex program (5) is homogeneous, and thus, if equation (4) holds, then
optimal value of (5) is infinity, which, by weak duality proves that Siep is infeasible.
Therefore, the feasibility of the system (4) is equivalent to the condition−1 ∈ I1+�.
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Next, we take the the dual of system (5) to obtain a convex outer-approximation
to the solution set of Siep. The dual of the system (5) is equivalent to optimizing
overR1(�, E) with a vacuous objective of minimizing 0. Here, the Slater’s condition
holds, and as such, the system (5) and its dual have the same optimal value. Therefore,
whenever R1(�, E) is nonempty, both convex program (5) and its dual have optimal
value 0, system (4) is infeasible and hence −1 /∈ I1 + �. In contrast, if R1(�, E) is
empty, then both (5) and its dual have optimal value +∞, system (4) is feasible and
thus −1 ∈ I1 + �.

As a consequence of this result, it follows thatR1(�, E) is a convex outer approxi-
mation of the varietyVR(Siep). Amore direct way to see this is to consider any element
(Z1, . . . , Zq) ∈ VR(Siep) and to note that the idempotence constraints Z2

i − Zi = 0
in Siep imply the semidefinite constraints Zi � 0 inR1(�, E).

The set R1(�, E) is closely related to the Schur–Horn orbitope associated to the
spectrum � [23]:

SH(�) = conv{M ∈ S
n | λ(M) = �}

=
{

X ∈ S
n | ∃(Z1, . . . , Zq ) ∈ ⊗q

S
n s.t.

q∑

i=1

Zi = I ; Tr (Zi ) = mi , Zi � 0 ∀i; X =
q∑

i=1

λi Zi

}

.

(6)
The second equality follows from the characterization in [9]. The Schur–Horn orbitope
was so-named by the authors of [23] due to its connection with the Schur–Horn theo-
rem. A subset of the authors of the present note employed the Schur–Horn orbitope in
developing efficient convex relaxations for NP-hard combinatorial optimization prob-
lems such as finding planted subgraphs [4] and computing edit distances between pairs
of graphs [5]. In the context of the present note, the Schur–Horn orbitope provides a
precise characterization of the conditions under which −1 ∈ I1 + � is successful.
Specifically, from Proposition 1 and (6) we have that:

− 1 ∈ I1 + � ⇔ R1(�, E) = ∅ ⇔ SH(�) ∩ E = ∅. (7)

Hence, if −1 /∈ I1 + �, we have that R1(�, E) �= ∅. In particular, the variety
VR(Siep) may or may not be empty. At this stage, as discussed in Sect. 2.1 one can
maximize a random linear functional over the set R1(�, E); the resulting optimal
solution (Ẑ1, . . . , Ẑq) is generically an extreme point ofR1(�, E), and one can check
if (Ẑ1, . . . , Ẑq) satisfies the equations in the system Siep. If this attempt at finding
a feasible point in VR(Siep) is unsuccessful, one can repeat the preceding steps at
attempting to certify infeasibility or to find a feasible point in VR(Siep) via a larger
semidefinite program, which we describe in the next subsection.

2.3 A tighter semidefinite relaxation

Next we consider a larger truncated ideal I2 ⊂ 〈Siep〉 with larger degree coefficients
than in I1:
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I2 =
{
Tr

(
h1

(
Z1, . . . , Zq

)
f1

) +
q∑

i=1

h(i)
2

(
Z1, . . . , Zq

)
f (i)
2 +

q∑

i=1

Tr
(
h(i)
3 f (i)

3

)
+

l∑

k=1

f (k)
4 h(k)

4

(
Z1, . . . , Zq

) :

h1
(
Z1, . . . , Zq

)
is ann × nmatrix whose entries are affine polynomials,

h(i)
3 aren × nmatrices whose entries are degree 0 polynomials,

h(i)
2

(
Z1, . . . , Zq

)
, h(k)

4

(
Z1, . . . , Zq

)
are affine polynomials ∀ i = 1, . . . , q, k = 1, . . . , �

}
.

