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Suppose we observe samples of a subset of a collection of random vari-
ables. No additional information is provided about the number of latent vari-
ables, nor of the relationship between the latent and observed variables. Is it
possible to discover the number of latent components, and to learn a statistical
model over the entire collection of variables? We address this question in the
setting in which the latent and observed variables are jointly Gaussian, with
the conditional statistics of the observed variables conditioned on the latent
variables being specified by a graphical model. As a first step we give nat-
ural conditions under which such latent-variable Gaussian graphical models
are identifiable given marginal statistics of only the observed variables. Es-
sentially these conditions require that the conditional graphical model among
the observed variables is sparse, while the effect of the latent variables is
“spread out” over most of the observed variables. Next we propose a tractable
convex program based on regularized maximum-likelihood for model selec-
tion in this latent-variable setting; the regularizer uses both the £1 norm and
the nuclear norm. Our modeling framework can be viewed as a combination
of dimensionality reduction (to identify latent variables) and graphical mod-
eling (to capture remaining statistical structure not attributable to the latent
variables), and it consistently estimates both the number of latent compo-
nents and the conditional graphical model structure among the observed vari-
ables. These results are applicable in the high-dimensional setting in which
the number of latent/observed variables grows with the number of samples
of the observed variables. The geometric properties of the algebraic varieties
of sparse matrices and of low-rank matrices play an important role in our
analysis.
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1. Introduction and setup. Statistical model selection in the high-dimen-
sional regime arises in a number of applications. In many data analysis problems in
geophysics, radiology, genetics, climate studies, and image processing, the number
of samples available is comparable to or even smaller than the number of variables.
As empirical statistics in these settings may not be well-behaved (see [17, 22]),
high-dimensional model selection is therefore both challenging and of great inter-
est. A model selection problem that has received considerable attention recently
is the estimation of covariance matrices in the high-dimensional setting. As the
sample covariance matrix is poorly behaved in such a regime, some form of regu-
larization of the sample covariance is adopted based on assumptions about the true
underlying covariance matrix [1, 2, 12, 14, 20, 36].

Graphical models. A number of papers have studied covariance estimation in
the context of Gaussian graphical model selection. A Gaussian graphical model
[19, 30] (also commonly referred to as a Gauss—Markov random field) is a statis-
tical model defined with respect to a graph, in which the nodes index a collection
of jointly Gaussian random variables and the edges represent the conditional in-
dependence relations (Markov structure) among the variables. In such models the
sparsity pattern of the inverse of the covariance matrix, or the concentration ma-
trix, directly corresponds to the graphical model structure. Specifically, consider a
Gaussian graphical model in which the covariance matrix is given by a positive-
definite £* and the concentration matrix is given by K* = (£*)~!. Then an edge
{i, j} is present in the underlying graphical model if and only if K" ; 7 0. In par-
ticular the absence of an edge between two nodes implies that the correspond-
ing variables are independent conditioned on all the other variables. The model
selection method usually studied in such a Gaussian graphical model setting is
£1-regularized maximum-likelihood, with the ¢; penalty applied to the entries of
the concentration matrix to induce sparsity. The consistency properties of such an
estimator have been studied [18, 26, 29], and under suitable conditions [18, 26]
this estimator is also “sparsistent,”’ that is, the estimated concentration matrix has
the same sparsity pattern as the true model from which the samples are generated.
An alternative approach to ¢;-regularized maximum-likelihood is to estimate the
sparsity pattern of the concentration matrix by performing regression separately on
each variable [23]; while such a method consistently estimates the sparsity pattern,
it does not directly provide estimates of the covariance or concentration matrix.

In many applications throughout science and engineering (e.g., psychology,
computational biology, and economics), a challenge is that one may not have ac-
cess to observations of all the relevant phenomena, that is, some of the relevant
variables may be latent or unobserved. In general latent variables pose a signifi-
cant difficulty for model selection because one may not know the number of rele-
vant latent variables, nor the relationship between these variables and the observed
variables. Typical algorithmic methods that try to get around this difficulty usually
fix the number of latent variables as well as the structural relationship between
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latent and observed variables (e.g., the graphical model structure between latent
and observed variables), and use the EM algorithm to fit parameters [9]. This ap-
proach suffers from the problem that one optimizes nonconvex functions, and thus
one may get stuck in suboptimal local minima. An alternative suggestion [13] is
one based on a greedy, local, combinatorial heuristic that assigns latent variables
to groups of observed variables, via some form of clustering of the observed vari-
ables; however, this approach has no consistency guarantees.

Our setup. In this paper we study the problem of latent-variable graphical
model selection in the setting where all the variables, both observed and latent,
are jointly Gaussian. More concretely, X is a Gaussian random vector in RP ",
O and H are disjoint subsets of indices in {1, ..., p + h} of cardinalities |O| = p
and |H| = h, and the corresponding subvectors of X are denoted by X and X g,
respectively. Let the covariance matrix underlying X be denoted by X (*0 u)- The
marginal statistics corresponding to the observed variables X are given by the
marginal covariance matrix X7, which is simply a submatrix of the full covari-
ance matrix EE“O u)- However, suppose that we parameterize our model by the

concentration matrix K ("‘0 )= ( ZE“O H))_l, which as discussed above reveals the
connection to graphical models. Here the submatrices Kp), K¢ 5, K specify (in
the full model) the dependencies among the observed variables, between the ob-
served and latent variables, and among the latent variables, respectively. In such a
parameterization, the marginal concentration matrix (2’5)_1 corresponding to the
observed variables X ¢ is given by the Schur complement [16] with respect to the
block K7j;:

(1.1) Ky=EH) ' =K — Kb y(Ki) 'K}y 0

Thus if we only observe the variables X o, we only have access to Xy, (or K 0)-

The two terms that compose K o above have interesting properties. The matrix
K7, specifies the concentration matrix of the conditional statistics of the ob-
served variables given the latent variables. If these conditional statistics are given
by a sparse graphical model, then K7, is sparse. On the other hand, the matrix
Kp y(K J’EI)_IK 7.0 serves as a summary of the effect of marginalization over the
latent variables X g. This matrix has small rank if the number of latent, unob-
served variables Xy is small relative to the number of observed variables X .
Therefore the marginal concentration matrix K o is generally not sparse due to the
additional low-rank term Kp, H(K}“{)_IK}‘;’O. Hence standard graphical model
selection techniques applied directly to the observed variables X o are not useful.

A modeling paradigm that infers the effect of the latent variables X iz would be
more suitable in order to provide a concise explanation of the underlying statistical
structure. Hence we approximate the sample covariance by a model in which the
concentration matrix decomposes into the sum of a sparse matrix and a low-rank
matrix, which reveals the conditional graphical model structure in the observed
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variables as well as the number of and effect due to the unobserved latent vari-
ables. Such a method can be viewed as a blend of principal component analysis
and graphical modeling. In standard graphical modeling one would directly ap-
proximate a concentration matrix by a sparse matrix to learn a sparse graphical
model, while in principal component analysis the goal is to explain the statistical
structure underlying a set of observations using a small number of latent variables
(i.e., approximate a covariance matrix as a low-rank matrix). In our framework we
learn a sparse graphical model among the observed variables conditioned on a few
(additional) latent variables. These latent variables are not principal components,
as the conditional statistics (conditioned on these latent variables) are given by a
graphical model. Therefore we refer to these latent variables informally as latent
components.

Contributions. Our first contribution in Section 3 is to address the fundamen-
tal question of identifiability of such latent-variable graphical models given the
marginal statistics of only the observed variables. The critical point is that we
need to tease apart the correlations induced due to marginalization over the la-
tent variables from the conditional graphical model structure among the observed
variables. As the identifiability problem is one of uniquely decomposing the sum
of a sparse matrix and a low-rank matrix into the individual components, we
study the algebraic varieties of sparse matrices and low-rank matrices. An im-
portant theme in this paper is the connection between the tangent spaces to these
algebraic varieties and the question of identifiability. Specifically let Q (K 7)) de-
note the tangent space at K, to the algebraic variety of sparse matrices, and let
T(KE,H(K;I)_IK}';’O) denote the tangent space at K?‘)’H(K}';)”K}‘fl’o to the al-
gebraic variety of low-rank matrices. Then the statistical question of identifiability
of K, and K§, (K ;fl)_lK H.0 given K o is determined by the geometric notion
of transversality of the tangent spaces Q(K,) and T(KZ‘)’H(K;I)_IK}‘;’O). The
study of the transversality of these tangent spaces leads to natural conditions for
identifiability. In particular we show that latent-variable models in which (1) the
sparse matrix K7, has a small number of nonzeros per row/column, and (2) the
low-rank matrix Kp (K ,*{)_IK #1.0 has row/column spaces that are not closely
aligned with the coordinate axes, are identifiable. These conditions have natural
statistical interpretations. The first condition ensures that there are no densely con-
nected subgraphs in the conditional graphical model structure among the observed
variables, that is, that these conditional statistics are indeed specified by a sparse
graphical model. Such statistical relationships may otherwise be mistakenly at-
tributed to the effect of marginalization over some latent variable. The second con-
dition ensures that the effect of marginalization over the latent variables is “spread
out” over many observed variables; thus, the effect of marginalization over a latent
variable is not confused with the conditional graphical model structure among the
observed variables. In fact the first condition is often assumed in standard graphical
model selection without latent variables (e.g., [26]).
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As our next contribution we propose a regularized maximum-likelihood decom-
position framework to approximate a given sample covariance matrix by a model
in which the concentration matrix decomposes into a sparse matrix and a low-rank
matrix. Based on the effectiveness of the £; norm as a tractable convex relaxation
for recovering sparse models [5, 10, 11] and the nuclear norm for low-rank ma-
trices [4, 15, 27], we propose the following penalized likelihood method given a
sample covariance matrix X, formed from n samples of the observed variables:

(Sn, Lp) = argmin —€(S — L; ) + A, (v [IS]l1 + tr(L))
S,L
(1.2)
st.S—L>0,L>0.

The constraints > 0 and > 0 impose positive-definiteness and positive-semi-
definiteness. The function ¢ represents the Gaussian log-likelihood 4(K; X) =
logdet(K) — tr(K X) for K > 0, where tr is the trace of a matrix and det is the
determinant. Here 3',1 provides an estimate of K7,, which represents the condi-

tional concentration matrix of the observed variables; L, provides an estimate of
Ko n(Kg)™ 'k 7.0 Which represents the effect of marginalization over the latent
variables. The regularizer is a combination of the £; norm applied to S and the
nuclear norm applied to L (the nuclear norm reduces to the trace over the cone of
symmetric, positive-semidefinite matrices), with y providing a trade-off between
the two terms. This variational formulation is a convex optimization problem, and
it is a regularized max-det program that can be solved in polynomial time using
general-purpose solvers [33].

Our main result in Section 4 is a proof of the consistency of the estimator (1.2) in
the high-dimensional regime in which both the number of observed variables and
the number of latent components are allowed to grow with the number of samples
(of the observed variables). We show that for a suitable choice of the regularization
parameter A,, there exists a range of values of y for which the estimates (S‘n, I:n)
have the same sparsity (and sign) pattern and rank as (Kg,, Kp (K ;‘1)_1[( H.0)
with high probability (see Theorem 4.1). The key technical requirement is an iden-
tifiability condition for the two components of the marginal concentration ma-
trix K o With respect to the Fisher information (see Section 3.4). We make con-
nections between our condition and the irrepresentability conditions required for
support/graphical-model recovery using £; regularization [26, 32, 37]. Our re-
sults provide numerous scaling regimes under which consistency holds in latent-
variable graphical model selection. For example, we show that under suitable iden-
tifiability conditions consistent model selection is possible even when the number
of samples and the number of latent variables are on the same order as the number
of observed variables (see Section 4.2).

Related previous work. The problem of decomposing the sum of a sparse ma-
trix and a low-rank matrix via convex optimization into the individual components
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was initially studied in [7] by a superset of the authors of the present paper, with
conditions derived under which the convex program exactly recovers the under-
lying components. In subsequent work Candes et al. [3] also studied this sparse-
plus-low-rank decomposition problem, and provided guarantees for exact recov-
ery using the convex program proposed in [7]. The problem setup considered in
the present paper is quite different and is more challenging because we are only
given access to an inexact sample covariance matrix, and we wish to produce an
inverse covariance matrix that can be decomposed as the sum of sparse and low-
rank components (preserving the sparsity pattern and rank of the components in
the true underlying model). In addition to proving the consistency of the estima-
tor (1.2), we also provide a statistical interpretation of our identifiability conditions
and describe natural classes of latent-variable Gaussian graphical models that sat-
isfy these conditions. As such our paper is closer in spirit to the many recent pa-
pers on covariance selection, but with the important difference that some of the
variables are not observed.

Outline. Section 2 gives some background and a formal problem statement.
Section 3 discusses the identifiability question, Section 4 states the main results of
this paper, and Section 5 gives some proofs. We provide experimental demonstra-
tion of the effectiveness of our estimator on synthetic and real data in Section 6,
and conclude with a brief discussion in Section 7. Some of our technical results
are deferred to supplementary material [6].

2. Problem statement and background. We give a formal statement of the
latent-variable model selection problem. We also briefly describe various proper-
ties of the algebraic varieties of sparse matrices and of low-rank matrices, and the
properties of the Gaussian likelihood function.

The following matrix norms are employed throughout this paper. || M ||> denotes
the spectral norm, or the largest singular value of M. ||M| ~ denotes the largest
entry in magnitude of M. || M| r denotes the Frobenius norm, or the square root
of the sum of the squares of the entries of M. || M ||« denotes the nuclear norm,
or the sum of the singular values of M (this reduces to the trace for positive-
semidefinite matrices). ||M||; denotes the sum of the absolute values of the en-
tries of M. A number of matrix operator norms are also used. For example, let
Z:RP*P — RP*P be a linear operator acting on matrices. Then the induced
operator norm is defined as || 2|44 = maxyerrxr ||N|,<11Z(N)lq. Therefore,
| Z|| F— r denotes the spectral norm of the operator Z. The only vector norm used
is the Euclidean norm, which is denoted by || - ||. Given any norm || - ||, (either a
vector norm, a matrix norm or a matrix operator norm), the dual norm is given by
IMI[3 = sup{(M, N)|[N|l4 < 1}.

2.1. Problem statement. In order to analyze latent-variable model selec-
tion methods, we need to define an appropriate notion of model selection con-
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sistency for latent-variable graphical models. Given the two components K},
and K 3 H(K;,)_IKZ’O of the concentration matrix of the marginal distribu-
tion (1.1), there are infinitely many configurations of the latent variables [i.e.,
matrices Kj; > 0, K o.H= = (K} O)T] that give rise to the same low-rank ma-

trix KO,H(KI*J) IK}‘;’O. Specifically for any nonsingular matrix B € RIZI*IHI
one can apply the transformations K3, — BK}5; BT, K% ,, — K}, ;BT and still

preserve the low-rank matrix K3 H(K )~ lK . In all of these models the
marginal statistics of the observed variables X o remain the same upon marginal-
ization over the latent variables Xg. The key invariant is the low-rank matrix
K ;k) u (K% YK }’f[ o» Which summarizes the effect of marginalization over the
latent variables. Consequently, from here on we use the notation S* = K, and
L*=K§ g (K~ 'K Z o These observations give rise to the following notlon of
structure recovery.

DEFINITION 2.1. A pair of |O] x |O| symmetric matrices (S’, i,) is an alge-
braically correct estimate of a latent-variable Gaussian graphical model given by
the concentration matrix K Eko n if the following conditions hold:

(1) The sign-pattern of S is the same as that of S* [here sign(0) =0]:
sign(§;, /) =sign(S7;) Vi, j.
(2) The rank of L is the same as the rank of L*:
rank(L) = rank(L*).

(3) The concentration matrix S — L can be realized as the marginal concentra-
tion matrix of an appropriate latent-variable model:

S—L>0, L>0.

When a sequence of estimators is algebraically correct with probability ap-
proaching 1 in a suitable high-dimensional scaling regime, then we say that the
estimators are algebraically consistent. The first condition ensures that S provides
the correct structural estimate of the conditional graphical model of the observed
variables conditioned on the latent components. This property is the same as the
“sparsistency” property studied in standard graphical model selection [18, 26].
The second condition ensures that the number of latent components is properly
estimated. Finally, the third condition ensures that the pair of matrices (S L) leads
to a realizable latent-variable model. In particular, this condition implies that there
exists a valid latent-variable model in which (a) the conditional graphical model
structure among the observed variables is given by S, (b) the number of latent
variables is equal to the rank of i, and (c) the extra correlations induced due to
marginalization over the latent variables are equal to L. Any method for matrix
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factorization (e.g., [35]) can be used to further factorize L, depending on the prop-
erty that one desires in the factors (e.g., sparsity).

We also study estimation error rates in the usual sense, that is, we show that
one can produce estimates (S , i) that are close in various norms to the matrices
(S*, L*). Notice that bounding the estimation error in some norm does not in gen-
eral imply that the support/sign-pattern and rank of (S, L) are the same as those of
(S*, L*). Therefore boundeg qstimation error is different from algebraic correct-
ness, which requires that (S, L) have the same support/sign-pattern and rank as
(S*, L¥).

Goal. Let K (*0 H) denote the concentration matrix of a Gaussian model. Sup-
pose that we have n samples {X "0 }i_, of the observed variables X o. We would like

to produce estimates (S,, L) that, with high probability, are algebraically correct
and have bounded estimation error (in some norm).

Our approach. We propose the regularized likelihood convex program (1.2)

to produce estimates (S, L,). Specifically, the sample covariance matrix X7, in
(1.2) is defined as

A
o= Y XXy .
i=1
We give conditions on the underlying model K E"O # and suitable choices for the

parameters A,, y under which the estimates (3‘,,, ﬁ,,) are consistent (see Theo-
rem 4.1).

2.2. Likelihood function and Fisher information. Given n samples {X "}l'.’:l of
a finite collection of jointly Gaussian zero-mean random variables with concentra-
tion matrix K*, it is easily seen that the log-likelihood function is given by:

2.1 U(K; ") =logdet(K) —tr(KX"),

where £(K; ¥™) is a function of K. Notice that this function is strictly concave for
K > 0. In the latent-variable modeling problem with sample covariance X%,, the
likelihood function with respect to the parametrization (S, L) is given by £(S —
L; ¥7). This function is jointly concave with respect to the parameters (S, L)
whenever S — L > 0, and it is employed in our variational formulation (1.2) to
learn a latent-variable model.

In the analysis of a convex program involving the likelihood function, the Fisher
information plays an important role as it is the negative of the Hessian of the
likelihood function and thus controls the curvature. As the first term in the like-
lihood function is linear, we need only study higher-order derivatives of the log-
determinant function in order to compute the Hessian. In the latent-variable set-
ting with the marginal concentration matrix of the observed variables given by
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K o= (E*O)_1 [see (1.1)], the corresponding Fisher information matrix is
(2.2) I(Ky) =Ky @Ky =) o).

Here ® denotes the tensor product between matrices. Notice that this is precisely
the |O|?> x |O|* submatrix of the full Fisher information matrix Z(K lom) =
22‘0 o ® EE"O ) with respect to all the parameters K E"O o= (EE“O H))_1 (cor-
responding to the situation in which all the variables X gugy are observed). In Sec-
tion 3.4 we impose various conditions on the Fisher information matrix Z (IZ o)
under which our regularized maximum-likelihood formulation provides consistent
estimates.

2.3. Algebraic varieties of sparse and low-rank matrices. The set of sparse
matrices and the set of low-rank matrices can be naturally viewed as algebraic va-
rieties (solution sets of systems of polynomial equations). Here we describe these
varieties, and discuss some of their geometric properties such as the tangent space
and local curvature at a (smooth) point.

Let S(k) denote the set of matrices with at most k nonzeros:

2.3) S(k) £ {M € RP*P||support(M)]| < k}.

Here support denotes the locations of nonzero entries. The set S(k) is an algebraic

variety, and can in fact be viewed as a union of (’;:) subspaces in R”*”. This
variety has dimension &, and it is smooth everywhere except at those matrices that
have support size strictly smaller than k. For any matrix M € R”*?_ consider the
variety S(|support(M)|); M is a smooth point of this variety, and the tangent space
at M is given by

(2.4) Q(M) ={N € RP*P|support(N) C support(M)}.
Next let £(r) denote the algebraic variety of matrices with rank at most r:
(2.5) L(r) £ (M e RP*P|rank(M) < r}.

It is easily seen that £(r) is an algebraic variety because it can be defined through
the vanishing of all (r 4+ 1) x (r + 1) minors. This variety has dimension equal
to r(2p —r), and it is smooth everywhere except at those matrices that have rank
strictly smaller than r. Consider a rank-r matrix M with singular value decom-
position (SVD) given by M = UDVT, where U,V € R?*" and D € R"*". The
matrix M is a smooth point of the variety £(rank(M)), and the tangent space at M
with respect to this variety is given by

(2.6) T(M)={UY] +,VT|Y), Y, e RPX),

We view both Q (M) and T (M) as subspaces in R”*”. In Section 3 we explore
the connection between geometric properties of these tangent spaces and the iden-
tifiability problem in latent-variable graphical models.
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Curvature of rank variety. The sparse matrix variety S(k) has the property
that it has zero curvature at any smooth point. The situation is more complicated
for the low-rank matrix variety £(r), because the curvature at any smooth point
is nonzero. We analyze how this variety curves locally, by studying how the tan-
gent space changes from one point to a neighboring point. Indeed the amount of
curvature at a point is directly related to the “angle” between the tangent space at
that point and the tangent space at a neighboring point. For any linear subspace
T of matrices, let Pr denote the projection onto 7. Given two subspaces 11, T»
of the same dimension, we measure the “twisting” between these subspaces by
considering the following quantity:

(2.7 o(T1, T2) = |Pr, — Prylla—2 = ”]I\[IhaXIII[PTI — Pr,1(N)|l>.
2=

In the supplement [6] we review relevant results from matrix perturbation theory,
which suggest that the magnitude of the smallest nonzero singular value is closely
tied to the local curvature of the variety. Therefore we control the twisting between
tangent spaces at nearby points by bounding the smallest nonzero singular value
away from zero.

3. Identifiability. In the absence of additional conditions, the latent-variable
model selection problem is ill-posed. In this section we discuss a set of condi-
tions on latent-variable models that ensure that these models are identifiable given
marginal statistics for a subset of the variables. Some of the discussion in Sections
3.1 and 3.2 is presented in greater detail in [7].