(8)
As before, all polynomials referred to in the definition of I2 are polynomials in the
entries of Zi , i = 1, . . . , q. The coefficients h(i)

3 are constrained in the same way as

in I1 but the other coefficients h1, h(i)
2 , h(k)

4 are allowed to be affine polynomials (in
the case of h1, more precisely a matrix of affine polynomials). Here, we utilize this
particular choice of coefficient degrees in order to ensure that the resulting collection
I2 consists of polynomials of degree at most two, and therefore we can restrict our
attention to elements of � of degree at most two in searching for infeasibility certifi-
cates of the form−1 ∈ I2+�. However, I2 is in general larger than I1 so that I2+�

offers a richer family of infeasibility certificates than I1 + �. The convex relaxation
R2(�, E) obtained as an alternative to the system −1 ∈ I2 + � in turn provides a
tighter approximation in general than R1(�, E) to the convex hull conv(VR(Siep)).
We require some notation to give a precise description ofR2(�, E). Let δk,l denote the
usual delta function which equals one if the arguments are equal and zero otherwise.
Additionally, for s, t = 1, . . . , n let

fs,t =
{
eseTt , if s = t,
1
2 (ese

T
t + et eTs ), otherwise.

Here, es, et ∈ R
n are the s’th and t’th standard basis vectors in R

n . The setR2(�, E)

is then specified as:
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R2(�,E) =
{
(Z1, . . . , Zq ) ∈ ⊗q

S
n | ∃Wi, j : S

n → S
n , i, j = 1, . . . , q, ∃W : ⊗q

S
n → ⊗q

S
n ,

W � 0, [W(X1, . . . , Xq )]i =
q∑

j=1

Wi, j (X j ) i = 1, . . . , q, Zi � 0 i = 1, . . . , q

q∑

i=1

Zi = I , Tr (Zi ) = mi , i = 1, . . . , q,

q∑

i=1

λiTr (ZiCk ) = bk , k = 1, . . . , l,

q∑

j=1

Wi, j ( fs,t ) = δs,t Zi , s, t = 1, . . . , n, i = 1, . . . , q,

n∑

s=1

Wi, j ( fs,s ) = m j Zi , i, j = 1, . . . , q,

n∑

r=1

Tr
(
fs,rWi,i ( ft,r )

) = (Zi )s,t , i = 1, . . . , q, s, t = 1, . . . , n,

q∑

j=1

λ jWi, j (Ck ) = bk Zi , i = 1, . . . , q, k = 1, . . . , �
}
.

(9)
Our next result records the fact that R2(�, E) does constitute a strong alternative for
−1 ∈ I2 + �.

Proposition 2 Consider an affine IEP specified by a spectrum � and an affine space
E ⊂ S

n. Let I2 be defined as in (8) and R2(�, E) as in (9). Then exactly one of the
following two statements is true:

(1) R2(�, E) is nonempty, (2) − 1 ∈ I2 + �.

Proof The proof is almost identical to that of Proposition 1, and it follows from an
application of conic duality. The central difference is that when taking the first dual,
we utilize higher degree dual variables to incorporate the higher degree terms in I2.

It is clear thatR1(�, E) ⊇ R2(�, E) as the constraints definingR2(�, E) are a super-
set of those defining R1(�, E). Further, for any (Z1, . . . , Zq) ∈ VR(Siep), one can
check that the constraints defining R2(�, E) are satisfied by setting the linear opera-
torsWi, j (X) = Tr

(
Z j X

)
Zi ∀X ∈ S

n . Thus, there are additional quadratic relations
among the Zi ’s that are satisfied by the elements of VR(Siep) and are implied by
R2(�, E), but are not captured by the setR1(�, E). This is the source of the improve-
ment of the relaxation R2(�, E) compared to R1(�, E), although the improvement
comes at the expense of solving a substantially larger semidefinite program. In par-
ticular,R1(�, E) entails checking q semidefinite constraints on n × n real symmetric
matrices, while the description ofR2(�, E) involves a semidefinite constraint on the
operatorW : ⊗q

S
n → ⊗q

S
n , which is equivalent to stipulating that a

(n+1
2

)
q×(n+1

2

)
q

real symmetric matrix is positive semidefinite. Thus, optimizing over R2(�, E) is
much more computationally expensive than R1(�, E). In general, optimizing over
R2(�, E) for relatively large values of n and q might require employing specialized
solvers that exploits problem structure rather than employing general-purpose solvers.
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3 Numerical illustrations

Here we present experiments illustrating the performance of the relaxations
R1(�, E),R2(�, E) on random problem instances and stylized instances arising in
applications. Our results are obtained using the CVXparser [13] and the SDPT3 solver
[24]. Before describing these, we present an approach to strengthen the relaxation
R2(�, E) by adding valid constraints without increasing the size of the semidefinite
inequality.

3.1 Strengthening the relaxations

A prominent approach in the optimization literature for obtaining improved bounds
on hard nonconvex problems is to add redundant constraints. The procedure presented
in Sect. 2.1 of considering a sequence of truncated ideals I1 ⊆ I2 ⊆ · · · ⊆ 〈Siep〉
is a systematic method to add valid constraints; in particular, the elements of I1
and I2 represent polynomials that vanish at all the points in VR(Siep). As I1 ⊆ I2,
the relaxation R2(�, E) offers (in general) a tighter convex outer approximation of
VR(Siep) than R1(�, E) as R2(�, E) is derived from the incorporation of a larger
collection of redundant constraints.

Here we present a simple alternative approach to adding redundant constraints for
the affine IEP by augmenting the original system Siep with additional polynomials
that vanish on VR(Siep), and which are not contained in the truncated ideals I1, I2.
Specifically, we consider the following modified system of equations:

S+
iep = Siep ∪ {Zi Z j , i, j = 1, . . . , q, i �= j}.

The matrix equations Zi Z j = 0 are satisfied for i �= j by every solution of Siep as a

consequence of the vanishing of f1, f (i)
2 , f (i)

3 . However, despite being of low degree,
the matrix polynomials Zi Z j , i �= j are not contained in I1, I2. Consequently,
incorporating these degree-two equations offers the prospect of strengthening our
relaxations without a significant additional computational expense. We define trun-
cated idealsI+

1 , I+
2 corresponding toS+

iep in an identical fashion toI1, I2 by restricting
the coefficients corresponding to the additional polynomials Zi Z j , i �= j to be matri-

ces of constant polynomials (as in the restriction of the coefficients h(i)
3 of f (i)

3 ), with

the coefficients of the other polynomials f1, f (i)
2 , f (i)

3 , f (k)
4 being as in I1, I2.

The semidefinite relaxationR+
1 (�, E) obtained as a strong alternative to the system

−1 ∈ I+
1 +� is identical toR1(�, E), i.e., the additional redundant constraints do not

strengthen the relaxation. However, the strong alternative to the system −1 ∈ I+
2 +�

leads to a convex outer approximationR+
2 (�, E) of VR(Siep) that is in general tighter

than R2(�, E); in addition to all the constraints that define R2(�, E) in (9), the set
R+

2 (�, E) consists of the additional constraints
∑n

r=1 Tr
(
fs,rWi, j ( ft,r )

) = 0, i, j =
1, . . . , q, i �= j, s, t = 1, . . . , n on the variables Wi, j . Thus, a notable feature of
the relaxationR+

2 (�, E) is that it is of the same size asR2(�, E), despite providing a
tighter convex outer approximation in general to VR(Siep). We demonstrate the merits
of this relaxation in the numerical experiments in this section.
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3.2 Experiments with random affine IEPs

We present an experiment on random problems instances in this subsection. Specif-
ically, we compare the relative power of the two relaxations described in Sect. 2 in
certifying infeasibility, or from a dual viewpoint, in approximating conv(VR(Siep)).
To provide a visual illustration, we consider affine IEPs involving matrices in S

3, with
a desired spectrum of {−1, 0, 1}. We begin by considering an affine space defined by
� = 3 random linear equations, i.e., E = {X ∈ S

3 | Tr (Ck X) = 0, Ck ∈ S
3, k =

1, . . . , �}, where the Ck’s have random entries. Given the spectrum (which fixes the
trace) and the affine space E , the solution set VR(Siep) is constrained to lie in an affine
space of dimension at most two in S

3. We then set the entries X11, X22 to fixed values
in the range [−1, 1], and check whether there exists a matrix in S

3 with these val-
ues for X11, X22 that can be expressed as

∑
i λi Zi for (Z1, Z2, Z3) ∈ R1(�, E) and

for (Z1, Z2, Z3) ∈ R2(�, E). Fig. 1a, b represent two different problem instances
obtained by generating two affine spaces E as described above, and they illustrate
graphically when the relaxations succeed or fail at certifying infeasibility. Evidently,
the relaxation R2(�, E) is successful in certifying infeasibility over a larger range
of values of X11, X22 than the relaxation R1(�, E), thus illustrating its increased
power (at a greater computational expense). From a dual perspective, we have in
both cases that R1(�, E) � R2(�, E). In particular, the feasibility regions cor-
responding to R1(�, E) and R2(�, E) in Fig. 1a, b represent the projections of
these sets onto the (X11, X22)-plane of S

3. In each of the two settings, we maxi-
mized 1000 random linear functionals over R2(�, E) and in all cases obtained an
element of VR(Siep). Consequently, it appears at least based on numerical evidence
that R2(�, E) = conv(VR(Siep)) in both examples. Figure 1c, d give two examples
based on the same setup as above, but with � = 2 random linear equations defining the
affine space E . Here the dimension of the solution set VR(Siep) is at most three, and the
feasibility regions corresponding to R1(�, E) and R2(�, E) in Fig. 1c, d represent
two-dimensional projections (onto the (X11, X22)-plane of S

3) of these sets. As with
the previous examples, we maximized 1000 random linear functionals overR2(�, E)

and in all cases obtained an element of VR(Siep). Consequently, it again appears that
R2(�, E) = conv(VR(Siep)).