3.1. Structure between latent and observed variables. Suppose that the low-
rank matrix that summarizes the effect of the latent components is itself sparse.
This leads to identifiability issues in the sparse-plus-low-rank decomposition prob-
lem. Statistically the additional correlations induced due to marginalization over
the latent variables could be mistaken for the conditional graphical model structure
of the observed variables. In order to avoid such identifiability problems the effect
of the latent variables must be “diffuse” across the observed variables. To address
this point the following quantity was introduced in [7] for any matrix M, defined
with respect to the tangent space T (M):

3.1 E(T(M)) = max [N lloo-

NeT (M), |INll2<1

Thus &£(T (M)) being small implies that elements of the tangent space T (M) can-
not have their support concentrated in a few locations; as a result M cannot be
too sparse. This idea is formalized in [7] by relating £(7'(M)) to a notion of “in-
coherence” of the row/column spaces, where the row/column spaces are said to
be incoherent with respect to the standard basis if these spaces are not aligned
closely with any of the coordinate axes. Typically a matrix M with incoherent
row/column spaces would have &(7(M)) < 1. This point is quantified precisely
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in [7]. Specifically, we note that £(7 (M)) can be as small as ~ \/% for a rank-r

matrix M € RP*P with row/column spaces that are almost maximally incoher-
ent (e.g., if the row/column spaces span any r columns of a p x p orthonormal
Hadamard matrix). On the other hand, £(7 (M)) =1 if the row/column spaces of
M contain a standard basis vector.

Based on these concepts we roughly require that the low-rank matrix that sum-
marizes the effect of the latent variables be incoherent, thereby ensuring that the
extra correlations due to marginalization over the latent components cannot be
confused with the conditional graphical model structure of the observed variables.
Notice that the quantity £ is not just a measure of the number of latent variables,
but also of the overall effect of the correlations induced by marginalization over
these variables.

Curvature and change in &: As noted previously, an important technical point
is that the algebraic variety of low-rank matrices is locally curved at any smooth
point. Consequently the quantity £ changes as we move along the low-rank matrix
variety smoothly. The quantity p(7}, 72) introduced in (2.7) allows us to bound
the variation in £ as follows (proof in Section 5):

LEMMA 3.1. Let Ty, T be two linear subspaces of matrices of the same di-
mension with the property that p(T1, T») < 1, where p is defined in (2.7). Then we
have that

1
T —[&(T; T1, T»)].
£(Tr) < l—p(Tl,Tz)[S( 1)+ p(T, )]

3.2. Structure among observed variables. An identifiability problem also
arises if the conditional graphical model among the observed variables contains
a densely connected subgraph. These statistical relationships might be mistaken as
correlations induced by marginalization over latent variables. Therefore we need
to ensure that the conditional graphical model among the observed variables is
sparse. We impose the condition that this conditional graphical model must have
small “degree,” that is, no observed variable is directly connected to too many
other observed variables conditioned on the latent components. Notice that bound-
ing the degree is a more refined condition than simply bounding the total number
of nonzeros as the sparsity pattern also plays a role. In [7] the authors introduced
the following quantity in order to provide an appropriate measure of the sparsity
pattern of a matrix:

(3.2) n(QM)) = max NVl

NeQ(M),|IN|eo=1
The quantity u(€2(M)) being small for a matrix implies that the spectrum of any
element of the tangent space Q2 (M) is not too “concentrated,” that is, the singular
values of the elements of the tangent space are not too large. In [7] it is shown
that a sparse matrix M with “bounded degree” (a small number of nonzeros per
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row/column) has small pu(M). Specifically, it M € RP*? is any matrix with at
most deg(M) nonzero entries per row/column, then we have that

W(Q(M)) < deg(M).

3.3. Transversality of tangent spaces. Suppose that we have the sum of two
vectors, each from two known subspaces. It is possible to uniquely recover the
individual vectors from the sum if and only if the subspaces have a transverse in-
tersection, that is, they only intersect at the origin. This simple observation leads
to an appealing geometric notion of identifiability. Suppose now that we have the
sum of a sparse matrix and a low-rank matrix, and that we are also given the tan-
gent spaces at these matrices with respect to the algebraic varieties of sparse and
low-rank matrices, respectively. Then a necessary and sufficient condition for iden-
tifiability with respect to the tangent spaces is that these spaces have a transverse
intersection. This transverse intersection condition is also sufficient for local iden-
tifiability in a neighborhood around the sparse matrix and low-rank matrix with
respect to the varieties of sparse and low-rank matrices (due to the inverse func-
tion theorem). It turns out that these tangent space transversality conditions are
also sufficient for the convex program (1.2) to provide consistent estimates of a
latent-variable graphical model (without any side information about the tangent
spaces).

In order to quantify the level of transversality between the tangent spaces €2 and
T we study the minimum gain with respect to some norm of the addition operator
(which adds two matrices) A:RP*P x RP*P — RP*P restricted to the cartesian
product Y = Q x T. Then given any matrix norm | - |, on RP*P x RP*P the
minimum gain of A restricted to ) is defined as

(2, T, | - £ min Py AT APY(S, L),
( I-1g) (S’L)GQX”‘(S’L)HFIH Y (S, L)llq

where Py denotes the projection onto ), and A" denotes the adjoint of the addi-
tion operator (with respect to the standard Euclidean inner-product). The “level”
of transversality of €2 and T is measured by the magnitude of (2, T, || - |l4),
with transverse intersection being equivalent to £(2, 7, | - [l4) > 0. Note that
e(Q,T,| - |lr) is the square of the minimum singular value of the addition op-
erator A restricted to Q x 7.

A natural norm with which to measure transversality is the dual norm of the
regularization function in (1.2), as the subdifferential of the regularization func-
tion is specified in terms of its dual. The reasons for this will become clearer as
we proceed through this paper. Recall that the regularization function used in the
variational formulation (1.2) is given by

fy(S, L)y =ylISIt+ LI+
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where the nuclear norm || - ||« reduces to the trace function over the cone of
positive-semidefinite matrices. This function is a norm for all ¥ > 0. The dual
norm of f), is given by

S|
g,(S.L) =max{7°°, ||L||2}.

Next we define the quantity x (€2, T, y) as follows in order to study the transver-
sality of the spaces €2 and T with respect to the g, norm:

§(T)

(3.3) 2@ 7.7 2maxf 2 2@y .
Here p and & are defined in (3.2) and (3.1). We then have the following result
(proved in Section 5):

LEMMA 3.2. Let S € Q2,L € T be matrices such that ||S||coc = Y and let
Ll = 1. Then we have that g,(PyATAPy(S,L)) € [1 — x(Q,T,y),1 +
x(Q2,T,p)],where Y = Q2 x T and x (2, T, v) is defined in (3.3). In particular
we have that 1 — x (Q,T,y) <e(Q,T, g).

The quantity x (€2, T, v) being small implies that the addition operator is essen-
tially isometric when restricted to ) = Q2 x T. Stated differently, the magnitude
of x(£2,T,y) is a measure of the level of transversality of the spaces 2 and T'.
If w(Q)E(T) < 4, then y € (£(T), %) ensures that x (2, T, ) < 1, which in
turn implies that the tangent spaces €2 and 7" have a transverse intersection.

Observation: Thus we have that the smaller the quantities w(€2) and &(7),
the more transverse the intersection of the spaces €2 and T as measured by
(2, T, gy).

3.4. Conditions on Fisher information. 'The main focus of Section 4 is to ana-
lyze the regularized maximum-likelihood convex program (1.2) by studying its op-
timality conditions. The log-likelihood function is well-approximated in a neigh-
borhood by a quadratic form given by the Fisher information (which measures the
curvature, as discussed in Section 2.2). Let 7* =7 (I% o) denote the Fisher infor-
mation evaluated at the true marginal concentration matrix K o [see (1.1)]. The
appropriate measure of transversality between the tangent spaces” Q = € (5*) and
T = T(L*) is then in a space in which the inner-product is given by Z*. Specif-
ically, we need to analyze the minimum gain of the operator Py ATZ* APy re-
stricted to the space ) = Q x T. Therefore we impose several conditions on the
Fisher information Z*. We define quantities that control the gains of Z* restricted
to 2 and T separately; these ensure that elements of 2 and elements of 7 are

2We implicitly assume that these tangent spaces are subspaces of the space of symmetric matrices.
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individually identifiable under the map Z*. In addition we define quantities that,
in conjunction with bounds on w(£2) and &(T'), allow us to control the gain of Z*
restricted to the direct-sum Q@ T.

TI* restricted to Q2: The minimum gain of the operator PoZ*Pg, restricted to 2
is given by

@  min  [PoIT*Po(M)]c.
MeQ, | M|lo=1

The maximum effect of elements in € in the orthogonal direction Q' is given by

Sq & max  [|[PorZ*Pa(M)] s
MeQ,||M||oo=1

The operator Z* is injective on 2 if ag > 0. The ratio 2—9 <1 — v implies the

irrepresentability condition imposed in [26], which gives a sufficient condition for
consistent recovery of graphical model structure using ¢;-regularized maximum-
likelihood. Notice that this condition is a generalization of the usual Lasso irrep-
resentability conditions [32, 37], which are typically imposed on the covariance
matrix. Finally we also consider the following quantity, which controls the behav-
ior of Z* restricted to €2 in the spectral norm:

A *

pot | max IT°(M)]b.

T* restricted to T: Analogously to the case of Q2 one could control the gains
of the operators Pr1Z*Pr and PrZ*Pr. However, as discussed previously, one
complication is that the tangent spaces at nearby smooth points on the rank va-
riety are in general different, and the amount of twisting between these spaces is
governed by the local curvature. Therefore we control the gains of the operators
PrI*Pr and PrZ* Py for all tangent spaces 7' that are “close to” the nomi-
nal T (at the true underlying low-rank matrix), measured by p(T, T') (2.7) being
small. The minimum gain of the operator Py Z* Py restricted to T’ (close to T') is
given by

ar & min min  ||PrZ*Pr(M)|.
(T T)<E(T)/2 MeT’, | M]2=1
Similarly, the maximum effect of elements in 7’ in the orthogonal direction 7'+
(for T’ close to T') is given by
Sr & max max  ||PpZ*Pr(M)|2.
p(T'.T)<E(T)/2 MeT",||M||2=1
Implicit in the definition of oy and 7 is the fact that the outer minimum and
maximum are only taken over spaces T that are tangent spaces to the rank-variety.
The operator Z* is injective on all tangent spaces T’ such that p(T’,T) < @
if ar > 0. An irrepresentability condition (analogous to those developed for the
sparse case) for tangent spaces near 7 to the rank variety would be that fl—g <Il—v.



LATENT VARIABLE MODEL SELECTION 1949

Finally we also control the behavior of Z* restricted to T’ close to T in the £
norm:
= max max | Z*(M)| 0.
p(T"\T)=E(T)/2 MeT’, | Mlo=1

The two sets of quantities (aq, dg) and (ar, d7) essentially control how Z*
behaves when restricted to the spaces 2 and T separately (in the natural norms).
The quantities B and Br are useful in order to control the gains of the operator Z*
restricted to the direct sum Q2@ T . Notice that although the magnitudes of elements
in 2 are measured most naturally in the ¢, norm, the quantity fq is specified
with respect to the spectral norm. Similarly, elements of the tangent spaces T’ to
the rank variety are most naturally measured in the spectral norm, but 87 provides
control in the £+, norm. These quantities, combined with w(2) and &(T') [defined
in (3.2) and (3.1)], provide the “coupling” necessary to control the behavior of Z*
restricted to elements in the direct sum €2 @ 7. In order to keep track of fewer
quantities, we summarize the six quantities as follows:

o = min(ag, ar); § = max(3q, 87); B = max(Bg, Br).

Main assumption: There exists a v € (0, %] such that

—<1-2v.
o
This assumption is to be viewed as a generalization of the irrepresentability con-

ditions imposed on the covariance matrix [32, 37] or the Fisher information matrix
[26] in order to provide consistency guarantees for sparse model selection using
the £1 norm. With this assumption we have the following proposition, proved in
Section 5, about the gains of the operator Z* restricted to €2 @ T'. This proposi-
tion plays a fundamental role in the analysis of the performance of the regular-
ized maximum-likelihood procedure (1.2). Specifically, it gives conditions under
which a suitable primal-dual pair can be specified to certify optimality with respect
to (1.2) (see Section 5.2 for more details).

PROPOSITION 3.3. Let Q2 and T be the tangent spaces defined in this section,
and let T* be the Fisher information evaluated at the true marginal concentration
matrix. Further let «, B, v be as defined above. Suppose that

1 Vo 2
w@Em) = (555 .
and that y is in the following range:
3E(T)BR—v) Vo
e ’2M(Q)ﬂ(2—v)]

Then we have the following two conclusions for Y = Qx T with p(T', T) < @:
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(1) The minimum gain of T* restricted to Q2 @ T’ is bounded below:

o
min Py ATT* APy (S, L)) > —.
S0y I 1otz 8 FY v L)z 5

Specifically this implies that for all (S,L) €Y
] o
gy (PyATT* APy(S. L) 2 2y (S. L).

(2) The effect of elements in Y = 2 x T on the orthogonal complement Y+ =
Qt x T is bounded above:

1Py ATT* APy (Py ATT* APY) g, g, <1 —v.
Specifically this implies that for all (S,L) € Y
8y (PyL ATT* APy (S, L)) < (1 — v)g, (PyATT* APy (S, L)).

The last quantity we consider is the spectral norm of the marginal covariance
matrix % = (K3) !

(3.4) v EIZHI = 1K)

A bound on  is useful in the probabilistic component of our analysis, in order
to derive convergence rates of the sample covariance matrix to the true covariance
matrix. We also observe that

1Tl = (K5 ' @ (K5) Mlamsa = ¥2.

Remarks. The quantities «, 8, § bound the gains of the Fisher information Z*
restricted to the spaces €2 and T (and tangent spaces near 7). One can make
stronger assumptions on Z* that are more easily interpretable. For example, aq, Bo
could bound the minimum/maximum gains of Z* for all matrices (rather than
just those in 2), and 8¢ the Z*-inner-product for all pairs of orthogonal ma-
trices (rather than just those in €2 and QJ-). Similarly, a7, B could bound the
minimum/maximum gains of Z* for all matrices (rather than just those near 7),
and 87 the Z*-inner-product for all pairs of orthogonal matrices (rather than just
those near T and 7). Such bounds would apply in either the || - ||—2 norm (for
ar,dr, Bq) or the || - ||co— 0o norm (for ag, 8o, Br). These modified assumptions
are global in nature (not restricted just to €2 or near 7') and are consequently
stronger (they lower-bound the original aq, «r and they upper-bound the origi-
nal B, Br, 8a, 1), and they essentially control the gains of the operator Z* in the
Il - l2—2 norm and the || - ||co—c0 NOrm. In contrast, previous works on covariance
selection [1, 2, 29] consider well-conditioned families of covariance matrices by
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bounding the minimum/maximum eigenvalues (i.e., gain with respect to the spec-
tral norm).

4. Consistency of regularized maximum-likelihood program.

4.1. Main results. Recall that K E"O ) denotes the full concentration matrix
of a collection of zero-mean jointly-Gaussian observed and latent variables. Let
p = |O] denote the number of observed variables, and let & = |H| denote the
number of latent variables. We are given n samples {X }i'_, of the observed vari-
ables Xp. We consider the high-dimensional setting in which (p, h, n) are all
allowed to grow simultaneously. We present our main result next demonstrating
the consistency of the estimator (1.2), and then discuss classes of latent-variable
graphical models and various scaling regimes in which our estimator is consis-
tent. Recall from (1.2) that A, is a regularization parameter, and y is a trade-
off parameter between the rank and sparsity terms. Notice from Proposition 3.3
that the choice of y depends on the values of w(2(S*)) and &£(T (L*)). While
these quantities may not be known a priori, we discuss a method to choose y
numerically in our experimental results (see Section 6). The following theorem
shows that the estimates (S,, L) provided by the convex program (1.2) are con-
sistent for a suitable choice of A,. In addition to the appropriate identifiabil-
ity conditions (as specified by Proposition 3.3), we also impose lower bounds
on the minimum magnitude nonzero entry 6 of the sparse conditional graphical
model matrix S* and on the minimum nonzero singular value o of the low-rank
matrix L* summarizing the effect of the latent variables. The theorem is stated
in terms of the quantities «, §, v, ¥, and we particularly emphasize the depen-
dence on w(2(S*)) and £(T(L*)) because these control the complexity of the
underlying latent-variable graphical model given by K (*0 )- A number of quan-
tities play a role in our theorem: let D = max{l, %} Ci=v({1+ 6"/‘3)

- o 48v2DY (2—v)
C2 =% + 37 Camp = 705555 MMy s5p5mger s O = g
3aC5(2
Cs = max{(@ +1DCHYD, €+ HSCD and ¢ = S

THEOREM 4.1. Let K(*O H) denote the concentration matrix of a Gaussian

model. We have n samples {X,}!_, of the p observed variables denoted by O.
Let Q=Q(S*) and T = T(L*) denote the tangent spaces at S* and at L* with
respect to the sparse and low-rank matrix varieties, respectively.

Assumptions: Suppose that the quantities (1 (S2) and & (T) satisfy the assumption
of Proposition 3.3 for identifiability, and y is chosen in the range specified by
Proposition 3.3. Further suppose that the following conditions hold.:

_p_ 1281// : : > _7P
(1) Letn> L max{ 2, , 2}, that is, we require that n 2 S(T)“'

48 2—
(2) Set A, = % , that is, we require that \,, < E(T) \/7
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Crhn . - L /p
(3) Leto > 51 that is, we require that o 2, 5T \/:

Csin : : 1 )4
(4) Let6 > Mfﬂ)’ that is, we require that 6 2 m\/;

Conclusions: Then with probability greater than 1 — 2exp{—p} we have alge-
braic correctness and estimation error given by:

(1) sign(S,) = sign(5*) and rank(L,) = rank(L*)
& A 512+/2(3—v) Dy
(2) gy(Sy — 8% Ly — L*) < 222000y [poc L [b,

The proof of this theorem is given in Section 5. The theorem essentially states
that if the minimum nonzero singular value of the low-rank piece L* and minimum
nonzero entry of the sparse piece S* are bounded away from zero, then the con-
vex program (1.2) provides estimates that are both algebraically correct and have
bounded estimation error (in the £+, and spectral norms).

Notice that the condition on the minimum singular value of L* is more stringent
than the one on the minimum nonzero entry of $*. One role played by these condi-
tions is to ensure that the estimates (S,, L,) do not have smaller support size/rank
than (S*, L*). However, the minimum singular value bound plays the additional
role of bounding the curvature of the low-rank matrix variety around the point L*,
which is the reason for this condition being more stringent. Notice also that the
number of latent variables 4 does not explicitly appear in the bounds in Theo-
rem 4.1, which only depend on p, u(2(S*)), (T (L*)). However, the dependence
on A is implicit in the dependence on £ (T (L*)), and we discuss this point in greater
detail in the following section.

Finally we note that consistency holds in Theorem 4.1 for a range of values of
y € [2BE=0Ed)
plexity, the minimum nonzero singular value of L*, and the minimum magnitude
nonzero entry of S* are governed by the lower end of this range for y. These as-
sumptions can be weakened if we only require consistency for a smaller range of
values of y. The next result conveys this point with a specific example.

'3 ﬂ(zj;x)u(ﬂ)]' In particular the assumptions on the sample com-

COROLLARY 4.2. Consider the same setup and notation as in Theorem 4.1.
Suppose that the quantities () and &(T) satisfy the assumption of Proposi-
tion 3.3 for identifiability, and that y = m (the upper end of the range

specified in Proposition 3.3), that is, y =< ﬁ Further suppose that. (1) n 2
Q) s (@) dn = w(R),/2: 3) 0 2 W 24y 6 2 f Then with probabil-
ity greater than 1 — 2exp{—p} we have estimates (S, Ln) that are algebraically
correct, and with the error bounded as gy(Sn —S* L,— L% <u (Q)\/;
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The proof of this corollary? is analogous to that of Theorem 4.1. We emphasize
that in practice it is often beneficial to have consistent estimates for a range of
values of y (as in Theorem 4.1). Specifically, the stability of the sparsity pattern
and rank of the estimates (S,, L,) for a range of trade-off parameters is useful
in order to choose a suitable value of y, as prior information about the quantities
w(2(S*)) and £(T (L*)) is not typically available (see Section 6).

We remark here that the identifiability conditions of Proposition 3.3 are the main
sufficient conditions required for Theorem 4.1 and Corollary 4.2 to hold. It would
be interesting to obtain necessary conditions as well for these results, analogous
to the necessity and sufficiency of the irrepresentability conditions for the Lasso
[32, 37].

4.2. Scaling regimes. Next we consider classes of latent-variable models that
satisfy the conditions of Theorem 4.1. Recall from Section 3.2 that u(2(S*)) <
deg(S*). Throughout this section, we consider latent-variable models in which the
low-rank matrix L* is almost maximally incoherent, that is, £(T (L*)) ~ \/% SO
the effect of marginalization over the latent variables is diffuse across almost all
the observed variables. We suppress the dependence on the quantities «, 8, v, ¥
defined in Section 3.4 in our scaling results, and specifically focus on the trade-off
between &(T (L*)) and w(S2(S5*)) for consistent estimation (we also suppress the
dependence of these quantities on n). Thus, based on Proposition 3.3 we study
latent-variable models in which

h
E(T(L")Hu(Q(S™) = O(/;deg(S*)> =0@).

As we describe next, there are nontrivial classes of latent-variable graphical models
in which this condition holds.

Bounded degree: The first class of latent-variable models that we consider are
those in which the conditional graphical model among the observed variables
(given by K§,) has constant degree:

deg(S*) = O(1), h~p.

Such models can be estimated consistently from n ~ p samples. Thus consistent
latent-variable model selection is possible even when the number of samples and
the number of latent variables are on the same order as the number of observed
variables.

3 By making stronger assumptions on the Fisher information matrix Z*, one can further remove
the factor of £(7') in the lower bound for o. Specifically, the lower bound o 2> /L(Q)3\/g suffices
for consistent estimation if the bounds defined by the quantities a7, 87, 7 can be strengthened as
described in the remarks at the end of Section 3.4.
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Polylogarithmic degree: The next class of models that we consider are those
in which the degree of the conditional graphical model of the observed variables
grows polylogarithmically with p:

p
deg(S™) ~ 1o 1 h~————.
g(8*) ~ log(p) T
Such latent-variable graphical models can be consistently estimated as long as

n ~ p polylog(p).

For standard graphical model selection with no latent variables, £-regularized
maximum-likelihood is shown to be consistent with n = O(log p) samples [26].
On the other hand, our results prove consistency in the setting with latent variables
when n = O(p) samples. It would be interesting to study whether these rates are
inherent to latent-variable model selection.

4.3. Rates for covariance matrix estimation. Theorem 4.1 gives conditions
under which we can consistently estimate the sparse and low-rank parts that
compose the marginal concentration matrix K o Here we state a corollary that
gives rates for covariance matrix estimation, that is, the quality of the estimate
(S‘n —L 2~ with respect to the “true” marginal covariance matrix X7,.

COROLLARY 4.3. Under the same conditions as in Theorem 4.1, we have with
probability greater than 1 — 2 exp{— p} that

tred 7 vl v
& AIG = L™ = Zp) < 1+ " |
This corollary implies that ||($, — L)™' = £ ll2 < 77,/2 based on the choice

of A, in Theorem 4.1, and that [|(S, — L)™' — 2% |2 < M(Q)\/% based on the
choice of X, in Corollary 4.2.

5. Proofs.
5.1. Proofs of Section 3. Here we give proofs of the results stated in Section 3.

PROOF OF LEMMA 3.1. Since p(T1, T2) < 1, the largest principal angle be-
tween T and T is strictly less than 7. Consequently, the mapping Pr, : T1 — T
restricted to 77 is bijective (as it is injective, and the spaces 77, 7> have the same
dimension). Consider the maximum and minimum gains of Py, restricted to 77;
forany M € Ty, ||M||, = 1:

IPr,(M)l2 = IM + [Pr, = PriJ(M) |2 € [1 — p(T1, T2), 1 + p(T1, T2)].
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Therefore, we can rewrite £(73) as follows:

§(T) =~ max [[Nfeo=  max [Pr,(N)lew
NeTy,|[N|2<1 NeTy [N |21
< IP1, (N) [l oo

< max
NeTy,|IN[2=1/(A—p(T1,T2))

< max N Pr. — Pr, 1(N
_NeTl,||N||2§1/<1—p(T1,T2)>[” lloo + 1Py 7] (N) lloo ]

< T ET a0 = PrlV)
< T[S0+ s 1P = Pl 1]

—[&(T; T1, 15)].
< l—p(T1,T2)[$( 1)+ p(T, )]

This concludes the proof of the lemma. [J

PROOF OF LEMMA 3.2.  We have that AT A(S, L)=(S+L, S+ L); therefore,
Py AT APy (S, L) = (S + Pa(L), Pr(S) + L). We need to bound ||.S + Pq(L)||oo
and ||Pr(S) + L||,. First, we have

IS+ Pa(L)lloo € [IISlloc — IPa(L) llocs 1Slloo + P(L)loc]

S Sloo = lILlloos 1STloo + I Lloo]
Cly —&@),y +&(M)]

Similarly, one can check that

IPr(S) + Lll2 € [=IPr (2 + I LlI2, IPr(S)ll2 + [IL1l2]

C[1—=2[Sll2, 1 +2[S]2]
C 1 =2yu(2), 1 +2yu(2)].

These two bounds give us the desired result. [

PROOF OF PROPOSITION 3.3. Before proving the two parts of this proposition

we make a simple observation about &(7") using the condition that p(7, T") < 5(2—“
by applying Lemma 3.1:

T T,T 36(T) /2
§(T)+ p( : )S §(1)/ <36(T).
1 —p(T, T 1-8(T)/2
Here we used the property that £(7") < 1 in obtaining the final inequality. Conse-

E(T) <

quently, noting that y € [ (Z;Z)S(T), 5 ,3(2—1)3) M(Q)] implies that
, E(T") Vo
(5.1 x (€2, T, y) =max 21 (S2)y Em-
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Part 1: The proof of this step proceeds in a similar manner to that of Lemma 3.2.
First we have for S € Q, L € T’ with ||S||oo =y, [L|l2 = I:

IPRZ*(S+ L) lloc = I1PRZ*Slloo = PRI Llloo = oy — IZ*Llloo = ay — BE(T).

Next, under the same conditions on S, L,
IPrZ*(S+ L)ll2 > P Z*Lll2 — P Z*Sl2 > a = 2| Z*S|l2 > & — 2B1(Q)y
Combining these last two bounds with (5.1), we conclude that

min Py ATT* APy(S, L
S0V L L= 87 P v(S. L)
E(T) } va 2l - v) o

2y > — «
R e )

Za—ﬂmax{

where the final inequality follows from the assumption that v € (0, %].
Part 2: Note that for § € Q, L € T" with ||S]locc <y, IL|2 <1,

IP@rZ*(S + Llloo < IPa1T*Slloo + PorT*Lllec < 8y + BE(T).

Similarly,
IPrZ*(S + L)ll2 < IPprT*Sll2 + Pr L2 < By n() + 6.
Combining these last two bounds with the bounds from the first part, we have that
1Py ATT* APy (Py ATT* APy) g, -,
_ 8+ Bmax(E(T)/y. 20y} _ §+va/2—v)
T a—pmax{§(T)/y, 2u(Q)y} T a —va/2-v)
- 1 -2v)a+va/2—v)
- oa—va/(2—v)
This concludes the proof of the proposition. [

=1—-v.

5.2. Proof strategy for Theorem 4.1. Standard results from convex analysis
[28] state that (S,,, Ln) is a minimum of the convex program (1.2) if the zero ma-
trix belongs to the subdifferential of the objective function evaluated at (S,,, L,,)
[in addition to (Sn, Ln) satisfying the constraints]. Elements of the subdifferentials
with respect to the £ norm and the nuclear norm at a matrix M have the key prop-
erty that they decompose with respect to the tangent spaces $2(M) and T (M) [34].
This decomposition property plays a critical role in our analysis. In particular it
states that the optimality conditions consist of two parts, one part corresponding to
the tangent spaces 2 and 7 and another corresponding to the normal spaces Q-+
and T+.

Our analysis proceeds by constructing a primal-dual pair of variables that cer-
tify optimality with respect to (1.2). Consider the optimization problem (1.2) with
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the additional (nonconvex) constraints that the variable S belongs to the algebraic
variety of sparse matrices and that the variable L belongs to the algebraic variety
of low-rank matrices. While this new optimization problem is nonconvex, it has a
very interesting property. At a globally optimal solution (and indeed at any locally
optimal solution) (S L) such that S and L are smooth points of the algebraic va-
rieties of sparse and low-rank matrices, the first-order optimality conditions state
that the Lagrange multipliers corresponding to the additional variety constraints
must lie in the normal spaces Q(S’)l and T (L)1. This basic observation, com-
bined with the decomposition property of the subdifferentials of the £1 and nuclear
norms, suggests the following high-level proof strategy: considering the solution
(S, L) of the variety-constrained problem, we show under suitable conditions that
the second part of the subgradient optimality conditions of (1.2) (without any Va—
riety constraints) corresponding to components in the normal spaces Q(S)* an
T(L)L is also satisfied by (S L) Thus, we show that (S L) satisfies the optlmahty
conditions of the original convex program (1.2). Consequently (S L) is also the
optimum of the convex program (1.2). As this estimate is obtained as the solution
to the problem with the variety constraints, the algebraic correctness of (S, L) can
be directly concluded. We emphasize here that the variety-constrained optimiza-
tion problem is used solely as an analysis tool in order to prove consistency of the
estimates provided by the convex program (1.2). The key technical complication is
that the tangent spaces at L and L* are in general different. We bound the twisting
between these tangent spaces by using the fact that the minimum nonzero singular
value of L* is bounded away from zero (as assumed in Theorem 4.1; see also the
supplement [6]).

5.3. Results proved in supplement. In this section we give the statements of
some results that are proved in a separate supplement [6]. These results are critical
to the proof of our main theorem, but they deal mainly with nonstatistical aspects
such as the curvature of the algebraic variety of low-rank matrices. Recall that
Q=Q(S*) and T = T (L*). We also refer frequently to the constants defined in
Theorem 4.1.

As the gradient of the log-determinant function is given by a matrix inverse,
a key step in analyzing the properties of the convex program (1.2) is to show
that the change in the inverse of a matrix due to small perturbations is well-
approximated by the first-order term in the Taylor series expansion. Consider the
Taylor series of the inverse of a matrix:

M+ =M —MTIAMT F Ry (D),
where
o0
Ry-1(A)y=M""! [Z(—AM*)"]
k=2

This infinite sum converges for A sufficiently small. The following proposition
provides a bound on the second-order term specialized to our setting:
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PROPOSITION 5.1. Suppose that y is in the range given by Proposition 3.3.
Further suppose Ag € 2, and let g, (Ag, AL) < 5. Then we have that
chl 8y (As, AL)2
§(T)

Next we analyze the following convex program subject to certain additional
constraints:

(Sq. L) = arf,;mintr[(s — L)X%] —logdet(S — L) + Ay [ISIlt + IIL 1]
,L
5.2)

gy (AT Rz (A(Ag, ApL))) <

s.t.S—L>0,SeQ,LeT,

for some subspace T. Comparing (5.2) with the convex program (1.2), we also do
not constrain the variable L to be positive semidefinite in (5.2) for ease of proof of
the next result (see the supplement [6] for more details; recall that the nuclear norm
of a positive-semidefinite matrix is equal to its trace). We show that if T is any
tangent space to the low-rank matrix variety such that p(T, T) < @ , then we can
bound the error (Ag, Ar) = (39 — S*, L* — if). Let C; = P7.(L*) denote the
normal component of the true low-rank matrix at 7, and let E,, = X} — X, denote
the difference between the true marginal covariance and the sample covariance.
The proof of the following result uses Brouwer’s fixed-point theorem [25], and is
inspired by the proof of a similar result in [26] for standard sparse graphical model
recovery without latent variables.

PROPOSITION 5.2. Let the error (As, AL) in the solution of the convex pro-
gram (5.2) [with T such that p(T,T) < %] be as defined above, and define

8
r= max{;[gy(ATEn) + 8y (ATI*Cf) + Anl, ||CT’||2}-

a&(T)
64Dy C

Ifr < min{% } for y as in Proposition 3.3, then g, (Ag, Ap) <2r.

Finally we give a proposition that summarizes the algebraic component of our
proof.

PROPOSITION 5.3. Assume that y is in the range specified by Proposi-

n }\n n 3a(2— .
tion3.3,0 > SC(LTX)Z,G > ifg) gV(A E) < 6()5 vv),andthatkn < Hmm{%,
a&(T)

64Dy C2 }. Then there exists a T' and a corresponding unique solution (Sa, L17) of
1

(5.2) with T = T’ with the following properties:

(1) sign(S) = sign(§*) and rank(L7/) = rank(L*), with Ly > 0. Further
T(Ly)=T"and p(T,T') < #-
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(2) Letting Cpr = PpL(L*) we have that g, (ATT*Cr) < 22Y~ and that

6(2—v)°
16(3—v))1,
ICr 1l < 1§55

Further, if g, (ATREE(A(SQ — S*, L* — iT/))) < %, then the tangent space

constraints S € 2, L GAT/ are inactive in (5.2). Consequently the unique solution
0f(12) is (Su, Ln) = (Sq, L17).

5.4. Probabilistic analysis. The results given thus far in this section have been
completely deterministic in nature. Here we present the probabilistic component of
our proof by studying the rate at which the sample covariance matrix X}, converges
to the true covariance matrix X7, in spectral norm. This result is well known and
follows directly from Theorem II.13 in [8]; we mainly discuss it here for complete-
ness and also to show explicitly the dependence on v = || X, ||2 defined in (3.4).
See the supplement [6] for a proof.

LEMMA 5.4. Let = ||Z} 2. Given any § > 0 with § < 8y, let the number

2
of samples n be such that n > %. Then we have that

2
Pr[||2’5—2*0||2>8]<2exp{— no }
=ol= 12842

The following corollary relates the number of samples required for an error
bound to hold with probability 1 — 2 exp{—p}.

COROLLARY 5.5. Let XY, be the sample covariance formed from n samples
of the observed variables. Set &, = +/ lzgnﬂ. Ifn>2p, then

Pr{[| 2% — Zpll2 < 8,1 > 1 —2exp{—p}.
PROOF. Note that n > 2p implies that §,, < 8, and apply Lemma 5.4. [J

5.5. Proof of Theorem 4.1 and Corollary 4.3. We first combine the results

obtained thus far to prove Theorem 4.1. Set E, = X, — X7, set §, =/ %pwz’

and then set A, = %. This setting of A, is equivalent to the specification in

the statement of Theorem 4.1.

PROOF OF THEOREM 4.1. We mainly need to show that the various suffi-
cient conditions of Proposition 5.3 are satisfied. We condition on the event that
|Ex |2 < 85, which holds with probability greater than 1 — 2 exp{— p} from Corol-
lary 5.5 as n > 2 p by assumption. Based on the bound on n, we also have that

5, gs(T)z[ivmin{L, e }]
323 —v)D 4Cy’ 256D (3 — V)Y C3
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In particular, these bounds imply that

< 7a§(T)v min{ ! @ (T) }
"=32B3-v)D ACy° 64D1pc2
(5.3)
Ole(T)ZUZ

T 8192y C3(3 —v)2D?

Both these weaker bounds are used later.

Based on the assumptions of Theorem 4.1, the requirements of Proposition 5.3
on o and 0 are satisfied. Next we verify the bounds on A, and g, (ATE,). Based
on the setting of X,, above and the bound on §,, from (5.3), we have that

__6D(2—v)s, - 3(2—v) { 1 a&(T) }

n= < min
E(T)v 16(3 — v) 4C1’ 64Dy C2
Next we combine the facts that A, = % and that || E,|[» < §, to conclude
that
Dé ApV
5.4 ATE)< ="
(5.4) gy (ATEn) = Lot = 5

Thus, we have from Proposition 5.3 that there exists a T’ and corresponding
solution (Sg, LT/) of (5.2) with the prescribed properties. Next we apply Propo-
sition 5.2 with 7 = T’ to bound the error (Sq — S*, L* — Lyv). Noting that
o(T, T < E(4T), we have that

8 § T 8 v
gy (AT B +8,(ATCr) + 40 = | 55—+ 1o

(5.5) _16G - v,
3a(2 —v)

(5.6) _326-vbo
a&(T)v
1 a&(T)

67 Smm{4C1 64D1//C2}

In the first inequality we used the fact that g, (ATEn) < 632" ) (from above)

and that g, (ATZ*Cy) is similarly bounded (from Proposition 5.3). In the second
equality we used the relation A, = W In the final inequality we used the
bound on §, from (5.3). This satisfies one of the requirements of Proposition 5.2.
The second requirement of Proposition 5.2 on ||C7||7 is also similarly satisfied as
we have that ||C7/]2 < % from Proposition 5.3, and we use the same se-

quence of inequalities as above. Thus we conclude from Proposition 5.2 and from
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(5.5) that

n A 323 —v)A 1
3 (2 —v) ET)Vn
Here the last inequality follows from the bound on 4.

If we show that (S,, L) = (Sq, L7/), we can conclude the proof of The-
orem 4.1 since algebraic correctness of (Sq, L7/) holds from Proposition 5.3
and the estimation error bound follows from (5.8). In order to complete this fi-
nal step, we again revert to Proposition 5.3 and prove the requisite bound on
8y (A" Rz (A(Sq — §*, L* — L11)).

Since the bound (5.8) combined with the inequality (5 7) satlsﬁes the condition

of Proposition 5.1 [i.e., we have that gy(SQ — §* L* — LT/) < 2c IK
. . 2DYC? . .
gy (ATRss (A(Sq — §*. L* — L1))) < T Le,(Sq— 8%, L* — Ly)?
2 2
- 2Dy Cy (64(3 — v)D) 52
- &) a(T)v "
B [8192¢Cf(3 —v)2D? } Dé,
B a28(T)2v: &)
- Dé,
§(T)
_ AV
T 6(2—v)
In the second inequality we used (5.6) and (5.8), in the final inequality we used the
bound (5.3) on §,, and in the final equality we used the relation A, = %.
O

PROOF OF COROLLARY 4.3. Based on the optimality conditions of the mod-
ified convex program (5.2), we have that
g)/ (AT[(gn - in)_l - 2:’(1)]) = )Mn~
Combining this with the bound (5.4) yields the desired result. []

6. Simulation results. In this section we give experimental demonstration of
the consistency of our estimator (1.2) on synthetic examples, and its effectiveness
in modeling real-world stock return data. Our choices of A, and y are guided by

Theorem 4.1. Specifically, we choose A, to be proportional to \/g . For y we ob-

serve that the support/sign-pattern and the rank of the solution (Sy, L) are the
same for a range of values of y. Therefore one could solve the convex program
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(1.2) for several values of y, and choose a solution in a suitable range in which
the sign-pattern and rank of the solution are stable (see [7] for details). In prac-
tical problems with real-world data these parameters may be chosen via cross-
validation (it would be of interest to consider methods such as those developed
in [24]). For small problem instances we solve the convex program (1.2) using
a combination of YALMIP [21] and SDPT3 [31]. For larger problem instances
we use the special-purpose solver LogdetPPA [33] developed for log-determinant
semidefinite programs.

6.1. Synthetic data. In the first set of experiments we consider a setting in
which we have access to samples of the observed variables of a latent-variable
graphical model. We consider several latent-variable Gaussian graphical models.
The first model consists of p = 36 observed variables and /& = 2 latent variables.
The conditional graphical model structure of the observed variables is a cycle with
the edge partial correlation coefficients equal to 0.25; thus, this conditional model
is specified by a sparse graphical model with degree 2. The second model is the
same as the first one, but with 2 = 3 latent variables. The third model consists of
h =1 latent variable, and the conditional graphical model structure of the observed
variables is given by a 6 x 6 nearest-neighbor grid (i.e., p = 36 and degree 4) with
the partial correlation coefficients of the edges equal to 0.15. In all three of these
models each latent variable is connected to a random subset of 80% of the observed
variables (and the partial correlation coefficients corresponding to these edges are
also random). Therefore the effect of the latent variables is “spread out” over most
of the observed variables, that is, the low-rank matrix summarizing the effect of
the latent variables is incoherent.

For each model we generate n samples of the observed variables, and use the
resulting sample covariance X7, as input to our convex program (1.2). Figure 1
shows the probability of obtaining algebraically correct estimates as a function
of n. This probability is evaluated over 50 experiments for each value of n. In all
of these cases standard graphical model selection applied directly to the observed
variables is not useful as the marginal concentration matrix of the observed vari-
ables is not well-approximated by a sparse matrix. These experiments agree with
our theoretical results that the convex program (1.2) is an algebraically consistent
estimator of a latent-variable model given (sufficiently many) samples of only the
observed variables.

6.2. Stock return data. In the next experiment we model the statistical struc-
ture of monthly stock returns of 84 companies in the S&P 100 index from 1990 to
2007; we disregard 16 companies that were listed after 1990. The number of sam-
ples n is equal to 216. We compute the sample covariance based on these returns
and use this as input to (1.2).

The model learned using (1.2) for suitable values of X,, y consists of & =5
latent variables, and the conditional graphical model structure of the stock re-
turns conditioned on these latent components consists of 135 edges. Therefore
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FI1G. 1. Synthetic data: plot showing probability of algebraically correct estimation. The three mod-
els studied are (a) 36-node conditional graphical model given by a cycle with h =2 latent variables,
(b) 36-node conditional graphical model given by a cycle with h = 3 latent variables and (c) 36-node
conditional graphical model given by a 6 x 6 grid with h = 1 latent variable. For each plotted point,
the probability of algebraically correct estimation is obtained over 50 random trials.

the number of parameters in the model is 84 + 135 + (5 x 84) = 639. The result-
ing KL divergence between the distribution specified by this model and a Gaus-
sian distribution specified by the sample covariance is 17.7. Figure 2 (left) shows
the conditional graphical model structure. The strongest edges in this conditional
graphical model, as measured by partial correlation, are between Baker Hughes—

IPrra - T a4

' .
Ldagen 0

= rahil
n

FI1G. 2. Stock returns: the figure on the left shows the sparsity pattern (black denotes an edge, and
white denotes no edge) of the concentration matrix of the conditional graphical model (135 edges)
of the stock returns, conditioned on five latent variables, in a latent-variable graphical model (total
number of parameters equals 639). This model is learned using (1.2), and the KL divergence with
respect to a Gaussian distribution specified by the sample covariance is 17.7. The figure on the right
shows the concentration matrix of the graphical model (646 edges) of the stock returns, learned using
standard sparse graphical model selection based on solving an {1 -regularized maximum-likelihood
program (total number of parameters equals 730). The KL divergence between this distribution and
a Gaussian distribution specified by the sample covariance is 44.4.
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Schlumberger, A.T.&T.—Verizon, Merrill Lynch-Morgan Stanley, Halliburton—
Baker Hughes, Intel-Texas Instruments, Apple—Dell, and Microsoft-Dell. It is of
interest to note that in the Standard Industrial Classification* system for grouping
these companies, several of these pairs are in different classes. As mentioned in
Section 2.1, our method estimates a low-rank matrix that summarizes the effect of
the latent variables; in order to factorize this low-rank matrix, for example, into
sparse factors, one could use methods such as those described in [35].

We compare these results to those obtained using a sparse graphical model
learned using £;-regularized maximum-likelihood (see, e.g., [26]), without intro-
ducing any latent variables. Figure 2 (right) shows this graphical model structure.
The number of edges in this model is 646 (the total number of parameters is equal
to 646 + 84 = 730), and the resulting KL divergence between this distribution and
a Gaussian distribution specified by the sample covariance is 44.4.

These results suggest that a latent-variable graphical model is better suited than
a standard sparse graphical model for modeling stock returns. This is likely due to
the presence of global, long-range correlations in stock return data that are better
modeled via latent variables.

7. Discussion. We have studied the problem of modeling the statistical struc-
ture of a collection of random variables as a sparse graphical model conditioned
on a few additional latent components. As a first contribution we described con-
ditions under which such latent-variable graphical models are identifiable given
samples of only the observed variables. We also proposed a convex program based
on £1 and nuclear norm regularized maximum-likelihood for latent-variable graph-
ical model selection. Given samples of the observed variables of a latent-variable
Gaussian model, we proved that this convex program provides consistent esti-
mates of the number of latent components as well as the conditional graphical
model structure among the observed variables conditioned on the latent compo-
nents. Our analysis holds in the high-dimensional regime in which the number of
observed/latent variables are allowed to grow with the number of samples of the
observed variables. These theoretical predictions are verified via a set of experi-
ments on synthetic data. We also demonstrate the effectiveness of our approach in
modeling real-world stock return data.

Several questions arise that are worthy of further investigation. While (1.2) can
be solved in polynomial time using off-the-shelf solvers, it is preferable to develop
more efficient special-purpose solvers to scale to massive datasets by taking ad-
vantage of the structure of (1.2). It is also of interest to develop statistically consis-
tent convex optimization methods for latent-variable modeling with non-Gaussian
variables, for example, for categorical data.

4See the U.S. SEC website at http://www.sec.gov/info/edgar/siccodes.htm.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Latent variable graphical model selection via convex opti-
mization” (DOI: 10.1214/11-AOS949SUPP; .pdf). Due to space constraints, we
have moved some technical proofs to a supplementary document [6].
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DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION'

By MING YUAN

Georgia Institute of Technology

I want to start by congratulating Professors Chandrasekaran, Parrilo and Willsky
for this fine piece of work. Their paper, hereafter referred to as CPW, addresses one
of the biggest practical challenges of Gaussian graphical models—how to make in-
ferences for a graphical model in the presence of missing variables. The difficulty
comes from the fact that the validity of conditional independence relationships im-
plied by a graphical model relies critically on the assumption that all conditional
variables are observed, which of course can be unrealistic. As CPW shows, this is
not as hopeless as it might appear to be. They characterize conditions under which
a conditional graphical model can be identified, and offer a penalized likelihood
method to reconstruct it. CPW notes that with missing variables, the concentration
matrix of the observables can be expressed as the difference between a sparse ma-
trix and a low-rank matrix; and suggests to exploit the sparsity using an £; penalty
and the low-rank structure by a trace norm penalty. In particular, the trace norm
penalty or, more generally, nuclear norm penalties, can be viewed as a convex
relaxation to the more direct rank constraint. Its use oftentimes comes as a neces-
sity because rank constrained optimization could be computationally prohibitive.
Interestingly, as I note here, the current problem actually lends itself to efficient al-
gorithms in dealing with the rank constraint, and therefore allows for an attractive
alternative to the approach of CPW.