3.3 Discrete inverse Sturm–Liouville problem

Next, we demonstrate an application of our framework to certify infeasibility of, or
produce a solution to, the extensively studied discrete inverseSturm–Liouville problem
[14]. This problem arises as a discretization of a continuous differential boundary
problem of the form −u′′(x) + p(x)u(x) = λu(x), u(0) = u(π) = 0. Here, u(x)
and p(x) are functions, and λ is a parameter that is an eigenvalue of the system. A
particular discretization of this differential equation gives rise to the linear system(

(n+1)2

π2 J + D
)
u = λu, where J is a Jacobian matrix with diagonal entries equal to

2 and the nonzero off-diagonal entries equal to −1 [14]. Hence, given a collection
λ1, . . . , λn ∈ R, one wishes to identify a diagonal matrix D so that this linear system
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Fig. 1 Comparison of feasible/infeasible regions of R1(�,E) and R2(�,E) for four random problem
instances as described in Sect. 3.2. The points marked with black circles, red crosses, and blue stars
correspond, respectively, to settings in which R1(�,E) and R2(�,E) are both infeasible; R1(�,E) is
feasible and R2(�,E) is infeasible; and both R1(�,E) and R2(�,E) are feasible. Thick black squares
represent (X11, X22) values of solutions to the affine IEP

has a solution for each setting λ = λi , i.e., λ1, . . . , λn are eigenvalues of the matrix
(n+1)2

π2 J + D. This is clearly an instance of an affine IEP.
We consider two different instantiations of the problem with n = 5. First, we con-

sider the set of eigenvalues {1, 2, 3, 4, 5}. In this instance, there exists a decomposition
−1 ∈ I1+�which certifies that the discrete inverse Sturm–Liouville problem is infea-
siblewith the given spectrum.Next, we consider eigenvalues in the set {1, 4, 9, 16, 25}.
In this case, the discrete inverse Sturm–Liouville problem turns out to be feasible.
Specifically, we attempt to produce a solution to the inverse discrete Sturm–Lioville
problem bymaximizing 100 random linear functionals over the convex setsR1(�, E),
R2(�, E), andR+

2 (�, E); our approach succeeds 14 out of 100 times overR1(�, E),
26 out of 100 times over R2(�, E), and 55 out of 100 times over R+

2 (�, E). These
results suggest that our semidefinite relaxations may offer a useful solution framework
across the range of applications in which the discrete inverse Sturm–Liouville problem
arises.
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3.4 Induced subgraph isomorphism

We present next the utility of our framework in the context of a problem in combina-
torial optimization, namely the induced subgraph isomorphism problem. Here we are
given two undirected, unweighted graphs G and G′ on n and n′ vertices, respectively,
with n′ < n. The problem is to determine whether G′ is an induced subgraph of G.
This problem is NP-complete in general and has received considerable attention.

Suppose G′ is an induced subgraph of G. Letting A ∈ S
n and A′ ∈ S

n′
be adjacency

matrices representing the graphs G and G′, respectively, such that A′ is equal to a
principal submatrix of A, there must exist a matrix M ∈ S

n that satisfies the following
conditions:

Tr (AM) =
n′

∑

i, j=1

(
A′)

i, j ; (M)i, j = 0 if (A)i, j = 0, i, j = 1, . . . , n. (10)

This consequence follows because we may choose M to be equal to A′ on the n′ × n′
principal submatrix corresponding to corresponding to G′ and zero elsewhere. Thus,
a sufficient condition to certify that G′ is not an induced subgraph of G is to certifying
the infeasibility of an affine IEP in which the spectrum is equal to that of A′ along
with an eigenvalue of zero with multiplicity n − n′ and the affine space is given by
(10).