1. Rank constrained latent variable graphical Lasso. Recall that the penal-
ized likelihood estimate of CPW is defined as

(Sp,Ly) = argmin {—£(S — L, £%) + xa(y ISl + trace(L))},
L>0,5—L>0
where the vector £1 norm and trace/nuclear norm penalties are designated to induce
sparsity among elements of S and low-rank structure of L respectively. Of course,
we can attempt a more direct rank penalty as opposed to the nuclear norm penalty
on L, leading to

(S, La) = argmin {—0(S — L, B%) + Au (v ISll1 + rank(L))};
L>0,S—L>0

Received February 2012.
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or for computational purposes, it is more convenient to consider the constrained
version:

(S, Lp) = argmin {—€(S — L, %) 4+ 1,571},
L>0,S—L>0
rank(L)<r

for some integer 0 < r < p, where § T=85— diag(S), that is, S T equals S except
that its diagonals are replaced by 0. This slight modification reflects our intention
to encourage sparsity on the off-diagonal entries of S only. The remaining discus-
sion, however, can be easily adapted to deal with the original vector £; penalty on
S. It is clear that when r = 0, that is, L = 0, this new estimator reduces to the so-
called graphical Lasso estimate (glasso, for short) of Yuan and Lin (2007). See
also Banerjee, El Ghaoui and d’ Aspremont (2008), Friedman, Hastie and Tibshi-
rani (2008), and Rothman et al. (2008). Drawn to this similarity, I shall hereafter
refer to this method as the latent variable graphical Lasso, or LVglasso, for short.

Common wisdom on (S’n, in) is that it is infeasible to compute because of
the nonconvexity of the rank constraint. Interestingly, though, this more direct
approach actually allows for fast computation, thanks to a combination of EM
algorithm and some recent advances in computing graphical Lasso estimates for
high-dimensional problems.

2. An EM algorithm. The constraint rank(L) < r amounts to postulating r
latent variables. The latent variable model naturally has a missing data formulation.
It is clear that when observing the complete data X = (X|,, X ITLI)T, the LVglasso
estimator becomes

K= argmin (LK) + MK
KeRP+X(p+r) K =0

where
L(K) = —Indet(K) + trace(Z{( ) K)

and EE’O w18 the sample covariance matrix of the full data. Now that Xz is unob-
servable, we can use an EM algorithm which iteratively applies the following two
steps:

EXPECTATION STEP (E STEP). Calculate the expected value of the penalized
negative log-likelihood function, with respect to the conditional distribution of X g
given X o under the current estimate K @) of K, leading to the so-called Q function:

O(KIKD)=Ey, 1x,. k0 LK) +AIKH 1]

= —Indet(K) + trace{Ey , x, ko (E(om) K} + )‘”Kg II1-
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Recall that Xy | X, K @ follows a normal distribution with
E(XulXo. K¥) = 0 (29) " X0
and
Var(XlXo, K©) = 5 - 50, (59) ' 20)
where = = (K®)~1, Therefore,

O\—15 @)
EXH|X0,K(’)(2’8H) = Z@(EO ) EoH
and

Q) 0 (@O =15 (1) (0 (s (Oy—1 (D=1
EXH|XO,K0>(2'13) =3y ~ZHo(Z0) Zout+Zpo(Zo) To(Z0) Zon-

MAXIMIZATION STEP (M STEP). Maximize Q(-|K¥) over all (p + r) x
(p + r) positive definite matrices. We first note that if we replace the penalty term

IK It with [|K 1, then maximizing Q(-|K ) becomes a glasso problem:

max [~ Indet(K) + trace{WK} + A K T||1},
KeRP+IX(p+r) K -0

where W = Ey,x, k0(Z(oy)). As shown in Banerjee, EI Ghaoui and
d’Aspremont (2008), Friedman, Hastie and Tibshirani (2008) and Yuan (2008),
this problem can be solved iteratively. At each iteration, one row and, correspond-
ingly, one column of K, due to symmetry, are updated by solving a Lasso problem.
The same idea can be applied here to maximize Q(-|K ). The only difference is
that in each of the Lasso problems, we leave the coordinates corresponding to
the latent variables unpenalized. This extension has been implemented in the R
package glasso [Friedman, Hastie and Tibshirani (2008)].

3. Example. For illustration purposes, I conducted a simple numerical exper-
iment. In this experiment the interest was in recovering a p = 198 dimensional
graphical model with 7 = 2 missing variables. The graphical model was generated
in a similar fashion as that from Meinshausen and Biihlmann (2006). I first simu-
lated 198 locations uniformly over a square. Between each pair of locations, I put
an edge with probability 2¢ (d,/p), where ¢ (-) is the density function of the stan-
dard normal distribution and d is the distance between the two locations, unless
one of the locations is already connected with four other locations. The two hid-
den variables were connected with all p observed variables. The entries of the in-
verse covariance matrix corresponding to the edges between the observables were
assigned with value 0.2, between the observables and the latent variables were as-
signed with a uniform random value between 0 and 0.12, to ensure the positive
definiteness. A typical simulated graphical model among the 198 observed vari-
ables conditional on the two latent variables is given in the top left panel of Fig-
ure 1. We apply both the method of CPW and Lvglasso, along with glasso,
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FI1G. 1. True graphical model and its estimates.

to the data. We used the MATLAB code provided by CPW to compute their esti-
mates. As observed by CPW, their estimate typically is insensitive to a wide range
of values of y, and we report here the results with the default choice of y =5
without loss of generality. Similarly, for LVvglasso, little variation was observed
for r =2, ..., 10, and we shall focus on » = 2 for brevity. The choice of A plays
a critical role for both methods. We compute both estimators for a fine grid of A.
With the main focus on recovering the conditional graphical model, that is, the
sparsity pattern of S, we report in Figure 2 the ROC curve for both methods. For
contrast, we also reported the result for glasso which neglects the missingness.
In Figure 1, we also presented the estimated graphical model for each method that
is closest to the truth. These results clearly demonstrate the necessity of account-
ing for the latent variables. It is also interesting to note that the rank constrained
estimator performs slightly better in this example over the trace norm penalization
method of CPW.

The preliminary results presented here suggest that direct rank constraint may
provide a competitive alternative to the trace norm penalization for recovering
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graphical models with latent variables. It is of interest to investigate more rig-
orously how the two methods compare with each other.
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University of Oxford

We want to congratulate the authors for a thought-provoking and very inter-
esting paper. Sparse modeling of the concentration matrix has enjoyed popularity
in recent years. It has been framed as a computationally convenient convex ;-
constrained estimation problem in Yuan and Lin (2007) and can be applied readily
to higher-dimensional problems. The authors argue—we think correctly—that the
sparsity of the concentration matrix is for many applications more plausible after
the effects of a few latent variables have been removed. The most attractive point
about their method is surely that it is formulated as a convex optimization problem.
Latent variable fitting and sparse graphical modeling of the conditional distribution
of the observed variables can then be obtained through a single fitting procedure.

Practical aspects. The method deserves wide adoption, but this will only be
realistic if software is made available, for example, as an R-package. Not many
users will go to the trouble of implementing the method on their own, so we will
strongly urge the authors to do so.

An imputation method. In the absence of readily available software, it is
worth thinking whether the proposed fitting procedure can be approximated by
methods involving known and well-tested computational techniques. The concen-
tration matrix of observed and hidden variables is

K:(Ko KOH)
Kuo Kuw )’

where we have deviated from the notation in the paper by omitting the asterisk.
The proposed estimator S, = Ko of Ko was defined as
(1) (Ko, Ly) = argming ; —€(S — L; £) + A (v ISl + tr(L))
2) suchthat S — L >0, L >0,
where Xf, is the empirical covariance matrix of the observed variables.

An alternative would be to replace the nuclear-norm penalization with a fixed
constraint k on the rank of the hidden variables, replacing problem (1) with

(Ko, Ly) = argming ; —€(S — L: £p) + Aull Sy

(3)
such that § — L > 0 and L > 0 and rank(L) <«.

Received February 2012.
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This can be achieved by a missing-value formulation in combination with use
of the EM algorithm, which also applies in a penalized likelihood setting [Green
(1990)]. Let the hidden variables be of a fixed dimensionality x and assume for a
moment these are observed so one would find the concentration matrix K of the
joint distribution of the observed variables X o and hidden variables X based on
the complete data penalized likelihood as

4) argming —log fx (X0, Xg) +AlKol1,

where fx is the joint density of (X, Xg). This formulation is very similar to
the missing-value problem treated in Stiddler (2012), except for the fact that we
only penalize the concentration matrix Ko of the observed variables, in analogy
with the proposed latent-variable approach. The EM algorithm iteratively replaces

the likelihood in (4) for ¢t =1, ..., T by its conditional expectation and thus finds
Iet+l as
(5) K" = argming —Ep, {log fx (X0, Xm)|Xo} + 1Kol

The iteration is guaranteed not to increase the negative marginal penalized likeli-
hood at every stage and will, save for unidentifiability, converge to the minimizer
in (3) for most starting values. Without loss of generality, one can fix the condi-
tional concentration matrix Kz of the hidden variables to be the identity so that
these are conditionally independent with variance 1, given the observed variables.
Then —Kop is equal to the regression coefficients of the observed variables on
the hidden variables. As starting value we have let -K 00 y be equal to these with
hidden variables determined by a principal component analysis.

The expectation in (5) can be written as the log-likelihood of a Gaussian distri-
bution with concentration matrix K and empirical covariance matrix W', where

Wt:< AE% _Azréktoq )
—KhoZo 1+ KyoZ5Koy
The sufficient statistics involving the missing data are thus “imputed” in W’. Each
of the updates (5) can now be computed with the graphical lasso [Friedman, Hastie
and Tibshirani (2008)].

We thought it would be interesting to compare the two methods on the data
example given in the paper. Figure 1 shows the solution Ko for the stock-return
example when using the proposed method (1) and the imputation method (4) with
4 iterations. The number « of latent variables and the number of nonzero edges in
Ko is adjusted to be the same as in the original estimator.

The three pairs with the highest absolute entries in the fitted conditional con-
centration matrix are identical (AT&T—Verizon, Schlumberger—Baker Hughes
and Merrill Lynch—Morgan Stanley) for the two methods and the 15 pairs with
highest absolute entries in the off-diagonal concentration matrix have an overlap
of size 12. The resulting graphs are slightly different although they share many
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F1G. 1. The nonzero entries of the concentration matrix K 0, using the proposed procedure (1)
(left) and the imputation method in (4) (right). Two representative companies are shown for some of
the sectors.

features. Our graph has 136 edges, one more than that in the procedure described
in the paper, and 77 of the edges are shared. Our graph has more isolated vertices
(15 vs. 9), slightly fewer cliques (62 vs. 81) and the largest clique in our graph has
six variables rather than four. The graph is displayed to the left in Figure 2 and
features some clearly identified clusters of variables.

The selected graph is very unstable under bootstrap simulations. In the spirit of
Meinshausen and Biihlmann (2010), we fit the graph on 2000 bootstrap samples.
Only 28 edges are selected in more than half of these samples. The resulting graph
is shown in Figure 2. As many as 25 of these edges appear also as edges of the
estimator proposed in (1). It would have been interesting to be able to compare
with the same “stability graph” of the proposed procedure but we suspect that they
will match closely.

Latent directed structures. In a sense the procedure described in this paper
can be seen as a modification of, or an alternative to, factor analysis, in which in-
dependent latent variables are sought to explain all the correlations, corresponding
to the graph for the observed variables being completely empty.

Methods for identifying such models can, for example, be developed using
tetrad constraints [Spirtes, Glymour and Scheines (1993), Drton, Sturmfels and
Sullivant (2007)]. Another generalization of factor analysis is to look for sparse di-
rected graphical models, which have now been rather well established through, for
example, the FCI algorithm [Spirtes, Glymour and Scheines (1993), Richardson
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and Spirtes (2002)] with an algebraic underpinning in Sullivant (2008). Again this
could be an alternative to the procedure described in this interesting paper.

Summary. We effectively replaced the nuclear norm penalization of L in the
paper by a fixed constraint on the rank. This might be easier to do than choosing
a reasonable value for the penalty on the trace of L. Using this formulation, we
could combine the EM algorithm with the graphical lasso, enabling us to compute
the solution with readily available software. It would be interesting to see whether
our procedure can be shown to recover the correct sparsity structure under similar
assumptions to those in the paper. We want to congratulate the authors again for a
very interesting discussion paper.
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1. Introduction. It is my pleasure to congratulate the authors for an innova-
tive and inspiring piece of work. Chandrasekaran, Parrilo and Willsky (hereafter
CPW) have come up with a novel approach, combining ideas from convex opti-
mization and algebraic geometry, to the long-standing problem of Gaussian graph-
ical model selection with latent variables. Their method is intuitive and simple
to implement, based on solving a convex log-determinant program with suitable
choices of regularization. In addition, they establish a number of attractive theoret-
ical guarantees that hold under high-dimensional scaling, meaning that the graph
size p and sample size n are allowed to grow simultaneously.

1.1. Background. Recall that an undirected graphical model (also known as a
Markov random field) consists of a family of probability distributions that factor-
ize according to the structure of undirected graph G = (V, E). In the multivariate
Gaussian case, the factorization translates into a sparsity assumption on the inverse
covariance or precision matrix [9]. In particular, given a multivariate Gaussian ran-
dom vector (X1, ..., X,) with covariance matrix X, it is said to be Markov with
respect to the graph G if its precision matrix K = ¥ ~! has zeroes for each distinct
pair of indices (j, k) not in the edge set E of the graph. Consequently, the spar-
sity pattern of the inverse covariance K encodes the edge structure of the graph.
The goal of Gaussian graphical model selection is to determine this unknown edge
structure, and hence the sparsity pattern of the inverse covariance matrix. It can
also be of interest to estimate the matrices K or X, for instance, in the Frobenius
or {>-operator norm sense. In recent years, under the assumption that all entries
of X are fully observed, a number of practical methods have been proposed and
shown to perform well under high-dimensional scaling (e.g., [2, 5-7]).

Chandrasekaran et al. tackle a challenging extension of this problem, in which
one observes only p coordinates of a larger p + h dimensional Gaussian random
vector. In this case, the p x p precision matrix K of the observed components need
not be sparse, but rather, by an application of the Schur complement formula, can
be written as the difference K = S* — L*. The first matrix S* is sparse, whereas
the second matrix L* is not sparse (at least in general), but has rank at most %, cor-
responding to the number of latent or hidden variables. Consequently, the problem
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of latent Gaussian graphical model selection can be cast as a form of matrix de-
composition, involving a splitting of the precision matrix into sparse and low-rank
components. Based on this nice insight, CPW propose a natural M -estimator for
this problem, based on minimizing a regularized form of the (negative) log like-
lihood for a multivariate Gaussian, where the elementwise £1-norm is used as a
proxy for sparsity, and the nuclear or trace norm as a proxy for rank. Overall, the
method is based on the convex program

(1) (S, L) € argmin{—£(S — L; ") 4 A, (¥ [ S|I1 + trace(L)))
such that S > L > 0,

where £(S — L; £") is the Gaussian log-likelihood as a function of the precision
matrix § — L and the empirical covariance matrix X" of the observed variables.

1.2. Sharpness of rates. On one hand, the paper provides attractive guaran-
tees on the procedure (1)—namely, that under suitable incoherence conditions (to
be discussed below) and a sample size n 7 p, the method is guaranteed with high
probability: (a) to correctly recover the signed support of the sparse matrix S*, and
hence the full graph structure; (b) to correctly recover the rank of the component
L*, and hence the number of latent variables; and (c) to yield operator norm con-
sistency of the order \/g . The proof itself involves a clever use of the primal-dual
witness method [6], in which one analyzes an M -estimator by constructing a pri-
mal solution and an associated dual pair, and uses the construction to show that
the optimum has desired properties (in this case, support and rank recovery) with
high probability. A major challenge, not present in the simpler problem without
latent variables, is dealing with the potential nonidentifiability of the matrix de-
composition problem (see below for further discussion); the authors overcome this
challenge via a delicate analysis of the tangent spaces associated with the sparse
and low-rank components.

On the other hand, the scaling n 7 p is quite restrictive, at least in comparison
to related results without latent variables. To provide a concrete example, con-
sider a Gaussian graphical model with maximum degree d. For any such graph,
again under a set of so-called incoherence or irrepresentability conditions, the
neighborhood-based selection of approach of Meinshausen and Biihlmann [5] can
be shown to correctly specify the graph structure with high probability based on
n 7, dlog p samples. Moreover, under a similar set of assumptions, Ravikumar et
al. [6] show that the £-regularized Gaussian MLE returns an estimate of the pre-

cision matrix with operator norm error of the order 4/ 4121%. Consequently, when-
ever the maximum degree d is significantly smaller than the dimension, results of
this type allow for the sample size n to be much smaller than p. This discrepancy—
as to whether or not the sample size can be smaller than the dimension—thus
raises some interesting directions for future work. More precisely, one wonders
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whether or not the CPW analysis might be sharpened so as to reduce the sample
size requirements. Possibly this might require introducing additional structure in
the low-rank matrix. From the other direction, an alternative approach would be to
develop minimax lower bounds on latent Gaussian model selection, for instance,
by using information-theoretic techniques that have been exploited in related work
on model/graph selection and covariance estimation (e.g., [2, 8, 10]).

1.3. Relaxing assumptions. The CPW analysis also imposes lower bounds on
the minimum absolute values of the nonzero entries in $*, as well as the minimum

nonzero singular values of L*—both must scale as 2 (\/g). Clearly, some sort of

lower bound on these quantities is necessary in order to establish exact recovery
guarantees, as in the results (a) and (b) paraphrased above. It is less clear whether
lower bounds of this order are the weakest possible, and if not, to what extent
they can be relaxed. For instance, again in the setting of Gaussian graph selection
without latent variables [5, 6], the minimum values are typically allowed to be as

small as € ( l(’%). More broadly, in many applications, it might be more natural
to assume that the data is not actually drawn from a sparse graphical model, but
rather can be well-approximated by such a model. In such settings, although exact
recovery guarantees would no longer be feasible, one would like to guarantee that
a given method, either the M-estimator (1) or some variant thereof, can recover
all entries of §* with absolute value above a given threshold, and/or estimate the
number of eigenvalues of L* above a (possibly different) threshold. Such guar-
antees are possible for ordinary Gaussian graph selection, where it is known that
£1-based methods will recover all entries with absolute values above the regular-
ization parameter [5, 6].

The CPW analysis also involves various types of incoherence conditions on the
matrix decomposition. As noted by the authors, some of these assumptions are
related to the incoherence or irrepresentability conditions imposed in past work
on ordinary Gaussian graph selection [5, 6, 11]; others are unique to the latent
problem, since they are required to ensure identifiability (see discussion below). It
seems worthwhile to explore which of these incoherence conditions are artifacts
of a particular methodology and which are intrinsic to the problem. For instance,
in the case of ordinary Gaussian graph selection, there are problems for which
the neighborhood-based Lasso [5] can correctly recover the graph while the £;-
regularized log-determinant approach [4, 6] cannot. Moreover, there are problems
for which, with the same order of sample size, the neighborhood-based Lasso will
fail whereas an oracle method will succeed [10]. Such differences demonstrate
that certain aspects of the incoherence conditions are artifacts of ¢;-relaxations.
In the context of latent Gaussian graph selection, these same issues remain to be
explored. For instance, are there alternative polynomial-time methods that can per-
form latent graph selection under milder incoherence conditions? What conditions
are required by an oracle-type approach—that is, involving exact cardinality and
rank constraints?
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1.4. Toward partial identifiability. On the other hand, certain types of incoher-
ence conditions are clearly intrinsic to the problem. Even at the population level,
it is clearly not possible in general to identify the components (S*, L*) based on
observing only the sum K = §* — L*. A major contribution of the CPW paper,
building from their own pioneering work on matrix decompositions [3], is to pro-
vide sufficient conditions on the pair (S*, L*) that ensure identifiability. These
sufficient conditions are based on a detailed analysis of the algebraic structure of
the spaces of sparse and low-rank matrices, respectively.

In a statistical setting, however, most models are viewed as approximations to
reality. With this mindset, it could be interesting to consider matrix decomposi-
tions that satisfy a weaker notion of partial identifiability. To provide a concrete
illustration, suppose that we begin with a matrix pair (S$*, L*) that is identifiable
based on observing the difference K = S* — L*. Now imagine that we perturb
K by a matrix that is both sparse and low-rank—for instance, a matrix of the
form E = zzT where z is a sparse vector. If we then consider the perturbed matrix
K := K +8E = §* — L* 4+ § E for some suitably small parameter §, the matrix de-
composition is longer identifiable. In particular, at the two extremes, we can choose
between the decompositions K = (S* + 8E) — L*, where the matrix (S* + §E) is
sparse, or the decomposition K = §* — (L* — §E), where the matrix L* — §E is
low-rank. Note that this nonidentifiability holds regardless of how small we choose
the scalar §. However, from a more practical perspective, if we relax our require-
ment of exact identification, then such a perturbation need not be a concern as long
as § is relatively small. Indeed, one might expect that it should be possible to re-
cover estimates of the pair (S*, L*) that are accurate up to an error proportional to
8.

In some of our own recent work [1], we have provided such guarantees for a
related class of noisy matrix decomposition problems. In particular, we consider
the observation model!

() Y=XS*—L"+W,

where X :RP*P — R"1*"2 js a known linear operator and W € R"1*"2 is a noise
matrix. In the simplest case, X is simply the identity operator. Observation models
of this form (2) arise in robust PCA, sparse factor analysis, multivariate regression
and robust covariance estimation.

Instead of enforcing incoherence conditions sufficient for identifiability, the
analysis is performed under related but milder conditions on the interaction be-
tween S* and L*. For instance, one way of controlling the radius of nonidentifia-
bility is via control on the “spikiness” of the low-rank component, as measured by

. * .
the ratio a(L*) := pm”LL* II‘I‘;O , Where || - ||o denotes the elementwise absolute max-
imum and || - ||F denotes the Frobenius norm. For any nonzero p-dimensional

matrix, this spikiness ratio ranges between 1 and p:

Here we follow the notation of the CPW paper for the sparse and low-rank components.
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e On one hand, it achieves its minimum value by a matrix that has all its entries
equal to the same nonzero constant (e.g., L* = 117, where 1 € R? is a vector of
all ones).

e On the other hand, the maximum is achieved by a matrix that concentrates all its
mass in a single position (e.g., L* = elelr, where e; € R? is the first canonical
basis vector).

Note that it is precisely this latter type of matrix that is troublesome in sparse plus
low-rank matrix decomposition, since it is simultaneously sparse and low-rank. In
this way, the spikiness ratio limits the effect of such troublesome instances, thereby
bounding the radius of nonidentifiability of the model. The paper [1] analyzes an
M -estimator, also based on elementwise ¢; and nuclear norm regularization, for
estimating the pair ($*, L*) from the noisy observation model (2). The resulting
error bounds involve both terms arising from the (possibly stochastic) noise matrix
W and additional terms associated with the radius of nonidentifiability.

The same notion of partial identifiability is applicable to latent Gaussian graph
selection. Accordingly, it seems worthwhile to explore whether similar techniques
can be used to obtain error bounds with a similar form—one component associ-
ated with the stochastic noise (induced by sampling), and a second deterministic
component. Interestingly, under the scaling n 7~ p assumed in the CPW paper,
the empirical covariance matrix " will be invertible with high probability and,
hence, it can be cast as an observation model of the form (2)—namely, we can
write (£7)~! = §* — L* + W, where the noise matrix W is induced by sampling.

1.5. Extensions to non-Gaussian variables. A final more speculative yet in-
triguing question is whether the techniques of CPW can be extended to graphical
models involving non-Gaussian variables, for instance, those with binary or multi-
nomial variables for a start. The main complication here is that factorization and
conditional independence properties for non-Gaussian variables do not translate
directly into sparsity of the inverse covariance matrix. Nonetheless, it might be
possible to reveal aspects of this factorization by some type of spectral analysis, in
which context related matrix-theoretic approaches could be brought to bear. Over-
all, we should all be thankful to Chandrasekaran, Parillo and Willsky for their in-
novative work and the exciting line of questions and possibilities that it has raised
for future research.
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DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION

BY CHRISTOPHE GIRAUD AND ALEXANDRE TSYBAKOV
Ecole Polytechnique and CREST-ENSAE

Recently there has been an increasing interest in the problem of estimating a
high-dimensional matrix K that can be decomposed in a sum of a sparse matrix S*
(i.e., a matrix having only a small number of nonzero entries) and a low rank ma-
trix L*. This is motivated by applications in computer vision, video segmentation,
computational biology, semantic indexing, etc. The main contribution and novelty
of the Chandrasekaran, Parrilo and Willsky paper (CPW in what follows) is to
propose and study a method of inference about such decomposable matrices for
a particular setting where K is the precision (concentration) matrix of a partially
observed sparse Gaussian graphical model (GGM). In this case, K is the inverse
of the covariance matrix of a Gaussian vector X o extracted from a larger Gaussian
vector (X o, X i) with sparse inverse covariance matrix. Then it is easy to see that
K can be represented as a sum of a sparse precision matrix S* corresponding to
the observed variables X and a matrix L* with rank at most &, where / is the
dimension of the latent variables X . If £ is small, which is a typical situation in
practice, then L* has low rank. The GGM with latent variables is of major interest
for applications in biology or in social networks where one often does not observe
all the variables relevant for depicting sparsely the conditional dependencies. Note
that formally this is just one possible motivation and mathematically the problem
is dealt with in more generality, namely, postulating that the precision matrix sat-
isfies

(1) K=S*+L*

with sparse S* and low-rank L*, both symmetric matrices. A small amendment to
that inherited from the latent variables motivation is that L* is assumed negative
definite (in our notation, L* corresponds to —L* in the paper). We believe that this
is not crucial and all the results remain valid without this assumption.

CPW propose to estimate the pair (S$*, L*) from a n-sample of X by the pair
(S, L) obtained by minimizing the negative log-likelihood with mixed ¢! and nu-
clear norm penalties; cf. (1.2) of the paper. The key issue in this context is identifia-
bility. Under what conditions can we identify $* and L* separately? CPW provide
geometric conditions of identifiability based on transversality of tangent spaces to
the varieties of sparse and low-rank matrices. They show that, under these condi-
tions, with probability close to 1, it is possible to recover the support of S*, the rank
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of L* and to get a bound of order O(./p/n) on the estimation errors IS — §*|go0
and ||Z — L*||». Here, p is the dimension of X and | - |¢¢ and || - |2 stand for the
componentwise £7-norm and the spectral norm of a matrix, respectively.

Overall, CPW pioneer a hard and important problem of high-dimensional statis-
tics and provide an original solution both in the theory and in numerically imple-
mentable realization. While being the first work to shed light on the problem, the
paper does not completely raise the curtain and several aspects still remain to be
understood and elucidated.

The nature of the results. The most important problem for current applica-
tions appears to be the estimation of §* or the recovery of its support. Indeed, the
main interest is in the conditional dependencies of the coordinates of X in the
complete model (X o, X ) and this information is carried by the matrix S*. In this
context, L* is essentially a nuisance, so that bounds on the estimation error of L*
and the recovery of the rank of L* are of relatively moderate interest. However,
mathematically, the most sacrifice comes from the desire to have precise estimates
of L*. Indeed, if £, and = denote the empirical and population covariance matri-
ces, the slow rate O (4/p/n) comes from the bound on || T, — |2 in Lemma 5.4,
that is, from the stochastic error corresponding to L*. Since the sup-norm error
|§,1A— Y |eo is of order 4/ (log p)/n, can we get a better rate when solely focusing
on |S — S*|g?

Extension to high dimensions. The results of the paper are valid and mean-
ingful only when p < n. However, for the applications of GGM, the case p > n is
the most common. A key question is whether the restriction p < n is intrinsic, that
is, whether it is possible to have results on S* in model (1) when p >> n. Since the
traditional model with sparse component S* alone is still tractable when p > n,
a related question is whether introducing the model (1) with two components and
estimating both S* and L* gives any improvement in the p > n setting as com-
pared to estimation in the model with a sparse component alone. A small simu-
lation study that we provide below suggests that already for p = n, including the
low-rank component in the estimator may yield no improvement as compared to
traditional sparse estimation without the low-rank component, although this low-
rank component is effectively present in the model.

Optimal rates. The paper obtains bounds of order O (/p/n) on the estima-
tion errors |S — S*|g and ||L — L*||, with probability 1 — 2exp(—p). Can we
achieve a better rate than /p/n when solely focusing on the recovery of S* with
the usual probability 1 — p~ for some a > 0? Is the rate /p/n optimal in a min-
imax sense on some class of matrices? Note that one should be careful in defin-
ing the class of matrices because in reality the rate is not O(4/p/n) but rather
O (Y +/p/n), where i is the spectral norm of ¥ depending on p. It can be large
for large p. Surprisingly, not much is known about the optimal rates even in the
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simpler case of purely sparse precision matrices, without the low-rank component.
In this case, [1, 7] and [8] provide some analysis of the upper bounds on the esti-
mation error of different estimators and under different sets of assumptions on the
precision matrix. All these bounds are of “order” O(4/(log p)/n), but again one
should be very careful here because of the factors depending on p that multiply
this rate. In [1], the factor is the squared ¢! — £! norm of the precision matrix
while in [7], it is the squared degree of the graphical model multiplied by some
combinations of powers of matrix norms that are not easy to interpret. The most
recent paper [8] obtains the rate O(d+/(log p)/n), where d is the degree of the
graph for ¢°°-bounded precision matrices. An open problem is to find optimal
rates of convergence on classes of precision matrices defined via sparsity and low
rank characteristics. The same problem makes sense for covariance matrices. Here,
some advances have been achieved very recently. In particular, some optimal rates
of estimation of low-rank covariance matrices are provided by [5].

The assumptions of the paper are stated in terms of some inaccessible charac-
teristics such as £(7") and w(£2) and seem to be very strong. They are in the spirit
of the irrepresentability condition for the vector case used to prove model selec-
tion consistency of the Lasso. For a given set of data, there is no means to check
whether these assumptions are satisfied. What happens when they do not hold?
Can we still have some convergence properties under no assumption at all or un-
der weaker assumptions akin to the restricted eigenvalue condition in the vector
case?

Choice of the tuning parameters. The choice of parameters (y, A,,) ensur-
ing algebraic consistency in Theorem 4.1 depends on various unknown quantities.
Proposing a reasonable data-driven selector for (y, A,) (e.g., similarly to [4] for
the pure sparse setting) would be very helpful for the practice.

Alternative methods of estimation. Constructively, the method of CPW is
obtained from the GLasso of [2] by adding a penalization by the nuclear norm
of the low-rank component. Similar low-rank extensions can be readily derived
from other methods, such as the Dantzig type approach of [1] and the regression
approach of [3, 6]. Consider a Gaussian random vector X € R” with mean 0 and
nonsingular covariance matrix X. Let K = X! be the precision matrix. We as-
sume that K is of the form (1) where S* is sparse and L* has low rank.

(a) Dantzig type approach. In the spirit of [1], we may define our estimator as a
solution of the following convex program:

2) (S, L) = argmin{|S|o1 + w| LI},

(8,L)eg
where || - || is the nuclear norm, G = {(S, L) : |§n(S+L) —1I|go <A}land u, A >0
are tuning constants. Here, the nuclear norm ||L||, is a convex relaxation of the
rank of L*.
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(b) Regression approach. The regression approach [3, 6] is an alternative point
of view for estimating the structure of a GGM. In the pure sparse setting, some nu-
merical experiments [9] suggest that it may be more reliable than the £!-penalized
log-likelihood approach. Let diag(A) denote the diagonal of square matrix A and
||A|l F its Frobenius norm. Defining

®= argmin |22 — A3,

A:diag(A)=0
we have ® = KA + I, where [ is the identity matrix and A is the diagonal ma-
trix with diagonal elements A ;j; = —1/K;; for j =1,..., p. Thus, we have the
decomposition

O=S+1L, where S = S*A +1 and L = L*A.

Note that rank(L) = rank(L*) and the nondiagonal elements S;i j of matrix S
are nonzero only if S;k/. is nonzero. Therefore, recovering the support of S* and

rank(L*) is equivalent to recovering the support of S and rank(L).

Now, we estimate (S, L) from an n-sample of X represented as an n x p ma-
trix X. Noticing that the sample analog of || Z'/2(I — A)||3 is |X(I — A)||3/n and
using the decomposition ® = § + L, we arrive at the following estimator:

@ GD= awmin {JIXU =S DIF 21l g0+ wIXEL,

(S,L):diag(S+L)=0 2
where p, A are positive tuning constants and | S|y o = > |Sij|. Note that here
the low-rank shrinkage is driven by the nuclear norm || XL ||, rather than by ||L||..
The convex minimization in (3) can be performed efficiently by alternating block
descents on the off-diagonal elements of §, the matrix L and the diagonal of S.
The off-diagonal support of S* is finally estimated by the off-diagonal support
of S.

hidden dimensionality (estimated) Power versus FDR Power versus FDR for h around 3
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Numerical experiment. A sparse Gaussian graphical model in R is gener-
ated randomly according to the procedure described in Section 4 of [4]. A sample
of size n = 30 is drawn from this distribution and X is obtained by hiding the
values of 3 variables. These 3 hidden variables are chosen randomly among the
connected variables. The estimators (§, Z) defined in (3) are then computed for a
grid of values of A and . The results are summarized in Figure 1 (average over
100 simulations).

Strikingly, there is no significative difference in these examples between the
procedure of [6] (corresponding to ;. = 400, in solid-black) and the procedure (3)
that includes the low-rank component (corresponding to finite w).
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DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION!

By ZHAO REN AND HARRISON H. ZHOU

Yale University

1. Introduction. We would like to congratulate the authors for their refresh-
ing contribution to this high-dimensional latent variables graphical model selection
problem. The problem of covariance and concentration matrices is fundamentally
important in several classical statistical methodologies and many applications. Re-
cently, sparse concentration matrices estimation has received considerable atten-
tion, partly due to its connection to sparse structure learning for Gaussian graphical
models. See, for example, Meinshausen and Bithimann (2006) and Ravikumar et
al. (2011). Cai, Liu and Zhou (2012) considered rate-optimal estimation.

The authors extended the current scope to include latent variables. They assume
that the fully observed Gaussian graphical model has a naturally sparse depen-
dence graph. However, there are only partial observations available for which the
graph is usually no longer sparse. Let X be (p + r)-variate Gaussian with a sparse
concentration matrix 52‘07 Hy- We only observe X, p out of the whole p + r vari-
ables, and denote its covariance matrix by X7,. In this case, usually the p x p
concentration matrix (2]*5)_1 are not sparse. Let S* be the concentration matrix of
observed variables conditioned on latent variables, which is a submatrix of SEkO, H)

and hence has a sparse structure, and let L* be the summary of the marginalization
over the latent variables and its rank corresponds to the number of latent variables
r for which we usually assume it is small. The authors observed (2]*0)*1 can be
decomposed as the difference of the sparse matrix S$* and the rank » matrix L*,
that is, (Z”‘O)_1 = §* — L*. Then following traditional wisdoms, the authors nat-
urally proposed a regularized maximum likelihood approach to estimate both the
sparse structure S* and the low-rank part L*,

(S’L):STiLI;O’LEOtr((S — L)T}) —logdet(S — L) + xa(y ISI1 + tr(L)),
where X7, is the sample covariance matrix, [|S|; = Zi,j sijl, and y and yx, are
regularization tuning parameters. Here tr(L) is the trace of L. The notation A > 0
means A is positive definite, and A > 0 denotes that A is nonnegative.

There is an obvious identifiability problem if we want to estimate both the sparse
and low-rank components. A matrix can be both sparse and low rank. By explor-
ing the geometric properties of the tangent spaces for sparse and low-rank compo-
nents, the authors gave a beautiful sufficient condition for identifiability, and then

Received February 2012.
1Supported in part by NSF Career Award DMS-06-45676 and NSF FRG Grant DMS-08-54975.
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provided very much involved theoretical justifications based on the sufficient con-
dition, which is beyond our ability to digest them in a short period of time in the
sense that we don’t fully understand why those technical assumptions were needed
in the analysis of their approach. Thus, we decided to look at a relatively simple
but potentially practical model, with the hope to still capture the essence of the
problem, and see how well their regularized procedure works. Let || - ||{— 1 denote
the matrix /1 norm, that is, ||S]/;—1 = max;<;<, Zj;l |sij|. We assume that $* is
in the following uniformity class:

Uso(p), Mp) = 1S =(s5ij): S =0, [[Slli—1 < Mp,
(1) )
max Y 1s;; # 0} < so(p) {,
=1

I<i<p*
=< ,P]

where we allow so(p) and M, to grow as p and n increase. This uniformity class
was considered in Ravikumar et al. (2011) and Cai, Liu and Luo (2011). For the
low-rank matrix L*, we assume that the effect of marginalization over the latent
variables spreads out, that is, the low-rank matrix L* has row/column spaces that
are not closely aligned with the coordinate axes to resolve the identifiability prob-
lem. Let the eigen-decomposition of L* be as follows:

ro(p)
) L*=Y" huu],
i=1

where ro(p) is the rank of L*. We assume that there exists a universal constant ¢
such that ||#;]|co < /%0 for all i, and ||L*||;—1 is bounded by M/, which can be

shown to be bounded by corp. A similar incoherence assumption on u; was used
in Candes and Recht (2009). We further assume that

(3) )‘max(zg) <M and )\min(Z*O) = I/M

for some universal constant M.

As discussed in the paper, the goals in latent variable model selection are to
obtain the sign consistency for the sparse matrix S* as well as the rank consistency
for the low-rank semi-positive definite matrix L*. Denote the minimum magnitude
of nonzero entries of $* by 6, that is, & = min; ; |s;;|1{s;; # 0}, and the minimum
nonzero eigenvalue of L* by o, that is, 0 = minj<;<,, A;. To obtain theoretical
guarantees of consistency results for the model described in (1), (2) and (3), in
addition to the strong irrepresentability condition which seems to be difficult to
check in practice, the authors require the following assumptions (by a translation
of the conditions in the paper to this model) for 6, o and n:

(1) 6 2 </p/n, which is needed even when so(p) is constant;
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2) o 2 sg (p)+/p/n under the additional strong assumptions on the Fisher
information matrix X7, ® X7, (see the footnote for Corollary 4.2);

(3) nZsg(p)p.

However, for sparse graphical model selection without latent variables, either
the /;-regularized maximum likelihood approach [see Ravikumar et al. (2011)]
or CLIME [see Cai, Liu and Luo (2011)] can be shown to be sign consistent if
the minimum magnitude nonzero entry of concentration matrix 6 is at the order
of «/(log p)/n when M, is bounded, which inspires us to study rate-optimalites
for this latent variables graphical model selection problem. In this discussion,
we propose a procedure to obtain an algebraically consistent estimate of the la-
tent variable Gaussian graphical model under a much weaker condition on both 6
and o . For example, for a wide range of so(p), we only require 8 is at the order of
J/(og p)/n and o is at the order of v/p/n to consistently estimate the support of
S* and the rank of L*. That means the regularized maximum likelihood approach
could be far from being optimal, but we don’t know yet whether the suboptimality
is due to the procedure or their theoretical analysis.

2. Latent variable model selection consistency. In this section we propose
a procedure to obtain an algebraically consistent estimate of the latent variable
Gaussian graphical model. The condition on 6 to recover the support of S* is
reduced to that in Cai, Liu and Luo (2011) which studied sparse graphical model
selection without latent Variables and the condition on o is just at an order of
v/ p/n, which is smaller than s; 3( p)+/p/n assumed in the paper when sg(p) — oco.
When M), is bounded, our results can be shown to be rate-optimal by lower bounds
stated in Remarks 2 and 4 for which we are not giving proofs due to the limitation
of the space.

2.1. Sign consistency procedure of S*. We propose a CLIME-like estimator
of S* by solving the following linear optimization problem:
min|[S]l;  subjectto  |Z5HS — Illoo < T, S e RPXP,
where X{, = (0;) is the sample covariance matrix. The tuning parameter 7, is
log p
n

chosen as 7, = C1 M, for some large constant Cy. Let 3‘1 = (§ilj) be the

solution. The CLIME-like estimator S = (§; j) is obtained by symmetrizing Si as
follows:

al al al
s,]:sﬂ_s 1{|le| 'i}+s'i1{|si'|>sji}~

In other words, we take the one with smaller magnitude between § s cand § s . We
define a thresholding estimator S = (5;7) with
) sij = sij1{I5i| > IMpT,}

to estimate the support of S*.
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THEOREM 1. Suppose that S* € U(so(p), M),

&) ydogp)/n=0(1) and |IL*|lcc <MpTy.

With probability greater than 1 — C;p~° for some constant Cs depending on M
only, we have

IS — $*[loc < IM, 1.

Hence, if the minimum magnitude of nonzero entries 6 > 18M,t,, we obtain the
sign consistency sign(S) = sign(S*). In particular, if M, is in the constant level,
then to consistently recover the support of S*, we only need that 6 =< /(log p)/n.

PROOF. The proof is similar to Theorem 7 in Cai, Liu and Luo (2011). The
sub-Gaussian condition with spectral norm upper bound M implies that each em-
pirical covariance &;; satisfies the following large deviation result:

8
P(|5;j — 0ij| > 1) < C; exp(—Entz) for |1| < &,
2

where Cy, C and ¢ only depend on M. See, for example, Bickel and Levina
(2008). In particular, for t = C»+/(log p)/n which is less than ¢ by our assump-
tion, we have

(6) P(IZ} — Tllee > 1) <Y P(I5;j — 0yj| > 1) < p*- Csp~°.
ij

A={IZ5 — Zpllec = C2y/(log p)/n}.

Equation (6) implies P(A) > 1 — C; p*(’. On event A, we will show
(7) 1(5* = L*) = Silloo < 8M s,

Let

which immediately yields
1S* = Slloo < I(S* = L*) = Silloo + |1 L*[loo < 8M T, + M7, = IM 7.

Now we establish equation (7). On event A, for some large constant C| > 2C»,
the choice of t, yields

®) 2Mp 1125 — 26 oo < T
By the matrix /; norm assumption, we could obtain that
€)) IS i1 S US o1 + IL* 151 < 2M),.
From (8) and (9) we have
IZ5(5* = L*) = Iloo = I(Zh — Z5)(55) oo

—1
<IZH — Zollecl(Z0) ™ i1 < T,
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which implies

IS8 (S* — L*) — 248
(10) > .
<IZB(S* = L*) = Iloo + 12581 = Iloo < 21a.

From the definition of § | we obtain that

(11) 1811151 < IS* = L* 11 < 2M),

which, together with equations (8) and (10), implies
[Z5((s* = L*) = §1)

[
<IZHS* = L*) = Silloo + [ (Zh — THI((S* = L*) = §1) | &
<27 + 2% — THllooll (S* — L*) — Sill1-1
<21, +4Mp||2’(") — *Olloo <4t,.
Thus, we have
1(S* = L*) = Silloo < 15 o1 [ ZH((S* = L*) = §1) | o <8Mp1,. O

REMARK 1. By the choice of our 7, and the eigen-decomposition of L*, the
condition ||L*|l« < M7, holds when ro(p)Co/p < C1M[2,«/(10g p)/n, that is,
p*logp > nr&(p)M;“. If M, is slowly increasing (e.g., p/4=7 for any small

T > 0), the minimum requirement 0 < M;./(log p)/n is weaker than 6 2 \/p/n
required in Corollary 4.2. Furthermore, it can be shown that the optimal rate of

minimum magnitude of nonzero entries for sign consistency is 6 < M,+/(log p)/n
as in Cai, Liu and Zhou (2012).

REMARK 2. Cai, Liu and Zhou (2012) showed the minimum requirement for
0,60 =< M,\/(log p)/n is necessary for sign consistency for sparse concentration
matrices. Let Us(c) denote the class of concentration matrices defined in (1) and
(2), satisfying assumption (5) and 6 > cM,/(log p)/n. We can show that there
exists some constant ¢; > 0 such that for all 0 < ¢ < ¢y,

lim inf sup P(sign(8) # sign(§*)) > 0,
TS Dus(e) ( )

similar to Cai, Liu and Zhou (2012).

2.2. Rank Consistency Procedure of L*. In this section we propose a proce-
dure to estimate L* and its rank. We note that with high probability X7, is in-

vertible, then define L = (E’Z))_1 — S, where S is defined in (4). Denote the eigen-
decomposition of L by Zle Ai (i)ui viT, and let A; (I:) =\ (I:)l{k,- (I:) > C3\/g},
where constant C3 will be specified later. Define L = Zle ri (D) viT. The fol-

lowing theorem shows that estimator L is a consistent estimator of L* under the
spectral norm and with high probability rank(L*) = rank(L).
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THEOREM 2. Under the conditions in Theorem 1, we assume that

p 1 2 p
(12 —<——— and Mps(p) < [ —
) n = TedoM? o(p logp’

Then there exists some constant C3 such that

IL—L*|| < cg,\/E
n

with probability greater than 1 — 2e™? — Cyp~S. Hence, if 0 > 2C3\/g, we have
rank(L*) = rank(L) with high probability.

PROOF. From Corollary 5.5 of the paper and our assumption on the sample
size, we have

p(Iz5 - = ||>5Mf)<2exp< P).