With this approach, we prove that the octahedral graph with 6 nodes and 12 edges
(shown in Fig. 2a) is not contained as an induced subgraph in either of the larger
graphs shown in Fig. 2b (on 20 nodes with 44 edges) and Fig. 2c (on 15 nodes
with 38 edges). Both of these larger graphs are randomly generated Erdös–Renyi
random graphs where any two vertices are independently and randomly connected
with probability 0.2 for Fig. 2b and 0.4 for Fig. 2c. For the first graph, there exists
a decomposition −1 ∈ I1 + �, thus certifying that the octahedral graph is not an
induced subgraph. For the second graph, there is no infeasibility certificate of the
form −1 ∈ I1 + � but there is one of the form −1 ∈ I+

2 + �, thus providing a
certificate that the octahedral graph is again not an induced subgraph.

3.5 Constructing a real symmetric Toeplitz matrix with desired spectrum

Finally, we describe how our framework can be utilized for constructing real symmet-
ric Toeplitz matrices with a desired spectrum. As Toeplitz matrices form a subspace,
this question is an instance of an affine IEP. Landau showed that there exists a Toeplitz
matrix with a desired spectrum, but his proof was non-constructive [17], and numeri-
cally constructing such matrices continues to remain a challenge.

In our first experiment, we set n = 5 and consider the problem of constructing
a symmetric Toeplitz matrix with eigenvalues {1, 2, 3, 4, 5}. We maximize random
linear functionals over the sets R1(�, E), R2(�, E) and R+

2 (�, E), and we succeed
at identifying a Toeplitz matrix with the desired spectrum 4 out of 100 times with
R1(�, E), 12 out of 100 timeswithR2(�, E), and 41 out of 100 timeswithR+

2 (�, E).
In our second experiment we set n = 8 and we seek a Toeplitz matrix with eigenvalues
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Fig. 2 From left to right: the octahedral graph, an Erdös–Renyi random graph on 20 nodes with p = 0.2, an
Erdös–Renyi random graph on 15 nodes with p = 0.4. Our first convex relaxation certifies that the octahedral
graph is not an induced subgraph of the graph shown in (b). A tighter convex relaxation proves the same
result for the graph shown in (c)

−1 (with multiplicity four) and 1 (with multiplicity four). With the same approach as
before of maximizing random linear functionals, we identify a Toeplitz matrix with
the desired spectrum 17 out of 100 times with R1(�, E), and 84 out of 100 times
with bothR2(�, E) andR+

2 (�, E). In summary, our framework provides a numerical
counterpart to Landau’s non-constructive existence result.

4 Conclusions

In this short note we describe a new framework for the affine IEP by first formulat-
ing it as a system of polynomial equations and then employing techniques from the
polynomial optimization literature to obtain several semidefinite relaxations. These
relaxations offer increasingly tighter approximations at the expense of solving larger
semidefinite programming problems. We compare these relaxations both in random
problem instances aswell as in stylized examples in the context of various applications.

A number of future directions arise from our work. First, it is of practical inter-
est to characterize conditions – stated in terms of the spectrum � and the affine
space E – under which a particular relaxation such as R1(�, E) is tight; that is,
R1(�, E) = conv(VR(Siep)). Such characterizations provide families of affine IEP
instances that are exactly solved by the first level of our semidefinite relaxation hierar-
chy. Second, a closely related question is whether the hierarchy of convex relaxations
is always tight at a finite level; that is, does equality Rk(�, E) = conv(VR(Siep))

always hold for some finite k. Such questions are referred to as finite convergence in
the literature. There are a number of prior works that aim to provide sufficient con-
ditions under which finite convergence occurs [12,21]; in our context for example, it
is known that finite convergence occurs when the set of solutions to VR(Siep) is finite
[12]. Third, it would be of interest to develop methods for extracting solutions to an
inverse eigenvalue problem instance beyond our proposed approach based on maxi-
mizing random linear functionals described in Sect. 2.1. For instance, in the context
of polynomial optimization, the notion of a flat truncation [20] is useful for certifying
when a certain level of the convex relaxation obtained via the SOS hierarchy is tight,
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and for subsequently extracting minimizers of the polynomial optimization instance.
It would be interesting to specialize these ideas to our setup. Fourth, a future direction
of practical interest is to develop scalable methods for solving higher levels of our
hierarchy beyond the first level. A recent development in this space proposes the use
of linear programming and second order cone programming certificates of polynomial
non-negativity for solving polynomial optimization instances [1,8]. These techniques
are applicable in our setup. Since these techniques rely on families of certificates that
are a strict subset of sums-of-squares, but are computationally cheaper to search over,
it would be interesting to understand the associated computational tradeoffs.
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