Note that )»mm(Eo) > 1/M, and /128 M\/> < 1/(2M) under the assumption

(12), then Anin(X{) > 1/(2M) with high probability, which yields the same rate
of convergence for the concentration matrix, since

13 II(EO)’ - (25 )< II(EO)’ 11(ZH )~ =y —=pl
< 2M2«/128M\/§= 16«/§M3\/§.

From Theorem 1 we know
sign(S) =sign(S*) and ||S — $*|leo < IM, 1,

with probability greater than 1 — Cs p~5. Since || B|| < ||B|l1—1 for any symmetric
matrix B, we then have

~ ~ logp
(14) 15— =18 = $"11 = 50(p)OMyTs = 9CI Mps0(p), | =
Equations (13) and (14), together with the assumption Mlzjso( p) < /1 o2’ , imply
IL—L* < 1(Z5) " = &)+ 1S = s¥|

< 16fM3f+9c1M2so(p),/ < C3 [

with probability greater than 1 — 2¢~? — Cyp .
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REMARK 3. We should emphasize the fact that in order to consistently es-
timate the rank of L* we need only that o > 2C3\/g , which is smaller than
sS( p)\/g required in the paper (see the footnote for Corollary 4.2), as long as

Mlzjso( P) =<./i Olg’ rE In particular, we don’t explicitly constrain the rank ro(p). One

special case is that M, is constant and so(p) =< p!'/277 for some small T > 0, for

which our requirement is \/g but the assumption in the paper is at an order of
1/2—
p3/2-7) \/g .

REMARK 4. Let U7 (c) denote the class of concentration matrices defined in
(1), (2) and (3), satisfying assumptions (12), (5) and o > c\/g . We can show that
there exists some constant ¢» > 0 such that for all 0 < ¢ < ¢,

lim inf sup P rank(i) # rank(L*)) > 0.
TS, Ly U (e) ( )

The proof of this lower bound is based on a modification of a lower bound argu-
ment in a personal communication of T. Tony Cai (2011).

3. Concluding remarks and further questions. In this discussion we at-
tempt to understand optimalities of results in the present paper by studying a rel-
atively simple model. Our preliminary analysis seems to indicate that their results
in this paper are suboptimal. In particular, we tend to conclude that assumptions
on @ and o in the paper can be potentially very much weakened. However, it is
not clear to us whether the suboptimality is due to the methodology or just its
theoretical analysis. We want to emphasize that the preliminary results in this dis-
cussion can be strengthened, but for the purpose of simplicity of the discussion
we choose to present weaker but simpler results to hopefully shed some light on
understanding optimalities in estimation.
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DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION

BY EMMANUEL J. CANDES AND MAHDI SOLTANOLKOTABI

Stanford University

We wish to congratulate the authors for their innovative contribution, which is
bound to inspire much further research. We find latent variable model selection
to be a fantastic application of matrix decomposition methods, namely, the super-
position of low-rank and sparse elements. Clearly, the methodology introduced in
this paper is of potential interest across many disciplines. In the following, we
will first discuss this paper in more detail and then reflect on the versatility of the
low-rank + sparse decomposition.

Latent variable model selection. The proposed scheme is an extension of the
graphical lasso of Yuan and Lin [15] (see also [1, 6]), which is a popular approach
for learning the structure in an undirected Gaussian graphical model. In this setup,
we assume we have independent samples X ~ N (0, ¥) with a covariance matrix
X exhibiting a sparse dependence structure but otherwise unknown; that is to say,
most pairs of variables are conditionally independent given all the others. Formally,
the concentration matrix X ~! is assumed to be sparse. A natural fitting procedure
is then to regularize the likelihood by adding a term proportional to the £; norm of
the estimated inverse covariance matrix S:

(1) minimize —£(S, =) + A[| S

under the constraint S > 0, where X is the empirical covariance matrix and
1S =2 ; 1Sij1. (Variants are possible depending upon whether or not one would
want to penalize the diagonal elements.) This problem is convex.

When some variables are unobserved—the observed and hidden variables are
still jointly Gaussian—the model above may not be appropriate because the hidden
variables can have a confounding effect. An example is this: we observe stock
prices of companies and would like to infer conditional (in)dependence. Suppose,
however, that all these companies rely on a commodity, a source of energy, for
instance, which is not observed. Then the stock prices might appear dependent
even though they may not be once we condition on the price of this commodity.
In fact, the marginal inverse covariance of the observed variables decomposes into
two terms. The first is the concentration matrix of the observed variables in the
full model conditioned on the latent variables. The second term is the effect of
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marginalization over the hidden variables. Assuming a sparse graphical model, the
first term is sparse, whereas the second term may have low rank; in particular,
the rank is at most the number of hidden variables. The authors then penalize the
negative log-likelihood with a term proportional to

() v ISl + trace(L)

since the trace functional is the usual convex surrogate for the rank over the cone
of positive semidefinite matrices. The constraints are S > L > 0.

Adaptivity. The penalty (2) is simple and flexible since it does not really make
special parametric assumptions. To be truly appealing, it would also need to be
adaptive in the following sense: suppose there is no hidden variable, then does the
low-rank + sparse model (L 4 S) behave as well or nearly as well as the graphical
lasso? When there are few hidden variables, does it behave nearly as well? Are
there such theoretical guarantees? If this is the case, it would say that using the
L + S model would protect against the danger of not having accounted for all
possible covariates. At the same time, if there were no hidden variable, one would
not suffer any loss of performance. Thus, we would get the best of both worlds.

At first sight, the analysis presented in this paper does not allow us to reach
this conclusion. If X is p-dimensional, the number of samples needed to show
that one can obtain accurate estimates scales like Q(p/£*), where £ is a mod-
ulus of continuity introduced in the paper that is typically much smaller than 1.
We can think of 1/£ as being related to the maximum degree d of the graph so
that the condition may be interpreted as having a number of observations very
roughly scaling like d*p. In addition, accurate estimation holds with the proviso
that the signal is strong enough; here, both the minimum nonzero singular value
of the low-rank component and the minimum nonzero entry of the sparse compo-
nent scale like (/p/n). On the other hand, when there are no hidden variables,
a line of work [11, 13, 14] has established that we could estimate the concentra-
tion matrix with essentially the same accuracy if n = Q(d?log p) and the magni-
tude of the minimum nonvanishing value of the concentration matrix scales like

Q(,/n"1log p). As before, d is the maximum degree of the graphical model. In
the high-dimensional regime, the results offered by this literature seem consider-
ably better. It would be interesting to know whether this could be bridged, and if
so, under what types of conditions—if any.

Interestingly, such adaptivity properties have been established for related prob-
lems. For instance, the L + S model has been used to suggest the possibility
of a principled approach to robust principal component analysis [2]. Suppose
we have incomplete and corrupted information about an n; x ny low-rank ma-
trix L. More precisely, we observe M;; = L?j + Sloj, where (i, j) € Qobs C
{1,...,n1} x {1,...,n2}. We think of S° as a corruption pattern so that some
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entries are totally unreliable but we do not know which ones. Then [2] shows that
under rather broad conditions, the solution to

minimize || L||x + A||S]1

3)
subject to M;; = L;j + Sij, (i, j) € Qobs,

where ||L||x is the nuclear norm, recovers L° exactly. Now suppose there are no
corruptions. Then we are facing a matrix completion problem and, instead, one
would want to minimize the nuclear norm of L under data constraints. In other
words, there is no need for S in (3). The point is that there is a fairly precise
understanding of the minimal number of samples needed for this strategy to work;
for incoherent matrices [3], | 2obs| must scale like (n1 Vv ny)r log2 n, where r is the
rank of L. Now some recent work [10] establishes the adaptivity in question. In
details, (3) recovers L° from a minimal number of samples, in the sense defined
above, even though a positive fraction may be corrupted. That is, the number of
reliable samples one needs, regardless of whether corruption occurs, is essentially
the same. Results of this kind extend to other settings as well. For instance, in
sparse regression or compressive sensing we seek a sparse solution to y = Xb by
minimizing the £; norm of b. Again, we may be worried that some equations are
unreliable because of gross errors and would solve, instead,

minimize ||b]|1 + Allel|1

@) .
subjectto y=Xb +e

to achieve robustness. Here, [10] shows that the minimal number of reliable sam-
ples/equations required, regardless of whether the data is clean or corrupted, is
essentially the same.

The versatility of the L + S model. We now move to discuss the L 4+ S model
more generally and survey a set of circumstances where it has proven useful and
powerful. To begin with, methods which simply minimize an £ norm, or a nuclear
norm, or a combination thereof are seductive because they are flexible and apply
to a rich class of problems. The L + S model is nonparametric and does not make
many assumptions. As a result, it is widely applicable to problems ranging from
latent variable model selection [4] (arguably one of the most subtle and beautiful
applications of this method) to video surveillance in computer vision and docu-
ment classification in machine learning [2]. In any given application, when much
is known about the problem, it may not return the best possible answer, but our
experience is that it is always fairly competitive. That is, the little performance
loss we might encounter is more than accounted for by the robustness we gain vis
a vis various modeling assumptions, which may or may not hold in real applica-
tions. A few recent applications of the L + S model demonstrate its flexibility and
robustness.
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Applications in computer vision. The L + S model has been applied to ad-
dress several problems in computer vision, most notably by the group of Yi Ma
and colleagues. Although the low-rank + sparse model may not hold precisely, the
nuclear + ¢ relaxation appears practically robust. This may be in contrast with
algorithms which use detailed modeling assumptions and may not perform well
under slight model mismatch or variation.

Video surveillance. An important task in computer vision is to separate back-
ground from foreground. Suppose we stack a sequence of video frames as columns
of a matrix (rows are pixels and columns time points), then it is not hard to imag-
ine that the background will have low-rank since it is not changing very much over
time, while the foreground objects, such as cars, pedestrians and so on, can be seen
as a sparse disturbance. Hence, finding an L + S decomposition offers a new way
of modeling the background (and foreground). This method has been applied with
some success [2]; see also the online videos Video 1 and Video 2.

From textures to 3D. One of the most fundamental steps in computer vision
consists of extracting relevant features that are subsequently used for high-level
vision applications such as 3D reconstruction, object recognition and scene un-
derstanding. There has been limited success in extracting stable features across
variations in lightening, rotations and viewpoints. Partial occlusions further com-
plicate matters. For certain classes of 3D objects such as images with regular sym-
metric patterns/textures, one can bypass the extraction of local features to recover
3D structure from 2D views. To fix ideas, a vertical or horizontal strip can be re-
garded as a rank-1 texture and a corner as a rank-2 texture. Generally speaking,
surfaces may exhibit a low-rank texture when seen from a suitable viewpoint; see
Figure 1. However, their 2D projections as captured by a camera will typically not
be low rank. To see why, imagine there is a low-rank texture L°(x, y) on a planar
surface. The image we observe is a transformed version of this texture, namely,
L% 77 (x, y). A technique named TILT [16] recovers T simply by seeking a low-
rank and sparse superposition. In spite of idealized assumptions, Figures 1 and 2
show that the L. 4+ S model works well in practice.

(b)

FI1G. 1. (a) Pair of images from distinct viewpoints. (b) 3D reconstruction (TILT) from photographs
in (a) using the L + S model. The geometry is recovered from two images.


http://www.youtube.com/watch?feature=player_embedded&v=RPmr8WLkBSo
http://www.youtube.com/watch?feature=player_embedded&v=Yxj1_52EAXA
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FI1G. 2.  We are given the 16 images on the right. The task is to remove the clutter and align the
images. Stacking each image as a column of a matrix, we look for planar homeographies that reveal
a low-rank plus sparse structure [12]. From left to right: original data set, aligned images, low-rank
component (columns of L), sparse component (columns of S).

Compressive acquisition. In the spirit of compressive sensing, the L+ S model
can also be used to speed up the acquisition of large data sets or lower the sampling
rate. At the moment, the theory of compressive sensing relies on the sparsity of
the object we wish to acquire, however, in some setups the L + S model may be
more appropriate. To explain our ideas, it might be best to start with two concrete
examples. Suppose we are interested in the efficient acquisition of either (1) a
hyper-spectral image or (2) a video sequence. In both cases, the object of interest is
a data matrix M which is N x d, where each column is an N-pixel image and each
of the d columns corresponds to a specific wavelength (as in the hyper-spectral
example) or frame (or time point as in the video example). In the first case, the data
matrix may be thought of as M (x, 1), where x indexes position and A wavelength,
whereas in the second example, we have M (x, t) where ¢ is a time index. We would
like to obtain a sequence of highly resolved images from just a few measurements;
an important application concerns dynamic magnetic resonance imaging where it
is only possible to acquire a few samples in k-space per time interval.

Clearly, frames in a video sequence are highly correlated in time. And in just
the same way, two images of the same scene at nearby wavelengths are also highly
correlated. Obviously, images are correlated in space as well. Suppose that W & F
is a tensor basis, where W sparsifies images and F' time traces (W might be a
wavelet transform and F a Fourier transform). Then we would expect WM F' to be
a nearly sparse matrix. With undersampled data of the form y = A(M) + z, where
A is the operator supplying information about M and z is a noise term, this leads
to the low-rank + sparse decomposition problem

minimize | X ||« +A|WXF|
)
subject to A(X) —yll2 <e,

where &2 is the noise power. A variation, which is more in line with the discussion
paper is a model in which L is a low-rank matrix modeling the static background,
and S is a sparse matrix roughly modeling the innovation from one frame to the
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next; for instance, S might encode the moving objects in the foreground. This
would give

minimize A| L]« 4+ |WSF |1

(6)
subject to [|A(L + S) — y|l2 <e.

One could imagine that these models might be useful in alleviating the tremendous
burden on system resources in the acquisition of ever larger 3D, 4D and 5D data
sets.

We note that proposals of this kind have begun to emerge. As we were preparing
this commentary, we became aware of [8], which suggests a model similar to (5)
for hyperspectral imaging. The difference is that the second term in (5) is of the
form ) ; || X;|lTv in which X; is the ith column of X, the image at wavelength
A;; that is, we minimize the total variation of each image, instead of looking for
sparsity simultaneously in space and wavelength/frequency. The results in [8] show
that dramatic undersampling ratios are possible. In medical imaging, movement
due to respiration can degrade the image quality of Computed Tomography (CT),
which can lead to incorrect dosage in radiation therapy. Using time-stamped data,
4D CT has more potential for precise imaging. Here, one can think of the object
as a matrix with rows labeling spatial variables and columns time. In this context,
we have a low-rank (static) background and a sparse disturbance corresponding
to the dynamics, for example, of the heart in cardiac imaging. The recent work
[7] shows how one can use the L 4+ S model in a fashion similar to (6). This has
interesting potential for dose reduction since the approach also supports substantial
undersampling.

Connections with theoretical computer science and future directions.
A class of problems where further study is required concerns situations in which
the low-rank and sparse components have a particular structure. One such prob-
lem is the planted clique problem. It is well known that finding the largest clique
in a graph is NP hard; in fact, it is even NP-hard to approximate the size of the
largest clique in an n vertex graph to within a factor n!~¢. Therefore, much re-
search has focused on an “easier” problem. Consider a random graph G(n, 1/2)
on n vertices where each edge is selected independently with probability 1/2. The
expected size of its largest clique is known to be (2 — o(1)) logn. The planted
clique problem adds a clique of size k to G. One hopes that it is possible to find
the planted clique in polynomial time whenever k > log n. At this time, this is only
known to be possible if k is on the order of /i or larger. In spite of its seemingly
simple formulation, this problem has eluded theoretical computer scientists since
1998, and is regarded as a notoriously difficult problem in modern combinatorics.
It is also fundamental to many areas in machine learning and pattern recognition.
To emphasize its wide applicability, we mention a new connection with game
theory. Roughly speaking, the recent work [9] shows that finding a near-optimal
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Nash equilibrium in two-player games is as hard as finding hidden cliques of size
k = Cologn, where Cg is some universal constant.

One can think about the planted clique as a low rank + sparse decomposition
problem. To be sure, the adjacency matrix of the graph can be written as the sum
of two matrices: the low-rank component is of rank 1 and represents the clique of
size k (a submatrix with all entries equal to 1); the sparse component stands for the
random edges (and with —1 on the diagonal if and only if that vertex belongs to
the hidden clique). Interestingly, low-rank + sparse regularization based on nuclear
and 1 norms have been applied to this problem [5]. (Here the clique is both low-
rank and sparse and is the object of interest so that we minimize || X ||« + A|| X1
subject to data constraints.) These proofs show that these methods find cliques of
size Q(4/n), thus recovering the best known results, but they may not be able to
break this barrier. It is interesting to investigate whether tighter relaxations, taking
into account the specific structure of the low-rank and sparse components, can do
better.
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1. Introduction. We thank all the discussants for their careful reading of our
paper, and for their insightful critiques. We would also like to thank the editors for
organizing this discussion. Our paper contributes to the area of high-dimensional
statistics which has received much attention over the past several years across the
statistics, machine learning and signal processing communities. In this rejoinder
we clarify and comment on some of the points raised in the discussions. Finally,
we also remark on some interesting challenges that lie ahead in latent variable
modeling.

Briefly, we considered the problem of latent variable graphical model selection
in the Gaussian setting. Specifically, let X be a zero-mean Gaussian random vector
in R?*" with O and H representing disjoint subsets of indices in {1, ..., p + h}
with |O| = p and |H| = h. Here the subvector X o represents the observed vari-
ables and the subvector X i represents the latent variables. Given samples of only
the variables X ¢, is it possible to consistently perform model selection? We noted
that if the number of latent variables 4 is small relative to p and if the condi-
tional statistics of the observed variables X conditioned on the latent variables
Xy are given by a sparse graphical model, then the marginal concentration ma-
trix of the observed variables X is given as the sum of a sparse matrix and a
low-rank matrix. As a first step we investigated the identifiability of latent vari-
able Gaussian graphical models—effectively, this question boils down to one of
uniquely decomposing the sum of a sparse matrix and a low-rank matrix into the
individual components. By studying the geometric properties of the algebraic vari-
eties of sparse and low-rank matrices, we provided natural sufficient conditions for
identifiability and gave statistical interpretations of these conditions. Second, we
proposed the following regularized maximum-likelihood estimator to decompose
the concentration matrix into sparse and low-rank components:

(8. L) = argmin —£(S — L: 5p) + An (v ISIh +tr(L))

(1.1
st.S—L>=0,L>0.
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Here X7, represents the sample covariance formed from n samples of the observed

variables, ¢ is the Gaussian log-likelihood function, Sn represents the estimate of
the conditional graphical model of the observed variables conditioned on the latent
variables, and in represents the extra correlations induced due to marginalization
over the latent variables. The £; norm penalty induces sparsity in S, and the trace
norm penalty induces low-rank structure in L,. An important feature of this es-
timator is that it is given by a convex program that can be solved efficiently. Our
final contribution was to establish the high-dimensional consistency of this estima-
tor under suitable assumptions on the Fisher information underlying the true model
(in the same spirit as irrepresentability conditions for sparse model selection [11,
16]).

2. Alternative estimators. A number of the commentaries described alterna-
tive formulations for estimators in the latent variable setting.

2.1. EM-based methods. The discussions by Yuan and by Lauritzen and
Meinshausen describe an EM-based alternative in which the rank of the matrix
L is explicitly constrained:

(8p, L) = argmin —£(S — L3 54) + A Sl

(2.1)
st.S—L>=0,L>0,rank(L) <r.

The experimental results based on this approach seem quite promising, and cer-
tainly deserve further investigation. On the one hand, we should reiterate that the
principal motivation for our convex optimization based formulation was to develop
a method for latent variable modeling with provable statistical and computational
guarantees. One of the main drawbacks of EM-based methods is the existence of
local optima in the associated variational formulations, thus leading to potentially
different solutions depending on the initial point. On the other hand, one of the
reasons for the positive empirical behavior observed by Yuan and by Lauritzen
and Meinshausen may be that all the local optima in the experimental settings
considered by the authors may be “good” models. Such behavior has in fact been
rigorously characterized recently for certain nonconvex estimators in some miss-
ing data problems [7].

One of the motivations for the EM proposal of Yuan and of Lauritzen and Mein-
shausen seems to be that there are fairly mature and efficient solvers for the graph-
ical lasso. As our estimator is relatively newer and as its properties are better un-
derstood going forward, we expect that more efficient solvers will be developed
for (1.1) as well. Indeed, the LogdetPPA solver [15] that we cite in our paper al-
ready scales to instances involving several hundred variables, while more recent
efforts [8] have resulted in algorithms that scale to instances with several thousand
variables.
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2.2. Thresholding estimators. Ren and Zhou propose and analyze an inter-
esting thresholding based estimator for decomposing a concentration matrix into
sparse and low-rank components. They apply a two-step procedure—¢; norm
thresholding followed by trace norm thresholding—to obtain the sparse compo-
nent followed by the low-rank component. Roughly speaking, this two-step es-
timator can be viewed as the application of the first cycle of a block coordinate
descent procedure to compute our estimator that alternately updates the sparse and
low-rank pieces (we also refer the reader to the remarks in [1]).

However, in Theorem 1 in the discussion by Ren and Zhou, a quite stringent
assumption requires that in some scaling regimes the true low-rank component

L* must vanish, that is, |L*|l¢, S 1(’% — 0. The reason for this condition is
effectively to ensure sign consistency in recovering the sparse component. In a
pure sparse model selection problem (with no low-rank component in the pop-
ulation), the deviation away from the sparse component is given only by noise

due to finite samples and this deviation is on the order of 10% in the Gaussian

setting—consequently, sparse model selection via £; norm thresholding is sign-
consistent when the minimum magnitude nonzero entry in the true model is larger

than k’%. In contrast, if the true model consists of both a sparse component and
a low-rank component, the total deviation away from the sparse component in the
finite sample regime is given by both sample noise as well as the low-rank compo-
nent. This seems to be the reason for the stringent assumption on the vanishing of
the low-rank component in Theorem 1 of Ren and Zhou.

More broadly, one of the motivations of Ren and Zhou in proposing and ana-
lyzing their estimator is that it may be possible to weaken the assumptions on the
minimum magnitude nonzero entry 6 of the true sparse component S* and the min-
imum nonzero singular value o of the true low-rank component L*—whether this
is possible under less stringent assumptions on L* is an interesting question, and
we comment on this point in Section 3 in the more general context of potentially
improving the rates in our paper.

2.3. Other proposals. Giraud and Tsybakov propose two alternative estima-
tors for decomposing a concentration matrix into sparse and low-rank components.
While our approach (1.1) builds on the graphical lasso, their proposed approaches
build on the Dantzig selector of Candes and Tao [2] and the neighborhood selec-
tion approach of Meinshausen and Bithlmann [9]. Several comments are in order
here.

First, we note that the extension of neighborhood selection proposed by Giraud
and Tsybakov to deal with the low-rank component begins by reformulating the
neighborhood selection procedure to obtain a “global” estimator that simultane-
ously estimates all the neighborhoods. This reformulation touches upon a funda-
mental aspect of latent variable modeling. In many applications marginalization
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over the latent variables typically induces correlations between most pairs of ob-
served variables—consequently, local procedures that learn model structure one
node at a time are ill-suited for latent variable modeling. Stated differently, requir-
ing that a matrix be sparse with few nonzeros per row or column (e.g., expressing
preference for a graphical model with bounded degree) can be done by imposing
column-wise constraints. On the other hand, the constraint that a matrix be low-
rank is really a global constraint expressed by requiring all minors of a certain
size to vanish. Thus, any estimator for latent variable modeling (in the absence of
additional conditions on the latent structure) must necessarily be global in nature.

Second, we believe that the reformulation based on the Dantzig selector per-
haps ought to have an additional constraint. Recall that the Dantzig selector [2]
constrains the £, norm (the dual norm of the £; norm) of the correlated residu-
als rather than the £, norm of the residuals as in the lasso. As the dual norm of
our combined ¢;/trace norm regularizer involves both an £, norm and a spectral
norm, the following constraint set may be more appropriate in the Dantzig selector
based reformulation of Giraud and Tsybakov:

G={S.L):I1Z5S + L) = Ille < vAn, 1Z5(S + L) = Il2 < An}.

Finally, we note that the Dantzig selector of [2] has the property that its
constraint set contains the lasso solution (with the same choice of regulariza-
tion/relaxation parameters). In contrast, this property is not shared in general by the
Dantzig selector reformulation of Giraud and Tsybakov in relation to our regular-
ized maximum-likelihood estimator (1.1). It is unclear how one might achieve this
property via suitable convex constraints in a Dantzig selector type reformulation
of our estimator.

In sum, both of these alternative estimators deserve further study.

3. Comments on rates. Several of the commentaries (Wainwright, Giraud
and Tsybakov, Ren and Zhou and Candes and Soltanolkotabi) bring up the pos-
sibility of improving the rates given in our paper. At the outset we believe that
n 2 p samples is inherent to the latent variable modeling problem if spectral norm
consistency is desired in the low-rank component. This is to be expected since the
spectral norm of the deviation of a sample covariance from the underlying popula-
tion covariance is on the order of \/g . However, some more subtle issues remain.

Giraud and Tsybakov point out that one may be concerned purely with estima-
tion of the sparse component, and that the low-rank component may be a “nui-
sance” parameter. While this is not appropriate in every application, in problem
domains where the conditional graphical model structure of the observed variables
is the main quantity of interest one can imagine quantifying deviations in the low-
rank component via “weaker” norms than the spectral norm—this may lead to
consistent estimates for the sparse component with n < p samples. The analysis
in our paper does not rule out this possibility, and a more careful investigation is
needed to establish such results.
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Ren and Zhou suggest that while n 2 p may be required for consistent esti-
mation, one may be able to weaken the assumptions on 6 and o (the minimum
magnitude nonzero entry of the sparse component and the minimum nonzero sin-
gular value of the low-rank component, respectively). From the literature on sparse
model selection, a natural lower bound on the minimum magnitude nonzero entry
for consistent model selection is typically given by the size of the noise measured
in the £, norm (the dual of the ¢ regularizer). Building on this intuition, a natural
lower bound that one can expect in our setting on 9 is %HE’Z) — 2 ley, While a
natural bound on o would be || X, — X||2. The reason for this suggestion is that

max{%, IIL||2} is the dual norm of the regularizer used in our paper. There-

i i i ~ 1 [logp ~ [P
fore, it may be possible to only require 6 oV n and o .- However, one

issue here is that the £, norm bound kicks in when n 2 log p with probability
approaching one polynomially fast, while the spectral norm bound only kicks in
when n > p but holds with probability approaching one exponentially fast. Thus
(as also noted by Giraud and Tsybakov), it may be possible that n 2> p is required
for overall consistent estimation, but that the assumption on 6 could be weakened
by only requiring that the probability of consistent estimation approach one poly-
nomially fast.

Candes and Soltanolkotabi comment that it would be of interest to establish an
“adaptivity” property whereby if no low-rank component were present, the number
of samples required for consistent estimation would boil down to just the rate for
sparse graphical model selection, that is, n ~ log p. While such a feature would
clearly be desirable to establish for our estimator, one potential roadblock may
be that our estimator (1.1) “searches” over a larger classes of models than just
those given by sparse graphical models; consequently, rejecting the hypothesis that
the observed variables are affected by any latent variables may require that n >
log p. This question deserves further investigation and, as suggested by Candes and
Soltanolkotabi, recent results on adaptivity could inform a more refined analysis
of our estimator.

Finally, Wainwright suggests the intriguing possibility that faster rates may be
possible if the low-rank component has additional structure. For example, there
may exist a sparse factorization of the low-rank component due to special struc-
ture between the latent and observed variables. In such settings the trace norm
regularizer applied to the low-rank component is not necessarily the tightest con-
vex penalty. In recent joint work by the authors and Recht [4], a general framework
for constructing convex penalty functions based on some desired structure is pre-
sented. The trace norm penalty for inducing low-rank structure is motivated from
the viewpoint that a low-rank matrix is the sum of a small number of rank-one ma-
trices and, therefore, the norm induced by the convex hull of the rank-one matrices
(suitably scaled) is a natural convex regularizer as this convex hull (the trace norm
ball) carries precisely the kind of facial structure required for inducing low-rank
structure in matrices. In this spirit, one can imagine constructing convex penalty
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functions by taking the convex hull of sparse rank-one matrices. While this con-
vex hull is in general intractable to represent, relaxations of this set that are tighter
than the trace norm ball could provide faster rates than can be obtained by using
the trace norm.

4. Weakening of irrepresentability conditions. Wainwright asks a number
of insightful questions regarding the potential for weakening our Fisher informa-
tion based conditions. Giraud and Tsybakov also bring up connections between our
conditions and irrepresentability conditions in previous papers on sparse model se-
lection [11, 16].

In order to better understand if the Fisher information based conditions stated
in our paper are necessary, Wainwright raises the question of obtaining a converse
result by comparing to an oracle method that directly minimizes the rank and the
cardinality of the support of the components. A difficulty with this approach is
that we don’t have a good handle on the set of matrices that are expressible as the
sum of a sparse matrix and a low-rank matrix. The properties of this set remain
poorly understood, and developing a better picture has been the focus of research
efforts in algebraic geometry [6] and in complexity theory [14]. Nonetheless, a
comparison to oracle estimators that have side information about the support of
the sparse component and the row/column spaces of the low-rank component (in
effect, side information about the tangent spaces at the two components) appears
to be more tractable. This is closer to the viewpoint we have taken in our paper
in which we consider the question of identifiability of the components given in-
formation about the underlying tangent spaces. Essentially, our Fisher information
conditions state that these tangent spaces must be sufficiently transverse with re-
spect to certain natural norms and in a space in which the Fisher information is
the underlying inner-product. More generally, as also pointed out by Giraud and
Tsybakov, the necessity of Fisher information based conditions is an open ques-
tion even in the sparse graphical model selection setting considered in [11]. The
experimental studies in [11] describing comparisons to neighborhood selection in
some simple cases provide a good starting point.

Wainwright raises the broader question of consistent model selection when
transversality of the underlying tangent spaces does not hold. One approach [1]
is to quantify the level of identifiability based on a “spikiness” condition. A more
geometric viewpoint may be that only those pieces of the sparse and low-rank com-
ponents that do not lie in the intersection of their underlying tangent spaces are
fundamentally identifiable and, therefore, consistency should be quantified with
respect to these identifiable pieces.

Giraud and Tsybakov ask about the interpretability of our conditions &£(7") and
u(€2). These quantities are geometric in nature and relate to the tangent space
conditions for identifiability. In particular, they are closely related to (and bounded
by) the incoherence of the row/column spaces of the low-rank component and the
maximum number of nonzeros per row/column [5]. These latter quantities have
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appeared in many papers on sparse graphical model selection (e.g., [9, 11]) as well
as on low-rank matrix completion [3], and computing them is straightforward. In
our previous work on matrix decomposition [5], we note that these quantities are
bounded for natural random families of sparse and low-rank matrices based on
results in [3].

S. Experimental issues and applications. Lauritzen and Meinshausen as
well as Giraud and Tsybakov raise several points about the choice of the regu-
larization parameters. Choosing these parameters in a data-driven manner (e.g.,
using the methods described in [10]) is clearly desirable. We do wish to emphasize
that the sensitivities of the solution with respect to the parameters A, and y are
qualitatively different. As described in our main theorem and in our experimental
section, the solution of our estimator (1.1) is stable for a range of values of y (see
also [5])—this point is observed by Yuan as well in his experiments. Further, the
choice of y ideally should not depend on n, while the choice of X, clearly should.

On a different point regarding experimental results, Giraud and Tsybakov sug-
gest at the end of their discussion that latent variable models don’t seem to provide
significantly more expressive power than a sparse graphical model. In contrast,
Yuan’s synthetic experiment seems to provide compelling evidence that our ap-
proach (1.1) provides better performance relative to models learned by the graph-
ical lasso. The reason for these different observations may be tied to the manner
in which their synthetic models were generated. Specifically, latent variable model
selection using (1.1) is likely to be most useful when the latent variables affect
many observed variables upon marginalization (e.g., latent variables are connected
to many observed variables), while the conditional graphical model among the ob-
served variables conditioned on the latent variables is sparse and has bounded de-
gree. This intuition is based on the theoretical analysis in our paper and is also
the setting considered in the experiment in Yuan’s discussion (as well as in the
synthetic experiments in our paper). On the other hand, the experimental setup fol-
lowed by Giraud and Tsybakov seems to generate a graphical model with large
maximum degree and low average degree, and randomly selects a subset of the
variables as latent variables. It is not clear if these latent variables are the ones
with large degree, which may explain their remarks.

Finally, we note that sparse and low-rank matrix decomposition is relevant in
applications beyond the one described in our paper. As observed by Lauritzen and
Meinshausen, a natural matrix decomposition problem involving covariance ma-
trices may arise if one considers directed latent variable models in the spirit of fac-
tor analysis. In such a context the covariance matrix may be expressed as the sum
of a low-rank matrix and a sparse (rather than just diagonal) matrix, corresponding
to the setting in which the distribution of the observed variables conditioned on the
latent variables is given by a sparse covariance matrix. More broadly, similar ma-
trix decomposition problems arise in domains beyond statistical estimation such as
optical system decomposition, matrix rigidity and system identification in control
[5], as well as others as noted by Candes and Soltanolkotabi.
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6. Future questions. Our paper and the subsequent discussions raise a num-
ber of research and computational challenges in latent variable modeling that we
wish to highlight briefly.

6.1. Convex optimization in R. As mentioned by Lauritzen and Meinshausen,
R remains the software of choice for practitioners in statistics. However, some of
the recent advances in high-dimensional statistical estimation have been driven by
sophisticated convex optimization based procedures that are typically prototyped
using packages such as SDPT3 [13] and others in Matlab and Python. It would be
of general interest to develop packages to invoke SDPT3 routines directly from R.

6.2. Sparse/low-rank decomposition as infimal convolution. Given a matrix
M > 0, consider the following function:

6.1)  [IMlls/L.y =miny|[S]l¢, + tr(L), st M=S§—L,L=0.

It is clear that || - ||s/z,, is a norm, and it can be viewed as the infimal convolu-
tion [12] of the (scaled) £; norm and the trace norm. In essence, it is a norm whose
minimization induces matrices expressible as the sum of sparse and low-rank com-
ponents (see also the atomic norm viewpoint of [4]). We could then effectively
restate (1.1) as

A

Mj, = arg min —€(M; 20) + Al Mlls/L.y

and then decompose M, by solving (6.1). This two-step approach suggests the
possibility of decoupling the decomposition problem from the conditions funda-
mentally required for consistency via regularized maximum-likelihood, as the lat-
ter only ought to depend on the composite norm || - ||s/z,, . This decoupling also
highlights the different roles played by the parameters A, and y (as discussed in
Section 5). More broadly, such an approach may be useful as one analyzes general
regularizers, for example, convex penalties other than the trace norm as described
in Section 3.

6.3. Non-Gaussian latent variable modeling. As described in our paper and
as raised by Wainwright, latent variable modeling with non-Gaussian variables
is of interest in many applications. Both the computational and algebraic aspects
present major challenges in this setting. Specifically, the secant varieties arising
due to marginalization in non-Gaussian models (e.g., in models with categorical
variables) are poorly understood, and computing the likelihood is also intractable.
An approach based on matrix decomposition as described in our paper may be
appropriate, although one would have to quantify the effects of the Gaussianity
assumption.
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LATENT VARIABLE GRAPHICAL MODEL SELECTION
VIA CONVEX OPTIMIZATION — SUPPLEMENTARY
MATERIAL

By VENKAT CHANDRASEKARAN, PABLO A. PARRILO AND
ALAN S. WILLSKY

California Institute of Technology, Massachusetts Institute of Technology,
and Massachusetts Institute of Technology

1. Matrix perturbation bounds. Given a low-rank matrix we con-
sider what happens to the invariant subspaces when the matrix is perturbed
by a small amount. We assume without loss of generality that the matrix
under consideration is square and symmetric, and our methods can be ex-
tended to the general non-symmetric non-square case. We refer the interested
reader to [1, 3] for more details, as the results presented here are only a brief
summary of what is relevant for this paper. In particular the arguments pre-
sented here are along the lines of those presented in [1]. The appendices in
[1] also provide a more refined analysis of second-order perturbation errors.

The resolvent of a matrix M is given by (M — ¢(I)~! [3], and it is well-
defined for all ( € C that do not coincide with an eigenvalue of M. If M
has no eigenvalue with magnitude equal to 7, then we have by the Cauchy
residue formula that the projector onto the invariant subspace of a matrix
M corresponding to all singular values smaller than 7 is given by

(1.1) Pary = 5— b (M —¢I)~hde,

where C,, denotes the positively-oriented circle of radius 7 centered at the
origin. Similarly, we have that the weighted projection onto the invariant
subspace corresponding to the smallest singular values is given by

(1:2) Piiy = MPuty = 3 § € (M = (D7,

Suppose that M is a low-rank matrix with smallest nonzero singular value
o, and let A be a perturbation of M such that [|All; < x < . We have the
following identity for any |(| = x, which will be used repeatedly:

(1.3) (M +A) =™ = [M = ¢I]™h = =[M — CI]T'A[(M + A) = ¢
1
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We then have that

Putsas = Pas = o 1M +8) = (7 = M a7
(1.4) = 271m A [M — CIT'A[(M + A) — ¢I)7tdC.

Similarly, we have the following for P} ,:

Pitsan — Pirg
- 2_73@ C{ (M+A) =T = [M = ¢} d¢
- Qjm ¢ A{IM =AM +A) = ¢ d¢
- QWng CIM = CITAIM = ¢I)7 ¢
271'27{ ¢ [M — I AM — CITHA[(M + A) — ¢I] G
(1.5)

Given these expressions, we have the following two results.

PROPOSITION 1.1. Let M € RP*P be a rank-r matriz with smallest
nonzero singular value equal to o, and let A be a perturbation to M such
that ||All2 < § with k < §. Then we have that

K
[Par+as = Parsllz < 1A]l2.
i T o—R)o %)

Proof: This result follows directly from the expression (1.4), and the sub-
multiplicative property of the spectral norm:

1 1 1
1Parvan = Pale < 5= 2m 5 —— Al — 5
s — K g — 5
K
= Alls.
w—mxa—%>”'h
Here we used the fact that ||[M —CI]7Y[ < L= —and [|[(M+A)— CI7 Yo <

073_,{ for |¢| = k. O
2

Next, we develop a similar bound for Py, . Let U(M) denote the invariant
subspace of M corresponding to the nonzero singular values, and let Py
denote the projector onto this subspace.
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PROPOSITION 1.2. Let M € RP*P be a rank-r matriz with smallest
nonzero singular value equal to o, and let A be a perturbation to M such
that [|Allz < § with k < . Then we have that

H2

(06— )20~ %)

IPa4as — Pirs — (I = Poan) AU = Pyan)l2 < A3
Proof: One can check that
1

2mi

7({: ¢ [M = CITTPAIM — 17N d¢ = (I — Pyn) AU — Pyar)-

Next we use the expression (1.5), and the sub-multiplicative property of the
spectral norm:

IPavisas— Parw — (I = Py AU — Pyany)ll2
1 1 1 1
< — 2 A A
S o W’i"éa_HH H2J_HH ||2(I_3_,.€

2

HQ

e

As with the previous proof, we used the fact that ||[M —(I]7 ! < -1 and
(M + A) = (I Hl2 < 5 for [¢] = . O

_ 3K
2

We will use these expressions to derive bounds on the “twisting” between
the tangent spaces at M and at M + A with respect to the rank variety.

2. Curvature of rank variety. For a symmetric rank-r matrix M,
the projection onto the tangent space T'(M) (restricted to the variety of
symmetric matrices with rank less than or equal to r) can be written in
terms of the projection Py onto the row space U(M). For any matrix N

Pron(N) = PyanN + NPy — PuonNPory-

One can then check that the projection onto the normal space T'(M )+

Prons(N) = [I = Pranl(N) = (I = Pyarn) N (I = Pyar)-

PROPOSITION 2.1. Let M € RP*P be a rank-r matriz with smallest
nonzero singular value equal to o, and let A be a perturbation to M such
that [|Alle < &. Further, let M 4 A be a rank-r matriz. Then we have that

p(T(M +8),T(M) < 2 AL,
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Proof: For any matrix N, we have that

[Pravi+a)y — Pranl(N) = [Puausa) — Puan] N [ = Pyan)
+ [ = Pyu+a) N [Poarsa) — Puon)-

Further, we note that for x < §

Pyvsa) — Puonry = [ = Poanl — I — Puorsa))
— PM,/@ - PM—}—A,m

where Py, is defined in the previous section. Thus, we have the following

sequence of inequalities for k = 7:

p(T(M +A),T(M)) = IIJIﬁIa)él I1Prv+a)y — Poany] N I — Py
2>

+I = Pyusayl N [Puarsa) — Poanlll2

< max [|[F _ P NI—P
T IN[251 1P ar+a)y = Poan] N | v ll2
+ max [[I = Prarea)] N [Puaera) = Poan]llz
[IN|2<1
S 2 HPM+A,% - PM,%”Q
2
< — Al
g

where we obtain the last inequality from Proposition 1.1. [J

PROPOSITION 2.2. Let M € RP*P be a rank-r matriz with smallest
nonzero singular value equal to o, and let A be a perturbation to M such
that ||A|| < §. Further, let M 4 A be a rank-r matriz. Then we have that

A3
P. Al < .
| T(M)J-( M2 < p

Proof: Since both M and M+A are rank-r matrices, we have that Pj; TAR =
Ph1 = 0 for £ = §. Consequently,

[Pranys (D)l = [[(I = Pyan) A (I = Pyan)ll2
A3

9

<
o

where we obtain the last inequality from Proposition 1.2 with k = 2. [J

a
4
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3. Proof of supplementary results of main theorem. Through-
out this section we denote m = max{1, %} Further Q = Q(Kp) and T =
T(Kp H(K;{)_IK;{,O) denote the tangent spaces at the true sparse matrix
S* = K{, and low-rank matrix L* = K&H(K}})_IK}}’O. We assume that

382 —v)ET)  va
va 282 v

We also let £, = X7 — X7, denote the difference between the true marginal
covariance and the sample covariance. Finally we let D = max{1, %}
throughout this section. For v in the above range we note that

D
(3.2) m < §T)
Standard facts that we use throughout this section are that {(7') < 1 and
that [|[M||eo < ||M||2 for any matrix M.
We study the following convex program:
(3.3)
(Sn, L) = argmin tr{(S — L) 53] ~ logdet(S — L) + AalyIS|h + 1Z]L.]

(3.1) v €

st. S—L=0.

Comparing (3.3) with the convex program (1.2) (main paper), the main
difference is that we do not constrain the variable L to be positive semidef-
inite in (3.3) (recall that the nuclear norm of a positive semidefinite matrix
is equal to its trace). However we show that the unique optimum (S, Ly)
of (3.3) under the hypotheses of Theorem 4.1 (main paper) is such that
L, = 0 (with high probability). Therefore we conclude that (S, L,) is
also the unique optimum of (1.2) (main paper). The subdifferential with
respect to the nuclear norm at a matrix M with (reduced) SVD given by

M =UDVT is as follows:
Ned|M|. & PranN)=UV", [[Pran(N)]l2 < 1.

The proof of this theorem consists of a number of steps, each of which is
analyzed in separate sections below. We explicitly keep track of the constants
«, B,v,1. The key ideas are as follows:

1. We show that if we solve the convex program (3.3) subject to the
additional constraints that S € Q and L € T” for some T” “close to” T
(measured by p(T’,T)), then the error between the optimal solution
(Sn, Ly,) and the underlying matrices (S*, L*) is small. This result is
discussed in Appendix 3.2.
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2. We analyze the optimization problem (3.3) with the additional con-
straint that the variables S and L belong to the algebraic varieties of
sparse and low-rank matrices respectively, and that the correspond-
ing tangent spaces are close to the tangent spaces at (S*,L*). We
show that under suitable conditions on the minimum nonzero singular
value of the true low-rank matrix L* and on the minimum magnitude
nonzero entry of the true sparse matrix S*, the optimum of this modi-
fied program is achieved at a smooth point of the underlying varieties.
In particular the bound on the minimum nonzero singular value of
L* helps bound the curvature of the low-rank matrix variety locally
around L* (we use the results described in Appendix 2). These results
are described in Appendix 3.3.

3. The next step is to show that the variety constraint can be linearized
and changed to a tangent-space constraint (see Appendix 3.4), thus
giving us a convex program. Under suitable conditions this tangent-
space constrained program also has an optimum that has the same
support /rank as the true (S*, L*). Based on the previous step these
tangent spaces in the constraints are close to the tangent spaces at
the true (S*, L*). Therefore we use the first step to conclude that the
resulting error in the estimate is small.

4. Finally we show that under suitable identifiability conditions these
tangent-space constraints are inactive at the optimum. Therefore we
conclude with the statement that the optimum of the convex pro-
gram (3.3) without any variety constraints is achieved at a pair of
matrices that have the same support/rank as the true (S*, L*) (with
high probability). Further the low-rank component of the solution is
positive semidefinite, thus allowing us to conclude that the original
convex program (1.2) (main paper) also provides estimates that are
algebraically correct.

3.1. Proof of main paper Proposition 5.1 — Bounded curvature of matrizc
inverse. Consider the Taylor series of the inverse of a matrix:

(M 4+ =M1 - M7TAM™ + Ry 1(A),

where
o0

Ry-1(A) =M1 [Z(—AMl)k
k=2

This infinite sum converges for A sufficiently small. The following proposi-
tion provides a bound on the second-order term specialized to our setting:
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PROPOSITION 3.1.  Suppose that v is in the range given by (3.1). Let
gv(Ag,Ar) < ﬁ Jor C1 =¢(1+55), and for any (Ag,Ar) with Ag € Q.
Then we have that

2 2
0y (AT By (A(As, Ap)) < 220008 B0)

&(T)
Proof: We have that
[A(As, Ap)ll2 < [[Asllz + |AL]2
Aslloo
< @12k jag,
< (A +vu(Q))gy(As, AL)
«
< (1+— Ag, A
< (14 50 (As.A0)
1
< PR
= 9%

where the second-to-last inequality follows from the range for v (3.1) and
that v € (0, %], and the final inequality follows from the bound on g, (Ag, Ap).
Therefore,

Ry (A(As, Ap))l2 < &) (I1As + ALll2p)*
k=2

1
< 3 AS + A 2
«
S 20001+ 55) 0 (As, Ar)’
= 2¢Cig,(As,Ap)*.
Here we apply the last two inequalities from above. Since the || - [|s-norm is
bounded above by the spectral norm || - ||2, we have the desired result. OJ

3.2. Proof of main paper Proposition 5.2 — Bounded errors. Next we
analyze the following convex program subject to certain additional tangent-
space constraints:

(3.4)
(S, L) = axgmin tr[(S — L) ¥ ~ logdet(S — L) + Aul|ISlly + L.

st. S—L=0, S€Q, LeT,

for some subspace T”. We show that if 7" is any tangent space to the low-
rank matrix variety such that p(T,T") < @, then we can bound the error
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(Ag,Ar) = (Sq — S*,L* — Lyv). Let Cpv = Ppvo(L*) denote the normal
component of the true low-rank matrix at 7”, and recall that E, = X} —
Y5 denotes the difference between the true marginal covariance and the
sample covariance. The proof of the following result uses Brouwer’s fixed-
point theorem [4], and is inspired by the proof of a similar result in [5] for
standard sparse graphical model recovery without latent variables.

PROPOSITION 3.2. Let the error (Ag,Ar) in the solution of the con-
vex program (3.4) (with T" such that p(T',T) < @) be as defined above.
Further let C; = ¥(1 + %), and define

8
r = max {E [g,Y(ATEn) + gy (AT Cr) + An] ; ||CT/H2} .

If we have that

< mind L _260)_
"= ACy 64Dy C?

for «y in the range given by (3.1), then
gv(Ag,Ar) < 2r.

Proof: Based on Proposition 3.3 (main paper) we note that the convex
program (3.4) is strictly convex (because the negative log-likelihood term has
a strictly positive-definite Hessian due to the constraints involving transverse
tangent spaces), and therefore the optimum is unique. Applying the opti-
mality conditions of the convex program (3.4) at the optimum (Sq, Lzv), we
have that there exist Lagrange multipliers Qqor € Q+, Q.. € T'* such that

56— (So—Lp) '+ Qo € —MandlSall,
Té — (SQ — LT/)_1 + QT’J- S )\n(?HLT/H*
Restricting these conditions to the space Y = € x T”, one can check that
PolE — (Sq — Lp) 7Y = Zg, Pr[8} — (Sq — Lp) 7Y = Zpr,

where Zg € Q, Zp € T" and || Zq||cc = MY, [ Z77]]2 < 2\, (we use here the
fact that projecting onto a tangent space T” increases the spectral norm by
at most a factor of two). Denoting Z = [Zq, Z7/], we conclude that

(3.5) Py ATEE — (Sq — L)™' = Z,

with g,(Z) < 2\,. Since the optimum (AQ,IA-JT/) is unique, one can check
using Lagrangian duality theory [6] that (Sq,L7v) is the unique solution
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of the equation (3.5). Rewriting % — (Sq — Ly/)~" in terms of the errors
(Ag,Ar), we have using the Taylor series of the matrix inverse that

b= (So—Lr)™" = Ef-[AAs, AL+ (25) 71
= E,— Ryy (A(As,AL)) + I A(As, AL)
= E, — Ryy (A(As,AL))
(3.6) +Z* APy (Ag, AL) + Z*Crpr.

Since 7" is a tangent space such that p(7",T) < @,

Proposition 3.3 (main paper) that the operator B = (Py.ATI*APy)fl from
Y to Y is bijective and is well-defined. Now consider the following matrix-
valued function from (dg,07) € Y to V:

we have from

F(0s,01) = (0s,01) — B {PyAT[En — Ry (A(Ss, 61, +Crv))
VT APy (85, 01) + T*Cr] — Z}.

A point (6s,01) € Y is a fixed-point of F if and only if PyAT[E, — Ry (A(ds,
dr, + Cpr)) + T* APy (ds,6r) + Z*Cp] = Z. Applying equations (3.5) and
(3.6) above, we then see that the only fixed-point of F' by construction is
the “true” error Py(Ag, Ar) restricted to ). The reason for this is that, as
discussed above, (5’9, fLT/) is the unique optimum of (3.4) and therefore is
the wunique solution of (3.5). Next we show that this unique fixed-point of
F lies in the ball B, = {(ds,91) | 94(ds,01) <7, (6s,0L) € V}.

In order to prove this step, we resort to Brouwer’s fixed point theorem
[4]. In particular we show that the function F' maps the ball B, onto itself.
Since F' is a continuous function and B, is a compact set, we can conclude
the proof of this proposition. Simplifying the function F', we have that

F(bs,61) =B {PyAT[—En + Ry (A(ds,0r, +Cpv)) = Z°Cp/] + Z } :

Consequently, we have from Proposition 3.3 (main paper) that

2
0:(F(35,61) = = gy (PyATlEn — Ry, (A(3s, 61+ Cr)) + T°Cp] - 7)
4 .
< a {g»Y(AT[En — Rz*o(.A((SS,(SL -l-CT/)) +7 CT/]) + )\n}
4
< 5+ o (AT Re (As. 61 +Cr)),

where in the second inequality we use the fact that g,(Py(-,-)) < 2g¢,(,-)
and that g(Z) < 2\, and in the final inequality we use the assumption on
r.
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We now bound the term gy(ATRg*O (A(ds,01))) using Proposition 3.1 as
g’Y(A57AL) < ﬁ:

4 8Dy C%(g4(8s,01) + ||Crr[]2)?

& (AR (AGs, 00+ Cr))) < §(T)al
32Dy C3r?
< 22Dyplirt
BRIV
_ 32DYCEr ag(T)
= {T)a  64DyC?
<

r
27

where we have used the fact that r < 2520 Hence gv(Py(As,Ap)) <r
1
by Brouwer’s fixed-point theorem. Finally we observe that

9v(As, Ap) 9v(Py(As, Ar)) +[[Cr |2
2r.

IN A

O

3.3. Solving a wvariety-constrained problem. In order to prove that the
solution (S,,, L) of (3.3) has the same sparsity pattern/rank as (S*, L*), we
will study an optimization problem that explicitly enforces these constraints.
Specifically, we consider the following non-conver constraint set:

M = {(S,L)] S e€Qs*), rank(L) < rank(L*),

§(T)An
Dy?

[Pro(L—LY)[2 < gy (AT A(S — 5%, L* — L)) < 11),}
Recall that S* = K{ and L* = KaH(KI’;)_lK}‘LO. The first constraint
ensures that the tangent space at S is the same as the tangent space at S*;
therefore the support of S is contained in the support of S*. The second and
third constraints ensure that L lives in the appropriate low-rank variety,
but has a tangent space “close” to the tangent space T'. The final constraint
roughly bounds the sum of the errors (S —.S*)+ (L* — L); note that this does
not necessarily bound the individual errors. Notice that the only non-convex
constraint is that rank(L) < rank(L*). We then have the following nonlinear
program:

(37)

(St L) = argmin tr[(S — L) Bp] —log det(S — L) + An[y[[S]l +[|1L]]

st. S—L=0, (S,L)€eM.
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Under suitable conditions this nonlinear program is shown to have a unique
solution. Each of the constraints in M is useful for proving the consis-
tency of the solution of the convex program (3.3). We show that under
suitable conditions the constraints in M are actually inactive at the opti-
mal (Suq, L), thus allowing us to conclude that the solution of (3.3) is
also equal to (Su, L); hence the solution of (3.3) shares the consistency
properties of (S ™, L M). A number of interesting properties can be derived
simply by studying the constraint set M.

PROPOSITION 3.3.  Consider any (S, L) € M, and let Ag = S—S*, A, =
L* — L. For ~ in the range specified by (3.1) and letting Co = 473 + #, we
have that gy(Ag,Ar) < Cop,.

Proof: We have by the triangle inequality that

97 (AT A(Pa(As), Pr(AL)) < 1A, + g5 (AT A(Poi (As), Pre (Ar)))
U, + mip? [ Pro (A2

12\,

ININ TN

as m < z2-. Therefore, we have that g, (PyATZ*APy(Ag, AL)) < 24\,

(1)
where ) = Q x T'. Consequently, we can apply Proposition 3.3 (main paper)

to conclude that
48\,
97(7331(A57AL)) < a

Finally, we use the triangle inequality again to conclude that

9y(As,AL) < gy(Py(As,AL)) + g4(Py(As,AL))

48\,
< - +m||Ppe(AL)|l2
< CoN,.

O

This simple result immediately leads to a number of useful corollaries.
For example we have that under a suitable bound on the minimum nonzero
singular value of L* = KB,H(K;{)_IK;{@: the constraint in M along the
normal direction T is locally inactive. Next we list several useful conse-
quences of Proposition 3.3.

COROLLARY 3.4. Consider any (S,L) € M, and let Ag =S —S*, A =
L* — L. Suppose that ~y is in the range specified by (3.1), and let C5 =

(6(2;1/) +1) C3?D and Cy = Cy + % (where Co is as defined
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in Proposition 3.3). Let the minimum nonzero singular value o of L* =
K} 5 (K5) 'K} o be such that o > C5>‘" for Cs = max{Cs,C4}, and sup-

pose that the smallest magnitude nonzero entry of S* is greater than %

for Cs = ?QVQ) Setting T" = T(L) and Cpr = Py (L*), we then have that:

1. L has rank equal to rank(L*), i.e., L is a smooth point of the variety
of matrices with rank less than or equal to rank(L*). In particular L

has the same inertia as L*.

IPra (Ao < €02

p(T,T") < 8.
gv(ATI*CT') < 55

V)An
[Cpr|2 < %-

sign(S) = sign(S*).

S S o e

Proof We note the following facts before proving each step. First Cy >

# > — d)g > g d)g Second £(T) < 1. Third we have from Proposition 3.3
that ||ALll2 < Ca\,. Finally ( Y) > 18 for v € (0,1]. We prove each step
separately.

For the first step, we note that

C3\n _ 19C32DN, _ 19Co )\,
o= 7 = 7 =
¢(T) ¢(T) (1)
Hence L is a smooth point with rank equal to rank(L*), and specifically has

the same inertia as L*.
For the second step, we use the fact that o > 8||Ap||2 to apply Proposi-

tion 2.2: ) ) .
IALI3 _ CRET)222 _ €@,
o o Cs3)\, o 19D7,b2 '

For the third step we apply Proposition 2.1 (by using the conclusion from
above that o > 8||Arl]2) so that

2Aly _ 2661 _ 26T _ &)
o - Cs - 1902D¢2 - 4

> 8Cy\y, > 8J|ALl2.

[Pro(AL)ll <

p(T.T') <

For the fourth step let ¢’ denote the minimum singular value of L. Con-
sequently,
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Using the same reasoning as in the proof of the second step, we have that
[V DU
(g — C2M
Cg&’ (T)*A
CQDw2( ) C’QD@b2 C¢(T)?
CRE(TPN Ve,
02D¢2( 6(2— V)) 6(2 — Z/)le2 ’

ICrlz2 <
g

Hence N
1T Cr) < map?||Cpvllg < —2X
gy (AL Crr) < map”[|Crr|l2 < 62— )
For the fifth step the bound on ¢’ implies that
C4)\ 302a(2 — l/)
"> — Oy > =225 2\,
T Te@m? T 6B

Since o’ > 8||ALl]2, we have from Proposition 2.2 and some algebra that

C3\2  16(3 —v)\,
/ < n<L .
ICrll2 < o’ 3a(2 —v)

For the final step since ||Ag|locc < 7C2\,, the assumed lower bound on
the minimum magnitude nonzero entry of S* guarantees that sign(S) =
sign(S*). O

Notice that this corollary applies to any (S, L) € M, and is hence appli-
cable to any solution (Sxq, Laq) of the M-constrained program (3.7). For
now we choose an arbitrary solution (S ‘™, L M) and proceed. In the next
steps we show that (S ‘M, L M) is the unique solution to the convex program
(3.3), thus showing that (S, L) is also the unique solution to (3.7).

3.4. From variety constraint to tangent-space constraint. Given the solu-
tion (Su, L), we show that the solut10n to the convex program (3.4) with
the tangent space constraint L € Ty £ T(LM) is the same as (SM,LM)
under suitable conditions:

(3.8)
(Sa, Lty,) = argmln tr[(S — L) 3] —logdet(S — L) + M [Y|IS]l1 + || L]+

st. S—L=0, Se€Q, LeTy.

Assuming the bound of Corollary 3.4 on the minimum singular value of
L* the uniqueness of the solution (Sq, Lr,,) is assured. This is because we
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have from Proposition 3.3 (main paper) and from Corollary 3.4 that Z* is
injective on Q2 @ T'\. Therefore the Hessian of the convex objective function
of (3.8) is strictly positive-definite at (Sq, Lr,,).

We let Cpq = PT/ﬁ (L*). Recall that E,, = ¥ — X7, denotes the difference
between the sample covariance matrix and the marginal covariance matrix
of the observed variables.

PROPOSITION 3.5.  Let «y be in the range specified by (3.1). Suppose that
the minimum nonzero singular value o of L* = KaH(KjZI)*lK;I’O s such
that o > % (Cs is defined in Corollary 3.4). Suppose also that the mini-
mum magnitude nonzero entry of S* is greater than or equal to i?ésl (Cg is

defined in Corollary 3.4). Let gW(ATEn) < 6&"_””). Further suppose that

3a(2 —v) . 1 &(T)
= T o it

Then we have that o R R
(Sa, Lry,) = (Sa, L)

Proof: Note first that the condition on the minimum singular value of
L* in Corollary 3.4 is satisfied. Therefore we proceed with the following two
steps:

1. First we can change the non-convex constraint rank(L) < rank(L*)
to the linear constraint L € T(L ). This is because the lower bound
assumed for ¢ implies that Ly is a smooth point of the algebraic
variety of matrices with rank less than or equal to rank(L*) (from
Corollary 3.4). Due to the convexity of all the other constraints and
the objective, the optimum of this “linearized” convex program will
still be (Sag, L)

2. Next we can again apply Corollary 3.4 (based on the bound on o)

to conclude that the constraint ||[Pp.(L — L*)||2 < % is locally

inactive at the point (Spq, Lay).

Consequently, we have that (S ‘™, L M) can be written as the solution of
a convex program:

(3.9)
(St L) = argmin tr[(S — L) Bp] —log det(S — L) + An[y[[S]l +[|1L]]
st. S—L>=0, Se€Q, LeTpn,
g, (ATT*A(S — §*, L* — L)) < 11\,.



LATENT VARIABLE MODEL SELECTION 15

We now need to argue that the constraint g, (ATZ*A(S — S*,L* — L)) <
11\, is also inactive in the convex program (3.9). We proceed by showing
that the solution (Sq, Lr,,) of the convex program (3.8) has the property
that g,(ATZ*A(Sq — S*, L* — Lz,,)) < 11)\,, which concludes the proof of
this proposition. We have from Corollary 3.4 that g,(ATZ*Cr,,) < %.

Since g,(ATE,) < 6&"_”” by assumption, one can verify that

16(3 —v)\,
ERcE

1 agm)
< mln{4—C'1’64D1b012}'

A

The last line follows from the assumption on A,,. We also note that ||C7,,||2 <

% from Corollary 3.4, which in turn implies that ||C7,,||2 < min ﬁ,
625(50)% } Letting (Ag,Ar) = (Sq — S*, L* — ﬁTM), we can conclude from

Proposition 3.2 that g,(Ar, Ag) < 3?)(;’(;72:\)”

(as g4(ArL,Ag) < ﬁ) to conclude that

. Next we apply Proposition 3.1

2DyC%g,(Ag, AL)?
§(T)
2DYC? 32(3 — v)\, a&(T)
— LT) 3a(2-v) 32DyYC?
23 —v)A\,
- 32-v)

9v(ATRy: (Ag + Ap))

IN

(3.10)

From the optimality conditions of (3.8) one can also check that for J =
Q x TM,

9y (PyATT* APy(As, AL)) < 2X, + g, (Py AT Ry (As + Ap))
+0,(Py AT Cry) + g, (PyATE,)
2[An + g4(A" Ry (Ag + AL))
+9,(ATE,) + g, (ATZ*Cr, )]

Sk

IN

Here we used (3.10) in the last inequality, and also that g,(A'Z*Cr,,) <

% (as noted above from Corollary 3.4) and that g,(AE,) < %.
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Therefore,

16,
3 )

(3.11) g (PyAIT* APy(As, AL)) <

because v € (0, 3]. Based on Proposition 3.3 in the main paper (the second
part), we also have that

16A, 16X,
< .

(3.12) 9y(PyL ATT* APy (As, AL)) < (1 —v) - -

Summarizing steps (3.11) and (3.12),

gy (ATT*A(Ag, AL)) < gy (PyATT* APy(As, AL))
+0y(Pyr AT APy(As, AL)) + g5 (ATT*Cry,)
16X, 16Mn  Auv

<

R A S R
320,

< -

- 3 18

< 1\,

This concludes the proof of the proposition. []
This proposition has the following important consequence.

COROLLARY 3.6.  Under the assumptions of Proposition 3.5 we have that
rank(Lr,,) = rank(L*) and that T(Lt,,) = Tam. Moreover, Lr,, actually
has the same inertia as L*. We also have that sign(Sq) = sign(S*).

3.5. Proof of main paper Proposition 5.3 — Removing the tangent-space
constraints. The following lemma provides a simple set of sufficient condi-
tions under which the optimal solution (Sg, Lr,,) of (3.8) satisfies the op-
timality conditions of the convex program (3.3) (without the tangent space
constraints). This lemma, along with Corollary 3.4 and Corollary 3.6, proves
Proposition 5.3 of the main paper.

LEMMA 3.7. Let (SQ,i/TM) be the solution to the tangent-space con-
strained convexr program (3.8). Suppose that the assumptions of Proposi-
tion 3.5 hold. If in addition we have that

gv(ATRzg (A(AS, AL))) < ma

then (SQ,i/TM) is also the unique optimum of the convex program (3.3).
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Proof: Recall from Corollary 3.6 that the tangent space at f/TM is equal
to Th. Applying the optimality conditions of the convex program (3.8)
at the optimum (SQ,IA/TM), we have that there exist Lagrange multipliers
Qa1 € Q-+, QT/%4 € T/ﬁ such that

Té - (SQ - IA’TM)_1 +Qqr € _)‘n78“‘§9”17
6= (8o =Lz )™ +Qry € M0l
Restricting these conditions to the space ) = €2 x T\, one can check that

PalSh — (S — L1, )Y = —Au7sign(SY),
pTM [E% - (SQ - LTM)_I] = )‘nUVTv

where f/TM = UDVT is areduced SVD of f/TM. Setting Z = [—\,ysign(S™),
A UVT], we conclude that

(3.13) Py ATEY — (S — Lry,) Y = Z,

with ¢,(Z) = A,. It is clear that the optimality condition of the convex
program (3.3) (without the tangent-space constraints) on ) is satisfied. All
we need to show is that

(3.14) 9y (Pyr AT[SS — (S — Lr,,) 7Y < A

Rewriting 3¢ — (Sq — IALTM)’1 in terms of the error (Ag, Az) = (Sq —
S*, L* — f/TM), we have that

E% — (SQ — ﬁTM)_l =F, — RZB (.A(AS, AL)) +I*.A(AS, AL).

Restating the condition (3.13) on ), we have that
(3.15)
PyATT* APy(Ag, AL) = Z + Py Al[-E, + Rsy (A(As,AL)) — T°Cr, ).

(Recall that Cr,, = Pri (L*).) A sufficient condition to show (3.14) and
complete the proof of this lemma is that

9y (Pyr AIT* APy (As,AL)) < An — g4(Pyr AT[=E, + Ry (A(As,AL))
~T*Cr,]).

We prove this inequality next. Recall from Corollary 3.4 that g, (ATZ*Cr,,) <
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%. Therefore, from equation (3.15) we can conclude that

9y (PyATT" APy(As, AL)) < Ao+ 2(gy(AT[=E, + Ry (A(As, AL))

—I*Cr,)))
3\ v
< A+ 2|—
= et [6(2—1/)}
oo,
2

Here we used the bounds on g, (A" E,) and on gW(ATRz*O(.A(AS, Ap))).
Applying the second part of Proposition 3.3 (main paper), we have that

20, (1 —
0 (Pys AT APy (85.8p)) < 2nll )
— A VA,
2—v
VA,
< A 2(2 —v)
< A — gy(AT[=Ey + Ry (A(As,AL))
~T*Cr,,))
< An = 9y(PyL AT[-E, + Ry (A(As, AL))
—T*Cr,)).

Here the second-to-last inequality follows from the bounds on g,y(.ATEn),
G (ATRE*O (A(As,AL))), and g, (ATZ*Cr,,). This concludes the proof of the
lemma. [

3.6. Proof of main paper Lemma 5.4 — Probabilistic analysis. All the
analysis described so far in this section has been completely deterministic in
nature. Here we present the probabilistic component of our proof. Specifi-
cally, we study the rate at which the sample covariance matrix converges to
the true covariance matrix. The following result from [2] plays a key role in
our analysis:

THEOREM 3.8.  Given natural numbers n,p with p <n, let ' be a p X n
matrix with i.i.d. Gaussian entries that have zero-mean and variance %
Then the largest and smallest singular values s1(I') and s,(I") of I" are such

that

maX{Pr [Sl(r) > 1"’\/%"‘75] , Pr [Sp(r‘) < 1—\/g—t}} Sexp{—"—;},

for any t > 0.
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Using this result the next lemma provides a probabilistic bound between
the sample covariance X7 formed using n samples and the true covariance
o in spectral norm. This result is well-known, and we mainly discuss it here
for completeness and also to show explicitly the dependence on ¥ = [|37||2.

LEMMA 3.9. Let ¢ = ||X5]]2. Given any 6 > 0 with 6 < 8, let the

number of samples n be such that n > 64§Q¢ . Then we have that

* 2
Pr{|st — Shlla > 0] < 2exp {— 325 |

Proof: Since the spectral norm is unitarily invariant, we can assume that
¥¢ is diagonal without loss of generality. Let o= (E*O)_%E?)(E*O)i
and let s1(X"),sp(X") denote the largest/smallest singular values of X".
Note that X" can be viewed as the sample covariance matrix formed from
n independent samples drawn from a model with identity covariance, i.e.,
¥" = I'T” where I" denotes a p X n matrix with i.i.d. Gaussian entries that
have zero-mean and variance E We then have that

Pr{|st — Sple >0 < Pr[|" 1l > 4]
< Pr :31(2”) >1+ é] + Pr [sp(i]”) <1-— %]
= Pr: (D)2 >1+ ]—I—Pr[sp %}
< Pr :sl(I’) >1+ 4w] + Pr {sp %}
< Pr :51(F)21+\/§+%}
+ Pr [sp(I‘) <1-— \/;— %}
< Qexp{—%}.

Here we used the fact that n > 64p Y” in the fourth inequality, and we applied

Theorem 3.8 to obtain the final 1nequahty by setting ¢ = —w O
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